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"Imagination is the Discovering Faculty, pre-eminently. It is that which penetrates 
into the unseen worlds around us, the worlds of Science. It is that which feels & 

discovers what is, the real which we see not, which exists not for our senses." 
 

Ada Lovelace | Letter to Charles Babbage | January 1841  
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Abstract 

 

The brain’s ability to sense energy levels and adjust behaviour accordingly is vital for 

survival in mammals. The lateral hypothalamus (LH), which contains energy-

spending (orexin) and energy-conserving melanin-concentrating hormone (MCH) 

neurons, is thought to be the brain’s master energy sensor and generator of 

motivated behaviour. Recently, other classes of non-MCH, non-orexin neurons, such 

as vesicular GABA transporter (VGAT) and glutamic acid decarboxylase 65 (GAD65) 

expressing neurons, have been discovered in the LH. VGATLH neurons have been 

shown to be essential for appetitive and consummatory behaviour. However, the 

properties and behavioural roles of GAD65LH neurons remain unclear, and are the 

focus of this thesis. The thesis’ three parts examine cellular, circuit, and behavioural 

roles of GAD65LH neurons. 

 

Firstly, whole cell patch clamping was used to determine firing responses of 

GAD65LH neurons to injections of oscillatory input currents. GAD65LH neurons were 

found to have similar frequency-preferences of firing resonance to those of VGAT 

and MCH neurons, whilst orexin neurons showed a different, “high frequency 

inhibited” frequency-preference profile. Moreover, histochemistry was employed to 

characterise GAD65LH neurons further by quantifying their overlap with other 

GABAergic LH cell types. It was found that GAD65LH neurons overlapped only 

partially with VGATLH neurons, and that neuropeptide Y (NPY) and leptin receptor 

(LepRb) expressing neurons were largely distinct from GAD65LH cells. 

 

Secondly, cell-type specific channelrhodopsin-assisted circuit mapping was used to 

probe up- and downstream functional targets of GAD65LH neurons. It was found that 

GAD65LH neurons were excited by orexin neurons and inhibited by VGATLH neurons, 

and that they preferentially inhibited MCHLH and NPYLH neurons. 

 

Finally, chemogenetic excitation or inhibition of GAD65LH cell activity was used to 

investigate the role of these cells in behaviour. It was found that GAD65LH neurons 

were weight-loss-promoting, and essential and sufficient for normal locomotor 

activity. 
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Overall, these results define and characterise a new cellular network component in 

LH function. 
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Impact Statement 

 

Considering the existing and still growing prevalence of obesity, especially in the 

developed world, and its role in the causation of diabetes (Minamino et al. 2009), 

cardiovascular diseases (Van Gaal et al. 2006) and even cancer (Calle and Kaaks 

2004), it is paramount to understand the control of energy expenditure and body 

weight. Since it has been suggested that obesity is a brain based disease (Locke et 

al. 2015), it is of essential value to understand the complex interaction of neuronal 

circuits that control and produce the fine balance of keeping an appropriate body 

weight by producing adaptive food intake and energy expenditure. 

 

This work aims to provide a novel insight into how behaviour emerges from specific 

neuronal signals in the LH, and how these signals can be controlled by the local 

circuitry. Thereby providing new knowledge about how basic functions like energy 

balance and body weight might be controlled by the brain, but also adding to the 

understanding of how neuropeptidergic circuitries might differ in form and function 

from other brain areas. This work will hopefully not only help basic science progress 

by opening further avenues for dissecting neurophysiological mechanisms of body 

weight control, but also provide a basis for clinical research and application to build 

upon this knowledge.  

 

 

 

 

 

  



 

8 

 

Acknowledgement 

 

I would like to thank Denis Burdakov for the opportunity to do this PhD but also for 

the supervision, guidance and support over the past years. 

 

Many thanks also to my thesis committee for their time and effort to guide me through 

my PhD. Especially Andreas Schaefer, who always had an open door, deserves my 

gratitude. 

 

There are many people in the lab and division whose advice and help (scientifically 

or in form of chocolate) made my time as a PhD student much easier and sweeter. 

Thank you for sharing your knowledge and experience so generously: Celia Garau 

for being the most supportive desk neighbour one could hope for, Cornelia Schoene 

for having the patience to teach me many techniques, Mahesh Karnani for trying to 

make me a better scientist, Antonio Gonzalez for taking away my fear of statistics 

and breadboards, Julia Harris for always having a kind word of advice, Isabell 

Whiteley for always having spare GAD65 mice for me, my fellow students Rebecca 

Jordan, Andrew Erskin and William Wray for sharing many fun moments, and Aless 

andro for providing the best Italian sweets. 

  

Last but not least, I would like to thank my family and partner that always supported 

and helped me unconditionally and without whom this would not have been possible. 

Thank you for never losing your patience with me. 



 

9 

 

Table of Contents 

 

PUBLICATIONS ......................................................................................................4 

ABSTRACT .............................................................................................................5 

IMPACT STATEMENT ............................................................................................7 

ACKNOWLEDGEMENT ..........................................................................................8 

TABLE OF CONTENTS ..........................................................................................9 

TABLE OF FIGURES ............................................................................................12 

LIST OF TABLES ..................................................................................................14 

ABBREVIATIONS .................................................................................................15 

CHAPTER 1. INTRODUCTION ..............................................................................18 

1.1 AN HISTORICAL AND EVOLUTIONARY VIEW OF THE HYPOTHALAMUS ...................18 

1.2 THE LATERAL HYPOTHALAMUS: CLASSIC STUDIES ...........................................19 

1.2.1 The lateral hypothalamus in the context of wakefulness ......................19 

1.2.2 The lateral hypothalamus in the context of energy and eating .............20 

1.2.3 The lateral hypothalamus in the context of locomotion and other 

behaviours ......................................................................................................22 

1.3 GENETICALLY DEFINED NEURONAL POPULATIONS IN THE LH ............................24 

1.4 OREXIN NEURONS ......................................................................................25 

1.4.1 Intrinsic properties of orexin neurons ...................................................25 

1.4.2 Orexin neurons as internal sensors ......................................................26 

1.4.3 Orexin neurons and feeding, body weight and metabolism ..................28 

1.4.4 Orexin neurons and sleep ....................................................................29 

1.4.5 Orexin neurons and other awake behaviour .........................................31 

1.5 MCH NEURONS ..........................................................................................32 

1.5.1 Intrinsic properties of MCH neurons .....................................................32 

1.5.2 MCH neurons as internal sensors ........................................................33 

1.5.3 MCH neurons and feeding, body weight and metabolism ....................35 

1.5.4 MCH neurons and sleep.......................................................................36 

1.5.5 MCH neurons and other awake behaviours .........................................36 



 

10 

 

1.6 GABAERGIC NON-MCH NON-OREXIN NEURONS ............................................39 

1.6.1 NPY neurons ........................................................................................40 

1.6.2 LepRb neurons.....................................................................................40 

1.6.3 VGAT neurons in the LH ......................................................................41 

1.6.4 GAD65 neurons in the LH ....................................................................42 

1.7 CAN SILENCING OF GENETICALLY IDENTIFIABLE POPULATIONS RECAPITULATE THE 

RESULTS OF ELECTROLYTIC LH LESIONS? ................................................................42 

1.8 AIMS OF THIS THESIS ..................................................................................43 

CHAPTER 2. MATERIALS & METHODS ..............................................................45 

2.1 REAGENTS ................................................................................................45 

2.2 SOLUTIONS AND CONCENTRATIONS ..............................................................45 

2.3 ANIMALS ....................................................................................................46 

2.3.1 Transgenic mice and breeding .............................................................46 

2.3.2 Gene transfer and viruses ....................................................................47 

2.4 HISTOCHEMISTRY .......................................................................................48 

2.4.1 Thick and thin slice immunohistochemistry ..........................................48 

2.4.2 Antigen retrieval and pSTAT immunohistochemistry ............................49 

2.5 BRAIN SLICE OPTOGENETICS, ELECTROPHYSIOLOGY AND IMAGING ...................49 

2.5.1 Brain slice preparation and in vitro recordings ......................................49 

2.5.2 Calculation of equilibrium potentials .....................................................50 

2.5.3 Channelrhodopsin-assisted circuit mapping .........................................50 

2.5.4 Oscillatory input currents and calculation of membrane impedance .....52 

2.5.5 In vitro calcium imaging ........................................................................52 

2.6 MEASUREMENTS OF MOVEMENT, EATING, AND BODY WEIGHT...........................53 

2.7 STATISTICAL ANALYSIS ................................................................................53 

CHAPTER 3. INTRINSIC PROPERTIES OF GAD65LH NEURONS .......................55 

3.1 INTRODUCTION ...........................................................................................55 

3.2 GAMMA OSCILLATIONS DIFFERENTIALLY CONTROL THE FIRING OF OREXIN AND 

NON-OREXIN NEURONS IN THE LATERAL HYPOTHALAMUS IN VITRO ...............................57 

3.3 LH GAD65-GFP NEURONS ARE NOT CO-LOCALISED WITH OREXIN, MCH, NPY 

AND LEPRB NEURONS ............................................................................................67 

3.4 WHAT IS THE OVERLAP BETWEEN VGAT AND GAD65 NEURONS IN THE LH? ....69 



 

11 

 

3.5 ARE GAD65LH NEURONS LOCAL NEURONS OR DO EXTRA HYPOTHALAMIC 

PROJECTIONS EXIST? ............................................................................................72 

3.6 DISCUSSION ..............................................................................................75 

CHAPTER 4. LOCAL LH CIRCUITRY INVOLVING GAD65 NEURONS ...............79 

4.1 INTRODUCTION ...........................................................................................79 

4.2 OREXIN PEPTIDE EXCITES GAD65LH NEURONS ..............................................80 

4.3 LOCAL LH INPUTS TO GAD65LH NEURONS ....................................................81 

4.4 LOCAL OUTPUTS OF GAD65 NEURONS .........................................................85 

4.5 DISCUSSION ..............................................................................................89 

CHAPTER 5. WHAT IS THE BEHAVIOURAL IMPACT OF GAD65LH NEURON 

ACTIVITY?..............................................................................................................92 

5.1 INTRODUCTION ...........................................................................................92 

5.2 CHEMOGENETIC INCREASE OF GAD65LH NEURON ACTIVITY CAN PRODUCE 

WEIGHT LOSS WITHOUT AFFECTING FOOD INTAKE ......................................................93 

5.3 CHEMOGENETIC INHIBITION OF GAD65LH NEURON ACTIVITY LEADS TO A 

DECREASE IN FOOD INTAKE WITHOUT CHANGES TO BODY WEIGHT ...............................98 

5.4 GAD65LH NEURON ACTIVITY IS ESSENTIAL AND SUFFICIENT FOR NORMAL 

LOCOMOTOR ACTIVITY ......................................................................................... 104 

5.5 DISCUSSION ............................................................................................ 106 

CHAPTER 6. GENERAL DISCUSSION ............................................................... 110 

6.1 POTENTIAL CAVEATS OF USING TRANSGENIC MOUSE LINES AS NEURONAL 

MARKERS ........................................................................................................... 110 

6.2 POSSIBLE ROLES AND MECHANISM OF OSCILLATIONS IN THE LH ..................... 111 

6.3 IS THE LH MICROCIRCUITRY CONNECTING OPPOSING DRIVES? ....................... 113 

6.4 ARE GAD65LH NEURONS RESPONSIBLE FOR LH LESION PHENOTYPES? ......... 114 

6.5 MEASURING THE PURPOSE AND INTENT OF LOCOMOTION .............................. 115 

6.6 OPEN QUESTIONS ..................................................................................... 117 

REFERENCE LIST .............................................................................................. 118 

 

 

 



 

12 

 

Table of figures 

 

FIGURE 1.1: PHYLOGENETIC TREE OF CHORDATA AND ANTERIOR ANATOMY OF THE 

LANCELET .........................................................................................................18 

FIGURE 1.2: MOVEMENT DEFICITS OF RATS WITH BILATERAL LH LESIONS .......................23 

FIGURE 1.3: SUMMARY OF THE PROPERTIES OF MCH AND OREXIN NEURONS..................37 

FIGURE 2.1: EXAMPLE SLICES OF GAD65-IRES-CRE MICE INJECTED WITH CRE-DEPENDENT 

DREADD-MCHERRY .........................................................................................48 

FIGURE 2.2: RECORDINGS OF CHR2-EXPRESSING GAD65 NEURONS IN THE LH .............51 

FIGURE 3.1: SCHEMATIC AND RAW EXAMPLES OF OSCILLATORY CURRENTS INJECTED INTO 

LH NEURONS ....................................................................................................58 

FIGURE 3.2: EFFECTS OF OSCILLATIONS ON MOLECULARLY-DEFINED LH CELL CLASSES ...60 

FIGURE 3.3: EFFECTS OF OSCILLATIONS ON BETWEEN LH CELL CLASS DIFFERENCES AND 

THEIR PASSIVE MEMBRANE EQUIVALENTS .............................................................62 

FIGURE 3.4: EFFECTS OF OSCILLATIONS ON INDIVIDUAL NEURONS WITHIN LH CELL CLASSES

 .......................................................................................................................66 

FIGURE 3.5: CO-LOCALISATION OF GAD65 NEURONS IN THE LH WITH MCH AND OREXIN 

NEURONS..........................................................................................................67 

FIGURE 3.6: CO-LOCALISATION OF LH GAD65 AND LEPRB NEURONS ...........................68 

FIGURE 3.7: CO-LOCALISATION OF LH GAD65 AND LH NPY NEURONS .........................69 

FIGURE 3.8: CO-LOCALISATION OF GAD65 AND VGAT NEURONS IN THE LH ..................71 

FIGURE 3.9: GAD65 NEURONS IN THE LH HAVE DIVERSE EXTRA HYPOTHALAMIC 

PROJECTION TARGETS ........................................................................................74 

FIGURE 4.1: EFFECTS OF OREXIN PEPTIDE ON GAD65LH NETWORK ACTIVITY ..................80 

FIGURE 4.2: CRACM INVESTIGATING OREXINLH → GAD65LH SIGNALS ..........................82 

FIGURE 4.3: CRACM INVESTIGATING VGATLH → GAD65LH SIGNALS ...........................84 

FIGURE 4.4: CRACM INVESTIGATING MCHLH → GAD65LH SIGNALS.............................85 

FIGURE 4.5: CRACM INVESTIGATING GAD65LH →MCH SIGNALS ................................86 

FIGURE 4.6: CRACM INVESTIGATING GAD65LH →NPY SIGNALS IN THE LH AND ARCUATE 

NUCLEUS ..........................................................................................................88 

FIGURE 4.7: CRACM INVESTIGATING GAD65LH → OREXINLH SIGNALS ..........................89 

FIGURE 4.8: CRACM CONNECTION SUMMARY FOR GAD65LH NEURONS ........................91 



 

13 

 

FIGURE 5.1: TARGETING SCHEME AND IN VITRO CONTROL OF GAD65-HM3DQ 

(ADREADD) ....................................................................................................94 

FIGURE 5.2: CONTROL EXPERIMENTS FOR CHEMOGENETIC MANIPULATIONS ....................96 

FIGURE 5.3: EFFECTS OF GAD65LH CELL STIMULATION ON EATING AND BODY WEIGHT. ....97 

FIGURE 5.4: EFFECT OF I.P. CNO INJECTIONS ON FEEDING BEHAVIOUR OF GAD65-HM3DQ 

MICE ................................................................................................................98 

FIGURE 5.5: TARGETING SCHEME AND IN VITRO CONTROL OF GAD65-HM4DI (IDREADD)

 .......................................................................................................................99 

FIGURE 5.6: C57/BL6 CONTROL EXPERIMENTS FOR CHEMOGENETIC MANIPULATIONS .... 100 

FIGURE 5.7: EFFECTS OF GAD65LH CELL INHIBITION ON EATING AND BODY WEIGHT. ..... 102 

FIGURE 5.8: EFFECT OF CNO ON WATER INTAKE IN GAD65 HM4DI AND HM3DQ MICE AND 

CONTROLS ...................................................................................................... 103 

FIGURE 5.9: EFFECT OF CHEMOGENETIC ACTIVATION AND INHIBITION OF GAD65LH 

NEURONS ON LOCOMOTOR ACTIVITY .................................................................. 105 

FIGURE 5.10: EFFECTS OF OREXIN RECEPTOR INHIBITION COMBINED WITH CHEMOGENETIC 

INHIBITION OF LH GAD65 NEURONS .................................................................. 106 

FIGURE 6.1: SCHEMATIC OVERVIEW OF THE OREXIN NEURON TO GAD65LH NEURON 

CONNECTION AND ITS FUNCTION ........................................................................ 114 

 



 

14 

 

List of tables 

 

TABLE 1. MOUSE LINES AND BREEDING STRATEGIES .....................................................46 

TABLE 2. VIRUSES AND THEIR USED CONCENTRATIONS .................................................47 

TABLE 3: MEMBRANE RESISTANCES AND TIME CONSTANTS OF MOLECULARLY-DEFINED LH 

CELL CLASSES ...................................................................................................59 

 



 

15 

 

 Abbreviations 

 

ACSF artificial cerebrospinal fluid 

aDREADD activating DREADDs-hM3Dq 

alpha-MSH alpha-melanocyte-stimulating hormone 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA Analysis of variance 

AOB accessory olfactory bulb 

AP Action potential 

ATP adenosine tri-phosphate 

Agrp agouti-related peptide 

BAT brown adipose tissue 

CART cocaine and amphetamine regulated transcript 

CNO clozapine-n-oxide 

CRACM channelrhodopsin-assisted circuit mapping 

ChR2 channelrhodpsin-2 

DREADD designer receptors exclusively activated by designer drugs 

DTR diphtheria toxin receptors 

EEG electroencephalographic 

GABA gamma-aminobutyric-acid 

GAD65 glutamic acid decarboxylase 65 



 

16 

 

GAD67 glutamic acid decarboxylase 67 

GCaMP genetically encoded calcium indicator 

GFP green fluorescent protein 

GPCR G-protein coupled receptors 

icv intracerebroventricular 

iDREADD inhibitory DREADD-hM4Di 

i.p. intraperitoneal  

ING interneuron network gamma  

JAK2 Janus-kinase 2 

K-ATP ATP-inhibited K+ channel 

K2P Tandem-pore potassium channel 

KO knockout 

LH lateral hypothalamus 

LepRb leptin receptor 

MB midbrain 

MCH melanin-concentrating hormone 

MCH1R melanin concentrating hormone receptor 1 

NARP neuronal activity-regulated pentraxin 

NEAT non-exercise activity thermogenesis 

NEI neuropeptide EI 

NGE neuropeptide GE 



 

17 

 

NMDA N-methyl-d-aspartate 

NP1 neuronal pentraxin-1 

NPY neuropeptide Y 

ns non-significant 

OXR2 orexin receptor type 2 

PING pyramidal interneuron network gamma 

pSTAT3 phosphorylated form of Signal Transducer and Activator of 

Transcription 

qPCR quantitative polymerase chain reaction  

REM rapid-eye-movement  

ROI region of interest  

SEM standard error of the mean 

TH thalamus 

TRAP-seq Translating Ribosome Affinity Purification analyzed by RNA-seq 

VGAT vesicular GABA transporter 

VGLUT1 vesicular glutamate transporters 1 

VGLUT2 vesicular glutamate transporters 2 

VMH ventro-medial hypothalamus 

VTA ventral tegmental area 



Chapter 1. Introduction  

18 

 

Chapter 1. Introduction 

1.1 A historic and evolutionary view of the hypothalamus 

The origin of hypothalamic cells can be traced back to protochordates (Candiani et 

al. 2008), annelids (Tessmar-Raible et al. 2007) and insects (Hartenstein 2006). 

Moreover, it has been theorised that some endocrine cells of the vertebrate pituitary 

and some neurons of the hypothalamus and the olfactory system evolved by 

functional segregation of sister cell types, which emerged from a chemosensory–

neurosecretory organ that was similar to the Hatschek's pit (a structure that secrets 

mucus to entrap food particles in the water, see Figure 1.1) in lancelets. These fish-

like marine chordates, which are also known as amphioxus, are representatives of 

the subphylum Cephalocordata (Figure 1.1) (Arendt 2008). Intriguingly, this theory 

sees the evolutionary progenitor of hypothalamic cells already involved in the 

function of feeding, and furthermore suggests that an olfactory-hypothalamus-

pituitary circuitry has a long-standing evolutionary history. 

 

 

Figure 1.1: Phylogenetic tree of Chordata and anterior anatomy of the lancelet   

Left, phylogenetic tree of Chordata. Right bottom, example of Branchiostoma 
lanceolatum, a species of the subphylum Cephalochordata. Right top, zoom of the 
anterior anatomy of Branchiostoma depicting the location of the Hatschek’s pit. 
Pictures modified from Bertrand and Escriva 2011. 
 

Despite the postulated evolutionary ancient history, scientific interest only started to 

majorly concern itself with the hypothalamus during the 20th century (reviewed in 

Brooks 1988). After William His introduced the term hypothalamus as an anatomical, 

neurological and physiological entity for the first time at the end of the 19th century 
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(His 1895), and Ramon y Cajal started to identify hypothalamic tracts and nuclei with 

his histological advances in 1904, scientists started to investigate the function of the 

hypothalamus. Interestingly, one of the first functions proposed was control of 

somatic actions. That the hypothalamus is essential for complex motor behaviour by 

integrating somatic and visceral processes, was first indicated by experiments by 

Goltz and his famous de-cerebrated dogs (where cutting across the brainstem 

removed the cerebrum), showing that sparing “thalamic areas”, which included the 

hypothalamus, would preserve locomotion including eating (Goltz 1892). This was 

later refined by Hinsey and Ranson (1928), who showed that locomotor activity was 

much higher in hypothalamic cats (where the cut to remove the cerebrum across the 

brain stem spared the hypothalamus) compared to fully de-cerebrated cats. 

Moreover, Bard who lesioned the hypothalamus noticed increased lethargy in the 

five cats, that survived after surgery for long enough (Bard 1940). Loss of motor 

initiative was also noted in lesion studies in monkeys by Ranson, who destroyed the 

lateral part of the hypothalamus (Ranson 1939), suggesting that hypothalamus-

dependent changes in somatic actions were not limited to cats and dogs. In addition 

to this, early electrical stimulation experiments of cat hypothalmi by Nobel laureate 

Hess, produced somatic and autonomic effects that could differ depending on how 

anterior/lateral or posterior the electrodes were placed. Whilst anterior/lateral 

stimulation lowered blood pressure and respiration rate, and increased hunger and 

thirst behaviour, more posterior stimulations led to aggressive and defensive 

behaviour. Thereby giving the first indication that the hypothalamus contains different 

components that are responsible for a variety of somatic and behavioural effects. 

