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Abstract 

Background & Purpose 

Antiarrhythmic β-blockers are used in patients at risk of myocardial ischaemia, but the 

survival benefit and mechanisms are unclear. We hypothesised that β-blockers do not prevent 

ventricular fibrillation (VF), but instead inhibit the ability of catecholamines to facilitate 

ischaemia-induced VF, limiting the scope of their usefulness. 

Experimental Approach 

ECGs were analysed from ischaemic Langendorff-perfused rat hearts perfused with 

adrenoceptor antagonists and/or exogenous catecholamines (313 nM noradrenaline+75 nM 

adrenaline; CATs) in a blinded and randomised study. Ischaemic zone (IZ) size was 

deliberately made small or large. 

Key Results 

In rat hearts with large IZs, ischaemia-induced VF incidence was high in controls. Atenolol, 

butoxamine and trimazosin had no effect on VF at concentrations with β1, β2 or 1 

adrenoceptor specificity and selectivity, respectively (shown in separate rat aortae myography 

experiments). In hearts with small IZs and a low baseline incidence of ischaemia-induced VF, 

CATs, delivered to the uninvolved zone (UZ), increased ischaemia-induced VF incidence. 

This effect was not mimicked by atrial pacing, and hence not due to sinus tachycardia. 

However, the CATs-facilitated increase in ischaemia-induced VF was inhibited by atenolol 

and butoxamine (but not trimazosin), indicative of β1 and β2 but not 1 adrenoceptor 

involvement (confirmed by immunoblot analysis of downstream phosphoproteins). 

Furthermore, CATs did not facilitate VF in low-flow globally ischaemic hearts, which have 

no UZ. 

Conclusions and Implications 

Catecholamines facilitated ischaemia-induced VF when risk was low, acting via β1 and β2 

adrenoceptors located in the UZ. There was no scope for facilitation when VF risk was high 

(large IZ), which may explain why β-blockers have equivocal effectiveness in humans. 
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Abbreviations 

ACh, acetylcholine; AD, adrenaline; AP, action potential; AR, adrenoceptor; BG, bigeminy; 

CATs, catecholamine mixture (313 nM NA + 75 nM AD); CRC, concentration response 

curve; cTnI, cardiac troponin I; CVD, cardiovascular disease; ECG, electrocardiogram; HR, 

heart rate; IZ, ischaemic zone; MI, myocardial infarction; NA, noradrenaline; NO, nitric 

oxide; NOEL, no effect level; PE, phenylephrine; RyR2, ryanodine receptor type 2; SCD, 

sudden cardiac death; SNS, sympathetic nervous system; TVW, total ventricular weight; UZ, 

uninvolved zone; VF, ventricular fibrillation; VPB, ventricular premature beat; VT, 

ventricular tachycardia. 

 

Introduction 

Sudden cardiac death (SCD) contributes >60% of cardiovascular disease (CVD)-related 

deaths, with a majority of these due to ventricular fibrillation (VF) caused by acute 

myocardial ischaemia, and the search for targetable mechanisms has proven challenging 

(Adabag et al., 2010; John et al., 2012). 

During the first 30 min of ischaemia (the „phase 1‟ period), VF risk is intrinsically 

proportional to the severity of ischaemia, which is determined primarily by ischaemic zone 

(IZ) size, set by occlusion location, and by collateral flow (Curtis, 1998; Ridley et al., 1992). 

Separately, VF risk can be modulated by extrinsic factors such as heart rate (HR) and blood-

born factors (Curtis et al., 1993). The relationships between VF incidence and IZ size, and 

other independent variables, are well-characterized in the rat Langendorff preparation, 

rendering it a tractable assay system (Curtis, 1998). 

Catecholamines have long been regarded as mediators of ischaemia-induced VF with 

myocardial β1 agonism the most plausible mechanism; however there are inconsistencies in 

the published literature with regard to the relationship between the absolute levels of 

catecholamines accumulating in the ischaemic territory and the incidence of ischaemia-

induced ventricular arrhythmias (see discussion for further analysis) (Curtis et al., 1993). 

Thus, in animals, ischaemia causes catecholamine accumulation in the IZ (Lameris et al., 

2000; Schömig et al., 1984) yet the timing does not accord with the timing of VF onset 

(Curtis, 1998). Adrenoceptor (AR) antagonists inhibit ischaemia-induced VF, yet 

doses/concentrations tested often lack selectivity for their intended target AR, and effects 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=28
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=4
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(e.g. a reduction in ischaemia-induced VF incidence) are better explained by non-specific and 

even extra-cardiac, off-target effects, as suggested by others (Daugherty et al., 1986; Tölg et 

al., 1997). Some effects are model-dependent, e.g. off-target β2 antagonist actions in acutely 

prepared animals (e.g. rat) elevates circulating blood potassium concentrations resulting in 

VF suppression, an artefact that does not occur in conscious animals subjected to regional 

ischaemia when fully recovered from preparative surgery (Botting et al., 1983; Paletta et al., 

1989) or indeed in isolated hearts where, due to delivery of Krebs directly to the coronary 

vasculature and an absence of a circulation, the scope for an alteration in circulating blood 

potassium is zero. In patients with previous ventricular tachycardia (VT) or VF, and acute 

myocardial infarction (MI), plasma catecholamines can become elevated (Meredith et al., 

1991; Slavikova et al., 2007). β AR antagonists reduce mortality in such patients, but only 

moderately (Nademanee et al., 2000; β-Blocker Heart Attack Study Group, 1981), and their 

specific effects on VF remain unclear, despite decades of use (ISIS-1 Collaborative Group, 

1988; The MIAMI Trial Research Group, 1985). 

It is important to clarify whether catecholamines are important therapeutic targets for VF 

suppression or not. It may be possible to reconcile published data if it were the case that 

catecholamines facilitate phase 1 ischaemia-induced VF rather than mediate it. The corollary 

of this novel hypothesis is that the relevance of catecholamines will depend on the influence 

of other factors such as IZ size. Here we found that catecholamines acting primarily in the 

non-ischaemic uninvolved zone (UZ) facilitated ischaemia-induced VF in rat isolated hearts, 

but only when IZ was small (rendering VF risk low). The mechanism, identified using 

selective and specific AR antagonists and confirmatory immunoblotting, required dual 

agonism of β1 and β2 ARs. These data explain the likely role of catecholamines in SCD/VF 

and receptor mechanism, and the limits of achievable protection from AR antagonists. 

 

Methods 

Ethical statement 

Experiments were approved by the King‟s College London ethics review board and 

performed in accordance with the guidelines from Directive 2010/63/EU of the European 

Parliament on the protection of animals used for scientific purposes, ARRIVE (Kilkenny et 

al., 2010), the United Kingdom Home office Guide on the Operation of the Animals 

(Scientific Procedures) Act 1986, and recent guidelines on experimental design and analysis 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=29
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(Curtis et al., 2015). Animal housing and husbandry were exactly as described previously 

(Andrag & Curtis, 2013), and all test solutions and data analysis were blinded by way of 

coding. To blind the study, the operator gave a second person a book that listed the groups to 

be studied. The second person wrote a code by the name of each group (e.g. Brighton, Palace, 

ManU) and relabelled the stock bottles (identical) with the name of the experimental group. 

The operator then aliquoted the coded stocks, and the code book was kept by the second 

person until the experiment was completed and analysed. A total of 620 animals were 

randomised to groups. 

