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Abstract 18 

Group B streptococci are common causative agents of early-onset neonatal sepsis (EOS). 19 

Pharmacokinetic (PK) data for penicillin G have been described for extremely preterm 20 

neonates but poorly for late-preterm and term neonates. Thus, evidence-based dosing 21 

recommendations are lacking. We described PK of penicillin G in neonates with gestational 22 

age (GA) ≥32 weeks and postnatal age <72 h. Penicillin G was administered intravenously at 23 

a dose of 25,000 or 50,000 IU/kg/q12h. At steady state, PK blood samples were collected 24 

prior to and at 5 min, 1 h, 3 h, 8 h, 12 h after injection. Non-compartmental PK analysis was 25 

performed with WinNonlin. In combination with data from neonates with GA ≤28 weeks we 26 

developed a population PK model using NONMEM software and performed probability of 27 

target attainment (PTA) simulations. In total, 16 neonates with GA ≥32 weeks were included 28 

in non-compartmental analysis. The median (interquartile range) volume of distribution (VD) 29 

was 0.50 (0.42-0.57) L/kg, clearance (CL) 0.21 (0.16-0.29) L/h and half-life 3.6 (3.2-4.3) h. In 30 

population PK analysis that included 35 neonates, a two-compartment model best described 31 

the data. The final parameter estimates were 10.3 L/70kg and 29.8 L/70kg for VD of the 32 

central and peripheral compartment, respectively, and 13.2 L/h/70kg for CL. Considering 33 

fraction of unbound penicillin G of 40%, PTA of time when the unbound drug exceeds MIC 34 

of 40% was >90% for MICs ≤2 mg/L with doses of 25,000 IU/kg/q12h. In neonates, 35 

regardless of GA, PK parameters of penicillin G are similar. The dose of 25,000 IU/kg/q12h 36 

is suggested for treatment of group B streptococcal EOS diagnosed within the first 72 hours of 37 

life.  38 
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Introduction 39 

Group B streptococci (GBS) are the most common causative agent of early-onset sepsis 40 

(EOS) in neonates (1, 2). Furthermore, the incidence of EOS caused by GBS is increasing 41 

despite the implementation of intrapartum antibacterial prophylaxis (3, 4). GBS has remained 42 

universally susceptible to penicillin G with the minimum inhibitory concentration (MIC) that 43 

inhibits 90% of isolates (MIC90) being 0.06 mg/L (5). Guidelines recommend penicillin G in 44 

combination with an aminoglycoside for empiric antibacterial treatment of EOS (6). Although 45 

some units use ampicillin instead of penicillin G (1), penicillin G could be preferable due to 46 

its narrow antibacterial spectrum. The use of penicillin G is also supported by its equivalence 47 

to ampicillin-containing regimens (1, 7). 48 

 49 

Penicillin G is one of the most frequently prescribed antibiotics in neonatal intensive care 50 

units in Europe, but the administered doses vary nearly fifteen-fold (8). The variations arise 51 

probably in part due to insufficient pharmacokinetic (PK) data and consequently few 52 

evidence-based dosing recommendations for very preterm neonates (9, 10), known to be at 53 

highest risk of development of EOS (1, 2). In neonates with a gestational age (GA) ≤28 weeks 54 

and <32 weeks, the doses of 25,000 IU/kg and 50,000 IU/kg, respectively, twice a day have 55 

been suggested for empiric treatment of EOS in previous PK studies (9, 10). Although the 56 

majority of EOS cases occur in term neonates (2), PK of penicillin G has been described in 57 

only few term neonates and no dosing recommendations were made (11). As penicillin G is 58 

primarily eliminated by kidneys and renal function is reduced in neonates with smaller GA 59 

(12), we hypothesized that doses needed to achieve sufficient serum concentrations could be 60 

higher in late-preterm and term compared with very preterm neonates, similar to other beta-61 

lactams, for example ampicillin (13). 62 
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In adults, penicillin G is considered to achieve sufficient efficacy if time when the unbound 63 

drug exceeds MIC (fT>MIC) is at least 40% of the dosing interval (14). However, dosing 64 

regimens that provide continuous concentrations above MIC are potentially more effective 65 