 

1.2 The lateral hypothalamus: classic studies 

1.2.1 The lateral hypothalamus in the context of wakefulness 

Von Economo, in the 1920s, investigated post-mortem brains of patients with “sleepy 

sickness” (Encephalitis lethargica), a viral infection causing lesions in different brain 

tissues (Economo 1930). He found that major neuronal damage in areas like the 

lateral hypothalamus was often accompanied by a behavioural impairment that 

prevented his patients to be awake for sustained periods of time. Patients suffering 

from the disease seemed often to be frozen or asleep and could only be woken up 
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with sufficient external stimuli. For example, patients could catch a ball when one 

was thrown at them, but they could not self-initiate movements to throw a ball. His 

concluding hypothesis was that the LH is a wakefulness centre of the brain (Saper 

et al. 2001). In addition to this, these observational conclusions from human patients 

have been extended onto monkeys and rats, where experimental lesions in the LH 

produced similar somnolence (Nauta 1946; Ranson 1939).  

 

It is noteworthy, that even though Encephalitis lethargica was named “sleepy 

sickness”, Von Economo never used electroencephalographic (EEG) recordings to 

measure or quantify sleep. Considering that it wasn’t until 1953, when Aserinsky and 

Kleitman used EEG for the first time to characterise and describe different stages of 

sleep, any earlier studies would not have had the same criteria and definition of sleep 

that we use nowadays. Therefore, a preferred interpretation of these classic studies 

is to see the LH as wakefulness centre in the sense that the LH is necessary for 

somatic control and movement initiation instead of implying any relation to sleep.  

 

1.2.2 The lateral hypothalamus in the context of energy and eating 

Another function of the LH was proposed later during the 1950s and 1960s, when 

electrolytic lesions in rats showed that destruction of the LH led to an aphagic 

phenotype with animals suffering radical weight loss up to the point where they died 

of starvation (Anand and Brobeck 1951b, 1951a). These results were in stark 

contrast to earlier lesion studies ablating mainly the ventro-medial hypothalamus 

(VMH), which led to an obese phenotype (Hetherington and Ranson 1940). 

Consequently, it was postulated that the LH is the hunger centre and the VMH is the 

satiety centre of the brain.  

 

Of interest is also one lesion study suggesting an alternative hypothesis for the role 

of the LH. Instead of seeing the LH as a hunger or feeding centre, they suggest it 

represents a body weight set point (Powley and Keesey 1970). Starvation prior to 

lesioning resulted in a much shorter period of aphagia and anorexia and sometimes 

even hyperphagia. Reduction in body weight was chronic and inversely correlated 
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with the size of damage to the LH, suggesting that the LH does not produce a uniform 

behaviour but instead its activity represents a set point for body weight.  

 

The caveat with many electrolytic lesion studies like these is that they are not specific 

to cell bodies but also ablate fibres of passage going through the hypothalamus, such 

as the medial forebrain bundle (Morgane 1961b; Nieuwenhuys et al.1982) and fornix 

(Swanson and Cowan 1975). One study sought to differentiate these effects and 

observed that stimulation of the “far” LH caused rats to cross an electrified barrier to 

press a lever for food (a sign of increased motivation or appetitive behaviour). 

However, when the medial forebrain bundle was lesioned, LH stimulations only 

caused the animals to eat but did not motivate them to cross the same electrified 

barrier (Morgane 1961a). This suggests that appetitive behaviour is actually not 

mediated by cells in the LH but instead by fibres going through the LH, whilst the LH 

drives consummatory behaviour only. 

 

Furthermore, most of the LH lesioned animals showing aphagia recovered or could 

be rescued. In the case of mild lesions, the inability to eat was often only temporarily, 

whilst more severe cases needed force feeding. However, for both cases, animals 

recovered their feeding abilities over time. Rats with LH lesions would go through 

defined stages of what is called the “hypothalamic syndrome”, a four stage process: 

aphagia and adipsia; anorexia and adipsia; adipsia with a secondary dehydration-

aphagia; and recovery (Teitelbaum and Epstein 1962). Therefore, showing that the 

LH as a hunger and feeding centre can be replaced by other brain areas representing 

the same drives and keeping the animals alive. Of note is that high-fat diets seemed 

to elicit most of the recovering hunger in LH lesioned rats, meaning that rats ate 

foods rich in fat, but refused to eat normal, low fat foods and preferred to starve. 

Even after recovery, a higher hunger for fat-rich diets was observed (Teitelbaum and 

Stellar 1954), indicating that there is maybe a fat-hunger centre, that lies outside the 

LH. 

 

The idea of the LH as a source of feeding and reward signals was further supported 

by experiments using electrical stimulating in the LH of rats. This stimulation led to 

voracious food intake (Delgado and Anand 1952), but also reward-seeking behaviour 

when rats were given the opportunity to self-stimulate by lever pressing (Olds and 
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Milner 1954). Interestingly, self-stimulation was inhibited after excessive feeding 

(Hoebel and Teitelbaum 1962) and vice versa food restriction would cause an 

increment in self-stimulation (Margules and Olds 1962).  

 

Overall, manipulations of the LH by lesioning or electrical stimulation cause 

decreases or increases respectively in feeding that suggest that the LH is essential 

and sufficient for feeding behaviour. However, even though feeding impairments 

caused by LH lesions can be so severe that animals die of starvation, mice can 

recover their feeding abilities over time, which shows that other hunger drives exist 

in the brain, and limits the necessity of the LH for feeding. In addition to this, there 

are further limitations to the LH as hunger centre, if one considers that some effects 

of LH lesions might be accounted for by damage to fibres on passage which seem 

to have an effect on appetitive behaviour. 

 

1.2.3 The lateral hypothalamus in the context of locomotion and other 

behaviours 

Besides the obvious link between feeding and reward properties, other more subtle 

phenotypes were also observed during electrolytic lesion and stimulation studies of 

the LH. Lesioned monkeys would fail to regulate their own body temperature 

(Ranson and Ingram 1935) and contralateral sensory neglect was often observed in 

unilateral LH lesions in rats (Marshall 1978; Marshall et al. 1971). 

 

One study investigated potential cognitive deficits, in the form of learning and 

memory, resulting from electrolytic lesions in rats (Schwartz and Teitelbaum 1974). 

They found that, after recovery of feeding behaviour, rats were still able to remember 

a previously learned taste aversion, but they were not able to acquire new taste 

aversions with different flavours. Thus, they concluded that the LH is not essential 

for memory storage or retrieval but for learning and memory acquisition. 

 

In addition to this, scientists were able to use LH specific lesions to recapitulate some 

phenotypes of the broad hypothalamic lesions and de-cerebrations, that resulted in 

impairments of somatic actions. Monkey studies using lesions in the LH reported loss 



Chapter 1. Introduction  

23 

 

of motor initiative (Ranson 1939). Moreover, a behavioural studies using LH lesioned 

rats, that had been force-fed, showed that rats suffered from an extreme form of 

akinesia (Levitt and Teitelbaum 1975). Rats would try to avoid movements at all cost, 

but were physically able to perform them. For example, rats would spontaneously 

freeze for a long time, either during movements like grooming (Figure 1.2B) or in 

awkward positions with their head resting on surfaces between their limbs (Figure 

1.2C) or when put into an awkward position, such as on a block of wood (Figure 

1.2D). However, most striking is their lack of movement when put into a beaker of 

warm water. A situation in which normal rats would happily swim to the surface, 

lesioned rats sank to the bottom and remained there until they were running out of 

oxygen and were forced to briefly swim to the surface to breath before sinking back 

to the bottom (Figure 1.2A). This illustrates that lesioned rats were physically able to 

perform swimming movements, but would avoid them if possible. 

 

Figure 1.2: Movement deficits of rats with bilateral LH lesions 

Posture and movement in rats with bilateral lateral hypothalamic lesions. (A) In 
warm water, rat swims little or not at all. Cycle of exhalation under water as in 
photograph, followed by thrust against bottom of tank with rear leg propelling rat to 
surface for inhalation may be observed. (B) "Frozen" stance following short period 
of grooming. (C) Gradual subsiding follows "freezing" and sometimes leads to top 
of head resting on table tucked between forelegs. (D) Rat remains in cataleptic 
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awkward posture for indefinite period. (Figure and description reproduced from 
Levitt and Teitelbaum 1975). 
 
A point to note is that the most extreme akinesia was observed after rats were force 

fed, and whilst the authors conclude that therefore any spontaneous locomotion is 

dependent on a signal from the empty stomach, another possible explanation may 

be that the LH is essential for non-hunger motivated locomotion. 

 

1.3 Genetically defined neuronal populations in the LH 

Considering that the LH consist of diverse heterogeneous cell populations 

(Mickelsen et al. 2017), lesions and electrical stimulations are methods too crude to 

assign behavioural outputs to specific LH cell types. Therefore, methods to 

manipulate genetically identifiable populations of the LH open a new avenue to try to 

assign some of the striking phenotypes from broad LH lesions to specific Cre-

populations. 

 

Two major cell populations found in the lateral hypothalamus are genetically distinct 

and named after neuropeptides that they express. These are MCH (Nahon et al. 

1989; Vaughan et al. 1989) and orexin/hypocretin (Sakurai et al. 1998; de Lecea et 

al. 1998) neurons, which have cell bodies exclusively in the hypothalamus, but 

project throughout most of the brain (Bittencourt et al. 1992; Peyron et al. 1998). In 

addition to their slow-acting neuropeptides, some of these neurons are also able to 

release fast-acting neurotransmitters. MCH neurons express glutamic acid 

decarboxylase 67 (GAD67) for the synthesis of gamma-aminobutyric-acid (GABA) 

(Jego et al. 2013), and orexin neurons express the vesicular glutamate transporters 

1 and 2 (VGLUT1) and (VGLUT2) for the transport of glutamate into vesicles (Rosin 

et al. 2003). Moreover, recent single cell quantitative polymerase chain reaction 

(qPCR) studies found that nearly all MCH and roughly half of all orexin neurons 

expressed markers for glutamatergic and GABAergic neurotransmitter machinery 

but were lacking the vesicular GABA transporter (VGAT) (Mickelsen et al. 2017). 

This shows an unexpected diversity of markers for fast neurotransmitter being 

transcribed in MCH and orexin neurons. However, single cell qPCR does not prove 

neurotransmitter release but functional studies have reported GABA release from 
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MCH neurons and glutamate release from orexin neurons (see section 1.4.1 and 

1.5.1).  

 

Furthermore, there are other types of neurons found in the lateral hypothalamus that 

are not exclusive to this area. These are GAD65 neurons (Karnani et al. 2013), 

neuropeptide Y (NPY) neurons (Marston et al. 2011), and leptin receptor (LepRb) 

neurons which express GAD67 like MCH neurons (Elias et al. 2008). All of them are 

distinct from MCH and orexin neurons (Leinninger et al. 2009). However, it is still 

unclear whether GAD65LH neurons are leptin responsive. LepRb neurons have been 

reported to express GAD67 and since most GABAergic neurons in the CNS express 

both GAD67 and GAD65 (Erlander et al. 1991; Soghomonian and Martin 1998), it 

raises the question of what is the relationship between GAD65 and LepRb neurons.  

 

Thanks to this distinct protein expression, it is possible to target these LH neurons 

separately via their gene expression for various techniques like chemogenetic and 

photogenic activation and inactivation (Packer et al. 2013). 

 

1.4 Orexin neurons 

1.4.1 Intrinsic properties of orexin neurons 

Orexin, as a neuropeptide, can be released as orexin-A or orexin-B, which result 

from cleavage of a single precursor protein. There are two specific orexin G-protein 

coupled receptors (GPCR) that they can bind to, with OXR1 being Gq coupled and 

preferably binding orexin A, and OXR2 being Gi/o or Gq coupled and binding to both 

orexins equally well (Sakurai et al. 1998; Zhu et al. 2003). In addition to this, orexin 

neurons also express other neuropeptides such as dynorphin (Chou et al. 2001) and 

neuronal activity-regulated pentraxin (NARP), a peptide important for AMPA receptor 

clustering and regulation of gulatamatergic signalling (Reti et al. 2002). Besides slow-

acting neuropeptides, orexin neurons can also release glutamate which can act upon 

ionotropic AMPA-receptors, as it has been shown at the orexin cell to 

tuberomammillary histamine cell synapse (Schöne et al. 2012, 2014). 
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From a biophysical perspective, there seem to be at least two distinct subclasses of 

orexin neurons, namely H and D-type orexin neurons depending on the existence of 

a hyperpolarizing or depolarizing post-inhibitory rebound potential. These two 

classes also differ in dendritic architecture, synaptic inputs and expression of a low-

threshold A-type K+ channel (Schöne et al. 2011). Therefore, orexin neurons do not 

represent a homogenous class.  

 

Projections of orexin neurons target most brain areas including the cerebellum 

(Peyron et al. 1998; Nisimaru et al. 2013) and thus are suspected to have an impact 

on many different neuronal processes. Dense projections are found to target regions 

regulating behavioural states (España et al. 2005), like the locus coeruleus, dorsal 

raphe, periaqueductal gray and paraventricular nucleus of hypothalamus, which may 

be important for the arousal-promoting effect of orexin neurons and are described in 

detail in section 1.2.1 below. Furthermore, projections to the posterior nervous 

system such as the hindbrain and spinal cord are thought to implement control over 

the sympathetic and autonomic nervous system, which can influence metabolism, 

thermogenesis and locomotor activity (Kerman et al. 2006; Kerman et al. 2007; 

Oldfield et al. 2007). Dense projections are also found to the mesolimbic dopamine 

system including the amygdala, septal area, medial preoptical area, ventral 

tegmental area and nucleus accumbens (Vittoz et al. 2008; Korotkova et al. 2003). 

Interactions of orexin neurons and reward circuits could play an important role in 

hedonic food intake, but also in stress (Narita et al. 2006; Baldo et al. 2003).  

 

1.4.2 Orexin neurons as internal sensors  

Orexin neurons respond to a huge variety of indicators of the state of the body and 

the body’s needs. Glucose inhibits orexin neurons in vivo (Cai et al. 2001) and in 

vitro (González et al. 2008) due to a background potassium current likely involving a 

tandem-pore channel (K2P) (Burdakov et al. 2006). However, glucose sensing in 

orexin neurons is rather complex, since orexin neurons are a heterogeneous group 

with dichotomous electrophysiological properties (Schöne et al. 2011). Some orexin 

neurons respond to glucose with sustained hyperpolarisation and thus track absolute 

glucose levels, whilst other orexin cells adapt to constant glucose elevation, 



Chapter 1. Introduction  

27 

 

comparable to adaptive changes in the sensory systems (Williams et al. 2008). In 

addition to this, orexin neurons seem to be conditional glucose sensors that reduce 

their glucose-sensing ability when energy availability, through other compounds, is 

high. This was shown by dose-dependent blockage of glucose evoked 

hyperpolarisation by other energy substrates such as lactate, pyruvate and 

adenosine tri-phosphate (ATP) (Venner et al. 2011), and might indicate that orexin 

neurons are only glucose sensors when general energy levels are low. In addition to 

this, leptin, which is produced by fat tissue, inhibits orexin neurons whilst ghrelin, a 

hunger hormone produced by an empty stomach, excites orexin neurons (Yamanaka 

et al. 2003). Considering all these points, it was suggested that orexin neurons are 

essential for connecting energy balance with wakefulness. This theory is based on 

studies showing that wild type mice increase their arousal and activity in response to 

fasting, but orexin neuron ablated mice do not show this increase (Yamanaka et al. 

2003). 

 

Orexin neurons seem also to be part of the brain network involved in sensing of 

amino-acids that can either be taken up through diet or result from tissue break-down 

to gain energy during starvation (L’Heureux-Bouron et al. 2003). It has been shown 

that orexin neurons detect these non-essential amino acids in vivo and in vitro 

(Karnani et al. 2011). Mixtures of non-essential amino acids excite orexin neurons 

via closure of K-ATP channels and electrogenic system-A amino acid transporters. 

Additionally, the range of physiologically-critical substances sensed by orexin 

neurons is completed by H+ and CO2, which are regulated by breathing (Nattie and 

Li 2010). Orexin neurons seem to have chemoreceptors for these substances, since 

H+ and CO2 increased the activity of orexin neurons in vivo (Sunanaga et al. 2009) 

and in vitro (Williams et al. 2007).  

 

Besides sensing nutrients and compounds, that signals the state of the body, orexin 

neurons also respond to applications of neurotransmitters from potential neuronal 

inputs. For example, corticotropin-releasing factor excites a subgroup of orexin 

neurons (Winsky-Sommerer et al. 2004), which could explain how orexin neuron 

activity plays a role in stress responses and anxiety (Suzuki et al. 2005; Johnson et 

al. 2010). In addition to this, noradrenalin and serotonin, neuromodulators implicated 

in the regulation of arousal, hyperpolarise orexin neurons (Yamanaka et al. 2003; 



Chapter 1. Introduction  

28 

 

Muraki et al. 2004). However, the relationship between orexin cells and cells 

expressing these monoamines seems to be complex, since orexin neurons also 

excite some of the nuclei they originate from, and thus form reciprocal connections 

(Yamanaka et al. 2003). Another reciprocal connection was found between orexin 

neurons and local glutamatergic neurons excited by orexin. Specifically, orexin 

indirectly excites orexin neurons (Li et al. 2002). This orexin-evoked glutamate input 

seems to be negatively regulated by MCH, because the glutamate-orexin synapse is 

potentiated in melanin concentrating hormone receptor 1 (MCH1R) knockout (KO) 

mice (Rao et al. 2008).  Antagonistically, there also seems to be a GABAergic input 

to orexin neurons during sleep that can be blocked with GABAA receptor antagonists 

resulting in higher c-fos expression in orexin neurons (Alam et al. 2005). Additionally, 

LepRb neurons in the LH are also GABAergic and seem to project onto orexin 

neurons (Leinninger et al. 2011; Louis et al. 2010), however, it is unclear whether 

LeRb neurons inhibit orexin neurons during sleep. As orexin neurons are not 

constantly active during wakefulness, but rather peak during exploration and sensory 

stimuli, orexin neurons may receive neuronal input about the environment and 

possibly novelty (Mileykovskiy et al. 2005). The neuronal identity and nature of these 

synaptic inputs has not been identified yet. 

 

Overall, orexin neurons appear to act like master sensors of many humeral and 

neuronal inputs. Integration of these signals potentially allows orexin neurons to 

generate appropriate arousal according to the current physiological state of body and 

environment.  

 

1.4.3 Orexin neurons and feeding, body weight and metabolism 

That orexin neurons can also affect body weight and metabolism is known from the 

pathology of orexin-deficient human patients (Dauvilliers et al. 2007), as well as 

mouse models with orexin neuron ablation (Hara et al. 2001). Both orexin-deficient 

humans and mice develop obesity, and for mice it has been shown that food intake 

was lowered. Reduction in feeding was also confirmed by intracisternal injection of 

orexin antibodies (Yamada et al. 2000). Considering obesity and a decrease in food 

intake as a result of orexin neuron loss, this implies that loss of orexin neurons 
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causes either a change in metabolism or a reduction in locomotor activity accounting 

for the higher body weight despite the decrease in food intake. In contrast, a recent 

study (González et al. 2016) using orexin-DTR mice, allowing for an ablation of 

orexin neurons in the fully developed mouse, showed how loss of orexin neurons 

caused overweight but also overeating with an altered feeding pattern. This paper 

also demonstrated for the first time that orexin neurons are inhibited during feeding, 

using whole population fibre photometry. 

 

The effect of orexin neurons on metabolism was investigated by studies on brown 

adipose tissue (BAT), suggesting that orexin activity is necessary for the 

development and function of BAT. Orexin KO mice show impaired BAT 

thermogenesis due to preadipocytes failing to differentiate properly (Sellayah et al. 

2011). Recent studies used ataxin-3 induced orexin neuron-ablated rats to monitor 

BAT thermogenesis and body temperature over the basic rest-activity cycle 

(Mohammed et al. 2014). Their findings show a reduced amplitude and slope of body 

temperature and BAT thermogenesis during the active phases, which occur every 1-

2 hours, and during exposure to salient environmental stimuli such as an intruder. If 

BAT thermogenesis fails due to a loss of orexin neurons, that could account for a 

higher preservation of energy seen in orexin neuron ablations. 

 

1.4.4 Orexin neurons and sleep 

Narcolepsy is a rare neurological disorder that occurs in 0.05% of the general 

population (Ohayon et al. 2005) and is characterised by daytime sleepiness with 

abnormally frequent rapid-eye-movement (REM) sleep phases, and cataplexy, the 

sudden loss of muscle tone (Nishino and Kanbayashi 2005). This suspected 

autoimmune disease (Partinen et al. 2014) is due to a loss of orexin neurons. 

Pathophysiological studies in humans show a loss of up to 85-95% of these neurons 

(Dauvilliers et a. 2007; Thannickal et al. 2000). Animal models with knockouts of the 

orexin receptor type 2 (OXR2), the preproorexin gene or the orexin neurons show 

the same phenotype as the narcoleptic patients (Nishino and Kanbayashi 2005; 

Chemelli et al. 1999), suggesting that orexin neuron activity and OXR2 are essential 

for stable wakefulness. Moreover, it does not seem like orexin neuron activity is 
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necessary for wakefulness per se, but rather that it is needed to maintain a stable 

and appropriate level of arousal, since the overall amount of sleep is not changed in 

narcolepsy, only more fragmented (Hara et al. 2001).  

 

Expression of the immediate early gene c-fos, a measure of neuronal activity (Chung 

2015; Dragunow and Faull 1989), was used to measure the activity of orexin neurons 

during the active and sleep period (Estabrooke et al. 2001).  A positive correlation of 

c-fos staining with the amount of wakefulness was found, indicating that orexin 

neurons are mainly active during the dark phase when mice are active. This result 

was confirmed by measurements of orexin-A levels in cerebrospinal fluid, which 

found high levels during the active phase and falling levels in the sleeping phase 

(Yoshida et al. 2001). However, because of the placements of the taps, which were 

in close proximity to the lumbar spine, a time delay of changes in orexin concentration 

could have been, inadvertently, introduced. 

 

To gain a better understanding of the exact role of orexin neuron activity in sleep and 

arousal, it is necessary though to record activity directly from the cells to be able to 

correlate neuronal activity with behavioural state. Recordings from hypothalamic 

neurons in vivo are rarely done, as the area is difficult to access. Single unit 

recordings of 6 orexin neurons of head-fixed rats over their sleep-wake cycle 

(neurons were juxtacelullarly labelled with neurobiotin to confirm their identity) show 

that orexin neurons are not constantly firing during wakefulness, but are rather 

peaking during active waking when postural muscle tone is high (Lee et al. 2005). 