 

Animals, general experimental methods and experimental strategy 

Male Wistar rats (Harlan UK; 220-410g) were anaesthetised by intraperitoneal injection of a 

lethal dose of sodium pentobarbitone (170 mg kg
-1

) and co-administered sodium heparin (160 

IU kg
-1

) (Wilder et al., 2016). A surgical level of anaesthesia was determined by the absence 

of pedal and corneal reflexes, prior to cardiac excision and exsanguination. Hearts were 

immediately removed and arrested in ice-cold modified Krebs control solution (hereafter 

called „Krebs‟), containing NaCl 118.5 mM, CaCl2 1.4 mM, glucose 11.1 mM, NaHCO3 

25.0 mM, MgSO4 1.2 mM, NaH2PO4 1.2 mM and KCl 3 mM, then mounted on to a metal 

cannula via the aorta for Langendorff perfusion with gassed and warmed (95% O2: 5% CO2; 

pH 7.4; 37°C) Krebs. All perfusion solutions were filtered (5 μm pore size) before use and 

delivered at a constant pressure of approximately 80 mmHg (generated by the height of the 

perfusion columns). A unipolar electrocardiogram (ECG) recording was used for assessment 

of cardiac rhythm by inserting a wire electrode into the left ventricular wall at the apex of the 

heart, as described previously (Dhanjal et al., 2013), and ventricular arrhythmias (figure 1) 

were identified using the Lambeth Conventions II definitions (Curtis et al., 2013). 

To obtain coronary occlusion, a silk suture sewn under the left main coronary artery was 

threaded through a polythene tube, which was tightened and clamped using curved Spencer 

Wells forceps to induce regional ischaemia, and later loosened to achieve reperfusion 

(normally 30 min after the onset of ischaemia). To generate an IZ of specific size, a silk 

suture was placed loosely around the left main coronary artery at one of three predetermined 

set levels: distal, medial or proximal to the atrial appendage, generating a small, medium or 

large IZ, respectively (table 1) (Andrag & Curtis, 2013; Ridley et al., 1992). 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5480
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4214
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After reperfusion, the IZ was identified by perfusing hearts with disulphine blue dye (Patent 

blue VF sodium salt, Sigma Aldrich®, UK), followed by re-occlusion of the left main 

coronary artery. Hearts were then perfused with dye-free test solution in order to wash out 

any excess blue dye from the UZ. The IZ and UZ were dissected and weighed, and the IZ was 

quantified as a percentage of total ventricular weight (TVW). In hearts in which reperfusion 

was not possible because IZs and UZs were required for immunoblotting (catecholamines + 

antagonist study), the IZ was judged from the location of the occluder and downstream tissue 

discolouration, and dissected by eye, with values verified by % reduction in coronary flow 

following coronary ligation (Curtis, 1998). 

The need to generate groups of different IZ sizes is an intrinsic aspect of our experimental 

strategy and is predicated by the hypothesis that catecholamines facilitate ischaemia-induced 

VF, and this is feasible only when VF risk is low, meaning that there exists scope for the 

incidence of VF in a group of hearts to be increased. When IZ is large (table 1) it is well 

established that in a group of rat isolated hearts, the incidence of ischaemia-induced VF will 

be high, meaning the scope for facilitation of VF will be too low for facilitation to be 

pathophysiologically relevant, or indeed detectable by statistical analysis in a typical study of 

no more than n=20 hearts/group (Curtis, 1998). In addition to statistical considerations, 

evaluating possible facilitation of VF in hearts with smaller IZ sizes makes biological sense 

since it is known that numerous factors appear to play a role in arrhythmogenesis but that 

their relevance becomes less as VF risk becomes greater owing to „optimization‟ of 

arrhythmogenic conditions, e.g., as a consequence of the IZ size being large (Curtis, 1998; 

Curtis et al., 1993). Arrhythmogenesis is complex and there is mediator redundancy, known 

as „pathophysiological reserve‟ whereby numerous factors may be sufficient for 

arrhythmogenesis; this means that each individual factors will not be necessary for 

arrhythmogenesis under all conditions (Curtis, 1998; Curtis et al., 1993). This is nuanced, but 

the nuance is important, and addressing it distinguishes our objectives from the more 

simplistic and fallacious concept of catecholamines „causing‟ ischaemia-induced VF. 

 

Experimental protocols 

Throughout each experimental protocol, a range of ancillary variables including HR, 

coronary flow, PR and QT interval at 90% repolarization (QT90), were recorded every 5 

minutes, and the occurrence of ventricular arrhythmias was noted in each 5 minute time 
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interval. The QT90 is recorded in rat studies because the T wave is not distinct and the QRST 

is a single complex that returns to isoelectric asymptotically, rendering the conventional QT 

interval (at 100% repolarization) very difficult to measure accurately; use of QT90 is validated 

and long established  (Rees & Curtis, 1993; Ridley & Curtis, 1992). An arrhythmia score was 

assigned to each heart for ischaemia and (separately) for reperfusion in order to permit 

parametric statistical analysis. All these assessments were as described previously (Wilder et 

al., 2016). 

Hearts were perfused initially with Krebs for 5 minutes and excluded if predetermined  

criteria were not met (Wilder et al., 2016). In total, 38 hearts were excluded and these were 

immediately replaced to maintain group sizes while maintaining the randomization (see 

below). Baseline recordings were then made, followed by switch to test solution that varied 

according to study subset. In the initial study to examine the effects of catecholamines on VF 

in hearts with different predetermined IZ sizes, these were vehicle (Krebs + 50 μM ascorbate) 

or catecholamine mixture (CATs: 313 nM noradrenaline [NA] and 75 nM adrenaline [AD] + 

50 μM ascorbate). In subsequent studies to identify adrenoceptor antagonists with no non-

specific off target pharmacology (in hearts perfused without CATs) these were vehicle 

(Krebs), 1 or 10 μM atenolol, butoxamine, prazosin, terazosin or trimazosin. In studies to 

identify the receptor mechanisms involved in mediating CAT effects on VF, these were 

vehicle (Krebs + 50 μM ascorbate), CATs or CATs + 1 μM atenolol, butoxamine or 

trimazosin. The experimental details for these groups are shown in (figure 2). The CATs 

mixture used restores HR in Langendorff perfused hearts to rates seen in conscious rats 

(Curtis et al., 1985), and the concentration ratio of NA to AD is representative of the ratio 

encountered in human plasma (Baumgartner et al., 1985; Goldstein et al., 2003), especially 

under conditions of stress (Coplan et al., 1989; Ratge et al., 1986). We have explained the 

basis for the CATs mixture more fully, and characterised and validated its use in a previous 

study focused on the role of CATs in mediating VF during infarct evolution (which occurs 

after periods of ischaemia of more sustained duration than necessary to evoke so-called phase 

1 arrhythmias, which are the focus of the present study) (Clements-Jewery et al., 2009). 

Ten minutes after solution switch/initiation of pacing, the coronary ligature was tightened to 

induce regional ischaemia, which was maintained for 30 minutes and terminated by 

reperfusion. Although not the main focus of the present study, this allowed examination of 

CAT effects (in hearts perfused with CATs) on reperfusion-induced VF, with further 

monitoring of ancillary variables for 10 minutes (figure 2). Of each group in the pacing study, 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4781
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5480
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9809
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=503
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7302
https://pubchem.ncbi.nlm.nih.gov/compound/37264
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50% of hearts were reperfused to enable future sub-analysis of cardiac biochemistry between 

time-matched reperfused and ischaemic tissue, using snap frozen samples (-80°C). Hearts in 

the catecholamines + antagonist study were not reperfused because IZs and UZs (dissected 

and frozen in liquid nitrogen) were required for later immunoblot analysis. 

 

Supraventricular pacing 

In order to establish or rule out whether CATs facilitate ischaemia-induced VF via effects on 

HR, a separate group of Krebs‟ perfused hearts (figure 1) was paced via the right atrium at a 

rate to match that of the average pre-ischaemia rate caused by CAT perfusion (found to be 

405 beats min
-1

) using a silver wire bipolar electrode, connected to a stimulator (CD-S103, 

Cudos, UK). The stimulator was linked to a PowerLab™ system (PowerLab 4/35 and Animal 

Bio Amp, ADInstruments, UK; sampling rate 1 kHz), and hearts were stimulated with square 

wave pulses at double the threshold pulse width (0.34 ± 0.05 ms duration), and double the 

threshold voltage (1.75 ± 0.2 V) at 6.75 Hz. Regional ischaemia was induced as described 

above, to generate small IZs, allowing scope for examining whether sinus tachycardia 

matching that evoked by CATs was sufficient to increase the incidence of ischaemia-induced 

VF. 