(15) and target fT>MIC of 100% has been recommended for immunocompromised patients, 66 

including neonates (16). A recent study, however, demonstrated that in neonates the ratio of 67 

the 24-hour area under the unbound drug concentration-time curve to the MIC (fAUC/MIC) 68 

was better correlated with bactericidal effect than fT>MIC (17), so fAUC/MIC >100 was 69 

proposed as a target (17). 70 

 71 

Therefore, first, we aimed to describe the PK of intravenously administered penicillin G in 72 

neonates with GA ≥32 weeks requiring treatment for confirmed or suspected EOS. Second, in 73 

combination with the PK data from our previous study on neonates with GA ≤28 weeks (9), 74 

we aimed to develop a population PK (popPK) model to define an evidence-based dosing 75 

regimen for neonates. 76 

 77 

Methods 78 

Study patients. A prospective study was carried out from December 21, 2012 to November 79 

24, 2013 in the tertiary pediatric intensive care unit of Tartu University Hospital. Neonates 80 

with GA of ≥32 weeks were eligible if they (i) required penicillin G for treatment of 81 

suspected or confirmed EOS or pneumonia with clinical and laboratory criteria described 82 

elsewhere (18) and (ii) had an arterial or central venous catheter inserted for clinical 83 

indications. Neonates who were likely to be infected with microorganisms resistant to 84 

penicillin G or participated in any other study (apart from observational studies involving only 85 

data registration) were excluded. The neonates were stratified into two groups based on GA 86 

(32≤ to <35 weeks and ≥35 weeks). 87 
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Study drug administration. Penicillin G (Sandoz GmbH, Kundl, Austria) was reconstituted 88 

in 0.9% sodium chloride to a final concentration of 60 mg/mL no more than 10 minutes prior 89 

to administration. A dose of 25,000 IU (15 mg)/kg or 50,000 IU (30 mg)/kg, chosen by the 90 

treating physician (50,000 IU/kg if meningitis was suspected, i.e. disturbances of 91 

consciousness, lethargy, worsening apnoea, seizures or suspicion of seizures, bulging 92 

fontanelle), was based on the current body weight and administered every 12 hours as a 3-93 

minute infusion into a central or peripheral venous catheter.  94 

Sampling and sample handling. PK samples were collected at steady state (after at least 36 95 

h of therapy), mostly after the fifth dose of penicillin G. Blood was drawn from the arterial or 96 

central venous catheter prior to and at 5 min, 1 h, 3 h, 8 h and 12 h after the dose. As 97 

penicillin G is stable at room temperature for at least 1 hour (19), samples were immediately 98 

centrifuged at 3,500 rpm for 10 minutes and thereafter frozen at -20
o
 C and transferred to -80

o
 99 

C within 24 h. The samples were stored at -80
o
 C for maximum of 12 months during which 100 

penicillin G remains stable (19, 20) until concentrations were measured. 101 

Penicillin G assay. Samples were thawed at room temperature. For protein precipitation, 50 102 

µL of serum was mixed with 50 µL of acetonitrile containing piperacillin as an internal 103 

standard (I.S.) at a concentration of 10 µg/mL. Supernatant obtained after centrifugation of 104 

serum were filtered and transferred into the autosampler vials. 105 

From each prepared sample 3 µL was injected into an Agilent 1290 Infinity UHPLC system. 106 

Gradient elution with methanol and 5 mM 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol in 107 

water (pH adjusted to 10.5 using ammonium hydroxide) at a flow rate of 0.3 mL/min was 108 

used for chromatographic separation on Waters Acquity UPLC BEH C18 column (2.1 × 100 109 

mm, 1.7 µm) with pre-column. For detection Agilent Series 1100 LC/MSD Trap XCT was 110 

used with electrospray interface in positive mode using multiple reaction monitoring. 111 
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Transitions of m/z 335 [M+H]
+
 to m/z 160, 176 and m/z 518 [M+H]

+
 to m/z 143, 160 were 112 

used for the quantification and qualification of penicillin G and I.S., respectively. 113 

A matrix matched calibration was used for validation of the described methodology according 114 

to the European Medicines Agency guidelines (21). The calibration curves were linear in 115 

concentration range 0.15-150 µg/mL in serum and had r
2
> 0.9996. The limit of quantification 116 