During quiet waking there is still some activity, but during sleep orexin neurons nearly 

cease to fire at all. These findings were complemented by experiments where orexin 

neurons were optogenetically activated via channelrhodopsin-2 (ChR2). Sleeping 

mice woke up faster upon light stimulation of ChR2 expressing orexin neurons, 

indicating that orexin neuron activity is sufficient for this arousal state transition 

(Adamantidis et al. 2007). Similar experiments, using chemogenetic activators like 

designer receptors exclusively activated by designer drugs (DREADD) showed a 

decrease of REM and non-REM sleep when orexin neurons were activated (Sasaki 

et al. 2011). This again shows how orexin neuron activity can alter the behavioural 

state of the animal from sleep to wakefulness. 
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1.4.5 Orexin neurons and other awake behaviour 

Another study of 9 orexin neurons, recorded in freely moving rats with micro wires, 

suggested that there is low firing activity during quiet awaking and high firing activity 

during active awakening (Mileykovskiy et al.2005).  Furthermore, they also recorded 

activity transients during sensory stimulation and behaviour. Grooming and eating 

evoked equally high activity, but peak activity was observed during exploratory 

behaviour. These findings indicate that orexin neurons are not just involved in the 

transition from sleep to wakefulness, but maybe also in transitions to different arousal 

states, such as during sensory stimulation and exploration. This supports the theory 

of orexin neurons communicating an arousal error signal, that corresponds to a 

desired change in arousal level (Kosse and Burdakov 2014). 

 

In addition to this, locomotor activity also seems to be affected by orexin. 

Intracerebroventricular (icv) administration of orexin caused increased arousal and 

locomotor activity (Hagan et al. 1999). Moreover, chemogenetic activation of an 

excitatory Cre-dependent DREADD construct in orexin neurons caused an increase 

in locomotion and respiratory exchange rate (Inutsuka et al. 2014). However, an 

optogenetics study in rats (Heydendael et al. 2014), found that activation of orexin 

neurons only increased locomotion in the presence of a novel stimulus, for instance 

an unfamiliar rat, and there was no change in locomotion in their home cages. 

 

Orexin neurons also seem to influence general, non-food-related, reward behaviour 

and anxiety. Orexin, when icv injected into rats, seems to negatively regulate brain 

reward circuitry, since it increased the threshold for self-stimulation and reinstated 

cocaine seeking (Boutrel et al. 2005). Panic disorder in humans is accompanied by 

elevated orexin levels in cerebrospinal fluid, and in rats the panic-prone state can be 

avoided by orexin gene silencing or administration of orexin antagonists (Johnson et 

al. 2010). This could indicate that high orexin activity goes hand in hand with high 

arousal that might lead to a stress like state. Furthermore, fibre photometry 

recordings have shown that orexin neurons are quickly and strongly activated by 

stressors like air puffs and immobilisation (González et al. 2016), supporting the idea 

of orexin neuron activity responds to external stress factors. 
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1.5 MCH neurons 

1.5.1 Intrinsic properties of MCH neurons 

The prepro-MCH precursor peptide yields not only MCH but also neuropeptide EI 

(NEI) and neuropeptide GE (NGE) (Nahon et al. 1989). NGE and NEI might mimic 

alpha-melanocyte-stimulating hormone (alpha-MSH) actions on melanocortin 

receptors at high concentrations (Hintermann et al. 2001), but their physiological 

function is still elusive. So far, NEI seems to be able to affect binding at the dopamine 

D1 receptor (Sanchez et al. 2001) and has an effect specifically on cholinergic 

afferents to dopaminergic cells (Berberian et al. 2002). 

 

MCH has two different GPCRs, with MCHR1 occurring in all mammals and MCHR2 

occurring in humans, primates, dogs and ferrets, but not rodents (Tan et al. 2002).  

MCH1R binds to Gi/q whereas MCH2R only binds Gq (Chung et al. 2009). MCH 

neurons are thought of as mainly having an inhibitory effect, the opposite of the 

neuroexcitatory effect of orexin neurons. Inhibition can occur either via MCH1R (Wu 

et al. 2009) or the fast transmitter GABA (Cid-Pellitero and Jones 2012; Jego et al. 

2013). GABA release by MCH neurons has been shown in vitro at the 

tuberomammillary MCH neuron to histamine neuron synapse, where MCH is 

speculated to have only a presynaptic effect to facilitate GABAergic transmission. 

Furthermore, this MCH neuron projection to histaminergic neurons has been shown 

to prolong and maintain REM sleep in vivo when MCH neurons are optogenetically 

activated (Jego et al. 2013). The same effect has been observed in MCH gene 

ablated mice, indicating that non-MCH transmitters like GABA are responsible for the 

effect on REM sleep. MCH neurons express also other transmitters like nestafin, 

cocaine- and amphetamine-regulated transcript (CART) and neuronal pentraxin-1 

(NP1) (Reti et al. 2002; Elias et al. 2001) which might play important roles in glucose 

tolerance. A comparison of MCH neuron KO mice with MCH gene ablated mice 

showed that a loss of the MCH neurons but not the MCH neuropeptide only led to an 

improved glucose tolerance (Whiddon and Palmiter 2013), implying that the loss of 

transmitters not transcribed by the MCH gene, such as nestafin and CART, is the 

underlying cause of the improved glucose tolerance. In addition to this, it still has to 

be shown that MCH neurons actually release MCH with a postsynaptic effect. 
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MCH neurons, as orexin neurons, can be divided into two biophysical classes 

(Hausen et al. 2016). They are silent (not firing at resting potential) or spontaneously 

active, expressing a hyperpolarisation activated outward rectifier. Most of the MCH 

neurons (62%), however, are silent. 

 

The projections of MCH neurons mostly overlap with those of orexin neurons, and 

include most of the brain areas besides the cerebellum (Bittencourt et al. 1992). The 

overlap of orexin and MCH projections to reward areas like the nucleus accumbens 

(Georgescu et al. 2005) and the autonomic nervous system via the nucleus solitarius 

(Kerman et al. 2007; Oldfield et al. 2007), could enable them to have physiological 

antagonistic roles in most aspects considered. Interestingly, there is also a vast 

symmetry between inputs going to MCH and orexin neurons (González,et al. 2016), 

with the highest number of inputs coming from the hypothalamus itself. MCH neurons 

also receive strong direct GABAergic inputs from VGAT neurons in the amygdala 

and bed nucleus of the stria terminalis, both areas are implicated in stress and 

anxiety. 

 

1.5.2 MCH neurons as internal sensors 

A physiological increase in extracellular glucose concentration excites MCH neurons 

in vitro, showing the opposite response of orexin cells (Burdakov et a. 2005). The 

glucose response of MCH neurons is mediated via a β-cell like mechanism of a 

glucose dependent closure of Kir6.2/SUR1 containing ATP-inhibited K+ (K-ATP) 

channel (Kong et al. 2010). It was suggested that MCH neuronal activity was 

necessary for evaluation of different glucose-containing food choices (Domingos et 

al. 2013), since preferences of sucrose over sucralose are lost when MCH neurons 

are ablated. Based on increased dopamine release upon optogenetic stimulation of 

MCH neurons during ingestion of sucralose, it was suggested that MCH neuron 

activity communicates the nutrient value of sugar. However, this connection to 

dopamine neurons might also have a reciprocal effect. Dopamine can depress MCH 

neurons directly via α2-noradrenergic receptors and a complex dose-dependent 

indirect mechanism (Conductier et al. 2011). Low dopamine seems to act via 
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dopamine 1-like receptors activating GABAergic inputs and high dopamine acts via 

dopamine 2-like receptors inhibiting GABAergic inputs. As a result, feedback loops 

may exist between MCH neurons and dopamine neurons in reward centres. 

 

Vasopressin and oxytocin selectively excite MCH neurons, but not other GAD65/67 

neurons in the hypothalamus (Yao et al. 2012). Consequently, it has been postulated 

that vasopressin and oxytocin dependent effects on energy homeostasis, water 

intake, anxiety and stress might be exerted in part via MCH neurons. In addition to 

this, MCH neurons have also been shown to be directly excited by insulin, the body’s 

most prominent anabolic hormone, and to downregulate locomotion and insulin 

sensitivity in response (Hausen et al. 2016). 

 

Other neuromodulators, that have been shown to have an inhibitory effect on MCH 

neurons (when bath applied), are monoamines of the arousal systems such as 

serotonin, noradrenalin and the neuropeptide NPY (van den Pol et al. 2004). This 

could indicate that there are projections from arousal centres, which have 

subsequently been confirmed with monosynaptic rabies tracing (González et al. 

2016), that inhibit the sleep-promoting MCH neurons when arousal is increased. 

However, an arousal promoting local neurotransmitter, namely orexin, excites MCH 

neurons in vitro when bath applied, via a direct inward current that causes the 

otherwise silent MCH neurons to spike frequently. Since the two neuronal types 

seem to have opposite physiological functions, it does not seem to make sense for 

one to excite the other. Opposing the finding that orexin excites MCH neurons, a 

recent study (Apergis-Schoute et al. 2015) re-examined the effect of orexin on MCH 

neurons, and found that orexin peptide-mediated excitation only occurs in a minority 

of MCH neurons when bath applied. Moreover, in vitro optogenetic activation of 

orexin neurons led to a GABAA dependent inhibition of MCH neurons. This could 

mean that a minority of MCH neurons can be excited directly by orexin but the 

majority is inhibited in an indirect way via GABA. Nevertheless, it is not clear what 

the identity of these GABAergic neurons is, that inhibit MCH neurons. 
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1.5.3 MCH neurons and feeding, body weight and metabolism 

Besides being sleep promoting (see section 1.5.4 below), MCH neuron activity also 

affects body weight and feeding. Again, a rather opposite effect to that of orexin is 

observed. MCH gene KO mice are reported to be lean and hypophagic with a 

decrease in bodyweight and fat mass, due to an increase in energy expenditure and 

decrease in food intake (Shimada et al. 1998). However, after this first report there 

seem to be some controversies in reported effects of MCH neurons function. If the 

MCHR1, the only MCH receptor in rodents, was deleted instead of the MCH gene, 

mice were lean, hyperactive and hypermetabolic as reported for MCH KO mice, but 

hyperphagic (Marsh et al. 2002; Chen et al. 2002). An ablation of 98% of MCH 

neurons via diphtheria toxin receptors (DTR) targeted to MCH neurons, confirmed 

the lean and hyperactive phenotype, but found normal food intake (Whiddon and 

Palmiter 2013). The advantage of using diphtheria toxin to ablate neurons is that it 

can be used in adult mice allowing normal development of brain circuitry without 

compensatory mechanisms that might occur in KOs. A recent meta-analysis tried to 

make sense of these different findings, and came to a conclusion (Takase et al. 

2014): loss or disruption of MCH neuron signalling leads to higher food intake, lower 

body weight and fat mass and elevated body temperature with higher oxygen 

consumption and heart rate. Alternatively, comparing the different MCH neuron 

signalling manipulations and their differences in feeding behaviour might also help 

to speculate about the different roles of transmitters expressed. Comparing the 

phenotype of the MCH gene KO with the MCHR1 KO, the only difference lies in the 

hyperphagia in the MCHR1 KO which could potentially be due to NGE and NEI still 

being expressed and promoting feeding. Consequently, hypophagia in MCH gene 

KOs could be caused by the lack of the mixture of feeding inhibiting MCH and 

strongly feeding promoting NGE and NEI.   

 

Overall, MCH neuron activity seems to play an important role in appetite, 

metabolism, obesity and production of fat mass, especially white adipose tissue 

(Imbernon et al. 2013). Due to its ability to communicate the nutrient value of sugar 

(see section 1.5.2), it was suggested that MCH neurons are involved in predictive 

control of stable blood glucose levels by influencing learning associations between 
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fast sensory information about food and their nutritious value (Kosse and Burdakov 

2014). 

 

1.5.4 MCH neurons and sleep 

The function of MCH neuron activity is often described as physiologically antagonistic 

to orexin neurons (see Figure 1.3). Based on c-fos expression experiments and 

single unit recordings (Hassani et al. 2009), it was found that MCH neurons are 

indeed mainly active during sleep. icv administration of MCH also increased the 

amount of REM and non-REM sleep in a dose-dependent manner (Verret et al. 

2003). Moreover, single unit recordings in head-fixed rats (Hassani et al. 2009) 

provide information that MCH neurons fire occasionally during non-REM sleep, but 

maximally during REM sleep. Therefore, MCH neurons fire in a reciprocal activity 

pattern to orexin cells. However, one of the caveats of this study is that cells for 

recordings were mainly chosen based on their firing during sleep, thus potentially 

biasing against sleep-silent neurons.  

 

A causal relationship between MCH neuron activity and non-REM sleep was 

attempted to be demonstrated with selective optogenetic stimulation of MCH 

neurons. Light stimulation every 5 min for 24 hours hastened onset of sleep and 

increased non-REM and REM sleep length (Konadhode et al. 2013). A different study 

focused on the role of MCH neurons for REM sleep (Jego et al. 2013). Stimulation 

at the onset of REM sleep exclusively extended the length of REM, but not non-REM 

sleep. In addition to this, the use of archaerhodopsin as a silencer of MCH neurons 

had no effect on REM sleep length. Consequently, MCH neuron activity seems 

sufficient to increase sleep, REM and non-REM, but it is not essential for REM sleep. 

 

1.5.5 MCH neurons and other awake behaviours 

Interestingly, there seems to be one kind of behaviour where orexin and MCH 

neurons may have similar effects (Figure 1.3). Disruption of MCH neuron signalling 

through administration of MCHR1 antagonists (Borowsky et al. 2002) or MCHR1 

ablation (Roy et al. 2006) seems to be anxiolytic in animal models. This seems to be 
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the same effect that orexin cell silencing and orexin antagonists produce to avoid the 

panic prone state (Johnson et al. 2010). Whereas, MCH administration (icv) 

increased anxiety-like behaviour in the elevated-plus maze (Smith et al. 2006).  

 

 

Figure 1.3: Summary of the properties of MCH and orexin neurons 

Blue arrows indicate inputs and modulators that orexin/MCH neurons respond to, 
orange arrows indicate projections and neurotransmitters that are expressed, beige 
arrows indicate somatic effects of orexin/MCH neuron activity.  
 

Still, there is one persistent problem with manipulation of MCH or its receptor: it does 

not include fast neurotransmitters and other neuropeptides that might, under 

physiological circumstances, be co-released with MCH. Whilst MCH administration 

in the ventromedial nucleus stimulates sexual activity in female rats, this could be 

partially antagonised by NEI (Gonzalez et al. 1998). However, the interactions 

between different neuropeptides expressed by MCH neurons seem to be complex, 

as NEI increases grooming, rearing and locomotion when administered icv (Sanchez 

et al. 1997) or into the ventral tegmental area (Sánchez et al. 2001), but MCH has 

no effect on these behaviours and even antagonises and annuls the effects of NEI 

when co-administered. Interestingly, chemogenetic activation of MCH neurons with 

activating DREADDs (aDREADDs) decreases locomotion (Hausen et al. 2016), 

which is contrary to the increase of locomotion seen with NEI administration. There 

are two possible interpretations of this. First, fast neurotransmitters or neuropeptides 
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other than NEI have an inhibitory effect on locomotion which outweighs any 

locomotion-promoting effect that NEI might have. Second, there are slight 

differences in the behaviours that are measured between the different studies. 

Whilst, NEI induced activity was measured in a novel environment and has more the 

characteristics of investigative movements towards the environment (rearing and 

physical activity), the decrease of locomotion after chemogenetic activation of MCH 

neurons was measured in a familiar home cage lacking incentives for investigation. 

Therefore, a decrease in locomotion does not have to be equivalent to a decrease in 

investigative behaviour (Leyland et al. 1976).  

 

MCH neurons have also been implicated in learning, especially in respect to food 

choices, and memory. Feeding can be seen as a process which requires predictive 

control and predictive control requires learning. An association has to be formed 

between a neutral but easily measurable parameter, such as location, shape or smell 

(‘conditioned stimulus’ in psychology) and the actual nutrient value of the food 

(‘unconditioned stimulus’) which reaches the brain with a long delay as nutrients first 

need to be extracted by the gut. Subsequently, detection of a conditioned stimulus, 

sight or taste, can be used for efficient (i.e. rapid) action selection and for preparing 

the body for subsequent arrival of glucose or other nutrients to blood. Recent 

experimental evidence suggests that MCH neurones are a key part of such 

associative learning. For example, Sherwood et al. found that genetic or 

pharmacological disruption of the MCH-1R reduced the ability of a previously learnt 

conditioned stimulus to serve as a reinforcer in a new instrumental behaviour task 

(Sherwood et al. 2012). This raises the possibility that MCH signalling may be 

important for the response transfer in dopamine neurones (Schultz 2006), which shift 

their activity from occurrence of the reward to the earliest conditioned stimulus, while 

the stimuli closer to the reward (e.g. taste) serve as conditioned reinforcers for earlier 

occurring stimuli (e.g. colour, shape of food). This would enable formation of 

associative memories, which is a prerequisite for good predictive control. Among 

projection targets of MCH neurones are also several memory-related structures, 

including the hippocampus and septum (Adamantidis and de Lecea 2009; Jego et al. 

2013), where activation of MCH receptors may promote synaptic plasticity. Ablation 

of MCHR1 leads to postsynaptic down regulation of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors in the 
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hippocampus and impaired long-term synaptic plasticity (Pachoud et al. 2010). Thus, 

providing a mechanism how MCH neurons could be implicated in the formation of 

memory. Moreover, mice with MCHR1 ablation also showed an impairment at the 

passive avoidance test, which is a hippocampus dependent memory task 

(Adamantidis et al. 2005).  

 

A recent study using optogenetic stimulation of MCH neurons, which has the 

advantage of manipulating the neuron with all of its neurotransmitters, suggested 

that MCH neurons might signal the nutrient value of sugars (Domingos et al. 2013). 

However, there are some issues with this study that prevent this to be the only 

possible conclusion. Whilst increased MCH neuron activity was sufficient to shift the 

mouse’s preference form nutrient-containing sucrose to a sucralose solution without 

any nutrients, it has neither been shown that MCH neurons are essential for the 

signalling of nutrients, nor was increased MCH neuron activity sufficient to shift the 

preference to flavourless water. Considering that sweet taste was still required to 

result in a consumption preference when paired with MCH neuron stimulation, this 

might mean that MCH neurons play a role in the process of learning the association 

of taste with nutrient content. In the case of consumption of a sucrose solution, 

nutrients are sensed by the brain with a delay from experiencing its taste, thus future 

decisions about its consumption will involve a degree of learned associative nutrient 

value. 

 

1.6 GABAergic non-MCH non-orexin neurons 

Juxtacellular recordings in head-fixed rats have found GABAergic non-MCH non-

orexin neurons in the lateral hypothalamus are maximally active during sleep, and 

especially REM sleep (Hassani et al. 2010). However, these ‘sleep-max’ neurons 

only accounted for 53% of the non-MCH non-orexin neurons. What the activity 

pattern of the remaining 47% is unclear. Furthermore, they could only confirm the 

GABAergic nature of two ‘non-REM max’ neurons and eight ‘REM max’ neurons, 

which is overall a small sample size, considering that they recorded from 104 cells. 

Nonetheless, GABA in the LH seems to be important for sleep. GABA-A receptor 

antagonists, administered into the perifornical area, decrease the amount of sleep 

during the light phase and increase c-fos expression in orexin neurons. This 
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suggests, that there is an increased endogenous GABAergic inhibition on orexin 

neurons during sleep (Alam et al. 2005). However, as MCH neurons can be 

GABAergic as well, it is not clear if the source of inhibition are separate, non-MCH 

GABAergic neurons or MCH neurons.  

 

As there are several classes of GABAergic non-MCH non-orexin neuron in the LH 

with different additional markers and physiological roles, this section serves to give 

a brief overview. 

 

1.6.1 NPY neurons 

NPY neurons in the LH are activated by hunger in vivo and inhibited by increased 

concentrations of glucose in vitro (Marston et al. 2011). Even though other NPY 

neurons, like those co-expressing agouti-related peptide (Agrp) neurons in the 

arcuate nucleus (Hahn et al. 1998), have well described phenotypes, in the LH the 

function of NPY cells is not further described. 

 

1.6.2 LepRb neurons 

Whilst LepRb neurons are not restricted to the LH, they seem to exert much of their 

anorectic effect via the LH (Leinninger 2011). LepRb neurons in the LH, which are 

GABAergic and express GAD67, seem to influence body weight and feeding as intra-

LH administration of leptin leads to a decrease in both (Leinninger et al. 2009). Since 

leptin can have inhibitory and excitatory effects, it is not clear what the underlying 

mechanism of leptin action in the LH is. However, it is thought that LepRb neurons 

have direct and indirect effects on orexin neurons, resulting in orexin neuron 

inhibition (Leinninger 2011; Louis et al. 2010; Leinninger et al. 2009).  

 

A fraction of LepRb neurons in the LH also express neurotensin, which made it 

possible to create a neurotensin dependent LepRb knockout mouse that has LepRb 

loss restricted to the LH. These mice showed early onset obesity and a modestly 

increased feeding behaviour with decreased locomotor activity, which supports the 

idea of leptin as hunger-supressing (Leinninger et al. 2011). Interestingly though, 
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Translating Ribosome Affinity Purification analyzed by RNA-seq (TRAP-seq) data 

(Allison et al. 2015) has shown that LepRb neurons in the hypothalamus express 

many markers for neuropeptides and that neurotensin is only expressed in a fraction 

of them. 

 

1.6.3 VGAT neurons in the LH 

VGAT neurons in the LH have been investigated intensely in the recent years. 

Surprisingly, there is no overlap between VGAT neuron and MCH or orexin neurons 

in the LH (Jennings et al. 2015) but it is not known what or if there is any connectivity 

between those neurons. Furthermore, it is possible that VGATLH neurons are 

overlapping with some other markers like NPY or LepRb. 

 

VGATLH neurons drive appetitive and consummatory behaviour when 

optogenetically activated (Jennings et al. 2015). Furthermore, ablation of VGATLH 

neurons shows a decrease in those behaviours, suggesting that VGATLH neurons 

are essential for feeding and appetitive behaviours. Interestingly, in vivo calcium 

imaging of these neurons shows that neurons are either active during appetitive or 

consummatory behaviour but not both, indicating that this group of neurons is not 

homogenous in their function (Jennings et al. 2015). It is worth mentioning that 

VGATLH neuron driven consummatory behaviour is not restricted to calorific food but 

can also be directed towards non calorific objects (Navarro et al. 2016).  

 

Studies investigating the projections of VGATLH neurons to the ventral tegmental 

area (VTA) found, that these projections can drive feeding behaviour but not 

compulsive sucrose-seeking (Nieh et al. 2015), indicating that there must be other 

projections from the LH to the VTA responsible for compulsive sucrose seeking. In 

addition to this, optogenetic activation of VGATLH projections to the VTA increased 

dopamine release in the nucleus accumbens and promoted ‘behavioural activation’ 

(Nieh et al. 2016). Thus, stimulation of VTA projecting VGATLH neurons can also drive 

behaviours outside the feeding context, such as novel object and conspecies 

investigation, and supports positive reinforcement as was shown in a real time place 

preference test. 
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One caveat with targeting VGAT neurons in the LH is that it is technically challenging 

to restrict injection sites to the LH without having any spill-over to the zona incerta 

where VGAT neurons show a very similar and strong feeding-promoting phenotype 

(Zhang and van den Pol 2017).  