 

Low flow global ischaemia 

With regional ischaemia in the rat isolated heart, there is limited scope for delivery of 

exogenous CATs to the IZ owing to the uniform low level of coronary collaterals that 

delivers a flow to the IZ that is no more than 5% of flow in the UZ (Curtis, 1998). This means 

that the aforementioned regional ischaemia studies allow testing only of whether CATs acting 

in the perfused UZ facilitate ischaemia-induced VF. Therefore, to test the possibility that, 

with a more substantial level of collateral flow, CATs may additionally act in the IZ to 

facilitate ischaemia-induced VF, required a different model. We therefore elaborated a low 

flow global ischaemia model in which the IZ is continuously perfused to allow CAT delivery. 

Importantly, any facilitation of ischaemia-induced VF by CATs in a low flow global 

ischaemia model can occur only by actions mediated in the IZ (there is no UZ). 

Hearts were dissected and cannulated, and an ECG lead positioned as described above. 

Following 15 minutes of baseline perfusion with Krebs, the perfusate was switched to test 
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solution and coronary flow was reduced to one of three set levels for 60 minutes: severe (0.8 

ml min
-1

), moderate (2 ml min
-1

), or mild (4 ml min
-1

) low flow global ischaemia using fixed 

resistance (clamps) to regulate inflow to the cannula (figure 2). A group of time-matched 

regionally ischaemic hearts with large IZs was included in the study to act as a positive 

control for comparative purposes (figure 2). Hearts were perfused with vehicle (Krebs + 50 

μM ascorbate) or CATs. HR, coronary flow, RR and QT90 interval, ventricular arrhythmias, 

and heart temperature were recorded at 5 minute intervals throughout the protocol. The 

duration of ischaemia was extended beyond the 30 min sufficient to allow evaluation of phase 

1 arrhythmias in the regionally ischaemic heart in order to provide a characterization of the 

arrhythmia profile, since this rat Langendorff low flow global ischaemia model is new and 

uncharacterized. Thus the experiment was terminated after 60 min of ischaemia. 

 

AR antagonist specificity and selectivity and use of tissue bath myography 

Selection of AR antagonist concentrations was guided by published IC50 values, but in order 

to be sure that the chosen agents possessed specificity (effects attributable to an action on the 

intended AR), and selectivity (effects attributable only to an action on the intended AR), a 

dual approach was taken. Specificity was identified in two ways: (i) from AR effects on well-

established CAT responses in perfused hearts (for example, inhibition of CAT-induced sinus 

tachycardia denoting β1 antagonism) and (ii) from separate blood vessel bioassay studies. For 

the latter, concentration response curves (CRCs) were constructed using isolated rat thoracic 

aortae and tissue bath myography (Myobath II 4-channel tissue bath, WPI, UK). Thoracic 

aortae were dissected from anaesthetised male Wistar rats (Harlan UK; 350-400g), and 

immediately immersed in cold Krebs-Ringer solution, containing: NaCl 118 mM, CaCl22H2O 

2.5 mM, glucose D (+) 11.1 mM, NaHCO3 25mM, MgSO4 1.2 mM, KH2PO4 1.2 mM, and 

KCl 4.8 mM, cleared of perivascular connective and adipose tissue, and cut into 4 x 3 mm 

length rings using 5 scalpel blades mounted together (equidistance apart). Aortic rings were 

denuded (endothelium removed) for α1 AR antagonist experiments in order to preclude β AR 

agonism-induced NO-mediated vasodilation (Brawley et al., 2000). An adapted 21 gauge 

needle was inserted into the vessel rings and rolled gently against the dissecting dish 10 to 15 

times in order to remove endothelia. 

Aortic rings were mounted and secured via a pair of intraluminal steel wires, and submerged 

in 15 ml tissue baths containing gassed and warmed (95% O2: 5% CO2; pH 7.4; 37°C) Krebs-
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Ringer solution. CRCs were recorded using LabChart v7 software (ADInstruments, UK) and 

a PowerLab™ system (PowerLab 4/25 and Pod Expander, ADInstruments, UK; sampling 

rate 100 Hz). 

After a warm-up period of 60 minutes, during which time baseline vascular tension was set, 

vascular function was tested (achievement of a vasoconstriction to 60 mM KCl within 2 SDs 

from the study mean). Endothelium integrity was then assessed by pre-constricting with 1 μM 

phenylephrine (PE), with a reversal of >70% of the PE-induced tone by 10 μM ACh taken to 

indicate the presence of intact endothelium (β AR constriction experiments), and a reduction 

of <20% taken to indicate the absence of endothelium (denuded vessels; α AR relaxation 

experiments). Each bath was subsequently washed out 3 times with Krebs-Ringer solution, 

and left for 15 minutes for tension to return to baseline. Vehicle (water), 1 or 10 μM AR 

antagonist (atenolol, butoxamine or trimazosin, volume-matched to vehicle) was added to 

each tissue bath and left to incubate for 30 minutes. In β AR CRC experiments, aortic rings 

were pre-constricted with 1 μM PE, and the response left to plateau (approximately 15 

minutes). The PE equilibrium constriction was defined as the tension immediately before the 

start of the agonist CRC, and was normalised to zero. Subsequently, cumulative β AR agonist 

CRCs were constructed by sequentially increasing the agonist concentration by 0.5 log units 

(dobutamine [β1 AR] or salbutamol [β2 AR]; 30 nM to 1 mM) in each tissue bath. Vessels 

were exposed to each concentration of agonist for 6 minutes before the next addition. In α AR 

CRC experiments in which aortic rings were not pre-constricted, α AR agonist CRCs were 

constructed by sequentially increasing the concentration of PE by 0.5 log units (30 nM to 1 

mM). Vessels were exposed to each concentration of PE for 2 minutes (30 nM to 100 μM) or 

5 minutes (300 μM and 1 mM) before the next addition. 

Selectivity was established by a two-step process that tested an AR concentration that 

possessed specificity for a lack of non-selectivity. Here, non-selectivity is defined as the 

ability to inhibit ischaemia-induced VF in the absence of exogenous CATS. The complete 

strategy is as follows. When a concentration was shown to obtain expected evidence of 

specificity based on the drug‟s conventional description (i.e., a β1 antagonist causing 

inhibition of CAT-induced sinus tachycardia, or an 1 antagonist causing inhibition of CAT-

induced vascular constriction in myograph studies) we tested this concentration to determine 

that it had no effect on ischaemia-induced VF in rat hearts perfused without exogenous 

CATs. To achieve the latter, rat hearts were subjected to coronary ligation by the method 

described above but with all ligatures located proximally to evoke a large IZ. Any AR 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=485
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=294
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=535
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=558
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antagonist shown to reduce ischaemia-induced VF incidence at the chosen concentration was 

deemed to lack selectivity at that concentration, since ischaemia-induced VF in hearts 

perfused without added CATs is CAT-unrelated by definition, and any suppression of such 

VF cannot be attributed to adrenoceptor antagonism. Several concentrations of AR antagonist 

were tested in separate hearts to determine the threshold concentration for any such loss of 

selectivity, defined from the No Effect Levels (NOELs) on VF incidence. 

Only AR antagonists at concentrations showing sufficient evidence of specificity and 

selectivity were chosen for subsequent studies to test for inhibition of facilitation of 

ischaemia-induced VF by CATs in hearts with smaller IZs, using the technique and methods 

outlined above. 