(LoQ) for serum samples was 0.147 µg/mL and the limit of detection was 0.05 µg/mL. The 117 

within-day accuracy ranged from 2% to 9% for the serum calibration curve. The between-day 118 

precision for serum samples was <6%.  119 

Monitoring of study patients. Vital parameters were continuously monitored and recorded at 120 

screening, immediately prior to PK sampling and within 72 hours after completion of the 121 

penicillin G treatment. All concomitant medications, respiratory support, vasoactive treatment 122 

and laboratory parameters from blood samples drawn for clinical indications were also 123 

recorded. Serum creatinine was measured by the compensated Jaffe kinetic method 124 

standardized against isotope dilution mass spectrometry. 125 

PK analyses. Non-compartmental analysis (NCA) of concentration-time data was performed 126 

in Phoenix WinNonlin software (version 6.5.1; Pharsight Corporation, CA, USA). The area 127 

under the concentration-time curve over the dosing interval of 0 to 12 h (AUC0-12) was 128 

calculated by use of the log-linear trapezoidal rule. The AUC0-12 was used to calculate the 129 

total body clearance. The apparent volume of distribution (VD) was determined by calculating 130 

the mean residence time extrapolated to infinity. 131 

PopPK analysis was performed in NONMEM software (version 7.3; ICON plc, Dublin, 132 

Ireland). Concentration-time data from the current and our previous study (9) were pooled and 133 

analyzed simultaneously. One-, two- and three-compartment structural models were compared 134 

in which, due to the a priori assumption of the dependence of renal maturation on 135 

postmenstrual age (PMA), clearance was scaled as recommended by Germovsek et al. (22), 136 

 on M
arch 9, 2018 by U

C
 London Library S

ervices
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


7 
 

by adding allometric weight scaling and a sigmoid renal maturation model that includes PMA 137 

(23). After choosing the model that provided the best fit, the influence of the following 138 

covariates on clearance and VD was tested: birth weight (BW), GA, serum creatinine 139 

concentration and need for continuous positive airway pressure or mechanical ventilation. A 140 

covariate was retained in the model if it caused a significant decrease in the objective function 141 

value, corresponding to p<0.01.  142 

Probability of target attainment (PTA). The final popPK model was used in 5000-patient 143 

Monte Carlo simulation generating concentration-time curves at steady state for penicillin G 144 

doses of 25,000, 50,000 and 100,000 IU/kg administered at 12-hour intervals as a 3-min 145 

infusion if protein binding was not considered and with the fraction of unbound penicillin G 146 

of 40% according to penicillin binding data from adult studies (24). PMA were simulated by 147 

sampling from a uniform distribution (range: 24-42 weeks), and the corresponding body 148 

weights were obtained using the model by Sumpter & Holford (25). Pharmacodynamic targets 149 

fT>MIC and fAUC/MIC ratio were calculated for MIC values 0.006, 0.125, 0.25, 0.5, 1 and 2 150 

mg/L applicable for GBS and enterococci (26). PTA was calculated for fT>MIC of 40% and 151 

100% and fAUC/MIC >100. All simulations were performed in R software (version 3.2.2; 152 

The R Foundation, Vienna, Austria). 153 

The protocol was approved by the Ethics Committee of the University of Tartu. A parent 154 

signed an informed consent prior to the inclusion of neonate in the study. The study was 155 

registered with the EU Clinical Trials Register (EudraCT Number: 2012-002836-97).  156 

 157 

Results 158 

Patients. For the current study, a total of 25 neonates with GA ≥32 weeks were screened, of 159 

whom 17 were enrolled. Reasons for exclusion were lack of informed consent (n=3), absence 160 

of arterial or central venous catheter (n=3), participation in another study (n=1) and change in 161 
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antimicrobial therapy (n=1). The demographic and clinical characteristics are shown in Table 162 

1. Penicillin G was administered for treatment of EOS (n=4), congenital pneumonia (n=1), 163 

other/suspected congenital infection (n=9) and meconium aspiration syndrome (n=3). All 164 

patients received concomitant therapy with gentamicin (4 mg/kg/q24h), but none received 165 

other potentially nephrotoxic drugs on the PK sampling day. None of the neonates had a 166 

positive blood culture. 167 

Non-compartmental PK analysis. NCA was performed on data from 16 patients. One 168 

neonate with GA >35 weeks was excluded due to insufficient number of PK samples (n=2). 169 