 

1.6.4 GAD65 neurons in the LH 

GAD65 neurons in the LH have been extensively characterised in vitro (Karnani et 

al. 2011). They are partially (40%) inhibited by increases in external glucose 

concentrations and can be clustered into 4 different classes depending on their 

electrophysiological profiles (fast spiking, late spiking, low threshold spiking and 

regular spiking). Compared to cortical GABAergic neurons these classes are very 

similar with the exception that in the LH GAD65 neurons are intrinsically active. 

However, not much is known about the role of GAD65LH neuron activity in behaviour 

or their overlap with above described cell types. Moreover, it is also still unclear what 

the effect of GAD65 neuron activity is on other LH neurons and if there are any intra-

LH circuitries. 

 

1.7 Can silencing of genetically identifiable populations 

recapitulate the results of electrolytic LH lesions?  

Considering the drastic anorectic and apathetic phenotype seen with electrolytic 

lesion of the LH, one might wonder if this effect can be accounted for by one of the 

genetically identifiable population of the LH. The reduction in feeding in MCH ablated 

mice (via DTR) is rather mild and cannot compare to the change seen with electrolytic 

lesion (Whiddon and Palmiter 2013). Orexin neurons, in contrast, supress feeding 

and thus their ablation with DTR leads to an increase in feeding by mainly changing 

the temporal feeding pattern (González et al. 2016). VGAT cells in the LH, however, 

might account for the feeding drive of the LH as their activation leads to 

consummatory behaviour and their ablation with caspase decreases food intake 

(Jennings et al. 2015). Still, even though weight gain is attenuated, mice lacking 

VGATLH neurons do not loose body weight at any point. Consequently, genetically 
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identifiable cell populations, in particular VGATLH neurons, might be able to account 

for the lack of feeding seen in LH lesioned animals, but no cell type can account for 

the drastic weight loss yet. 

 

Considering the locomotor impairments that animals with LH electrolytic lesions 

display, it is even more complicated to compare this phenotype to effects of ablations 

of genetically identifiable populations, as some of their activation seems to actually 

inhibit movement, namely MCH neurons. Mice with DTR ablation of MCH neurons 

(Whiddon and Palmiter 2013) are hyperactive, especially during a fast, which has 

also been shown with MCH gene deletion (Shimada et al. 1998). In contrast, orexin 

neuron ablation (ataxin-3) impairs locomotion but only slightly and not to the extent 

seen with electrolytic lesion (Hara et al. 2001). VGAT neuron manipulations in the 

LH do not cause any changes in locomotor activity (Navarro et al. 2016; Jennings et 

al. 2015). Overall, the small effect of these individual neuron population ablations on 

locomotion leads to the question if there is another LH neuron population that could 

account for the impairment of locomotor activity in LH lesioned animals. 

 

1.8 Aims of this thesis 

This thesis aims to answer and elucidate the currently-unknown functional and 

molecular properties of GAD65 neurons in the LH. Even though some initial in 

vitro characterisation previously described the biophysical properties of GAD65LH 

neurons, it is still unclear what their firing responses to injections of oscillatory current 

inputs are, and how these responses compare to other LH neurons. This is an 

especially interesting aspect, if one considers the effect of gamma oscillations in the 

LH in vivo, where they cause food approach behaviour. Furthermore, it is still 

unknown how GAD65LH neurons relate to other GABAergic non-MCH non-orexin LH 

neurons, and if there are any overlaps with them. This leads to the general question 

of how neurons in the LH are organised, and if they are synaptically connected via 

GAD65LH neurons. In addition to this, it is not known if and how GAD65LH neurons 

affect behaviour, and if GAD65LH neuron silencing could recapitulate any of the LH 

lesion effects. In order to answer these questions, this thesis will pursue the following 

specific aims: 
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First, intrinsic properties of GAD65LH neurons including projection areas, overlap with 

other known GABAergic non-MCH non-orexin cell types, and firing responses to 

injections of oscillatory input currents, will be investigated. This will enable a 

comparison of GAD65LH neurons to known LH cell types, and the use of GAD65 as 

a marker for a previously uncharacterised distinct cell population. 

  

Second, LH network functional connectivity involving GAD65LH neurons will be 

investigated to probe what kind of neurotransmitters are released by 

GAD65LH neurons and onto what neurons, and in addition to this, potential neuronal 

inputs to GAD65LH cells and their responsiveness to neuropeptides will be 

investigated. These results will give new information about a potential local LH 

network, and if different LH cell types are interconnected via GAD65LH neurons. 

  

Third, it will be investigated what the behavioural impact of GAD65LH neuron activity 

is with respect to: mouse body weight, food, water intake and locomotor activity. This 

will show any potential necessity or sufficiency of GAD65LH neuron activity for vital 

behaviours, and allow to compare and contrast them with known LH cell types. 

 

Altogether, these experiments should result in a comprehensive study into the 

function and role of GAD65LH neurons and their involvement in a local circuitry of 

previously characterised classes of neurons. 
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Chapter 2. Materials & Methods 

2.1  Reagents  

All chemicals were from Sigma-Aldrich, ThermoFisher Scientific Inc. or Tocris 

Bioscience unless stated otherwise.  

2.2  Solutions and concentrations 

For brain slice recordings, artificial cerebrospinal fluid (ACSF) and ice cold slicing 

solution were gassed with 95% O2 and 5% CO2, and contained the following (in mM) 

ACSF: 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.2 NaH2PO4, 21 NaHCO3, 2 D-(+)-

glucose, 0.1 Na+-pyruvate, and 0.4 ascorbic acid. Slicing solution: 2.5 KCl, 1.3 

NaH2PO.H20, 26.0 NaHCO3, 213.3 Sucrose, 10.0 D-(+)-glucose, 2.0 MgCl2, 2.0 

CaCl2 (Schöne et al. 2012).  

 

For standard whole-cell recordings, pipettes were filled with intracellular solution 

containing the following (in mM): 120 K-gluconate, 10 KCl, 10 HEPES, 0.1 EGTA, 4 

K2ATP, 2 Na2ATP, 0.3 Na2GTP, 2 MgCl2, pH 7.3 with KOH.  

Liquid junction potential were estimated to be 10.1mV and were subtracted from 

voltage clamp measurements. 

 

Concentrations used for in vitro recordings (bath applied): Orexin-A: 300 nM; 

Clozapine-n-oxide (CNO): 5 µM; synaptic blocker mix:  D-AP5 50µM, Picrotoxin 10 

µM, CNQX 10 µM, CGP-35348 10 µM; Gabazine: 3 µM.  

Concentrations for in vivo intraperitoneal (i.p.) injections: clozapine n-oxide (CNO) 5 

mg/kg (experiments involving hM4Di) or at 0.5 mg/kg (experiments involving hM3Dq), 

SB-334867 (in vehicle, 0.9% NaCl 10% DMSO 0.3% hydroxypropyl-β-cyclodextrin). 

Cryoprotectant for storage of brain slices at -20ºC: 30% Glycerol, 30% Ethylene 

Glycerol, 30% dH2O and 10% Phosphate buffer. 
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2.3 Animals 

2.3.1 Transgenic mice and breeding  

All procedures followed United Kingdom Home Office regulations and were approved 

by local welfare committees. Adult male and female mice (at least 8 weeks old) were 

used for in vitro experiments. Male mice were used for behavioural experiments and 

single housed. All mice were kept on a standard 12 h light-dark cycle in a temperature 

regulated room and had free access to standard mouse chow and water. Previously 

characterised and validated transgenic mouse lines were used, where indicated (see 

Table 1 for breeding strategy and references).  

 

Table 1. Mouse lines and breeding strategies 

GAD65-Ires-Cre mice bred in hom-WT pairs with C57BL/6 mice (Taniguchi et al. 2011) 

Orexin-eGFP mice bred in het-WT pairs with C57BL/6 mice (Burdakov et al. 2006)  

GAD65-GFP mice bred in het-WT pairs with C57BL/6 mice (Karnani et al. 2013) 

Orexin-Cre mice bred in het-WT pairs with C57BL/6 mice (Matsuki et al. 2009) 

MCH-Cre mice bred in het-WT pairs with C57BL/6 mice (Kong et al. 2010) 

NPY-hrGFP mice bred in het-WT pairs with C57BL/6 mice (Pol et al. 2009) 

VGAT-Ires-Cre mice bred in hom-WT pairs with C57BL/6 mice (Vong et al. 2011) 

CAG-tdTomato mice bred in hom-hom pairs (Madisen et al. 2010) 

 

Orexin-Cre and GAD65-GFP line were crossed in Figure 4.2. GAD65-Ires-Cre and 

NPY-GFP line were crossed in Figure 4.6. Orexin-eGFP and GAD65-Ires-Cre lines 

were crossed in Figure 4.7. MCH-Cre and GAD65-GFP line were crossed in Figure 

4.4. VGAT-Ires-Cre and GAD65-GFP line were crossed in Figure 4.3. To investigate 

the overlap of VGAT and GAD65 neurons, VGAT-Cre and GAD65-GFP lines were 

crossed and then injected with ChR2-mCherry or crossed with a CAG-tdTomato line 

(Figure 3.8). For the overlap of GAD65 and NPY neurons, GAD65-Ires-Cre and NPY-

GFP lines were crossed and injected with ChR2-mCherry in Fig. 2 and 3. 
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2.3.2 Gene transfer and viruses 

Mice were anaesthetised with isoflurane and injected with Meloxicam (2mg per kg 

bodyweight, subcutaneous) for analgesia.  After placing into a stereotaxic frame 

(David Kopf Instruments), a craniotomy was performed and a boroscillate glass 

pipette was used to inject viral vectors (see Table 2 for details and references) into 

the lateral hypothalamus bilaterally with pressure (coordinates AP/DV/ML = −1.3 / 

−5.15 to −5.25 / 1.0, -1.0 mm; infusion speed = 75 nl/min, injection volume 75 nl), 

see Figure 2.1 for examples of virus spread and expression. Wound closure was 

done by suturing. Mice were allowed to recover for at least one week after surgery 

whilst single housed.  

 

Table 2. Viruses and their used concentrations 

Cre- dependent 

iDREADD 

rAAV8/hSvn-DIO-hm3D(Gq)-

mCherry 

2.2x1012 gc/ml, 

UNC Vector Core 

(Armbruster et 

al. 2007) 

Cre- dependent 

aDREADD 

rAAV8/hSyn-DIO-hM4(Gi)-

mCherry 

5.3x1012 gc/ml, 

UNC Vector Core 

(Krashes et al. 

2011) 

Cre-dependent 

ChR2-mCherry 

AAV1.EF1.flox.hChR2(H134R)-

mCherry.WPRE.hGH 

8.78*1012 gc/ml 

UNC Vector Core 

(Atasoy et al. 

2008) 

Cre-dependent 

ChR2-YFP 

AAV1.EF1.DIO.hChR2(H134R)-

EYFP.WPRE.hGH 

6.2*1012 gc/ml 

UNC Vector Core 

(González, 

Iordanidou, et al. 

2016) 

MCH-dependent 

mCherry 

VSVG.HIV.MCH.mCherry(p2428) 3.16*1011 gc/ml 

UPenn Vector Core 

(Apergis-

Schoute et al. 

2015) 

Cre-dependent 

GCaMP 

AAV9.CAG.Flex.GCaMP6s.WPR

E.SV40 

2.74x1013 gc/ml 

UPenn Vector Core 

(T.-W. Chen et 

al. 2013) 

 

Cre-dependent DREADD constructs were used to measure the effect of neuronal 

activation and inhibition respectively on eating, drinking, and locomotion. For 

channelrhodopsin-assisted circuit mapping, “FLEX switch” channelrhodpsin-2 

(ChR2) constructs were used. To label MCH neurons for patch-clamp recordings, we 
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injected into the LH a custom made lentiviral vector specifically targeting MCH 

neurons. For calcium imaging, we used GCaMP6s constructs. To investigate long 

ranging projections the same ChR2-YFP virus was used as for circuit mapping and 

ChR-mCherry and ChR2-YFP were also used to characterise overlapping cell 

populations. 

 

Figure 2.1: Example slices of GAD65-Ires-Cre mice injected with Cre-dependent 

DREADD-mCherry 

Examples of coronal LH sections from four GAD65-Ires-Cre mice injected with Cre-
dependent DREADD-mCherry, illustrating the typical extent of LH labelling. 
 
 

2.4 Histochemistry 

2.4.1 Thick and thin slice immunohistochemistry 

For fixation after patching, 250 µm thick brain slices containing the lateral 

hypothalamus were incubated in 4% PFA in PBS overnight. For thin sections of 30 

and 50 µm, mice were transcardially perfused through the vascular system, first with 

PBS and then with 4% PFA in PBS. The extracted brains were incubated in 4% PFA 

overnight before being transferred to a 30% sucrose in PBS solution. Once the brains 

were saturated with sucrose (indicated by floating at the bottom), brains were frozen 

and embedded with an optimum cutting temperature compound. Brains were sliced 

with a cryostat and slices were subsequently stored at -20ºC in cryoprotectant. 
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After washing with PBS, slices were either mounted straight away with Vectashield 

hard setting mount (with DAPI staining) or first stained for orexin with goat antibody 

to orexin-A (sc-8070, 1:2000, Santa Cruz Biotechnology) and for MCH with a rabbit 

antibody to MCH (H-070-47,1:2000, Phoenix Pharmaceuticals) as primary 

antibodies and Alexa 647–conjugated donkey antibody to rabbit IgG (A-21244, 1:500, 

Invitrogen) and Cy3-conjugated AffiniPure F(ab’)2 Fragment donkey anti-goat lgG 

(705-166-147, 1:500, Jackson ImmunoResearch) for secondary antibodies. As a 

check for antibody specificity, we extensively examined extra-hypothalamic areas, 

where no labelled cell-bodies were observed as expected, because neurons 

expressing the peptides we stained for are found exclusively in the LH. Slices were 

then imaged with an Olympus VS120 slide scanner or an Olympus BX61WI laser 

scanning confocal microscope. 

 

2.4.2 Antigen retrieval and pSTAT immunohistochemistry 

To identify cells responsive to leptin, a staining for phosphorylated STAT3 (pSTAT3), 

a transcription factor activate by leptin, was performed by antigen retrieval and 

immunohistochemistry. GAD65-GFP mice were injected (i.p.) with leptin (5mg/kg) 

prior to transcardial perfusion and 30µm cryosections were pretreated with: 3% H2O2 

and 1% NaOH for 20min, 0.3% glycine for 10 min and 0.03% sodium dodecyl sulfate 

for 10min. Staining for pSTAT3 was done with rabbit anti-pSTAT3 lgG (#9131,1:500, 

Cell Signaling Technology) sera overnight as primary antibody and Alexa 555 

conjugated-donkey to rabbit lgG (A-31572,1:500, Life Technologies) as secondary 

(Xu et al. 2011). GAD65-GFP littermates injected with saline were used as controls. 

Slices were then imaged with an Olympus VS120 slide scanner or an Olympus 

BX61WI laser scanning confocal microscope. 

 

2.5 Brain slice optogenetics, electrophysiology and imaging 

2.5.1 Brain slice preparation and in vitro recordings 

Standard whole-cell slice patch-clamp recordings were carried out alone or in 

combination with optical excitation of ChR2 containing cells and axons (Schöne et 
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al. 2014). LH slices were prepared at least 2 months after the virus injection to ensure 

expression in cell bodies and projections. After gluing a block of brain with 

cyanoacrylate glue to the stage of a Campden Vibroslice, coronal brain slices of 250 

µm thickness containing the LH were cut whilst immersed in ice cold slicing solution. 

Slices were incubated for 1h in ACSF at 35⁰C, then transferred to a submerged-type 

recording chamber.  

 

Living neurons containing fluorescent markers were visualised in acute brain slices 

with an upright Olympus BX61WI microscope equipped with an oblique condenser 

and appropriate fluorescence filters. Excitation light for ChR2 was delivered from a 

LAMBDA DG-5 fast beam switcher (Sutter Instruments) with a xenon lamp and 

ET470/40 nm bandpass filter. A 40x 0.8NA objective was used to deliver flashes of 

blue light (∼10 mW/mm2) onto ChR2-containing axons around the recorded cell. 

Whole-cell recordings were carried out at 35 °C using an EPC-10 amplifier and 

PatchMaster software (HEKA Elektronik, Germany). Patch pipettes were 

manufactured from borosilicate glass, and their tip resistances were 4-6 MΩ when 

filled with K-gluconate solution (see above). 

 

2.5.2 Calculation of equilibrium potentials 

Theoretical equilibrium potentials (Ex) for known ion concentrations ([X]) (see 

solutions) were calculated using the Nernst equation, with the gas constant (R) = 

8.314472 J*K-1, temperature (T) =95ºK, n = valence number of the ion and Faraday's 

constant (F) = 9.65 x 104 C*mol-1 

 

𝐸𝑥 =
𝑅𝑇

𝑛𝐹
+
𝑙𝑛[𝑋]𝑜𝑢𝑡
𝑙𝑛[𝑋]𝑖𝑛

 

 

2.5.3 Channelrhodopsin-assisted circuit mapping 

The ChR2 evoked currents of a repetition of 3 single light flash per neuron were 

averaged at each holding potential to give a single measurement. Linear regressions 
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were fitted through the averages of each cell type at the three holding potentials to 

estimate an equilibrium potential. 

 

Functional ChR2 expression was confirmed by recording light-activated action 

potentials in the target cells as shown Figure 2.2 for GAD65LH neurons and cell-

attached recordings confirmed a 2.11ms delay from flash (1ms) onset to peak current. 

Functional identity of optically evoked postsynaptic current was confirmed by 

pharmacological blockade with GABA or glutamate antagonists and/or by 

biophysical determination of reversal potentials; where no connection was observed, 

the connection was always probed further at a range of holding potentials.  

 

 

Figure 2.2: Recordings of ChR2-expressing GAD65 neurons in the LH 
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(A) Cell-attached recording from a representative GAD65LH neuron showing the 
effect of a 1 ms light flash (blue rectangle). Grey lines are 20 individual trials and 
black line is the mean of these trials. 20-trial means from 8 cells were averaged to 
produce the indicated value of d. (B)Whole-cell recording showing the effect of 1 
ms flashes (blue vertical lines) on the membrane potential (representative figure of 
10 cells). 
 

2.5.4 Oscillatory input currents and calculation of membrane impedance 

To determine the frequency preference for action potential firing, a protocol of 5 s 

long sinusoidal currents at the following fixed frequencies was applied: 0.5, 1, 2, 3, 

5, 7, 10, 15, 20, 30, 50, 70, 100, 200 Hz. Membrane time constants (τ) were 

calculated from fitting a single exponential function to the initial part of a voltage 

response to a small hyperpolarising current pulse. Input resistances (Ri) were derived 

from Ohm’s law by fitting a linear function to the current-voltage relationship of 

voltage responses to hyperpolarising current pulses. From these values, the input 

frequency (f) -dependence of membrane impedance (Z) was calculated as follows 

(based on (Pike et al. 2000; Gutfreund et al. 1995)):  

 

|𝑍| =
𝑅𝑖

√(𝜏2(2𝜋𝑓)2 + 1)
⁄  

 

2.5.5 In vitro calcium imaging 

For calcium imaging, brain slices were placed in a recording chamber of BX61WI 

Olympus microscope controlled by the Olympus Fluoview software (FV10-ASW 

version 4.0), perfused at 35ºC with ACSF. Confocal imaging was performed at 0.5 

Hz frame-rate through an Olympus 20x 0.50 NA objective, with a 488 nm Argon laser 

excitation, and 500-545 nm spectral detector emission collection. Motion and bleach-

corrections were applied if needed (StackReg plugin, Image J). A region of interest 

(ROI) containing each GCamp6s-positive neuron was selected via ROI manager in 

Image J. Mean fluorescence of each ROI was extracted for on each frame. These 

raw fluorescence values (Fr) were normalized to produce ΔF/F values, were F is the 

mean baseline before orexin application, and ΔF=(Fr-F). Cells were randomly 

sampled throughout the full anatomical extent of the LH, by choosing fluorescent 

cells using an objective that blinded the investigator to exact intra-LH location of the 
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cell due to its small field of view (a high-magnification x40 objective). After recording, 

the intra-LH locations of recorded cells were confirmed using a low-magnification 

large-field objective. 

 

2.6 Measurements of movement, eating, and body weight 

Locomotor activity was assessed after a single i.p. dose of CNO or saline during the 

dark phase in their open home cages via video tracking (Anymaze, Stoelting or 

Ethovision, Noldus). Mice of the same genotype were grouped according to vectors 

injected into their brains, and all groups had similar composition based on sex 

(males), age, and body weight.  

 

For bodyweight and feeding measurements, mice were single-housed in cages 

(Tecniplast) fitted with solid floors or modified home cages.  Whilst mice had free 

access to standard mouse chow and water, food and water intake and body weight 

of each mouse were measured manually each day before the onset of the dark phase. 

An adjustment period of at least a week in the metabolic cage preceded all 

experiments. Five days of baseline measurements (pre) were followed by five days 

of 58.3 µM CNO (clozapine n-oxide, Sigma) administration in the drinking water, and 

five more days of baseline measurements.  0.25 mM Saccharine (Sigma-Aldrich) 

was added to water throughout, to mask the taste of CNO. In Fig. S3C, mice were 

injected twice daily with 10 µl/g bodyweight of either saline (0.9% NaCl) or 0.5mg/kg 

body weight CNO dissolved in the saline, as indicated. 

 

2.7  Statistical analysis 

Statistical tests and descriptive statistics were performed as specified in the figure 

legends, with not-significant (ns) results marked as ns or with p-values given. 

Datasets were plotted with single values or averages and standard error of the mean 

(SEM). In each experimental dataset at the cellular level, each n was a different cell 

(no repeated trials from the same cell were used as n values) and cells from at least 

three mice were analysed. Before performing parametric tests, data were assessed 

for normality with a D’Agostino–Pearson omnibus test or Kolmogorov–Smirnov test 
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for small sample sizes, and variances were assessed for homogeneity with a Brown–

Forsyth test. To compare interactions within normally distributed data with repeated 

measurements, repeated measures ANOVA was used, with multiple comparison 

tests where appropriate. Analysis was performed with GraphPad Prism, MATLAB 

(The MathWorks, Inc.), and ImageJ. 

 

Quantification of the preferred firing properties of LH neurons to oscillatory input 

currents were performed by normalising on a single cell basis by dividing by the 

largest value obtained per cell.  Cells were deemed active if a paired t-test comparing 

normalized firing and impedance values was significant after controlling for the false 

discovery rate (which was set to 5%) by a two-stage step-up method of Benjamini, 

Krieger, and Yekutieli. 
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Chapter 3. Intrinsic properties of GAD65LH neurons 

3.1 Introduction 

GAD65LH neurons have been previously characterised as intrinsically active but 

otherwise having similar properties to GAD65 neurons in the cortex (Karnani et al. 