Immunoblotting 

To provide further evidence that the ARs chosen for study possessed the necessary specificity 

and selectivity, we probed for downstream signal indicative of AR agonism. For reasons 

explained in Results it was necessary to probe only for β1 and β2 signal. Frozen UZs and IZs 

from the catecholamines + antagonist study (n = 5/group, hearts chosen at random) were 

ground to a fine powder and homogenised in EDTA-free lysis buffer. Protein concentration in 

lysates was determined by performing the Bradford protein assay (Bradford, 1976). 

Following the addition of sample buffer (Ehler et al., 1999), samples were heat-denatured at 

95°C for 5 minutes, and subjected to SDS-PAGE (10% acrylamide for cTnI, or 6% 

acrylamide for RyR2). Proteins were subsequently transferred to PVDF membranes by 

electrophoretic transfer using a semi-dry (cTnI) or wet transfer (RyR2) method. For 

immunoblot analysis of proteins, membranes were blocked in 10% (w/v) non-fat skimmed 

milk (Marvel, Premier Foods, UK) in TBST for 1 hour at room temperature, except for 

membranes containing RyR2, which were blocked in 5% (w/v) BSA in TBST for 1 hour. 

Membranes were incubated with primary antibodies overnight at 4°C, and were subsequently 

incubated with secondary antibodies for 2 hours at room temperature. Protein bands were 

detected with ECL Western Blotting Detection Reagents (GE Healthcare, UK). Films were 

developed in a Fuji X-ray film processor (RGII, Fuji), and protein band density determined 

by Quantity One 1D analysis software (Bio-Rad, UK) using a GS-800 Calibrated 

Densitometer (Bio-Rad, UK). 
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Data and statistical analysis 

The following data and statistical analysis comply with published recommendations on 

experimental design and analysis in pharmacology (Curtis et al., 2015). Group sizes were 

selected on the basis of expected control incidence of VF and the feasibility of detecting an 

effect at p < 0.05, using a published design strategy that allows for data sub analysis to ensure 

that group sizes are not extended to the chosen maximum (n=20/group) if there is no scope 

for an effect approaching statistical significance (Andrag & Curtis, 2013). Gaussian 

distributed variables were subjected to t-tests (where appropriate – 2 groups, 1 time point), or 

ANOVA (1 way or 2 way with repeated measures where applicable), followed by Dunnett‟s, 

Tukey‟s or Sidak‟s post hoc tests (as appropriate) if F was significant, using GraphPad Prism 

6 software. Such values were expressed as mean ± SEM. Western blot densitometry values 

were normalised to the „sum of the replicates‟ (Degasperi et al., 2014) to minimise the effect 

of sources of variation, before being subjected to statistical analysis. Binomially distributed 

variables (arrhythmia incidence, classified as „did‟ or „did not‟ occur) were compared using 

Fisher‟s exact test. P < 0.05 was defined as statistically significant. 

 

Drugs and materials 

(-)-Adrenaline, (RS)-atenolol, dobutamine hydrochloride, prazosin hydrochloride, salbutamol 

and terazosin were obtained from Abcam Biochemicals®, UK; butoxamine hydrochloride, (-

)-noradrenaline, patent blue VF sodium salt and (+)-sodium L-ascorbate were obtained from 

Sigma-Aldrich, UK; trimazosin was a gift from Pfizer, UK (compound transfer program). All 

western blotting solutions and chemicals, and Krebs perfusate salts were obtained from 

Fisher Scientific, Sigma-Aldrich, UK, and VWR International, UK. Solutions and buffers 

were made up in distilled water supplied by a PURELAB flex dispenser and PURELAB 

Option-Q (ELGA LabWater, UK), with a resistivity of 18.2 MΩ. 

Primary antibodies used for western blotting were obtained from the following suppliers: 

rabbit polyclonal anti-cTnI (4002) and rabbit polyclonal anti-p-cTnI Ser23/24 (4004) from 

Cell Signaling Technology; rabbit polyclonal anti-calsequestrin 2 (Casq2; PA1-913) and 

mouse monoclonal anti-RyR2 (MA3-925) from Thermo Fisher Scientific; rabbit polyclonal 

anti-p-RyR2 Ser2808 (A010-30) from Badrilla, and mouse monoclonal anti-α-actinin 

(A7732) from Sigma-Aldrich. The secondary antibodies used for western blotting were 
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obtained from the following suppliers: goat polyclonal anti-rabbit (7074) from Cell Signaling 

Technology, and goat polyclonal anti-mouse (P0447) from Dako. 

 

Nomenclature of Targets and Ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2017/18 (Alexander et al., 2017). 

 

 

Results 

Catecholamines facilitated ischaemia-induced VF when IZ was small 

Varying the location of the coronary ligature obtained the desired IZ sizes, and these were not 

affected by CATs (figure 3A). 

Ventricular arrhythmias 

CATs increased ischaemia-induced VF incidence but only in hearts with small IZs, in which 

control VF incidence was low (figure 3F). Other arrhythmias, more prevalent even with small 

IZs, were not facilitated (figure 3B-E). During reperfusion, the pattern of facilitation was the 

same with CATs increasing VF incidence in hearts with small IZs from 12 to 56%. 

 

Haemodynamic and ECG changes 

CATs increased HR (figure 4A-B) and caused PR shortening (figure 4C), as shown 

previously in perfused rat and mouse hearts (Clements-Jewery et al., 2002; Stables & Curtis, 

2009). Coronary ligation had no effect on HR (figure 4A) but did lower coronary flow, the 

extent of which was dependent on IZ size as expected (Curtis, 1998) (figure 4B). Reperfusion 

had no effect on HR (figure 4A), but caused reactive hyperaemia in all groups 1 minute after 

the start of reperfusion (31 minutes; figure 4B). 
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Coronary ligation transiently shortened QT interval in vehicle controls during the first minute 

of ischaemia, an effect that had resolved by 5 minutes of ischaemia and was prevented by 

perfusion with CATs (figure 4D). 

 

Pacing to mimic effects of catecholamines on HR did not facilitate VF 

Pacing at 405 beats min
-1

 maintained HR throughout the experimental protocol (e.g., vs. 259 

± 10 beats min
-1

 in non-paced hearts 10 min after the onset of ischaemia, P<0.05). However, 

pacing did not increase the incidence of any type of ischaemia-induced arrhythmia (figure 

5A-D). IZ sizes were similar between non-paced (10.5 ± 0.9% TVW) and paced hearts (10.3 

± 0.8% TVW) as intended and expected. 

 

Identification of AR antagonist concentrations lacking off target pharmacology 

In hearts with large IZs and no added CATs, the α1 AR antagonists, prazosin and terazosin, 

significantly reduced ischaemia-induced VF incidence: prazosin from 67% (vehicle) to 17% 

(1 μM) and 8% (10 μM), and terazosin from 58% (vehicle) to 8% (10 μM). Additionally, 

prazosin and terazosin reduced HR and coronary flow, and prazosin also affected ECG 

intervals (figure 6). All these effects are indicative of AR-independent off target actions 

(Clements-Jewery et al., 2002; Grimm & Flack, 2011; Thandroyen et al., 1983), the nature of 

which are not relevant to the present study, but which rendered these drugs unsuitable as 

selective probes for the α1 AR. 