The median values of the CL, VD and half-life were similar regardless of GA (largest relative 170 

difference in VD – mean 0.54 L/kg and 0.46 L/kg (p=0.25) in neonates with GA 32-34 weeks 171 

and ≥35 weeks, respectively) and thus the values of the PK parameters are presented only 172 

based on the dose of penicillin G (Table 2). As expected, the dose of 50,000 IU/kg resulted in 173 

higher values of Cmax, Cmin and fAUC than 25,000 IU/kg (Table 2). 174 

PopPK analysis. In total 35 neonates (17 from the current study and 18 from the previous 175 

study (9)) were included in the popPK analysis. A two-compartment model with allometric 176 

weight scaling and a renal maturation function provided the best fit to the concentration-time 177 

data. None of the covariates tested significantly improved the model fit and were thus not 178 

retained in the final model. The PK parameter estimates of the final model are shown in Table 179 

3. Parameters for median values for the population used in the popPK modelling (current 180 

weight 1.28 kg, PMA 32.3 weeks) were as follows: clearance 0.15 L/h, central VD 0.19 L, 181 

intercompartmental clearance 2.76 L/h, peripheral VD 0.54 L. 182 

Overall, goodness-of-fit plots (Figure 1) and the visual predictive check (Figure 2) showed 183 

good prediction of data by the model.  184 
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PTA analysis.  The PTA for fT>MIC of 40% was >90% for all tested MIC values and doses 185 

of 25,000, 50,000 and 100,000 IU/kg if protein binding was not considered and if the fraction 186 

of unbound penicillin G was 40% (data not shown). 187 

The PTA of fT>MIC of 100% was >90% for all doses for MIC values of ≤0.5 mg/L only if 188 

protein binding was not considered (Figure 3A). If the fraction of unbound penicillin G was 189 

40%, the same target was achieved with all doses only if MIC was ≤0.125 mg/L (Figure 3B).  190 

If protein binding was not considered, the PTA of fAUC/MIC >100 was >90% for all tested 191 

MIC values with doses of 50,000 and 100,000 IU/kg and remained >90% with dose of 25,000 192 

IU/kg for MIC values ≤1 mg/L (Figure 4A). If the fraction of unbound penicillin G was 40%, 193 

the PTA >90% was achieved with doses 25,000, 50,000 and 100,000 IU/kg only if MIC was 194 

≤0.5, ≤1 and ≤2 mg/L, respectively (Figure 4B).  195 

 196 

Discussion 197 

This study reports, to our best knowledge, the largest neonatal penicillin G population PK 198 

analysis to date. We demonstrated that in neonates PK parameters of intravenously 199 

administered penicillin G during the first week of life are similar regardless of GA. According 200 

to popPK model the dose of 25,000 IU/kg every 12 hours could be suggested for treatment of 201 

EOS caused by GBS regardless of pharmacodynamic target (fT>MIC 40%, fT>MIC 100% or 202 

fAUC/MIC >100) and the GA (ranging from 24 to 40 weeks). 203 

 204 

Contrary to our hypothesis, the values of half-life and volume of distribution of penicillin G in 205 

late-preterm and term neonates were comparable to those in very and extremely preterm 206 

neonates that vary in the ranges of 3.8-4.6 h and 0.41-0.64 L/kg, respectively (9, 10). This 207 

corroborates previous findings that half-life of penicillin G in serum in neonates does not 208 

depend on BW or GA (10, 27). Similarity in VD could result in part from relatively larger 209 
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weight loss after birth in more premature neonates compared with more mature ones (28) and 210 

several factors could contribute to similarity in clearance throughout neonatal period. First, 211 

tubular secretion that is the main elimination mechanism of penicillin G in adults (29) is 212 

equally reduced in preterm and term neonates as a result of decreased renal blood flow to 213 

peritubular areas (30). Second, glomerular filtration has been suggested to be relatively more 214 

important than tubular secretion in elimination of penicillin G in neonates (27). Although 215 

clearance depends on GA (31), the difference between preterm and term neonates in 216 

glomerular filtration rate is less pronounced within the first days of life, increasing only by 217 