2013). Adding to the electrophysiological characterisation of GAD65LH neurons by 

Karnani et al. 2013, the first aim of this chapter is to investigate the firing preferences 

of GAD65LH neurons in response to a wide range of frequencies of oscillatory current 

inputs and compare them to firing preferences of other LH neuronal types.  

 

It is established that chemical compounds like neurotransmitters, hormones (e.g. 

ghrelin (Toshinai et al. 2003)), nutrients such as glucose (Williams et al. 2008; 

Burdakov et al. 2005), and gasses (Williams et al. 2007) can modify the activity of 

LH neurons in a cell-type specific manner. This chemical control is potentially 

essential for appropriate physiological regulation and avoidance of co-occurrence of 

contradictory drives. Apart from these chemical signals, many brain regions, 

including the LH, contain - and are controllable by - electrical oscillations (Buzsáki 

and Draguhn 2004; Gray and Singer 1989; Salinas and Sejnowski 2001; Carus-

Cadavieco et al. 2017). Oscillations shape the synaptic inputs onto individual 

neurons, which collectively results in sinusoidal oscillations of current input at varying 

frequencies in neurons recorded intracellularly in vivo (Leung and Yim 1986; Soltesz 

and Deschênes 1993). Coherent network oscillations are thought to control brain 

states and behaviours in a frequency-dependent manner, for example, fast 

oscillations (gamma frequencies, ≈30-90 Hz) orchestrate arousal, memory, sensory 

processing, and decision-making (Buzsáki and Wang 2012; Cardin et al. 2009; 

Yamamoto et al. 2014; Colgin et al. 2009). In the LH, gamma oscillations, were 

recently found to be associated with food approach behaviour and differentially affect 

subthreshold membrane potentials of MCH and VGATLH cells (Carus-Cadavieco et 

al. 2017). Although, it remains unknown whether different oscillation frequencies 

differentially modulate the physiological output (action potential firing rate) of specific 

LH neuronal classes. Neurons control long-range targets by action potentials fired in 

response to input signals. Understanding how the firing rates of molecularly-defined 
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LH neurons respond to oscillatory input currents, may thus reveal a new dimension 

of LH output tuning and input-output information transfer.  

 

A previous in vitro study, using GAD65-GFP mice, shows that GAD65 neurons are 

not overlapping with two major groups of LH neurons, namely orexin and MCH 

expressing cells (Karnani et al. 2013). However, in order to use GAD65 as a marker 

for further studies and to be able to compare them to previously characterised LH 

neuronal populations, it is necessary to investigate their neurochemical identity and 

potential overlap with other known groups of neurons further. Therefore, using 

GAD65-Ires-Cre and GAD65-GFP mice, the second aim of this chapter is to confirm 

this distinction with orexin and MCH expressing neurons and to extend it to other 

GABAergic non-MCH non-orexin classes of LH neurons.  

 

The third aim of this chapter is to investigate if GAD65 neurons in the LH have extra-

hypothalamic projections or if they are local interneurons, which is an important 

consideration for designing further experiments to probe the function of the LH 

network.  
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3.2 Gamma oscillations differentially control the firing of 

orexin and non-orexin neurons in the lateral hypothalamus 

in vitro 

Using experimental paradigms established for studying the effects of oscillations on 

neuronal firing in other brain regions (Pike et al. 2000), here we explore how the firing 

of individual, molecularly-defined LH neurons is modulated by the frequency of 

oscillatory current inputs. 

 

To explore how different LH neurons respond to oscillatory inputs, we selectively 

targeted fluorescent reporters to LH orexin, VGAT, MCH, or GAD65 cells (see 

section 2.3), and recorded the membrane potential responses of individual 

genetically-defined LH cells to sinusoidal input currents at a broad range of 

physiological frequencies (0.5-200 Hz; Figure 3.1). To facilitate comparisons 

between neurons, and to previous studies of neuronal responses to oscillations in 

other brain areas (Pike et al. 2000), the recordings were performed at the membrane 

potentials close to threshold for spike generation. This was achieved by superposing 

an oscillatory current on the maximum step current that itself did not elicit spikes, 

and using a small (20 pA) peak-to-peak sinusoidal current (based on (Pike et al. 

2000)).   
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Figure 3.1: Schematic and raw examples of oscillatory currents injected into LH 

neurons  

(A) Overview of experimental strategy. Cell types were genetically tagged with a 
fluorophore to target patch-clamp recordings. During whole-cell recordings, 5s long 
oscillatory current at fixed frequencies were injected into the cells to obtain a profile 
of preferred input frequencies for maximal action potential firing. (B) Individual raw 
traces of single cells of the investigated cell types at 3 different input frequencies. 
 

Low input frequencies (0.5–20 Hz) resulted in robust spiking activity in all LH 

neuronal types (Figure 3.1 and Figure 3.2). In contrast, higher frequencies selectively 

silenced orexin neurons (cessation of significant firing at inputs above 7 Hz, Fig. 9), 

while preserving significant firing in non-orexin cell types (Figure 3.2). These 

differences in frequency-preferences of LH neuron firing did not appear to be related 

to their maximal firing rates or spike-rate adaptation. Specifically, the firing of non-

orexin neurons stayed relatively invariant across oscillation frequencies, irrespective 

of whether their maximal firing rates were fast (VGAT, GAD65 cells) or slow (MCH 
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cells), and irrespective of whether their spike-rate adaptation was high, which is the 

case for MCH cells (Burdakov et al. 2005; van den Pol et al. 2004), or low which is 

the case for GAD65 cells (Karnani et al. 2013). In turn, orexin cell firing had higher 

frequency-dependent decay than non-orexin cell firing, even though their initial firing 

was faster than MCH cells but slower than VGAT or GAD65 cells (Figure 3.2), and 

their spike-rate adaptation was lower than that of MCH cells (Burdakov et al. 2005).  

Thus, there appears to be distinct frequency-bandwidths for optimal firing of orexin 

and non-orexin LH neurons, which cannot be accounted for by previously-studied 

differences in their intrinsic excitability.  

Passive membrane properties differed between the cell classes (see Table 3), with 

VGAT neurons having the highest membrane resistance and MCH neurons having 

the lowest. Membrane resistance plays a role in the effect current injections have on 

membrane potential with high resistances leading to larger changes in membrane 

potential. Nevertheless, the membrane resistance would have the same effect 

across all injected current frequencies and thus could not account for differences of 

cell spiking at different frequencies. However, to adjust for different levels of spike 

frequency and effects that differences in membrane resistance might have spike 

rates were normalised in Figure 3.3. In addition to this, considering oscillatory current 

inputs as an analogue current instead of direct current, membrane impedances 

calculated from membrane resistances and time constants are more applicable and 

can be seen as an extended concept of membrane resistance.   

 

Table 3: Membrane resistances and time constants of molecularly-defined LH cell 

classes 

 MCH Orexin GAD65 VGAT 

Membrane 

resistance 

(MΩ) 

474.8571±  

54.2614, n=14 

 

463.0385± 

56.76324, n=13 

 

619.2471± 

49.09955, n=17 

 

724.4438±  

92.54686, n=16 

 

Membrane 

time constant 

(ms) 

40.60857± 

6.530006, n=14 

 

43.24915± 

7.335909, n=13 

32.42376± 

4.217719, n=17 

 

32.54188±  

3.505608, n=16 

 

 

Distinct frequency-dependencies of firing in orexin and non-orexin neurons could, in 

theory, emerge from distinct frequency-dependencies of the passive membrane 
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impedances (Pike et al. 2000). Higher membrane impedance would produce greater 

membrane potential fluctuations in response to oscillatory inputs and thus produce 

greater membrane excitation and firing (Pike et al. 2000). To investigate whether 

such passive membrane resonance could account for the differences in spike 

frequency preferences (Figure 3.2, red plots), we used our data to compute 

impedances of resistor–capacitor equivalent circuits at each input frequency for 

individual LH neurons (Figure 3.2, blue plots, see section 2.5.4 for calculations and 

Table 3 for values). Although maximum impedances differed between cell types 

(orexin = MCH < GAD65 < VGAT neurons, Figure 3.2), all impedances decayed 

similarly with input oscillation frequency, and this decay did not follow the associated 

frequency-tuning of firing (Figure 3.2, compare red and blue plots).  

 

 

Figure 3.2: Effects of oscillations on molecularly-defined LH cell classes 

Cell population average (± SEM of n= 14,13,17,16 cells) of spike rate (in red) and 
impedance magnitude of equivalent passive membranes averaged (± SEM of n= 
14,13,17,16 cells) for each population of cells (in blue). Tuning bandwidths (in 
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purple) for each cell type were calculated as the frequencies at which the average 
spike rate was significantly different from 0 (one sample-t test) after correcting for 
multiple comparisons by controlling the false discovery rate (two-stage step-up  
method of Benjamini,   Krieger and Yekutieli).  
 
In order to compare the frequency-tuning of firing and impedances between different 

LH cell types, independently of differences of absolute values in these parameters, 

we normalized each neuron to its own maximal firing and impedance (Figure 3.3). 

Similar to raw data (Figure 3.2), this revealed that orexin cell firing decayed more 

steeply with oscillation frequency than that of non-orexin cells (Figure 3.3A; within 

the normalised data the decay was significantly different between orexin and VGAT 

or GAD65 cells, but not between orexin and MCH cells: Figure 3.3B). This difference 

between orexin and VGAT/GAD65 cells emerged sharply at >7 Hz and persisted at 

higher frequencies (Figure 3.3B). In contrast, there was an almost perfect overlap in 
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the frequency-dependence of normalized membrane impedances in the four LH cell 

types (Figure 3.3C). 

 

 
Figure 3.3: Effects of oscillations on between LH cell class differences and their 

passive membrane equivalents 

(A) Preferred input frequencies of different LH cell types. Cell population averages 
(± SEM of n= 14,13,17,16 cells) of spike rate normalised to the maximum rate per 
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cell.  (B) Differences in input frequency preferences between cell types at all 14 
input frequencies. Adjusted p-values of a 2-way repeated measures ANOVA with 
Tukey’s multiple comparison correction comparing the normalised spike rates of 4 
LH cell types at 14 input frequencies with each other. Interaction: F (36, 672) = 
1.907, P=0.0013 (n= 14,13,17,16 cells). (C) Preferred input frequencies of 
equivalent passive membranes. Impedance magnitude of equivalent passive 
membranes normalised to maximum impedance per cell and averaged (± SEM of 
n= 14,13,17,16 cells) for each population of cells. 
 
 
We next investigated the differences between the impedance-predicted and 

experimentally-observed frequency-tuning of LH cell firing at the level of individual 

neurons. Within each molecularly-distinct class, individual neurons displayed similar 

frequency-tuning of impedance (as was the case also between classes, Figure 3.3C), 

but differed substantially in frequency-tuning of firing (Figure 3.4A). As the input 

oscillation frequency increased, the firing rate decay mirrored the impedance decay 

in some cells (Figure 3.4A, typical examples in right column), but strikingly deviated 

from impedance in other cells (Figure 3.4A, typical examples in middle column).  By 

quantifying and analysing the difference between normalized impedance and firing 

in each cell (see section 2.7), we estimated, within each cell type, the percentage of 

cells that were tuned passively (i.e. firing tuning similar to impedance tuning) or 

actively (firing tuning significantly deviating from impedance tuning) (Figure 3.4A, left 

column). This revealed that within each cell type, the majority of cells were actively 

tuned, but some cell classes contained more “active” cells than others 

(MCH>Orexin>GAD65>VGAT, Figure 3.4A).  

 

Finally, we analysed how “cell activeness” (the difference between observed and 

impedance-predicted firing) varies as a function of input oscillation frequency within 

each cell type (Figure 3.4B). Active tuning (significant difference between observed 

and impedance-predicted firing) was present in all cell types at low frequencies (< 1 

Hz), where firing was lower than expected from impedance (Figure 3.4B). However, 

as input oscillation frequency increased, the frequency-dependence of orexin 

population firing became indistinguishable from the frequency-dependence of orexin 

cell impedance, with both sharply decaying as oscillation frequency increased 

(Figure 3.4B). In contrast, VGAT and GAD65 populations (and to a lesser extent the 

MCH population) maintained substantial firing in the gamma-fast frequency range 

(30-200 Hz, Figure 3.4B).  Thus, orexin neuron firing is subject to steep impedance-
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associated decay during gamma input, but non-orexin neurons resist this decay and 

maintain firing during gamma input. 
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Figure 3.4: Effects of oscillations on individual neurons within LH cell classes 

(A) Left, pie charts depicting the percentage of actively-tuned cells (cells whose 
normalised spike frequency significantly differs from its normalised impedance 
magnitude), and passively-tuned cells (cells whose normalised spike frequency did 
not significantly differ from its normalised impedance magnitude). To group 
neurons into these categories, firing and impedance profiles of each individual cell 
were compared using a paired t-test with correction for multiple comparisons by 
controlling the false discovery rate (two-stage step-up method of Benjamini, Krieger 
and Yekutieli). Middle, examples of actively-tuned cells on each. Right, examples of 
passively-tuned cells on each. (B) Activeness of cell populations (statistical 
difference between normalized spike frequency and normalised impedance of each 
cell type, n= 14,13,17,16 cells, across input oscillation frequencies, n numbers for 
each cell types are as indicated in A. The y axis shows adjusted p-values from 
paired t-tests with correction for multiple comparisons by controlling the false 
discovery rate (two-stage step-up method of Benjamini, Krieger and Yekutieli). 
 
 
In summary, our study demonstrates an unexpected way of controlling the firing of 

orexin versus non-orexin LH neurons. Such cell-type-specific LH control was 

previously thought to be achievable only by cell-type-selective chemical signals, but 

our results now show how a single, non-selective electrical input can unexpectedly 

create cell-type-specific effects on hypothalamic firing
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3.3  LH GAD65-GFP neurons are not co-localised with orexin, 

MCH, NPY and LepRb neurons 

Using GAD65-Ires-Cre mice injected with a FLEX-GCaMP6s virus into the LH, we 

are able to confirm the finding that GAD65LH neurons are distinct from MCH and 

orexin expressing neurons (Karnani et al. 2013) while testing the expression of the 

GCaMP6s calcium indicator for further experiments (see Figure 3.5). Slices (30µm) 

of these mice, which were stained for MCH or orexin, show no overlap with GAD65-

GCaMP6s neurons. Note that this finding does not contradict previous reports of 

GAD67 expression in MCH cells, because GAD65 and GAD67 are not always co-

expressed in the hypothalamus according to single-cell RNA studies (Romanov et al. 

2017; Jeong et al. 2016). 

 

Examples of confocal images of (left) MCH and GAD65 neurons in close proximity 
but not overlapping and (right) orexin neurons and GAD65 neurons showing that 
both populations are found in the same location of the LH without overlap.  
 
 

As GAD65 is an enzyme that catalyses the decarboxylation of glutamic acid to GABA, 

it was of great interest to see if GAD65 neurons would overlap with other known 

GABAergic populations like NPY (Marston et al. 2011) and LepRb neurons (Vong et 

al. 2011; Y. Xu et al. 2012) in the LH. 

 

To label LepRb neurons, we stained for the phosphorylated form of Signal 

Transducer and Activator of Transcription 3 (pSTAT3), a downstream product of the 

JAK2-STAT3 pathway (Banks et al. 2000; Robertson et al. 2008). GAD65-GFP mice 

(n=3) were injected with an i.p. dose of (5mg/kg) leptin prior to a transcardial 

Figure 3.5: Co-localisation of GAD65 neurons in the LH with MCH and orexin 

neurons 
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perfusion, in order for LepRb to activate the JAK2-STAT3 pathway and to 

phosphorylate STAT3, which could then be detected and visualised after antigen 

retrieval in slices. For each mouse, three slices, containing both hemispheres, were 

counted for an overlap between GAD65-GFP and pSTAT positive cells in the LH. Of 

the 819 GAD65-GFP cells counted, less than 7% were also pSTAT positive (Figure 

3.6). Control mice, injected with an equivalent dose of saline instead of leptin, 

showed only a minimal level of pSTAT staining, confirming the specificity of the 

protocol and antibody (Scott et al. 2009; L. Xu et al. 2011) .  

 

Example of pSTAT stained cells in red (right) and GAD65-GFP cell in green (middle) 
in close proximity in the LH but without overlap (left). A total of 11.45% of pSTAT3LH 
neurons contained GAD65 (analysis of 1,544 pSTAT neurons from three GAD65-
GFP/pSTAT3-Alexa555 brains), and 6.89% of GAD65LH cells contained pSTAT3 
(analysis of 819 GAD65 neurons from three GAD65-GFP/pSTAT3-Alexa555 brains). 
The % co-localization values are averages per hemisphere. 
 
 
To investigate the relationship between GAD65 and NPY neurons in the LH, we 

made use of a double transgenic line, a cross of NPY-hrGFP mice with GAD65-Ires-

Cre mice. Three mice were injected with a Cre-dependent mCherry-ChR2 into the 

LH to label GAD65 cells with mCherry. For each mouse, three bilateral slices 

containing the LH (30µm) were counted and an overlap of 2.06% of NPY-GFP 

neurons that also showed GAD65-mCherry were discovered (Figure 3.7).  

Figure 3.6: Co-localisation of LH GAD65 and LepRb neurons 
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Example of GAD65-mCherry-ChR2 cells in red (right) and NPY-hrGFP cell in green 
(middle) in close proximity in the LH but without overlap (left. NPY cells were 
labelled with GFP (NPY-hrGFP transgenic mouse), and GAD65-Ires-Cre cells were 
labelled with ChR2-mCherry. A total of 2.06% of NPYLH neurons contained GAD65 
(analysis of 705 NPYLH neurons from three NPY-hrGFP/GAD65-mCherry brains), 
and 0.78% of GAD65LH cells contained NPY (analysis of 1,645 GAD65LH neurons 
from three NPY-hrGFP/GAD65-mCherry brains). The % co-localization values are 
averages per hemisphere. 
 

3.4  What is the overlap between VGAT and GAD65 neurons in 

the LH? 

Recent studies on feeding behaviour driven by VGAT cells in the LH have received 

much attention (Nieh et al. 2015; Jennings et al. 2015). However, the use of VGAT 

as a genetic marker does not necessarily mean that GAD65 cells were targeted as 

well. This is because single-cell mRNA studies have shown that VGAT RNA is not 

always expressed in GAD65 neurons in the hypothalamus and that some 

hypothalamic GAD65 neurons might even contain glutamatergic markers instead 

(Romanov et al. 2017; Jeong et al. 2016), which has also been confirmed by in situ 

hybridisation (Jarvie and Hentges 2012). 

 

To investigate the overlap between the mouse lines for these markers, we used 

either a triple-transgenic mouse that resulted from a cross of VGAT-Ires-Cre with 

CAG-tdTomato and GAD65-GFP or a double transgenic of VGAT-Ires-Cre with 

GAD65-GFP and injected a Cre-dependent ChR2-mCherry virus, labelling VGAT 

cells with tomato/mCherry and GAD65 cells with GFP. 

 

Figure 3.7: Co-localisation of LH GAD65 and LH NPY neurons 
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Counting cells in the LH of three equal slices per mouse (6 hemispheres per mouse), 

we found that only 50% of the GAD65LH cells contain VGAT, and that most (≈80%) 

VGATLH cells were distinct from GAD65LH cells (Figure 3.8).  

 

Overall, GAD65 neurons in the LH seem to be distinct from previously described 

neuronal types like orexin, MCH, NPY, LepRb and only partially overlapping with 

VGAT neurons with the majority of VGAT neurons in the LH not expressing GAD65. 

Thus, previous studies of VGATLH cells likely targeted a larger and more 

heterogeneous cell populations compared to GAD65LH neurons studied here. 

Therefore, previous studies characterising these classes of neurons cannot be fully 

applied onto GAD65LH neurons and GAD65 can be used as a genetic marker for a 

distinct population of LH neurons. In addition to this, these findings also raise 

questions of what neurotransmitters are released by GAD65 neurons and in what 

way. 
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Co-localization of GAD65LH cells and VGATLH cells. GAD65LH cells were labelled 
with GFP (GAD65-GFP transgenic mouse), and VGAT-Ires-Cre cells were labelled 
with tdTomato (CAG-tdTomato; VGAT-Ires-Cre transgenic mouse) or ChR2-
mCherry. (A, top left) Example of LH co-localisation. (A, right and bottom) More 
examples of coronal slices from different anteroposterior LH locations (bregma 
coordinates indicated on the slides). (B) Quantification of data in A (combined cell 
counts from three brains). 
 
 

Figure 3.8: Co-localisation of GAD65 and VGAT neurons in the LH 



Chapter 3. Intrinsic properties of GAD65LH neurons  

72 

 

3.5 Are GAD65LH neurons local neurons or do extra 

hypothalamic projections exist?  

Orexin and MCH neurons have two similar anatomical characteristics. First, their cell 

bodies are only found in the hypothalamus; and second, they send axons to nearly 

all other brain areas (Bittencourt et al. 1992; Peyron et al. 1998). GAD65 neurons, 

however, are not exclusive to the hypothalamus, and in regions like the cortex 

(López-Bendito et al. 2004) and hippocampus (Wierenga et al. 2010), they act as 

interneurons, projecting mainly locally instead of forming projections to other areas. 

This raises the question of whether GAD65 neurons in the LH are local interneurons 

like in cortex, or if they project outside the LH like the MCH and orexin neurons. To 

answer this question, GAD65-IRES-Cre mice were injected with a Cre-dependent 

ChR2-YFP virus into the LH. After an expression time of at least six weeks, ChR-

YFP was seen in the projections and soma of infected neurons, allowing for 

projection fields to be analysed in 30µm thick coronal and sagittal sections. Sagittal 

sections (Figure 3.9A) show that there are dense projections from GAD65LH neurons 

in the hypothalamic area itself, but they are not limited to that region. Projections 

seem to be far reaching to many subcortical areas, from as anterior as the accessory 

olfactory bulb, to as posterior as the dorsal raphe in the brain stem (Figure 3.9B).  

 

It is notable that GAD65LH neuron projections from the hypothalamus seem to target 

many areas involved in sensory processing, especially olfaction, like the accessory 

olfactory bulb, that is part of the vomeronasal system and encodes conspecific and 

allospecific cues (Ben-Shaul et al. 2010; Luo et al. 2003), and the endopiriform 

nucleus where olfactory and gustatory information converge (Sugai et al. 2012). In 

addition, gustatory processing might also be targeted in the nucleus of the solitary 

tract, where sensory and tactile input from the tongue arrive among other visceral 

inputs (Mark et al. 1988; Halsell et al. 1993), and the nucleus raphe magnus 

(Yamamoto et al. 1994) which represents the hedonics and quality of taste stimuli. 