Further perfusions with an alternative α1 AR antagonist, trimazosin, were therefore 

undertaken. In hearts with large IZs and no added CATs, at 1 μM, neither trimazosin nor the 

AR antagonists atenolol (β1) or butoxamine (β2), affected ischaemia-induced VF (trimazosin: 

67% vs. 67% with vehicle; atenolol: 42% vs. 50% with vehicle; butoxamine: 33% vs. 56% 

with vehicle). In addition, none of these antagonists had any significant effects on ECG 

intervals (appendices figures 1, 2 and 3 A-D). At 10 μM, however, butoxamine and 

trimazosin reduced VF incidence to 0% and 25%, respectively. Thus, the off target NOELs 

for atenolol, butoxamine and trimazosin were 1 μM for each drug. 
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Identification of AR antagonist concentrations with specificity for the intended AR 

At 1 μM neither butoxamine nor atenolol had any significant effect on the dobutamine CRC 

(–log EC50 or maximum response; figure 7A-B). Butoxamine shifted the salbutamol CRC to 

the right in a concentration-dependent manner, with the change in –log EC50 reaching 

significance at 10 μM (figure 7C-D). Atenolol had no significant effect on the salbutamol 

CRC (figure 7C) or –log EC50 (figure 7D). Neither butoxamine nor atenolol affected the 

maximum relaxation response to salbutamol (figure 7D). Trimazosin caused a concentration-

dependent shift to the right of the PE CRC (figure 7E), and a significant change in the –log 

EC50 (figure 7F) without affecting the PE maximum response (figure 7F). 

Thus, at 1 μM, a lack of off-target AR-mediated effects was confirmed for all 3 drugs, and 

the required on-target AR specificity was confirmed for butoxamine and trimazosin. As a 

result, butoxamine and trimazosin, each at 1 μM, were subsequently used in the 

„catecholamine + antagonist‟ study in order to identify the AR(s) mediating the facilitation of 

ischaemia-induced VF by CATs in hearts with small IZs. The same concentration of atenolol 

was also taken forward. 

 

Identification of AR(s) mediating facilitation of ischaemia-induced VF by CATs 

The initial finding, that CATs increased ischaemia-induced VF incidence in hearts with small 

IZs, was reproduced in separate hearts (figure 8F). Co-perfusion of CATs with either 1 μM 

atenolol (β1 selective) or butoxamine (β2 selective) inhibited this facilitation, whereas 1 μM 

trimazosin (1 selective) had no effect (figure 8F). This indicates that when CATs facilitate 

ischaemia-induced VF this required both β1 and β2 agonism. VT facilitation was also 

significantly reduced by 1 μM butoxamine, whilst 1 μM atenolol reduced VT facilitation as a 

non-significant trend (figure 8E). The incidences of less severe arrhythmias were unaffected 

(figure 8B-D). IZ size did not vary between perfusion groups (figure 8A), the means of which 

were between 20-30% TVW as intended. Likewise, TVW was similar in each group (vehicle: 

0.92 ± 0.01 g, CATs: 0.95 ± 0.02 g, CATs + atenolol: 0.89 ± 0.02 g, CATs + butoxamine: 

0.95 ± 0.02 g, CATs + trimazosin: 0.93 ± 0.02 g). 

Haemodynamic and ECG changes 

Atenolol (1 μM) reduced the CAT-induced increase in HR; butoxamine (1 μM) had a weaker 

effect and trimazosin (1 μM) had no effect (figure 9A). CAT-induced increases in coronary 
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flow followed a similar pattern (figure 9B). Coronary ligation significantly reduced coronary 

flow in all groups (figure 9B). None of the antagonists prevented the sustained PR shortening 

or QT prolongation caused by CATs (figure 9C-D). The effects of CATs on haemodynamics 

and ECG intervals (figure 9A-D) reproduced initial findings (figure 9A-D). 

 

Independent verification of β AR-specific agonism and β AR-selective antagonism 

Protein phosphorylation in the UZ 

CATs increased cTnI phosphorylation at Ser23/24, a downstream target of β1 AR signalling 

(Puhl et al., 2016), in the UZ. This was prevented by 1 μM atenolol but unaffected by 1 μM 

butoxamine or 1 μM trimazosin (figure 10A-B). 

Western blots of the RyR2 revealed two bands (figure 10D and figure 10H), corresponding to 

full length RyR2 (565 kDa) and the c-terminal fragment (~400 kDa) (Li et al., 2013). The full 

length RyR2 protein was analysed. Phosphorylation of the RyR2 at Ser2808, a downstream 

target of β2 AR-mediated Gαi signalling that inhibits β1 AR-mediated RyR2 phosphorylation 

(Schmid et al., 2015), was increased in the UZ by 1 μM butoxamine (figure 10C-D). 

Protein phosphorylation in the IZ 

In contrast to UZ data, β1 AR signalling was evident in the IZs of vehicle controls, but 

although CATs tended to increase this, and atenolol blocked the increase, these trends did not 

reach significance (figure 10E-F). Again, in contrast to UZ data, β2 AR signalling in the IZ 

appeared to be unaltered by butoxamine (figure 10G-H). 

 

Test for IZ-mediated facilitation of ischaemia-induced VF using a low flow global 

ischaemia model 

The method successfully achieved complete separation and regulation of flow values between 

low flow groups („severe‟: 0.8 ml min
-1

, „moderate‟: 2 ml min
-1

, „mild‟: 4 ml min
-1

), as was 

intended (figure 11C). Low flow global ischaemia caused sinus bradycardia, and this effect 

was not surmounted by CATs (figure 11D), although in a concurrent set of hearts with 

regional ischaemia (large IZs) CATs increased coronary flow and evoked sinus tachycardia 

(figure 11C-D), as expected. Heart mean temperature fell during ischaemia by no more than 

1°C (figure 11B). 



 

 
This article is protected by copyright. All rights reserved. 

Low flow global ischaemia evoked arrhythmias (figure 11E). CATs weakly facilitated 

ischaemia-induced arrhythmias, but only when flow reduction was „moderate‟, and 

importantly only late after ischaemia onset (≥50 minutes) and not during the phase 1 period 

characteristic of regionally ischaemic hearts; moreover the effect obtained statistical 

significance only for arrhythmia score (figure 11F). QT interval was prolonged by 

catecholamines, but only in the „moderate‟ flow reduction group (figure 11F-G). 

 

 

Discussion 

Overview 

Published studies do not provide a clear description of the relationship between CATs, 

derived from the circulation or released by cardiac sympathetic innervation, and ischaemia-

related arrhythmogenesis, with some findings indicative of a link (Meredith et al., 1991; 

Slavikova et al., 2007) and others indicative of no link (Botting et al., 1983; Curtis et al., 

1985; Daugherty et al., 1986; Paletta et al., 1989). The rat Langendorff preparation is devoid 

of autonomic nervous reflex or circulating CATs, yet ischaemia- or reperfusion-induced VF 

normally occurs in almost every heart when the IZ is large, meaning that CATs are not 

necessary mediators of ischaemia-induced VF (Ridley et al., 1992; Wilder et al., 2016). The 

aims of this study were therefore (i) to examine the hypothesis that CATs facilitate (rather 

than mediate) ventricular arrhythmias caused by acute myocardial ischaemia, and (ii) to 

identify the ARs involved. When IZ was made small, ischaemia-induced VF was found to be 

facilitated by a mixture of CATs that mimics the cardiac effects of sympathetic tone by 

restoring HR to levels seen in rats in vivo (Curtis et al., 1985) and reducing PR interval, as 

found previously (Clements-Jewery et al., 2002). VF facilitation was not detectable with 

larger IZs. Facilitation was inhibited by atenolol (β1) and butoxamine (β2), but not trimazosin 

(α1), with haemodynamic, western blot and ancillary vascular bioassay data confirming 

antagonist specificity and selectivity at the concentrations used. The findings show that, when 

there is scope, exogenous CATs can increase the risk of ischaemia-induced VF. Scope 

requires the intrinsic risk of VF to be low relative to that occurring with, for example, a large 

IZ of 40% or more of ventricular mass. These data, and the findings from hearts subjected to 

low flow global ischaemia (no VF facilitation during the „phase 1‟ period of early ischaemia), 

indicate an action mediated primarily if not exclusively in the UZ. The antagonist data 
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revealed the effects to be to β1 and β2 AR-mediated, confirmed by western blotting, with 

activation of both receptors necessary for facilitation. 