0.0205 mL/min/kg per each week of postconceptional age (32, 33). Finally, the fraction of 218 

beta-lactams bound to proteins is reduced in more premature neonates that may also 219 

contribute to higher clearance (34). Notably, for other beta-lactams, such as doripenem and 220 

cefepime, clearance was similar regardless of GA within the first week of life (35, 36). Even 221 

for amikacin that is almost entirely eliminated by glomerular filtration the difference in 222 

clearance was only slightly higher in the first postnatal day in neonates with larger BW 223 

compared with those with smaller BW (37). However, contribution of elimination 224 

mechanisms other than kidneys cannot be excluded in neonates, as the fraction of penicillin G 225 

dose excreted into urine is considerably lower in neonates (26-37%) (9, 27), compared to 226 

adults (58%) (29). 227 

 228 

We found that a two-compartment model described data best. This is in agreement with the 229 

only published study describing population pharmacokinetics of penicillin G in neonates 230 

conducted by Muller et al. (10), who analyzed data from neonates with GA <32 weeks. 231 

However, while in the model by Muller et al., GA was not included in the final model 232 

(possibly due to the small range of GA), in our study GA was included indirectly, i.e. 233 

incorporated in the PMA-dependent renal maturation function. The use of PMA rather than 234 
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GA is supported by a recent comparison of models for scaling clearance in children by 235 

accounting for size and maturation (22). 236 

 237 

Our study showed that in neonates, regardless of GA, the target of fT>MIC of 40% was 238 

achieved with PTA >90% when the fraction of unbound penicillin G of 40% was assumed 239 

using a dose of 25,000 IU/kg twice a day for all MIC values tested (up to 2 mg/L). This dose 240 

is within the range recommended by Neofax (15-30 mg/kg every 12 hours) (38), but is less 241 

than that suggested by the British National Formulary for Children (25 mg/kg every 12 hours) 242 

(39). Still, according to evidence statements in NICE Clinical Guidelines, a dose of 25,000 243 

IU/kg is effective in preterm neonates, although no evidence was identified for dosing in term 244 

neonates (6). Although the previous popPK study of penicillin G in neonates with GA <32 245 

weeks suggested dosing regimen of 50,000 IU/kg twice daily (10), our proposed dosing 246 

regimen proposed should be adequate for treatment of EOS, due to several reasons. a) GBS is 247 

susceptible to penicillin G with MIC90 as low as 0.06 mg/L (5) and viridans-group 248 

streptococci that may cause up to 19% of EOS cases (2) have MIC90 0.5 mg/L (40). b) 249 

Although we did not measure the fraction of unbound penicillin G and no prior data are 250 

available in neonates within the first days of life, the fraction unbound is known to be reduced 251 

immediately after birth compared with adults (24). Thus, the unbound drug fraction of 40% 252 

that is based on values in adults (24) should be a conservative estimate and the actual 253 

unbound concentrations in neonates are most likely higher than estimated in this study. c) 254 

While penicillin G bactericidal activity requires fT>MIC 38% in adults, the same study 255 

showed that in neonates fT>MIC 32% was bactericidal (17). Therefore, for neonates with 256 

immature immune systems the somewhat higher target of fT>MIC of 40% should be 257 

appropriate (42, 43). d) Even the target of fT>MIC as high as 100% that is more likely 258 

associated with clinical cure (15, 16) was achieved with PTA >90% for MIC values ≤0.125 259 
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mg/L and with PTA approximately 80% for MIC values ≤0.5 mg/L with the dose of 25,000 260 

IU/kg twice daily. Moreover, PTA of fAUC/MIC >100 that was shown to be better correlated 261 

with bactericidal activity in neonates (17) remained >90% for MIC values ≤0.5 mg/L. 262 

Therefore, 25,000 IU/kg should be appropriate and avoids unnecessarily high doses of 263 

penicillin G that may counteract treatment by evoking the so-called Eagle effect, which 264 

results in a reduced killing rate of GBS by penicillin G concentrations above the optimal level 265 