Besides sensory processes, areas involved in locomotor output are also among 

projection targets: The periaqueductal gray, an area important for the initiation 

(Jordan 1998) and motivation (Mota-Ortiz et al. 2012) of several locomotor 

programmes for instance prey pursuit (Han et al. 2017) is one of them. Additionally, 

other areas involved in motivation of locomotor activity such as the nucleus 
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accumbens (Delfs et al. 1990; Parkinson et al. 1999) are also among the projection 

targets. However, we could not find any projection to areas of higher cognitive 

functions like the cortex.  

 

Thus, it is safe to say that GAD65LH neurons have projections to many areas outside 

the LH, similar to MCH and orexin neurons but not as extensive. Nevertheless, it 

remains unclear what the actual neuronal projection targets are and what the function 

of these projections are. Additional immunohistochemical stainings for 

synaptophysin would have given a clearer indication in which areas GAD65LH 

neurons form synapses and through which areas axons travel without making any 

connections. Further immunohistochemistry could then have been used to identify 

the projection targets. 
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Axonal projections of GAD65LH cells. (A, Left) Scheme for targeting ChR2-YFP to 

Figure 3.9: GAD65 neurons in the LH have diverse extra hypothalamic projection 

targets 
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GAD65LH cells. (A, Right) DAPI-stained (blue) 30-μm sagittal section of the whole 
brain showing GAD65LH projections (green) to brain areas like the accessory 
olfactory bulb (AOB), LH, thalamus (TH), midbrain (MB), and medulla 
(representative example of three brains). (B) High magnification of brain areas 
where dense GAD65-ChR2-YFP axons are found (representative example of three 
brains). 
 

3.6 Discussion 

GAD65LH neurons are distinct from MCH, orexin, NPY and LepRb neurons. However, 

this finding does not contradict previous studies of MCH cells expressing GAD67 

(Jego et al. 2013), because GAD65 and GAD67 are not always co-expressed in the 

hypothalamus which was shown in several single-cell mRNA studies (Romanov et 

al. 2017; Jeong et al. 2016).  

 

That GAD65LH neurons are only partially overlapping with VGAT cells, with only half 

of the GAD65LH population expressing VGAT, raises some important questions for 

further studies. For example, what neurotransmitters are actually released by 

GAD65LH neurons and by what mechanism. Previous studies have found that 

dopaminergic neurons in the striatum can release GABA in a VGAT-independent 

way by using VMAT2, the vesicular monoamine transporter, instead (Tritsch et al. 

2012). Moreover, POMC neurons, which have been reported to release GABA 

(Hentges et al. 2004), do not show any evidence of VGAT being present when 

staining for its mRNA with in situ hybridisation (Jarvie and Hentges 2012). These 

findings might start to challenge the belief that VGAT, GAD65 and GAD67 are being 

co-expressed and equivalent markers for the same GABAergic neurons, and 

furthermore that VGAT is essential for GABA release.  

 

A more general question raised by this approach of classifying neurons according to 

a few genetic markers, is how homogenous these classes actually are. From a 

biophysical viewpoint, orexin neurons can be divided into at least two subgroups, a 

depolarising and hyperpolarising type that differ in their morphology, ionic currents 

and synaptic input organisation (Schöne et al. 2011). VGAT neurons represent a 

large population of neurons and it would not be surprising, if they are biophysically 

as diverse as the GAD65LH neurons which can be subdivided into four groups 

depending on their evoked firing patterns (Karnani et al. 2013). Considering this 
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biophysical diversity of LH cell classes, it is not unexpected that a recent qPCR 

single-cell gene expression study also showed that a vast neurochemical 

heterogeneity exists in the LH (Mickelsen et al. 2017).  

 

Another unanswered question is what role the many projection targets of GAD65LH 

neurons play. Considering the large overlap with many projection targets of MCH 

and orexin neurons, one might wonder if they target also the same neurons and what 

neurotransmitters might be released. As the main projection areas seem to be either 

involved in locomotor control or sensory processing, especially for food and 

conspecifics, it is clear that GAD65LH neurons are not locally restricted interneurons 

but projection neurons that can influence processes that are typically associated with 

classical LH functions (MacDonnell and Flynn 1966; Lumb and Lovick 1993). 

 

The frequency preference of GAD65LH neurons was very similar to that of VGAT and 

MCH neurons, showing a broadly tuned preference which was very different from the 

frequency tuning of orexin neurons (Figure 3.2). The monotonic decay in membrane 

impedance of all cell types, that occurs as oscillation frequency is increased, would 

be expected to produce concurrent monotonic decay in firing as it is seen for orexin 

neurons at gamma frequencies (Pike et al. 2000). However, non-orexin neurons, 

including GAD65LH neurons, continue to fire action potentials even at high input 

frequencies in the gamma range, which is significantly different from the tuning 

predicted by their RC-equivalent circuits. Orexin neuron firing follows the predicted 

decay of activity by their impedance at gamma frequencies. Therefore, it is safe to 

say that the differences between orexin and non-orexin neurons in frequency-

dependence of firing are not a consequence of cell-type-specific variation in passive 

membrane impedances, which were very similar (Figure 3.3C). Instead, differences 

in active properties like differential expression of many different types of voltage-

gated ion channels (calcium, sodium, potassium, or non-selective channels may all 

contribute (Puil et al. 1986; Hutcheon et al. 1996) and differences in dendritic 

geometry (Mainen and Sejnowski 1996) are likely to be the cause of the difference 

in frequency-dependent firing of orexin and non-orexin neurons at high frequencies.  

 

If we want to speculate what the physiological purpose of this difference in frequency 

preference is, with orexin neurons showing a preference for low frequencies (<10 
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Hz), while non-orexin neurons are driven by low and high (10-200 Hz) frequencies, 

it might be part of the physiological control that avoids co-occurrence of contradictory 

LH outputs. Considering established functions of oscillations in input selection, 

synaptic plasticity, long-term consolidation and temporally linking neurons into 

assemblies (Buzsáki et al. 2004), we could see the differential frequency preference 

of orexin and non-orexin neurons serving as a switch between two cell assemblies: 

from VGAT-GAD65-MCH-orexin to VGAT-GAD65-MCH. This switch might enable, 

at high frequencies, a removal of orexin neuron activity which evokes the 

physiological hallmarks of stress and aversion (Bonnavion et al. 2015; Suzuki et al. 

2005; Heydendael et al. 2014) and whose lack might be beneficial in certain 

situations. In some contexts, for example eating or formation of food preference 

driven by VGATLH and MCHLH neurons respectively (Jennings et al. 2015; Domingos 

et al. 2013), it may be important not to associate a stress/aversion signal with food. 

Furthermore, this scenario of an oscillation dependent switch between cell 

assemblies with and without orexin neurons, would also be supported by the fact that 

orexin neurons are silent during feeding as was shown by in vivo imaging (González 

et al. 2016).  

 

Another physiological role for this switch could be to control neuronal activity for an 

optimal body state of energy storage. One can view orexin neurons as an essential 

natural signal for weight loss, as their inactivation produces weight gain (Hara et al. 

2001; González et al. 2016). In contrast, non-orexin neurons can be viewed as a 

natural signal for net weight gain, because MCH and VGAT cell inactivation produces 

weight loss (Whiddon and Palmiter 2013; Jennings et al. 2015; Shimada et al. 1998). 

By removing the energy-expending orexin drive, gamma oscillations may shift LH 

output to favour weight gain. This is conceptually consistent with the recently-

discovered association of LH gamma power with food approach (Carus-Cadavieco 

et al. 2017). An important direction for further research probing causal importance of 

gamma-control of LH cells would be to use some methods for controlling the 

influence of gamma oscillations on orexin neurons in vivo.  

 

Overall, these insights open up new avenues for future research on how this novel 

control mode can be utilised physiologically via internally-occurring hypothalamic 

oscillations (Carus-Cadavieco et al. 2017), or – in theory – therapeutically, via a 
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deep-brain-stimulation paradigm promoting a particular oscillation (Sun et al. 2015; 

Maling et al. 2012).  Considering the pivotal role of the LH in physiology and 

behaviour, this reveals an important new dimension of controlling the functions and 

malfunctions of this brain region.
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Chapter 4. Local LH circuitry involving GAD65 

neurons 

4.1 Introduction 

In order to understand what role GAD65LH neurons play in the LH circuitry, we tried 

to functionally identify local inputs and outputs. Compared to other brain areas like 

the cortex with well characterised circuits and structures (Song et al. 2005; Brown 

and Hestrin 2009; Ko et al. 2013), the LH circuitry is still mostly undefined, providing 

many possible circuit arrangements. Attempts to elucidate the connections between 

the many genetically-identifiable cell populations relied often on bath applications of 

neuropeptides (Fu et al. 2004; Rao et al. 2008; Li et al. 2002). Even though, this 

approach can give useful information about putative receptor expression and 

neurons responding to them, it lacks physiological relevance as it cannot prove 

functionality of release of the transmitter and often misses out on the role of fast 

neurotransmitters. Therefore, this approach should only be seen as a first step to 

identify potential neuronal connectivity.  

 

Tracing studies using wheat germ agglutinin, that have identified orexin cells as a 

potential projection target of LepRbLH neurons (Louis et al. 2010), and 

channelrhodopsin-assisted circuit mapping (CRACM) studies suggesting a local 

microcircuitry of inhibition of MCH neurons from orexin neurons (Apergis-Schoute et 

al. 2015), are the only studies indicating an existence of a local LH microcircuitry. 

The aim of this chapter is to determine local GAD65LH cell inputs and outputs by 

combining cell-type-specific presynaptic optical stimulation with postsynaptic 

electrical recordings. Accordingly, the light-activated excitatory actuator ChR2 was 

genetically targeted to a variety of hypothalamic cell types to enable optical activation 

of these ChR2 cells, and postsynaptic responses, evoked by ChR2 activation, in 

different genetically-identified surrounding networks were recorded (see section 2.5). 
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4.2 Orexin peptide excites GAD65LH neurons 

To determine, if orexin peptide signalling can have an effect on the GAD65LH network, 

we first investigated the effect of applying exogenous orexin peptide. We used 

confocal network imaging of a Cre-dependent calcium indicator, GCaMP6s, 

expressed in LH slices from GAD65-Ires-Cre mice (Figure 4.1A). Exogenous orexin-

A peptide robustly excited the GAD65LH network, and this excitation persisted (but 

was slightly reduced) in the presence of a mix of synaptic blockers (Figure 4.1B). 

This suggests that orexin can excite GAD65LH neurons directly instead of an indirect 

way via other neurons. Overall, >98% of GAD65LH cells (64 out of 65) were activated 

by orexin peptide in vitro. Thus, it is safe to say that GAD65LH neurons are directly 

activated by the orexin peptide, but it is unclear if orexin neurons also project onto 

GAD65LH neurons.  

 

 

Figure 4.1: Effects of orexin peptide on GAD65LH network activity 

(A) Scheme for targeting GCaMP6s (Left), example of GCaMP6s expression in 
GAD65LH cells (representative example of five brains) (Right), GCaMP6s response 
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of GAD65LH cells to 300 nM orexin-A with corresponding mean ± SEM plot (n = 44) 
(B) (Right), and data summary without (C) and with (B) synaptic blockers (n = 44 
and n = 13 cells, respectively, mean ± SEM responses of cells during 2–20 min 
after orexin-A infusion). P values (italics) are from sign tests of whether the 
response within each group is different from zero, and P-value (regular font) is from 
a two-tailed Mann–Whitney test comparing response amplitude between groups. 
 

4.3 Local LH inputs to GAD65LH neurons 

To examine whether orexin cells directly functionally innervate GAD65LH cells, the 

light-activated excitatory actuator channelrhodpsin-2 (ChR2) was targeted to orexin 

cells (Figure 4.2A), enabling selective optical activation of orexin-ChR2 cells. 

GAD65LH cells were genetically tagged with GFP throughout the brain whilst orexin-

mCherry-ChR2 cells were only found at the injection site in the LH (Figure 4.2A). 

Subsequently, whole-cell patching in brain slices was used to examine the resulting 

optically induced postsynaptic responses in GAD65LH neurons. GAD65LH cells 

received time-locked excitatory inputs when orexin cells were stimulated with single 

light flashes.  

 

These ChR2 evoked currents could be abolished (Figure 4.2B) when CNQX and D-

AP5 were bath applied to block ionotropic AMPA/kainate and NMDA receptors 

respectively, and thus, the ChR2 evoked current in GAD65LH neurons was deemed 

glutamatergic. Furthermore, the current-voltage relationship (Figure 4.2C) of the 

ChR2 evoked current in GAD65LH neurons shows how the inward current decreases 

in size when the holding potential increases in positivity and the electrochemical 

gradient decreases. The predicted equilibrium potential of the ChR2 evoked currents, 

from assuming a linear relationship, is around 43mV which indicates an underlying 

cation channel. Based on the Nernst equation (see section 2.5.2) the equilibrium 

potential for potassium should be -106.46mV, whilst that of sodium is 95.7mV. As a 

result, an equally conductive non-selective cation channel would have a predicted 

equilibrium potential of -10.76mV, which is much lower than the equilibrium potential 

of the measured ChR2 evoked current. Considering that conductances are rarely 

equal, a bias towards sodium ions could explain a higher measured equilibrium 

potential or an additional conductance for calcium ions (with a predicted equilibrium 

potential of 131.43mV) could be another mechanism. An alternative possibility might 

be provided by the involvement of NMDA receptors which result in a non-linear 
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current-voltage relationship for sub-zero holding potentials due to the magnesium 

block.  

 

Nonetheless, it is safe to say that orexin neurons can release fast neurotransmitters 

like glutamate onto GAD65LH neurons, which probably act on a mix of AMPA/kainate 

and NMDA receptors leading to an excitatory current. 

 

Figure 4.2: CRACM investigating orexinLH → GAD65LH signals 

(A) Left, targeting strategy. Centre and right, localization of Orexin-ChR2-mCherry 
and GAD65-GFP expression. Representative example of 5 brains. LH: lateral 
hypothalamus, Arc: arcuate nucleus, VMH: ventromedial hypothalamus, DMH: 
dorsomedial hypothalamus, 3V: third ventricle. D: dorsal, V: ventral, M: medial, L: 
lateral. (B) Effect of GAD65LH cell photostimulation (light-blue vertical line) on 
GAD65 cells. Grey lines are individual trials from one cell; thick blue and yellow 
lines are means. Representative example of 7 cells (fraction of connected to total 
cells is in brackets). (C) means±s.e.m of current in 5 GAD65LH cells induced by 
photostimulation of Oexin-ChR2 cells. 
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After establishing that VGAT and GAD65 neurons in the LH are not always co-

expressed, CRACM was used to elucidate if VGATLH neurons are another potential 

input of GAD65LH neurons. We used the same CRACM strategy as previously and 

targeted ChR2 to VGAT-cre neurons in the LH whilst genetically tagging GAD65 

neurons with GFP (Figure 4.3A). Whole-cell patch recordings from GAD65-GFP 

neurons in the LH, that did not express ChR2-mCherry, showed that GAD65LH cells 

received time-locked inhibitory GABAergic inputs when VGATLH cells were 

stimulated (Figure 4.3B). The current-voltage relation of the ChR2 evoked currents 

in GAD65LH neurons shows how the directionality of the current changes with a 

reversal potential of around -73mV which is close to the predicted equilibrium 

potential of chloride of -63.14mV (Figure 4.3C). At holding potentials of -20 and -

40mV there is a chloride influx into the cell due to its electrochemical gradient and 

therefore negative charge enters the cell resulting in an outward current (Figure 4.3B).  

At a holding potential of -90mV chloride ions leave the cell against their concentration 

gradient as the negative electrical potential inside the cell repulses chloride ions, 

resulting in net positive charge transmission. This is characteristic for GABAA-

receptor-gated chloride channels which are prominent transmitter-gated chloride 

channels in the CNS.  
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Figure 4.3: CRACM investigating VGATLH → GAD65LH signals 

(A) Left, targeting strategy. Centre and right, localization of VGAT-ChR2-mCherry 
and GAD65-GFP expression. Representative example of 5 brains. LH: lateral 
hypothalamus, Arc: arcuate nucleus, VMH: ventromedial hypothalamus, DMH: 
dorsomedial hypothalamus, 3V: third ventricle. D: dorsal, V: ventral, M: medial, L: 
lateral. (B) Effect of GAD65LH cell photostimulation (light-blue vertical line) on 
GAD65 cells at different holding potentials. Representative example of 7 cells 
(fraction of connected to total cells is in brackets). (C) means±SEM of current in 6 
GAD65LH cells induced by photostimulation of Orexin-ChR2 cells. 
 

 

To test for another potential input, this time of MCH neurons, ChR2 was expressed 

in a Cre-dependent manner in MCH neurons whilst genetically tagging GAD65 

neurons with GFP in a MCH-Cre mouse line crossed with GAD65-GFP (Figure 

4.4A,B). However, light stimulation of MCH neurons did not result in any detectable 

changes of current in in vitro patched GAD65LH neurons (Figure 4.4C). To ensure 

that ChR2 expression in MCH neurons was adequate and that the duration of the 

light flash was long enough to produce reliably action potentials in MCH neurons, 

MCH cells were patched in each slice that was recorded from. Only CRACM results 

from slices with MCH neurons that were responsive to light stimulation were counted. 
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Nevertheless, we could not record any evidence for connectivity from MCH to 

GAD65LH neurons with this protocol. 

 

 

Figure 4.4: CRACM investigating MCHLH → GAD65LH signals 

(A) Left, targeting strategy. Centre and right, localization of MCH-ChR2-mCherry 
and GAD65-GFP expression. Representative example of 5 brains. LH: lateral 
hypothalamus, Arc: arcuate nucleus, VMH: ventromedial hypothalamus, DMH: 
dorsomedial hypothalamus, 3V: third ventricle. D: dorsal, V: ventral, M: medial, L: 
lateral. (B) Schematic of CRACM strategy and fraction of connected to total cells in 
brackets (C) Effect of MCHLH cell photostimulation (light-blue vertical line) on 
GAD65 cells at different holding potentials. Representative example of 14 cells. 
 

4.4 Local outputs of GAD65 neurons 

To probe for signalling from GAD65LH to MCH neurons, a Cre-inducible ChR2-eYFP 

was injected into the LH of GAD65-ires-Cre mice, together with another viral 

construct coding for a mCherry label driven by a MCH promoter (Figure 4.5A). 

Pairing photostimulation of ChR2-containing GAD65LH neurons with recordings from 

mCherry-containing MCH neurons in brain slices (Figure 4.5B) revealed 

photostimulation-induced postsynaptic currents in nearly all MCH neurons tested (14 

out of 16 cells). Postsynaptic currents are predicted to have an equilibrium potential 

of around -58mV (Figure 4.5C) which is close to the predicted equilibrium potential 
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of chloride ions (-63.14mV) and suggests a transmitter-gated GABAA channel as 

underlying ionotropic channel. In addition to this, the GABAA receptor blocker 

gabazine abolished (Figure 4.5B) the ChR2 induced current and thus, it is safe to 

say that GAD65LH neurons can inhibit MCH neurons by GABA release which acts 

upon GABAA receptors in MCH neurons. The GAD65→MCH signal is unidirectional 

as the previous CRACM experiment of the reverse directionality (see section 4.3) 

found no evidence of any connectivity. 

 

 

Figure 4.5: CRACM investigating GAD65LH →MCH signals 

(A) Left, targeting strategy. Centre, localization of GAD65-ChR2-eYFP and MCH-
mCherry. Representative example of 5 brains. LH: lateral hypothalamus, Arc: 
arcuate nucleus, VMH: ventromedial hypothalamus, DMH: dorsomedial 
hypothalamus, 3V: third ventricle. D: dorsal, V: ventral, M: medial, L: lateral. (B) 
Schematic of CRACM strategy and effect of GAD65LH cell photostimulation (light-
blue vertical line) on MCH cell. Grey lines are individual trials from one cell; thick 
blue and yellow lines are means. Representative example of 14 cells (fraction of 
connected to total cells is in brackets). (C) means±SEM of current in 14 MCH cells 
induced by photostimulation of GAD65-ChR2 cells. 
 

Another possible output target are NPY neurons which are localised in the LH as well 

as the acruate nucleus, where they co-localise with Agrp neurons (Hahn et al. 1998). 

A Cre-induceble ChR2-mCherry virus was injected into the LH of GAD65-ires-Cre 
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mice which were crossed with a NPY-hrGFP line to additionally genetically tag NPY 

neurons with GFP (Figure 4.6A). Subsequently, slice whole-cell patching was used 

to examine the resulting optically induced postsynaptic responses in NPY neurons 

in the LH and arcuate nucleus. 

 

Photostimulation induced postsynaptic currents were sparse (2 out of 10) in the 

arcuate and more frequent (10 out of 22) in the LH (Figure 4.6B), but both 

connectivity rates were much lower compared to the GAD65LH →MCH connection. 

The biophysical properties of the current-voltage relationship were those of a typical 

chloride current with an equilibrium potential of around -68mV for ChR2 evoked 

currents in NPYLH neurons (calculated equilibrium potential for chloride is -63.14mV) 

(Figure 4.6C). For post synaptic currents in NPYArc neurons, no equilibrium potential 

was calculated, as only two cells received inputs but both showed a reversal potential 

between the holding potential of -40 and -90mV suggesting a chloride current as 

underlying ionic mechanism as well. Therefore, GAD65LH neurons seem to directly 

inhibit local NPY neurons and with a low connection rate also NPY neurons in the 

arcuate nucleus. 

 



Chapter 4. Local LH circuitry involving GAD65 neurons  

88 

 

 

Figure 4.6: CRACM investigating GAD65LH →NPY signals in the LH and arcuate 

nucleus 

(A) Left, targeting strategy. Centre, localization of GAD65-ChR2-mCherry and 
NPY-GFP expression. Representative example of 5 brains. (B) Schematic of 
CRACM strategy and below, effect of GAD65LH cell photostimulation on NPYLH or 
NPYArc neurons. Representative examples of 2 and 10 cells respectively (fraction of 
connected to total cells is in brackets). (C) means±SEM of current in 10 NPY cells 
induced by photostimulation of GAD65-ChR2 cells. 
 

The last connection investigated was a potential reciprocal signal from GAD65LH to 

orexin neurons. A GAD65-Ires-Cre mouse line crossed with an orexin-eGFP line was 

use to express ChR2-mCherry in a Cre-dependent manner in GAD65 neurons, whilst 

tagging orexin neurons genetically with GFP (Figure 4.7A). Even though photo-

stimulation evoked reliably action potentials in GAD65LH neurons (see Figure 2.2), 

slice patch-clamp recordings of orexin cells could not find any detectable 

photostimulation-induced postsynaptic currents (Figure 4.7C). Hence, GAD65LH 
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neurons receive glutamatergic inputs from orexin neurons but do not form a 

reciprocal connection back to them and thus form a unidirectional output of orexin 

neurons.  