 

Role of alterations in HR, coronary flow and QT in mediating the facilitation of VF 

In rat isolated hearts with large IZs (~40% TVW) there is a relationship between HR and 

ischaemia-induced VF, but this becomes evident only at HRs in the sinus tachycardia range 

(e.g. 480 beats min
-1

) (Bernier et al., 1989). In dogs in vivo, likewise, variation in HR over the 

normal range for the species (i.e. 150-200 beats min
-1

) had little effect on ischaemia-induced 

VF risk (Bolli et al., 1986). In the present study, in hearts paced to match the HR of CAT-

perfused hearts (405 beats min
-1

), there was no increase in ischaemia-induced VF incidence, 

meaning that VF facilitation by CATs was not secondary to sinus tachycardia. 

CAT perfusion increased QT interval in the catecholamines + antagonist study (figure 8D), as 

found previously (Clements-Jewery et al., 2002; Clements-Jewery et al., 2006). In previous 

studies, CATs were introduced 90 minutes after the onset of regional ischaemia to hearts that 

had, by this time, recovered sinus rhythm following the paroxysms of early (phase 1) 

arrhythmias (Clements-Jewery et al., 2002). At this time, rat hearts are susceptible to 

developing phase 2 arrhythmias, which manifest primarily by non-re-entrant mechanisms 

(Clements-Jewery et al., 2009), different from the flow of injury current and re-entry that 

operate during the first 30 minutes of ischaemia (phase 1) (Sidorov et al., 2011). CAT 

perfusion failed to facilitate phase 2 arrhythmias (Clements-Jewery et al., 2002; Clements-

Jewery et al., 2006), despite the fact that the (predominantly non-re-entrant) mechanisms of 

phase 2 are supposedly highly susceptible to facilitation by CATs (Antzelevitch & 

Burashnikov, 2011). If the QT prolongation observed in the present study were to have had 

any effect on the re-entrant mechanisms occurring during phase 1, suppression of VF rather 

than facilitation would be the expected outcome (Nattel, 2008). Thus, it is not tenable that the 

observed QT prolongation contributed to the facilitation of ischaemia-induced VF by CATs. 

It should be noted that the lack of identifiable QT interval prolongation by CATs in the varied 

IZ size study (figure 3D) was likely due to differences in baseline (pre-ischaemia/pre-switch) 

QT interval compared to baseline QT interval in the catecholamines + antagonist study 

(figure 8D), meaning that there was reduced scope for detection of CAT-induced 

prolongation. In both studies, QT interval was approximately 80 ms after switching to CATs. 
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Evidence of drug selectivity and specificity for AR identification 

In order to identify the ARs mediating the CAT effects, it was necessary to select 

concentrations of AR antagonists that exhibited selectivity and specificity. Specificity was 

established from rat aorta myography experiments and/or from evidence of antagonism of 

haemodynamic and intracellular signalling effects of CATs in perfused hearts. Selectivity 

was established from a lack of actions indicative of non-selectivity, in particular, a lack of 

effect on ischaemia-induced VF in hearts perfused without added CATs. 

Prazosin and terazosin both failed to meet specificity/selectivity requirements. The 

mechanism of their „off target‟ effects is irrelevant in the present context, albeit prazosin 

certainly possesses Na
+
 channel blocking activity (Daugherty et al., 1986; Thandroyen et al., 

1983). In contrast, atenolol, butoxamine and trimazosin met the selectivity requirements at 1 

μM. This does not necessarily mean that these antagonists do not have any AR-independent 

actions at 1 μM, but it shows that any such actions do not affect any of the haemodynamic 

and ECG variables measured, or inhibit ischaemia-induced arrhythmias in the absence of 

exogenous CATs. Furthermore, 1 μM of these drugs also possessed the required AR 

specificity, judged from ancillary whole heart pharmacology (e.g., effects on HR), ancillary 

rat aorta myography experiments, and/or western blotting. The myography showed that 1 μM 

butoxamine and 1 μM trimazosin had the necessary specificity for β2 or 1 ARs.  The 

specificity of atenolol for the β1 AR, however, could not be established from the aorta assay. 

This was unanticipated, but we found, after completing studies that the rat thoracic aortae has 

a low expression of β1 ARs (Perez-Aso et al., 2014). Specificity of atenolol for the β1 AR was 

nevertheless established independently from its ability to antagonise the increase in HR 

caused by CATs (figure 9A) and from the abolition of the CAT-stimulated β1 AR signal (p-

cTnI/cTnI; figure 10A). The array of effects on multiple variables therefore confirmed the 

specificity and selectivity of 1μM of butoxamine, trimazosin and atenolol, establishing their 

validity as pharmacological tools in the present context. 

 

Facilitation of ischaemia-induced VF via actions in the IZ 

Collateral flow in the rat IZ is <5% normal flow (Maxwell et al., 1987) and the ischaemic 

milieu in the rat heart is effectively stagnant and not conducive to delivery and accumulation 

of labile substances such as CATs. However should sufficient amounts of CATs be able to 

access the IZ during early ischaemia, as may occur in well-collateralised hearts of some 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=82


 

 
This article is protected by copyright. All rights reserved. 

species other than rat, AR activation in the IZ may be sufficient to facilitate ischaemia-

induced arrhythmias. To test this, a low flow global ischaemia model was used, in which the 

site of action of perfused CATs is, unavoidably and exclusively, the IZ, and residual flow can 

be controlled precisely. CATs did facilitate ischaemia-induced arrhythmias in these hearts, 

but effects were weak, detectable only by using an arrhythmia score that (unlike VF 

incidence) permits use of powerful parametric statistics, and required a prolonged period of 

ischaemia to become apparent (well beyond the window of phase 1 arrhythmias associated 

with regional ischaemia) (Curtis, 1998). Furthermore facilitation occurred only when 

coronary flow was reduced „moderately‟ to 2 ml min
-1

, and not when flow reduction was mild 

or severe, consistent with a need for residual flow to be sufficiently high to deliver CATs 

swiftly enough to preclude the perfused tissue degrading them, yet sufficiently low to cause 

ischaemia of necessary severity to generate an arrhythmogenic substrate. Overall, the weak 

facilitation of ischaemia-induced VF by CATs acting within the IZ was insufficient, and far 

too delayed, to have contributed meaningfully to the facilitation of VF observed during 

regional ischaemia. 

There is evidence that endogenous NA may accumulate in the ischaemic region owing to 

local acidity driving uptake 1 in the reverse mode in the surviving sympathetic afferents, and 

that this occurs even in rat isolated hearts in which the postganglionic sympathetic afferents 

are unavoidably detached from the CNS (Schömig et al., 1984). However this process is 

unlikely to have contributed to any of the present study outcomes. There are several reasons 

for this. 

The first is that the key variable we examined was the increase in VF incidence caused by 

perfusion with catecholamines delivered to the uninvolved non-ischaemic region. It is 

difficult to conceptualise how uptake 1 in the reverse mode in the ischaemic region could be 

increased by perfusing the uninvolved region with catecholamines, or how this, if it occurs, 

would account for the increase in ischaemia-induced VF caused by perfusion with 

catecholamines. To examine the receptor mechanism we used AR antagonists shown to have 

no action on ischaemia-induced VF in hearts perfused without added catecholamines 

(meaning these drugs had no effect on the actions of any endogenous NA released via uptake 

1 in the reverse mode during ischaemia). Likewise, it is not possible to explain inhibition of 

the increase in ischaemia-induced VF caused by perfusion with catecholamines by the two β 

AR antagonists (butoxamine and atenolol at 1 μM) on the basis of a supposed inhibition of 

the actions of endogenous NA in the ischaemic region (released by uptake 1 in the reverse 
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mode) because these drugs at the concentration used (1 μM) had no effect on ischaemia-

induced VF incidence in hearts perfused without added catecholamines. 