 

 

Figure 4.7: CRACM investigating GAD65LH → orexinLH signals 

(A) Left, targeting strategy. Centre and right, localization of GAD65-ChR2-mCherry 
and orexin-GFP expression. Representative example of 5 brains. LH: lateral 
hypothalamus, Arc: arcuate nucleus, VMH: ventromedial hypothalamus, DMH: 
dorsomedial hypothalamus, 3V: third ventricle. D: dorsal, V: ventral, M: medial, L: 
lateral. (B) Schematic of CRACM strategy and fraction of connected to total cells in 
brackets (C) Effect of GAD65LH cell photostimulation (light-blue vertical line) on 
orexin cells at different holding potentials. Representative example of 10 cells. 
 

4.5 Discussion 

It is safe to say, that the LH circuitry around GAD65LH neurons locally connects 

different classes of neurons (Figure 4.8) that have different and sometimes opposing 

behavioural functions. Thanks to the presented CRACM experiments, we found a 

unidirectional tri-partite structure that allows the locomotor activity and leanness-

promoting orexin neurons (Hara et al. 2001) to inhibit energy-conserving MCH 

neurons (Shimada et al. 1998; Gomori et al. 2003) via local GAD65 neurons. This is 

a connectivity that had been previously speculated and suggested to exist but until 
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now was not proven. It is important to point out, that there is a directionality in the 

connections we recorded. Orexin neurons activate GAD65LH neurons but there is no 

feedback projection back to orexin neurons, the same was observed for MCH 

neurons as the output target of GAD65LH neurons where no reciprocal inhibition by 

MCH neurons was observed. This type of unidirectional connectivity is very different 

from many connectivity patterns observed in the cortex where feedback loops and 

bidirectional connections are common (Song et al. 2005) and allow for continuous 

activation and intrinsic oscillations (Gollo et al. 2014; Womelsdorf et al. 2014). 

 

Furthermore, GAD65LH neurons also inhibit NPY neurons in the LH, which are 

hunger activated and respond to increased glucose levels with hyperpolarisation  

(Marston et al. 2011), and to a lesser degree in the arcuate nucleus where they co-

express Agrp and are one of the main hunger drives of the brain (Atasoy et al. 2012). 

The sparseness of the connection to NPY neurons in the arcuate nucleus might be 

explained by the increased likelihood of GAD65LH projection being cut due to the 

distance between the LH and the arcuate nucleus. 

 

Furthermore, local VGAT neurons inhibit GAD65 neurons, which raises the question 

of how these two GABAergic LH population are functionally activated and 

coordinated. A question we could not answer with the CRACM approach is, whether 

the VGAT neurons that inhibit GAD65LH co-express GAD65 and VGAT or only VGAT.   

Moreover, the approach of using a single short light stimulus, that elicits one action 

potential in the ChR2 expressing cells, is prone to detect mainly fast neuronal 

connections based on glutamate or GABA but not on slow neuropeptides. 

Neuropeptides like orexin require a longer high frequency train of stimulation to be 

released (Schöne et al. 2014). As many peptidergic neurons can release more than 

one type of neuropeptide like orexin (A and B) and dynorphin (Li and Pol 2006) there 

might be even more neuronal activation patterns that are required for different types 

of neuropeptides to be released. Thus, neuropeptides that are released under 

physiological activation patterns by synapses onto GAD65LH or are released by 

GAD65 neurons themselves would remain undetected. 
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Figure 4.8: CRACM connection summary for GAD65LH neurons 

Summary of functional connectivity. Left, connection success rate with number of 
cells patched indicated on each bar; Right, graphical summary, line thickness 
represents connection strength whereas dotted lines indicate no connection, 
arrows and t-bars denote excitation and inhibition respectively.
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Chapter 5. What is the behavioural impact of 

GAD65LH neuron activity? 

5.1 Introduction 

The LH is thought to provide an essential drive for diverse vital behaviours, including 

feeding and locomotion. The human disorder encephalitis lethargica, which results 

in extensive damage in the peri-LH area, has been noted to make humans “sit 

motionless…all day” (Saper et al. 2001). Electrolytic lesions in the LH of rats cause 

lethal hypophagia (Anand and Brobeck 1951b) and LH lesioned animals, if force fed, 

show a disruption of context-appropriate physical activity and extreme akinesia 

(Levitt and Teitelbaum 1975). 

 

Considering that the LH is not a homogeneous entity, but contains many molecularly 

distinct classes of neurons, that are thought to have different physiological roles 

(Stuber and Wise 2016), one might wonder if silencing of single populations of 

genetically-identifiable LH neurons can recapitulate parts of the phenotype observed 

in LH lesion studies. For example, LH neurons expressing orexin become activated 

in diverse stressful contexts, like acute auditory stimulation, hypoglycemia, 

hypercapnia, and physical capture (Yamanaka et al. 2003; Sakurai et al. 1998; 

Mileykovskiy et al. 2005; González et al. 2016; González et al. 2016; Williams et al. 

2007). OrexinLH cell activity may thus represent an important input variable for 

computing context-appropriate locomotor outputs (Sutcliffe and de Lecea 2002). 

However, the hypoactivity phenotypes caused by cell-type specific orexinLH cell 

deletion (Gerashchenko et al. 2001) are much milder than the hypoactivity 

phenotypes observed in broader unspecific LH lesions, therefore orexin neurons 

alone cannot account for the locomotor drive originating from the LH. 

 

On the contrary, MCH cell-specific deletions cause hyperactivity, implying that 

MCHLH cells suppress locomotion (Whiddon and Palmiter 2013). Interestingly, 

VGATLH neuron manipulations show the strongest feeding phenotype of all LH cell-

types, with activation driving motivation to consume food and ablation leading to 

attenuation of weight-gain by decreased feeding (Jennings et al. 2015; Navarro et al. 
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2016). However, VGATLH manipulations have no significant effect on locomotion and 

thus might account for the anorexia phenotype in LH lesioned animals but not for the 

pronounced effect on movement. Overall, these findings suggest that additional 

drivers of physical activity may exist in the LH.  

 

After establishing that results of behavioural studies from VGATLH cells cannot be 

extended onto GAD65LH neurons, it raises the question of what is the behavioural 

impact of GAD65LH neuron activity? How similar or different might the phenotype of 

GAD65LH neuron activation be from the robust feeding seen with VGATLH 

stimulation? 

 

We hypothesized that GAD65LH cells may be a source of natural LH signals 

underlying normal levels of physical activity. Furthermore, considering that GAD65LH 

neurons receive strong excitatory inputs from energy expenditure-promoting orexin 

neurons, but at the same time can inhibit energy conserving neurons like MCH and 

NPY, it is intriguing to suggest that GAD65LH neuron activity might also be able to 

have an effect on either body weight or food intake. To answer these questions, we 

used a chemogenetic DREADD approach as this silencer and activator bears the 

advantage of being suitable for long term manipulation over several days without the 

need of restricting or tethering the mice and interfering with their natural behaviour. 

A Cre-dependent virus rendered the targeted neurons active to a physiological 

otherwise inert compound clozapine n-oxide (CNO), whilst mice were single housed 

in custom made cages that allowed to measure body weight and food and water 

intake daily.  

   

5.2 Chemogenetic increase of GAD65LH neuron activity can 

produce weight loss without affecting food intake 

To selectively activate GAD65LH neurons in vivo we targeted them with a Cre-

dependent hM3Dq-mCherry virus. hM3Dq is a human muscarinic derived GPCR that 

is selectively activated by clozapine-n-oxide (CNO) (Roth 2016) and allows reliable 

long term manipulations (Krashes et al. 2011). An example section of the LH (Figure 

5.1A) shows that the injected virus is exclusively expressed in the LH and when cells 
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expressing hM3Dq-mCherry were patched in alive slices, they were reliably and 

reversibly activated by bath applications of CNO (Figure 5.1B). The action potential 

firing of GAD65LH-hM3Dq-mCherry neurons increased significantly when exposed to 

CNO in the bath (Figure 5.1C) showing that DREADDs are a reliable tool to activate 

GAD65 neurons in the LH.  

 

Figure 5.1: Targeting scheme and in vitro control of GAD65-hM3Dq (aDREADD) 

(A) Left, targeting scheme for hM4Di-mCherry. Centre, localization of hM4Di-
mCherry. (A) Right, GAD65LH-hM4Di-mCherry cells at high zoom (representative 
example of five brains). (B) Effect of CNO on GAD65LH-hM3Dqcell firing. Spikes 
are truncated at 0 mV (representative example of n = 5 cells). (C) Group data, raw 
values, and means (red) of cell firing of 5 GAD65LH-hM3Dq neurons during saline 
and CNO bath application; the on-plot P value is from a one-tailed, ratio-paired t 
test (t, df = 3.251, 4) (n = 5 cells). APs, action potentials. 
 

As it was intended to use CNO in vivo, administered orally via drinking water, it had 

to be ensured that there are no off-target effects of CNO for the behaviour we wanted 

to measure. CNO itself should be biologically inert but recent studies have shown 

that it can be metabolised to clozapine which not only has a proven effect as anti-

psychotic drug (Baldessarini and Frankenburg 1991), but it also seems to be highly 

potent for DREADD receptors and the actual mechanism of action of CNO 
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(MacLaren et al. 2016; Gomez et al. 2017). In order to ensure that CNO 

administration had no effect on food intake and body weight, we used control mice 

of the same GAD65-Ires-Cre strain injected with a Cre-dependent ChR2 virus and 

measured food intake and body weight manually in custom made metabolic cages. 

Control mice underwent the same procedure as experimental mice did. They were 

given at least one week to adjust to the metabolic cages and handling involved in 

daily weighting. Once mice showed stable measurements, the baseline or pre-CNO 

phase of days 5 began, which was followed by 5 days of CNO and 5 days post-CNO 

as a washout. CNO (58.3 µM) was given in drinking water that was slightly 

sweetened with the non-calorific sweetener sucralose to mask the slightly bitter taste 

of CNO.  

 

Food and body weight of control mice given CNO did not show any significant 

alterations when compared to measurements of baseline days before CNO 

administration (Figure 5.2). Therefore, it is safe to use CNO as a chemogenetic drug 

to activate GAD65LH neurons in order to investigate feeding and body weight. 



Chapter 5. What is the behavioural impact of GAD65LH neuron activity?  

96 

 

 

Figure 5.2: Control experiments for chemogenetic manipulations 

(A, B) Control experiments with LH GAD65 cells expressing ChR2 instead of 
hM3Dq (n = 5 mice). (A) Left, normalised body weight measurements during a 5 
day long pre, CNO and post phase. Right, difference in body weight between CNO 
and pre measurements: p = 0.14 (ns) two-tailed one sample t test t,df= -1.81,4. (B) 
Left, normalised food intake during a 5 day long pre, CNO and post phase. Right, 
difference in body weight between CNO and pre measurements: p= 0.36 (ns), two-
tailed one sample t test, t,df= -1.022,4. 
 
Experimental mice followed the same procedure as control mice. Surprisingly, 

experimental mice started losing body weight once administration of CNO began 

(Figure 5.3A). Weight loss at the end of the 5 day period of CNO administration was 

around ≈ 5%, which is comparable to the effect seen by activation of the most 

potently anorexigenic hypothalamic cells known, the POMC neurons (Zhan et al. 

2013). 

 

Food intake, however, was unchanged showing no significant increase or decrease 

in the measurements during the CNO period (Figure 5.3B). This was an unexpected 

finding in two regards. Firstly, VGATLH neurons, which are partially overlapping with 
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GAD65LH neurons, were shown to have a very prominent feeding-promoting effect 

(Jennings et al. 2015; Navarro et al. 2016), whilst GAD65LH neuron activity does not 

seem to have any effect on feeding. Secondly, if mice are losing body weight, that 

means their energy expenditure is higher than their intake and if intake is unchanged, 

there must be an GAD65LH neuron-dependent effect that increases energy 

expenditure.  

 
Figure 5.3: Effects of GAD65LH cell stimulation on eating and body weight. 

(A) Effect of CNO on body weight of GAD2LH-hM3Dq mice. Raw data (right, 
means±SEM. of 5 mice) and % change relative to baseline (left, values and 
means±SEM. of CNO days 8-10). *P = 0.0166, two-tailed one sample t-test, t, df = -
3.96, 4, n = 5 mice. (B) Effect of CNO on food intake of GAD2LH-hM3Dq mice. Raw 
data (right, means±SEM. of 5 mice) and % change relative to baseline (left, values 
and means±SEM. of CNO days 8-10). ns, P = 0.143, two-tailed one sample t-test, 
t,df = -01.816, 4, n = 5 mice.  
 
Even though we recorded a robust change in body weight, we wanted to ensure that 

by administrating CNO orally with a different bioavailability compared to i.p. 

administration, we would get a similar result to that of injecting CNO i.p. 

Consequently, we injected twice daily a standard dose of CNO (0.5mg/kg body 

weight) and measured food intake and body weight as previously in the same 
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animals. The effect of i.p. administration of CNO on body weight and feeding 

behaviour is very similar to the previous oral administration (Figure 5.4). As the effect 

size of CNO administration is similar in oral and i.p treated mice, it is safe to use the 

oral administration of CNO. Oral administration also has the added benefit of 

reducing pain and stress in mice and leads to more consistent metabolic 

measurements. One can see an increased variance in the day-to-day single mouse 

measurement with i.p. injections (Figure 5.4), even though mice had training saline 

injections during their 5 days of baseline measurements to adjust to the procedure.  

 
 

 
 
Figure 5.4: Effect of i.p. CNO injections on feeding behaviour of GAD65-hM3Dq 

mice 

Left, body weight effect of 50 mg/g daily CNO i.p. injection on 5 mice with hM3Dq in 
LH GAD65 neurons. Individual faint lines are individual mice; thick blue line is the 
mean. One-way repeated measures ANOVA F (14, 56) = 5.696, P < 0.0001; Holm-
Sidak's multiple comparison for specific days: p values indicated on the graph. 
Right, eating effect of 50 mg/g daily CNO i.p. injection on 5 mice with hM3Dq in LH 
GAD65 neurons. Individual faint lines are individual mice; thick blue line is their 
mean. One-way repeated measures ANOVA F (14, 56) =1.615, P = 0.1034 (not 
significant, ns). 
 

5.3 Chemogenetic inhibition of GAD65LH neuron activity leads 

to a decrease in food intake without changes to body 

weight 

Whilst chemogenetic activation of GAD65LH neurons proves their neuronal activity to 

be sufficient to cause an increase in energy expenditure leading to weight loss, it is 

not proven that GAD65LH neuron activity is also necessary for a normal body weight. 
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To investigate this, inhibitory chemogenetic DREADD with a human muscarinic 

derived Gi coupled receptor hM4Di was used. 

 

In vitro controls showed that LH targeted virus injections, as for the Gq version, are 

restricted to GAD65 neurons in the LH (Figure 5.5A). Patch-clamp recordings and 

bath application of CNO confirmed that CNO can reliably and reversibly inhibit 

GAD65LH neuron activity significantly (Figure 5.3B,C). 

 

 

Figure 5.5: Targeting scheme and in vitro control of GAD65-hM4Di (iDREADD) 

(A) Left, targeting scheme for hM4Di-mCherry. Middle, localization of hM4Di-
mCherry.Right, GAD65LH-hM4Di-mCherry cells at high zoom (representative 
example of five brains). (B) Effect of CNO on GAD65LH-hM4Di cell firing. Spikes are 
truncated at 0 mV (representative example of n = 5 cells). (C) Group data, raw 
values, and means (red); on-plot P value is from a one-tailed ratio-paired t test (t, df 
= 8.043, 4; n = 5 cells). Action potentials (APs). 
 
As a further control we used C57/Bl6 mice injected with the same Cre-dependent 

hM4Di virus in this experiment to control for any off-target effects that the virus itself 

might have. Control mice went through the same experimental procedure as 

previously described and their food intake and body weight showed no significant 

changes when CNO was administered in the drinking water (Figure 5.6). Therefore, 
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it can be said that the hM4Di virus does not have any unspecific effects that are not 

Cre-dependent and would interfere in a CNO dependent manner with feeding and 

body weight. 

 

 

Figure 5.6: C57/Bl6 control experiments for chemogenetic manipulations 

(A,B) Control experiments for in vivo use of CNO, with C57/Bl6 mice injected with a  
hM4Di virus (n = 5 mice). (A) Left, normalised body weight measurements during a 
5 day long pre, CNO and post phase. Right, difference in body weight between 
CNO and pre measurements: ns = P>0.05 by two-tailed one sample t-test against 0 
and (B) Left, normalised food intake during a 5 day long pre, CNO and post phase. 
Right, difference in body weight between CNO and pre measurements one-tailed 
one sample t tests against 0. 
 

Assuming that hM4Di would result in a mirrored effect of weight loss induced by 

hM3Dq in GAD65LH, then a weight gain without change in feeding would be expected. 

However, GAD65-Ires-Cre mice that were in injected with a Cre-dependent hM4Di 

virus and underwent metabolic measurements at the same time as control mice in 

Figure 5.6, showed a different phenotype. Inhibition of GAD65LH neurons resulted in 

no significant change in body weight but a decrease in feeding of nearly 10% (Figure 

5.7). This phenotype is different from the expected weight loss but still shows energy 
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conservatism. Energy intake is lowered without changes in body weight, thus 

suggesting a lowered net energy expenditure through ways such as physical 

locomotion, body temperature or metabolic rate (Novak and Levine 2007; Abreu-

Vieira et al. 2015; Moruppa 1990).  

 

An explanation for this result of unchanged body weight might be that the effect of 

GAD65LH neuron inhibition on body weight was too small with normal chow to show 

any significant difference in 5 days. High-fat diet which is often used in studies 

investigating differences in metabolism and food intake (Jennings et al. 2015) might 

have exaggerated any potential effect on body weight to a more significant level.  

 

One interpretation of these results might be that changes in body weight are 

secondary and compensatory effects due to primary effects elicited by GAD65LH 

neuron manipulations on energy expenditure in form of locomotion. In the case of 

aDREADD, GAD65LH neuron activity can suppress compensatory feeding which 

would counteract an increase in energy expenditure (Woods et al. 2000; MacLaren 

et al. 2016). Whereas, inhibiting GAD65LH neurons leads to a decrease in energy 

expenditure, but this is met by a compensatory decrease in feeding keeping body 

weight stable and unchanged (Figure 5.7). 
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Figure 5.7: Effects of GAD65LH cell inhibition on eating and body weight. 

(A) effect of CNO on body weight of LH GAD65-hM4Di mice. Raw data (right, 
means±SEM. of 5 mice) and % change (left, values and means±SEM. of CNO 
days 8-10 relative to baseline days 1-5). ns, P = 0.942, two-tailed one sample t-
test, t,df = 0.0771, 4, n = 5 mice.(B) effect of CNO on food intake. Raw data (right, 
means±s.e.m. of 5 mice) and % change (left, calculated as in A). *P = 0.0208, one-
tailed one sample t-test, t, df = -2.958, 4, n = 5 mice. 
 

As a last contro, to ensure that the administration of CNO in drinking water did not 

lead to higher or lower water intake and therefore to an unequal CNO intake between 

control and DREADD mice or a change in body weight due to altered water 

consumption, water intake was measured in experimental and control mice. The 

water intake of inhibitory and excitatory DREADD mice when compared to controls 

during the CNO phase did not show any significant differences (Figure 5.8), and 

therefore, it is safe to say that water intake was not altered by the modulation of 

GAD65LH neuron activity and cannot account for changes in feeding or body weight. 
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Figure 5.8: Effect of CNO on water intake in GAD65 hM4Di and hM3Dq mice and 

controls 

(A) Left, water consumed by mice from previous figures, values are means+/-SEM. 
Right, CNO water consumed during the 5 days (n = 5 samples per group, each 
sample is average intake per mouse per day during the 5 days of CNO, error bars 
are SEM.), ns = P = 0.7402 by unpaired two-tailed t-test, t=0.3434 df=8. (B). Left, 
water consumed by mice from previous figures, values are means+/-SEM. Right, 
CNO water consumed during the 5 days (n = 5 samples per group, each sample is 
average intake per mouse per day during the 5 days of CNO, error bars are SEM), 
ns = P = 0.9852 by unpaired two-tailed t-test, t=0.01908, df=8. 
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5.4 GAD65LH neuron activity is essential and sufficient for 

normal locomotor activity  

There are several mechanisms through which energy expenditure can be increased. 

Besides temperature regulation and metabolic rate, locomotor activity can be one of 

the factors leading to increased energy expenditure (Mayer et al. 1954). The aim of 

this subchapter is to investigate possible changes in locomotor activity evoked by 

GAD65LH neuron activity, as mice during their period of CNO administration, to 

activate GAD65LH neurons, looked physically more agitated than usual. In order to 

measure locomotor activity without any confounding factors of anxiety or novelty, the 

amount mice moved was measured in their open home cages after an acute i.p. 

injection of CNO. Mice expressing a Cre-dependent hM4Di virus in their LH robustly 

and significantly decreased the amount they moved by around 50% compared to 

their levels of physical activity when injected with saline only (Figure 5.9A). No such 

effect was seen in control GAD65LH-ChR2 mice that were tested at the same time, 

with a CNO-induced change in locomotion of 4.6 ± 8.2% (n = 5, P = 0.6016 by one-

sample t test: t, df = 0.0566, 4). Furthermore, mice that expressed the activating 

hM3Dq in their GAD65LH neurons showed an even greater significant effect of more 

than 150% locomotion after a single acute i.p. dose of CNO, compared to their 

behaviour after saline (Figure 5.9B). Control mice, the same that were used in Figure 

5.2 and Figure 5.6, underwent the same experimental procedure as experimental 

mice at the same time and showed no significant changes in their locomotor activity 

in response to CNO administration (49 ± 48.7%, n = 5, P = 0.3684 by one-sample t 

test; t, df = 1.013, 4). Thus, GAD65LH activity can modulate locomotor activity in a 

necessary and sufficient manner to up or down regulate locomotor activity depending 

on neuronal activity levels. 
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Figure 5.9: Effect of chemogenetic activation and inhibition of GAD65LH neurons 

on locomotor activity 

(A) Effect of CNO on locomotion of GAD65LH-hM4Di mice. Raw data and means 
are shown in red (Left), and the same data are shown as % change (Right). On-plot 
P values are from a one-tailed paired t test (t, df = 2.767, 4; Left) and from a two-
tailed one-sample t test (t, df = 3.001, 4; Right) (n = 5 mice). Corresponding 
negative control data are described in Results. (B) Effect of CNO on locomotion of 
GAD65LH-hM3Dq mice. Raw data and means are shown in red (Left), and the 
same data are shown as % change (Right). On-plot P values are from a one-tailed 
paired t test (t, df = 2.638, 4; Left) and from a two-tailed one-sample t test (t, df = 
10.31, 4; Right) (n = 5 mice). Corresponding negative control data are described in 
Results. 
 
Considering that orexin neurons were found in vitro to be a strong excitatory input to 

GAD65LH neurons and that orexin A has been shown to promote physical activity in 

rats (Kotz et al. 2006), a local orexin to GAD65LH neuron connectivity may be 

underlying the locomotor effects observed after DREADD manipulations of GAD65LH 

neurons. To answer the question of whether GAD65LH neurons are essential for 
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orexin induced changes in locomotion, or if both neuronal populations have separate 

independent mechanisms of affecting activity levels, we used the established orexin 

receptor blocker SB-334867, alone or in combination with the chemogenetic inhibitor 

hM4Di in GAD65LH neurons (Figure 5.10). As expected, separate i.p. injections of 

SB or CNO decreased locomotor activity significantly, with CNO having a slightly 

greater effect. However, combining CNO with the orexin receptor blockade did not 

add a significant effect, suggesting a shared mechanism of orexin and GAD65LH 

neuron induced changes in locomotion. 

 

  

Figure 5.10: Effects of orexin receptor inhibition combined with chemogenetic 

inhibition of LH GAD65 neurons 

Effects of SB-334867 (30 mg/kg i.p.; Materials and Methods) on locomotion of 
GAD65LH-hM4Di mice in the absence and presence of CNO. Repeated measures 
one-way ANOVA with Geisser–Greenhouse correction [F(1.977,11.86) = 16.15; P = 
0.0004, on-plot values are P values from Tukey’s multiple comparison tests]. 
 
 

5.5 Discussion 

Despite the long-recognized importance of the LH for maintaining normal physical 

activity in mammals (Hara et al. 2001), the functional relations of molecularly distinct 

LH subnetworks remained poorly understood. Here, a new hypothalamic circuit 

involved in the control of physical activity has been elucidated, that can regulate 

locomotion in a bidirectional manner.  
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Summarising, it is safe to say that GAD65LH neurons can regulate locomotor activity 

in a necessary and sufficient manner. Interestingly, physical activity and arousal 

driven by orexin neurons and orexin peptides was previously thought to be mediated 

mainly by projections outside the hypothalamus to areas like the locus coeruleus 

(Kotz et al. 2006; Hagan et al. 1999). However, our results point to local GAD65LH 

neurons as physiological downstream regulators of orexin neurons for the control of 

locomotor activity, and thus defining new key players in intra-LH information 

processing.  

 

In a wider context, this orexin to GAD65LH connectivity still leaves some questions 

open. Even though GAD65LH neuron activity does not seem to promote feeding and 

therefore one might assume that GAD65LH neuron activity-evoked physical activity is 

not related to food seeking or foraging behaviour, it is unclear what the motivation, if 

there is any, behind this type of activity is. We note that in some contexts, it may be 

evolutionarily advantageous to develop a locomotion drive not directed toward a 

specific goal (e.g., food), but toward a more general goal (e.g., change of place, 

physical escape). It is thus tempting to speculate that the orexin-activated GAD65LH 

cells may provide such a general locomotion drive that serves, for example, to move 

the animal away from stresses that activate orexin neurons (Mileykovskiy et al. 2005; 

Williams et al. 2007; González et al. 2016). 

 

These speculations about a potential purpose behind GAD65LH neuron seem in stark 

comparison to VGATLH  mediated activity, which drives directly the motivation to work 

for food (progressive ratio task) (Jennings et al. 2015) and to eat even non-calorific 

objects (Navarro et al. 2016). The differential impact on behaviour of VGATLH and 

GAD65LH neurons is also reflected in the CRACM results showing that VGATLH 

neurons can inhibit GAD65LH neurons, and therefore a feeding and foraging 

behavioural drive mediated by VGATLH neurons can potentially inhibit different drives 

elicited by GAD65LH neurons. 

 

The effects of GAD65LH neuron activity on feeding and bodyweight are less 

straightforward to interpret as the inhibitory and activating DREADDs did not produce 

exactly opposite phenotypes. Nevertheless, in respect of energy budgeting there 

seem to be opposing effects. Chemogentic activation of GAD65LH neurons led to an 



Chapter 5. What is the behavioural impact of GAD65LH neuron activity?  

108 

 

increased energy expenditure without changes in feeding resulting in weight loss, 

which is so far surprising as body weight is usually tightly regulated and controlled to 

keep an optimal set-point by either increasing or decreasing feeding with changing 

energy demands (Woods et al. 2000; Mayer et al. 1954). However, as this approach 

uses a hyper-activation of GAD65LH neurons, caution is required when extrapolating 

the physiological role of GAD65 neurons to a more physiological activity level. When 

using inhibitory DREADDs, this approach reveals what the effect of a lack of 

physiological neural activity is and might give a better indication of the natural role of 

GAD65LH neurons. Therefore, the observation that with iDREADD inhibition, there is 

no change in body weight but a compensatory decrease in feeding to account for a 

decrease in energy expenditure, partly through locomotor activity effects, might hint 

to GAD65LH neurons having a primary effect on energy expenditure only, and that 

changes in feeding are secondary to keep a set point in energy balance and body 

weight (Keesey and Hirvonen 1997; Reddingius 1980; Mrosovsky and Powley 1977). 

 

Approaches of neuronal activity manipulations always raise the general question of 

neural activity being sufficient or necessary for certain behaviours. Maybe GAD65LH 

cell activity is sufficient to drive weight loss by prioritising locomotor activity as this 

activity might be more vital than keeping to a strict body weight set point (Lima and 

Dill 1990). An example for such a situation might be during predator attacks or other 

acute stressors that require the mouse to move away from the source of danger or 

stress, to be in a safer, richer or otherwise favourable place and situation (Calvo–

Torrent et al.1999; Pothion et al. 2004). This interpretation would also be in line with 

GAD65LH neurons being a downstream mediator of stress-activated orexin neurons. 

That GAD65LH cell activity is only necessary for locomotor activity, but not for normal 

body weight, would make sense in a situation of low danger and no need for flight 

responses with low or inhibited GAD65LH neuron activity, where instead of focusing 

only on eating beyond need as a behaviour, it is more vital for the animal to focus on 

other behaviours like investigation of novelty (Leyland et al. 1976; Jacinto et al. 2013) 

or mating (Uphouse et al. 2005). 

 

One last point to note is that there are different ways of increasing energy 

expenditure with locomotor activity being one of them. Much research has been done 

on different types of temperature control from browning of adipose tissue to changes 
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in body temperature, metabolic rate changes and different types of locomotor activity 

(exercise vs spontaneous) (Klaus 2004; Saltzman et al.1995; Donahoo et al. 2004). 

However, in the end one might wonder how independent these mechanisms are or 

if they are causally intertwined. Evidence for this comes from studies showing that 

even spontaneous activity causes thermogenesis which plays a role in obesity 

resistance (Kotz et al. 2008; Novak and Levine 2007), additionally, this so called non-

exercise activity thermogenesis (NEAT) can also play an essential role in general 

thermoregulation (Girardier et al. 1995). Furthermore, physical activity has been 

shown to also have an effect on resting metabolic rate (Speakman and Selman 

2003). Thus, different mechanism of energy expenditure might be interlinked and 

dependent on each other. 

 

We only measured locomotor activity without distinguishing between exercise (for 

example wheel running) or spontaneous activity (grooming, swaying from side to 

side), which could be a further interesting experiment, but to fully understand the 

effect of GAD65LH neuron activity on metabolism more extensive metabolic 

measurements including indirect calorimetry and temperature measurements would 

be necessary. However, a more interesting open question might also be what the 

purpose of GAD65LH neuron-driven physical activity is. One might wonder if this 

GAD65LH neuron-driven activity is pleasant and carries a positive valence or if it is 

aversive. Moreover, it is still unknown if GAD65LH neuron-driven activity is directed 

at a specific aim, such as escape, or is rather a displacement activity as seen with 

Agrp neuron stimulation when no food is available (Dietrich et al. 2015). 
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Chapter 6. General discussion 

6.1 Potential caveats of using transgenic mouse lines as 

neuronal markers 

There are two common methods of generating transgenic mouse lines that express 

cre recombinase or a fluorophore under the promoter of a protein such as MCH, 

GAD65 or orexin. The first relies upon an artificial chromosome, usually a bacterial 

artificial chromosome (BAC), containing cDNA of the protein specific promoter (cis-

regulatory elements) and cre-recombinase/fluorophore, which is injected into the 

pronucleus of a mouse. This leads to random insertion of the transgene into the host 

genome with one or multiple copies of the BAC being inserted. Tissue and time 

specific expression of the transgene is achieved by taking advantage of the large 

size of the BAC and including cis-regulatory elements which contain binding sites for 

transcription factors (Heintz 2001). However, random insertion of BAC can have 

multiple caveats. It can alter the gene into which it is inserted and consequently have 

a deleterious effect on other genes than the transgene itself (insertional 

mutagenesis). In addition, the expression of the transgene might be affected by the 

level of expression of the region it is inserted into (the ‘position’ effect). Furthermore, 

if multiple BAC copies are inserted, their expression will also be higher and might 

lead to a surge depressing the expression of other genes (Chandler et al. 2007).   

 

The second approach of targeted transgenesis or knocking-in genes uses 

homologues recombination in embryonic stem cells which are implanted into the 

mouse blastocyst. This approach ensures that the transgene is inserted into a 

determined genomic locus and not randomly. The transgene is then expressed under 

its own promoter and thus avoids any unwanted effects due to random insertion. 

However, the knocking-in of the transgene results in an insertional deletion affecting 

the transcription of the endogenous gene controlled by the used promoter (Matthaei 

2007). In order to avoid this deletion an internal ribosome entry site (IRES) can be 

included in the DNA construct. An IRES sequence before the transgene results in a 

bicistronic transcription of both genes which are then expressed as separate proteins. 
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Both approaches of BAC transgenesis and knock-in produce several founder lines 

with different expression patterns of the transgene. Usually these founder lines are 

compared to the natural expression pattern of the endogenous gene to ensure 

minimal ectopic expression. Ectopic expression can occur with both methods due to 

transient developmental expression (Gong et al. 2007) but is more common in BAC 

transgenic mouse lines. One study using BAC generated mice reported 24 founder 

lines with different expression patterns, illustrating the effect of random insertion of 

the BAC transgene (Feng et al. 2000) and how one founder line rarely represents 

the natural expression pattern. 

 

The main mouse lines used in this thesis, such as GAD65-cre, VGAT-cre, were 

IRES-cre knock-in mice and thus most of the mentioned caveats should be limited. 

Nevertheless, the use of the BAC transgenic lines such as NPY-hrGFP, GAD65-

GFP, Orexin-GFP, Orexin-cre and MCH-cre should be used with the awareness of 

possible caveats as described and monitored for ectopic expression. 

 

Considering these caveats, cre-expression and genetic fluorescent markers can be 

misleading and are not always equal to the expression of the marker gene. 

Therefore, histochemistry was used to confirm that cre-expression is restricted to 

their marker neurons for the mouse lines used. However, histochemistry can bare its 

own caveats and single cell RNA analysis would have been a more precise way to 

investigate cell overlap and expression and in situ hybridisation would have been a 

better validation for the mouse lines used. 

 

6.2 Possible roles and mechanism of oscillations in the LH  

The combination of the knowledge that gamma oscillations in the LH correlate and 

cause food approach behaviour (Carus-Cadavieco et al. 2017) with our finding of in 

vitro firing responses to injections of oscillatory input currents of different genetically 

identifiable LH neuron populations (see chapter 3.2), makes it intriguing to speculate 

about their function and mechanism. High frequency oscillations, including gamma, 

could work as an activity switch of cell assemblies, excluding orexin neuron activity. 

Taking into account that high frequencies such as gamma are associated with food 
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approach, and that orexin neuron activity is associated with stress and flight 

responses, such a cell assembly switch would make physiological sense. Specifically, 

during actions or in environment associated with feeding, it would be sensible if mice 

would be in a state that allows them to approach, eat and make associations about 

the food rather than being in a state of flight with a stress drive counteracting all these 

processes (Song et al. 2006; Calvez et al. 2011). 

 

In order to understand how oscillations are generated, one must consider that there 

are two basic sources of oscillations: intrinsic (dynamic circuit motifs hypothesis, 

Womelsdorf et al. 2014) and external entrainment (Berke et al. 2004). Intrinsic 

oscillations are perpetuated by specific circuit motifs of intrinsically active neurons. 

Cortical neurons that show gamma oscillations are often organised in pyramidal 

interneuron network gamma (PING) or interneuron network gamma (ING) motifs 

(Tiesinga and Sejnowski 2009). Whilst PING motifs depend on reciprocally 

connected networks of excitatory and inhibitory neurons (activation of the excitatory 

neurons drives both excitatory and inhibitory activity and inhibitory activity dampens 

excitatory activity after some delay), ING motifs rely solely on recurrent inhibition 

coupling with mutual inhibition. If such a motif or similar arrangement would account 

for oscillations generated in the LH, one would expect some kind of reciprocal 

connectivity between the neurons involved. Oscillations coming from external 

neuronal inputs that entrain their targets only rely on direct feed forward connectivity 

from a brain region with coherent network oscillations (Sirota et al. 2008; Lakatos et 

al. 2008). 

So far, LH neurons have not shown any local reciprocal connections even though 

many of them are intrinsically active. Accordingly, there is no evidence so far for an 

intrinsic source of gamma oscillations in the LH. However, the LH receives inputs 

from the septum which have been shown to inhibit feeding (Sweeney and Yang 

2016) and moreover have been shown to be able to impose and entrain oscillations 

onto their projection neurons in the LH (when optogenetically stimulated) (Carus-

Cadavieco et al. 2017). Thus, it seems likely that oscillations in the LH are entrained 

by feed-forward inputs from sources such as the septum and that the LH circuitry 

does not have any connectivity motifs that would allow them to perpetuate any 

oscillations without external entrainment. 
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6.3 Is the LH microcircuitry connecting opposing drives? 

It has been a long-standing question how opposing drives, originating from the LH, 

are anatomically organised, and if there is a way of mutual inhibition between drives. 

MCH neurons as energy-conserving neurons drive a nearly opposing phenotype to 

the orexin neuron-driven energy expenditure. Nevertheless, some in vitro studies 

suggest that MCH neurons can be excited by orexin application (van den Pol et al. 

2004), a finding that does not make initial sense, considering the opposing drives 

which MCH and orexin neurons represent. Since then orexin bath applications in 

vitro combined with calcium imaging of MCH neurons has shown that only a minority 

of MCH neurons was excited by orexin (Apergis-Schoute et al. 2015). The more 

physiological approach of optogenetically stimulating orexin neurons led to an 

increase of indirect inhibition of MCH neurons (see also section 1.5.2). The 

presented CRACM data (see Chapter 4) provides a unidirectional way of how orexin 

neuron activity can inhibit MCH neurons via local GAD65 neurons and thereby can 

exclude activation of an opposing drive at the same time.  

 

With respect to the changes in locomotion caused by GAD65LH neuron activity, 

GAD65 neurons seem to mediate the orexin neuron-driven increase in locomotion 

(Figure 6.1) as was shown in Kosse et al. 2017. Yet, it is still an open question if 

orexin neuron activity, that is often caused by stressful stimuli, recruits GAD65LH 

neurons to inhibit MCH neurons and through this projection achieves an increase in 

locomotion, or if other projections targets (than GAD65→MCH neurons) are involved. 

Recent studies, showing that MCH neuron activity leads to a decrease in locomotion 

(Hausen et al. 2016), provide some support for this idea but causal proof that an 

orexin neuron→ GAD65LH neuron → MCH neuro connectivity is necessary for orexin 

neuron-driven locomotion is still missing. 
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Figure 6.1: Schematic overview of the orexin neuron to GAD65LH neuron 

connection and its function 

Immobilisation stress is symbolised by a hand but stands for various stressors. 
Mouse depicted running represents a higher locomotor activity, whilst mouse with 
ice cream represents eating. 
 

Besides the two classical LH cell populations of MCH and orexin neurons, VGAT 

neuron are also connected to GAD65 neurons in the LH by sending inhibitory 

projections to GAD65 neurons. It is intriguing to speculate about the behavioural role 

of this connection, considering that VGATLH neurons seem to represent a hunger 

motivator causing appetitive behaviour (Jennings et al. 2015). If the underlying 

neuronal activity of this appetitive behaviour might inhibit GAD65LH neurons which 

drive locomotion, this would imply that GAD65LH neuron-driven locomotion is not 

feeding-related and maybe even opposite in intent and drive. 

 

6.4 Are GAD65LH neurons responsible for LH lesion 

phenotypes? 

Inhibition, via chemogenetic DREADDs, of GAD65LH neurons leads to a decrease in 

locomotion (Figure 5.9), which was one of the hallmark impairments observed with 

electrolytic lesions in the LH (Levitt and Teitelbaum 1975). This suggests that 

GAD65LH cell activity is essential for normal locomotion and the LH drive of 

movement. Yet, the locomotor impairments seen with GAD65LH silencing seem 



Chapter 6. General discussion  

115 

 

milder than what was described in the LH lesion studies (and is depictured in Figure 

1.2). This implies that another additional locomotor drive might exist in the LH.  

 

With respect to the decrease in feeding observed with GAD65LH silencing, this effect 

is also in line with the anorexia caused by impairments of LH lesion animals, but it is 

not clear if the decrease in feeding in GAD65LH neuron-silenced mice might not be 

due to a secondary compensatory effect to achieve a stabile bodyweight. 

Considering that rats with electrolytic LH lesions decrease feeding and lose weight 

(therefore showing a negative energy imbalance), GAD65LH neuron silencing does 

not produce an imbalance in energy (feeding is decreased but body weight is 

unchanged). Accordingly, GAD65LH neuron activity does not seem to be essential for 

a stable body weight and energy balance. Overall, GAD65LH neuron silencing might 

be able to account for some of the impairments (especially the locomotor ones) seen 

with electrolytic lesions in the LH, but it is far from explaining all of them. Concluding 

that probably several LH neuron classes are needed for the complex control of 

energy balance with appropriate locomotion and feeding. Nevertheless, an 

alternative explanation could also be that virus injections for DREADDs were not 

sufficient to transfect all GAD65LH neurons and that some GAD65LH neurons were 

not silenced. 

 

6.5 Measuring the purpose and intent of locomotion 

Understanding the nature and intent of changes in locomotion of mice will always be 

challenging, as we can only see changes in parameters we measure and are thereby 

already excluding many other possible parameters.  

 

Real-time place preference tests can give an indication if neuronal activation or 

inhibition has a rewarding or repulsing effect, and open field tests can give further 

information about anxiety levels and exploration. However, tests using locomotion as 

a measurement of an emotional or cognitive state can be at risk of simply measuring 

changes in locomotor output without any relation to anxiety or arousal levels. How 

can one, with certainty, differentiate the effect of increased pure undirected 

locomotion from changes in locomotion caused by anxiety or any other motivation 
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(Archer 1973)?  Locomotor activity is also affected by a variety of external stimuli 

including novelty, stress and anxiety (Cabib et al. 1988; Hooks and Kalivas 1995). 

Different stressors can have an influence on the behaviour of mice that obstructs an 

effect that might be displayed in a familiar environment (Tuli et al. 1995; Strekalova 

et al. 2005). In addition to this, it seems that fearful behaviour is not simply equal to 

decreased locomotion. Experiments with different predator-simulating dark disks 

above mice found that a looming disk imitating the approach of a predator elicited a 

fleeing response in mice, whilst a small moving disk imitating the sweeping of a 

predator evoked freezing in mice (De Franceschi et al. 2016). Thus, many factors 

can have effects on locomotor activity, but there is no uniform fear behaviour as 

different stressors can elicit different responses. Recent studies seem to have 

struggled with problems classifying the exact intent and purpose of changes in 

locomotor activity during different behavioural tasks and tried to introduce 

descriptions like ‘general activity’ (Nieh et al. 2016) to carefully avoid this problem.  

 

It seems more straightforward to describe behaviour once one identified its 

motivation. This seems especially clear cut in the case of feeding. If a mouse is more 

willing to work, usually by nose poking or lever pressing, for food this is interpreted 

as appetitive behaviour, which is dissociated from consummatory behaviour  namely 

feeding (Jennings et al. 2015). However, often mice would consume any object 

independent of its calorific value, as it is the case of VGATLH neuron activation 

(Navarro et al. 2016), which leads to the question if it is still valid to talk about a 

hunger motivator. Another interesting aspect of hunger motivation is what behaviour 

is displayed if there is no immediate access to food. Agrp neuron activation has been 

deemed as the ultimate hunger drive in the brain (Aponte et al. 2011; Betley et al. 

2015), but if these neurons are activated and there is no access to food, mice display 

stereotypical behaviours and a decrease in anxiety (Dietrich et al. 2015). This might 

indicate that Agrp neuron-driven activity is not only hunger motivated, but maybe has 

a more general function such as to engage more with the environment and to explore 

which might result in obsessive-complusive behaviour once Agrp neuron activity 

surpasses physiological levels. Alternatively, hunger might only recruit a subset of 

Agrp neurons and consummatory behaviour driven by these neurons represents only 

one of many behavioural drives that are controlled by Agrp neurons.  
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Another important point, that can be illustrated with Agrp neuron-driven hunger, is 

necessity and sufficiency of cell-type-specific neuronal activity for the investigated 

behaviour. Often only sufficiency is investigated because of technical or time 

restraints. An example of this is chemogenetic or optogenetic activation of Agrp 

neurons, where activation leads to voracious eating behaviour independent of the 

hunger state (Aponte et al. 2011; Krashes et al. 2011). Yet, silencing of Agrp neurons 

in the arcuate fails to inhibit feeding of palatable food (Denis et al. 2015), which limits 

the functional role of Agrp neurons in the arcuate to homeostatic feeding, and would 

be an easily overlooked aspect without the proof of necessity. 

 

Therefore, it is pure speculation at this point to try to explain why mice increase their 

locomotion with activation (or decrease it upon inhibition) of GAD65LH neurons. 

GAD65LH neuron-driven increases in locomotion do not seem to be motivated by 

feeding, as food intake does not increase with activation of GAD65LH neurons. Yet, 

increased locomotion could still represent a foraging drive that is dissociated from 

the actual consumption. In addition to this, a fear response is equally possible, 

especially considering the strong excitatory input from orexin neurons which sense 

stress signals and drive a flight response.  

 

6.6 Open questions 

As already mentioned, one of the major open and challenging questions is to 

characterise the GAD65LH neuron-driven locomotion further. It would be interesting 

to extend this investigation with experiments into the behavioural role of the GAD65LH 

to MCH neuron projection. Considering that MCH neuron activity seems to drive a 

decrease in locomotion and seems to be implicated in learning and memory, it would 

be important to measure MCH and GAD65LH neuron activity (via GCaMP6s fibre 

photometry) during novel object and familiar object investigation. In addition to this, 

optogenetic activation and silencing should be used to investigate if GAD65LH and 

MCH neuron activity have a causal effect on novel object investigation and memory 

formation. 
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