Whether or not NA released by uptake 1 in the reverse mode can contribute to ischaemia-

induced VF in a wider sense is a separate issue that may warrant separate investigation. In 

view of possible reader interest in the topic, we have expanded on the role of uptake 1 in 

ischaemia-induced VF below. 

Interestingly, the data derived by Schömig et al. (1984) do not show that uptake 1 in the 

reverse mode operates during ischaemia. Schömig et al. (1984) measured NA release during 

reperfusion. Other investigators have made similar measurements, again during reperfusion 

(Wilde et al., 1988). One of the few papers that measured NA within ischaemic tissue itself 

found a reduction in tissue NA content in a rat in vivo model after 20 and 30 minutes of 

ischaemia (earlier time points not examined) (Abrahamsson et al., 1981). The latter study 

refers to the conflicting evidence for changes in tissue NA during ischaemia. There is 

evidence that NA accumulates in the interstitial fluid in the ischaemic myocardium from 

work by Lameris et al. (2000) using microdialysis probes implanted into the left ventricle of 

pigs. But just as in the case of Schomig‟s rat heart data (Schömig et al., 1984), the time 

course of accumulation shows a large with the known temporal pattern of VF during 

ischaemia; interstitial NA was still rising 60 minutes after the onset of ischaemia, long after 

the phase 1 arrhythmia period is over in pigs, while values at the peak of arrhythmia 

incidence were relatively low (Lameris et al., 2000). 

Species differences, or experimental setting, may also be an issue. The study by Lameris et 

al. (2000) shows that ischaemia causes release of NA in pigs in vivo. However, as noted 

above, the evidence for this in isolated denervated rat hearts is less persuasive. Indeed, 

Daugherty et al. (1986) found that during continuous regional ischaemia in the rat 

Langendorff preparation (with no added catecholamines), the low level of collateral flow 

allowed the release of accumulating lactate to be detected during ischaemia, but there was no 

commensurate release of NA. This confirms that the release of NA during reperfusion 

observed by Schömig et al. (1984) in the rat Langendorff was, in part at least, reperfusion-

induced, rather than washout of NA that had accumulated during ischaemia. 

There is actually very little work that addresses specifically the role of uptake 1 in the reverse 

mode as an arrhythmogenic mechanism. Few of the published studies measure arrhythmias 
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and NA contiguously. In one of the more recent relevant articles published on the subject,  , 

the authors noted “We found that depletion of noradrenaline prevented arrhythmias in anoxic 

hearts but failed to do so in ischemic hearts” and added that “in noradrenaline-depleted 

hearts, desipramine and imipramine . . . remained potent in preventing arrhythmias”. 

Ischaemia-induced VF can therefore still occur in hearts depleted of catecholamines, and this 

is inhibited by drugs that inhibit uptake 1, meaning there can be no obligatory or necessary 

role for uptake 1 in the reverse mode in the mediation of ischaemia-induced VF, and that the 

drug tools used earlier by Schömig et al. (1984), and others (Kurz et al., 1995; Richardt et al., 

2006) evidently lack selectivity for uptake 1. 

Overall, these data show there is no basis for giving serious consideration to the possibility 

that uptake 1 in the reverse mode has relevance to the present study‟s findings. 

 

Identification of the ARs mediating facilitation of VF 

Given the selectivity and specificity of 1 μM atenolol and butoxamine, their effects on VF 

indicates, somewhat unexpectedly, that simultaneous activation of β1 and β2 ARs is necessary 

for VF facilitation by CATs since, if activation of only one or other AR were necessary, only 

one or other of the antagonists would have had the capability to reduce VF incidence. 

With respect to mechanism, separate pacing studies showed that VF facilitation was not a 

secondary consequence of an increase in HR, and inhibition of VF facilitation was not 

secondary to any inhibition of the increase in HR. 

In UZs, atenolol prevented the phosphorylation of cTnI by CATs, indicative of inhibition of 

β1 AR signalling (Puhl et al., 2016), whereas butoxamine and trimazosin had no effect. These 

data confirmed the evidence outlined above that atenolol inhibited VF facilitation via β1 

antagonism whereas butoxamine inhibited VF facilitation via a β1-independent action. 

Evidence of suppression of β2 AR mediated signalling by butoxamine was sought by probing 

for RyR2 phosphorylation, a relatively novel and unestablished method that depends upon β1 

AR signalling increasing RyR2 phosphorylation (via Gαs), whilst β2 AR signalling attenuates 

it (via Gαi) (Schmid et al., 2015). The, p-RyR2 levels in the UZ were increased by CATs + 

butoxamine vs. vehicle-perfused hearts, as anticipated. However, p-RyR2 levels were 

unchanged in the CATs + atenolol group, which would suggest that the RyR2 is 

phosphorylated additionally by AR-independent mechanisms. This would also explain the 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2399
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=357
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detectable baseline levels of p-RyR2 in the UZs of vehicle-perfused hearts, and lack of 

detectable attenuation of p-RyR2 in CAT + atenolol-perfused hearts in the present study. The 

β2 AR signalling assessment was therefore disappointing. Nevertheless, the key finding was 

that butoxamine (but not atenolol) demonstrated specificity at the β2 AR. Taken together, the 

present data confirm that butoxamine reduced the facilitation of ischaemia-induced VF by 

CATs via selective and specific β2 AR antagonism. 

Although we processed IZ tissue, the data were shown for purposes of transparency rather 

than to explore any hypothesis. The IZ western blots were more variable than blots from the 

UZs, as one might expect given that ischaemia as well as CATs can affect AR signal 

expression levels. For example, cTnI phosphorylation at Ser23/24 is elevated during regional 

ischaemia in murine hearts (Nixon et al., 2014), and the acidic conditions of ischaemia can 

increase p-cTnI in rat hearts (Mundina-Weilenmann et al., 1996). 

Nevertheless, atenolol and butoxamine had no effect on β1 or β2 signalling in the IZ, 

consistent with the more compelling evidence discussed above that the facilitation of VF by 

CATs and its inhibition by atenolol or butoxamine were mediated primarily if not exclusively 

in the UZ. 

 

Mechanistic insight and limitations of present findings 

It was not our objective to explore the electrophysiological mechanisms by which CATs 

facilitate ischaemia-induced VF. This is partly because it is well known that ischaemia-

induced changes in IZ AP shape and conduction velocity that generate AP heterogeneity 

between the IZ and UZ, and facilitate arrhythmogenic flow of injury current (Janse et al., 

1980; Janse & Wit, 1989) are exacerbated by CATs via actions in the UZ (the AP depolarises 

faster, increasing conduction velocity, and hyperpolarises to a more negative membrane 

potential during diastole) (Dorian, 2005; Janse & Wit, 1989). What was not known, and what 

formed the focus of this study, was the extent to which these effects of CATs contributes to 

ischaemia-induced VF. The mechanistic insight provided by the present data concerns the 

identification of the scope for VF facilitation by CATs (i.e., the potential relevance), the site 

of action and the identity of the receptor mechanisms responsible (which are targetable by 

drugs). 
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As in previous studies (Clements-Jewery et al., 2002; Clements-Jewery et al., 2006), our 

method of mimicking sympathetic influence in a preparation that ordinarily has none is a 

practicable and tractable approach, and one that is validated in terms of achievement of what 

is intended – restoration of cardiac variables to levels typical of the conscious rat (Clements-

Jewery et al., 2002). However, perfusion with any mix of NA and AD cannot mimic precisely 

the influence of the sympathetic nervous system on the heart in vivo, which comprises a mix 

of circulating CATs and noradrenergic neurotransmission, neither of which are ever in true 

steady state, meaning the possibility of additional VF-facilitating actions secondary to 

autonomic turbulence. Modelling this may be warranted in future studies. 

 

Conclusion 

In rat isolated perfused hearts in which baseline risk of phase 1 ischaemia-induced VF was 

made deliberately low, exogenous CATs facilitated VF with effects mediated predominantly 

in the UZ. The facilitation occurred via β1 and β2 agonism, with activation of both types of 

AR necessary. These findings may partially explain why, in humans, β blockers (of varying 

selectivity) have only moderate benefit in reducing mortality and ventricular arrhythmias in 

patients at risk of acute MI (β-Blocker Heart Attack Study Group, 1981), since VF risk is 

likely to be reduced only in patients with smaller IZs. 
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Table 1: Intended IZ size 

Position of Ligature IZ size % TVW 

Distal Small <20 

Medial Medium 25-35 

Proximal Large >42 

   



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 1: The 5 types of ventricular arrhythmias occurring during ischaemia and reperfusion in Langendorff-

perfused rat hearts, as defined by the Lambeth Conventions II (Curtis et al., 2013). VPB: ventricular premature 

beat, BG: bigeminy, VT: ventricular tachycardia, VF: ventricular fibrillation. 
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Figure 2: Experimental protocols for varied IZ size study, pacing study, antagonist only studies, catecholamines 

+ antagonist study and low flow global ischaemia study. IZ: ischaemic zone, CATs: catecholamine mixture 

(313 nM noradrenaline + 75 nM adrenaline). 
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Figure 3: IZ sizes resulting from distal, medial or proximal ligation of the left coronary artery (A) and incidence 

(% of group) of increasingly severe ventricular arrhythmias (VPB to VF) during 30 minutes of regional 

ischaemia (B-F) in hearts with small, medium and large IZs (varied IZ size study). n = 20 per group; mean ± 

SEM (A) or incidence (B-F); * p < 0.05. TVW: total ventricular weight, IZ: ischaemic zone, VPB: ventricular 

premature beat, BG: bigeminy, VT: ventricular tachycardia, VF: ventricular fibrillation, CATs: catecholamine 

mixture (313 nM noradrenaline + 75 nM adrenaline). 
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Figure 4: Haemodynamic and ECG changes in hearts with small, medium and large IZs (varied IZ size study). 

A) HR, B) coronary flow, C) PR and D) QT intervals. n = 20 per group; mean ± SEM; * p < 0.05 all CATs 

groups vs. time-matched corresponding control groups; † p < 0.05 small IZ control vs. time-matched small IZ + 

CATs; # p < 0.05 medium IZ control vs. time-matched medium IZ + CATs; § p < 0.05 large IZ control vs. time-

matched large IZ + CATs. HR: heart rate, PR: PR interval, QT: QT90 interval, CATs: catecholamine mixture 

(313 nM noradrenaline + 75 nM adrenaline). 
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Figure 5: Incidence (% of group) of increasingly severe ventricular arrhythmias (VPB to VT) during 30 minutes 

of regional ischaemia and 1 minute of reperfusion in hearts with small IZs, with or without left atrial pacing 

(pacing study). n = 12 per group (ischaemia) or 6 per group (reperfusion). N.B. the incidence of ischaemia- and 

reperfusion-induced VF was zero in both groups. VPB: ventricular premature beat, BG: bigeminy, VT: 

ventricular tachycardia. 
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Figure 6: Haemodynamic and ECG changes in hearts with large IZs perfused with 1 or 10 μM prazosin (A-D), 

and 1 or 10 μM terazosin (E-H). HR (A+E), coronary flow (B+F), PR (C+G) and QT intervals (D+H). n = 12 

per group; mean ± SEM; * p < 0.05 vs. time-matched vehicle. HR: heart rate, PR: PR interval, QT: QT90 

interval. 
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Figure 7: Dobutamine (A), salbutamol (C) and PE (E) CRCs in the presence of vehicle, 1 or 10 μM atenolol, 

butoxamine or trimazosin, and –log EC50s and maximum response values (B, D, F) derived from the CRCs. n = 

5 per group; mean ± SEMs; * p < 0.05. CRCs: concentration response curves, PE: phenylephrine. 
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Figure 8: IZ size (A) and incidence of increasingly severe ventricular arrhythmias (VPB to VF; B-D) during 30 

minutes of regional ischaemia in hearts with small IZs, perfused with vehicle, CATs or CATs + 1 μM atenolol, 

butoxamine or trimazosin. n = 20 per group; mean ± SEM (A) or incidence (B-F); * p < 0.05. TVW: total 

ventricular weight, IZ: ischaemic zone, VPB: ventricular premature beat, BG: bigeminy, VT: ventricular 

tachycardia, VF: ventricular fibrillation, CATs: catecholamine mixture (313 nM noradrenaline + 75 nM 

adrenaline). 
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Figure 9: Haemodynamic and ECG changes in hearts with small IZs perfused with vehicle, CATs or CATs + 1 

μM atenolol, butoxamine or trimazosin. A) HR, B) coronary flow, C) PR and D) QT intervals. n = 20 per group; 

mean ± SEM; p < 0.05 indicated in the figure. HR: heart rate, PR: PR interval, QT: QT90 interval, CATs: 

catecholamine mixture (313 nM noradrenaline + 75 nM adrenaline). 
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Figure 10: Quantification of UZ (A-D) and IZ (E-H) western blots probed for total cTnI and p-cTnI (A-B, E-

F), and total RyR2 and p-RyR2 (C-D, G-H). n = 5 per group; mean ± SEM; * p < 0.05. p-cTnI: 

phosphorylated cardiac troponin I, Casq2: calsequestrin 2 (cardiac), p-RyR2: phosphorylated ryanodine 

receptor type 2 (cardiac), CATs: catecholamine mixture (313 nM noradrenaline + 75 nM adrenaline). 
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Figure 11: IZ size in hearts with large IZs (A), heart temperature (B), coronary flow (C), HR (D), mean 5 point 

arrhythmia score in hearts perfused without CATs (E), 5 point arrhythmia score from hearts with „moderate‟ (2 

ml min
-1

) low flow global ischaemia (F), and QT interval at 60 minutes of ischaemia (G) in hearts with low flow 

global ischaemia or large IZs, perfused with vehicle or CATs. n = 12 per group; mean ± SEM; † p < 0.05 vs. 

time-matched large IZ vehicle control; * p < 0.05. HR: heart rate, QT: QT90 interval, CATs: catecholamine 

mixture (313 nM noradrenaline + 75 nM adrenaline). 

  



 

 
This article is protected by copyright. All rights reserved. 

 

Appendices Figure 1: Haemodynamic and ECG changes in hearts with large IZs perfused with 1 or 10 μM 

atenolol. A) HR, B) coronary flow, C) PR and D) QT intervals. n = 12 per group; mean ± SEM; * p < 0.05 vs. 

time-matched vehicle. HR: heart rate, PR: PR interval, QT: QT90 interval. 
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Appendices Figure 2: Haemodynamic and ECG changes in hearts with large IZs perfused with 1 or 10 μM 

butoxamine. A) HR, B) coronary flow, C) PR and D) QT intervals. n = 12 per group; mean ± SEM; * p < 0.05 

vs. time-matched vehicle. HR: heart rate, PR: PR interval, QT: QT90 interval. 
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Appendices Figure 3: Haemodynamic and ECG changes in hearts with large IZs perfused with 1 or 10 μM 

trimazosin. A) HR, B) coronary flow, C) PR and D) QT intervals. n = 12 per group; mean ± SEM. HR: heart 

rate, PR: PR interval, QT: QT90 interval. 
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Appendices Figure 4: Relationship between TVW and VF incidence from all hearts used in all studies. TVW: 

total ventricular weight, VF: ventricular fibrillation. Mean ± SEM, Pearson correlation calculation. 

 

 