(44). Moreover, excessively high doses of penicillin G may cause toxicity including 266 

encephalopathy (46) or coagulation disorders (47). The dose of 25,000 IU/kg was well 267 

tolerated in a clinical study that included 142 neonates with suspected EOS (7) and no drug-268 

related adverse events were observed in our study. 269 

 270 

Some limitations of the study should be noted. First, we cannot exclude the effect of 271 

unrecorded clinical characteristics on the PK parameter estimates. For example, in our 272 

previous study all except one mother of neonates with GA of ≤28 weeks received steroid 273 

prophylaxis before birth, but betamethasone increases glomerular filtration rate (48). 274 

However, the small number of neonates studied did not allow analysis of this covariate (49). 275 

Moreover, covariates other than those reflecting size, age and renal function are only 276 

occasionally incorporated in the final models describing PK of primarily renally eliminated 277 

antibiotics (50). Second, although clearance depends on renal function in addition to growth 278 

and maturation (50), a covariate reflecting renal function was not included in our model. 279 

However, the lack of effect of creatinine on the model fit was expected, as in the first days of 280 

life neonatal serum creatinine values reflect maternal concentrations (51) and less than half of 281 

models describing PK of primarily renally eliminated antibiotics incorporate serum creatinine 282 

(50). Finally, we did not measure penicillin G concentrations in cerebrospinal fluid, which 283 

could also be considered given that concomitant meningitis occurs in 2-6% of EOS cases (2, 284 
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52), whereas in culture-positive cases the proportion is as high as 26% (52). Although 25,000 285 

IU/kg twice a day has been suggested to be adequate (9), the PK of penicillin G in 286 

cerebrospinal fluid warrants further studies to provide evidence for dosing regimens for 287 

meningitis.   288 

 289 

In conclusion, our results show that the current dosing regimen of 25,000 IU/kg every 12h for 290 

EOS results in sufficient serum concentrations of penicillin G. The dosing regimen is 291 

appropriate against GBS as the commonest causative agents of EOS regardless of 292 

pharmacodynamic target (fT>MIC 40% or 100% or fAUC/MIC >100) and GA due to the 293 

similarity of PK parameters of penicillin G within the first days of life in preterm and term 294 

neonates. 295 

 296 
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Table 1. The demographic and clinical characteristics of the two study groups
a
  465 

 Study group based on gestational age 

 32–34 weeks 

(n = 7) 

≥35 weeks 

(n = 10) 

Male sex (no. of subjects) 4 7 

Birth weight (kg) 2.1 (2.0-2.5) 3.3 (3.0-3.9) 

Body weight on PK sampling day (kg) 2.0 (1.8-2.3) 3.1 (2.9-3.8) 

Postnatal age on PK sampling day (days) 3.0 (2.0-3.5) 2.5 (2.0-3.0) 

Number of penicillin G doses before PK 

sampling 

6.0 (5.0-8.5) 5.0 (5.0-6.5) 

Duration of treatment with penicillin G (days) 6.5 (5.8-7.3) 6.0 (3.9-7.6) 

Vasoactive support
b
 (no. of subjects) 2 3 

Respiratory support
c
 (no. of subjects) 5 3 

Serum creatinine
d
 (µmol/L) 52.0 (41.5-66.0) 61.0 (50.8-68.3) 

Albumin
d
 (g/L) 31.0 (27.0-34.0) 32.0 (31.0-32.3) 

C-reactive protein
d
 (mg/L) 2.0 (1.0-11.0) 15.0 (5.3-62.5) 

Bilirubin
d
 (µmol/L) 156.0 (129.0-

227.0) 

131.0 (116.5-

137.0) 

a
Data are presented as median (interquartile range) unless otherwise specified. 466 

b
Dobutamine (n=4), dopamine and dobutamine (n=1) 467 

c
Mechanical ventilation (n=3), continuous positive airway pressure (n=5) 468 

d
Laboratory parameters were measured on the PK sampling day ± 1 day.  469 
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Table 2. The pharmacokinetic parameters (median (interquartile range)) estimated by non-470 

compartmental analysis for the neonates in this study in comparison with the values for 471 

neonates with GA ≤28 weeks in our previous study (9) 472 

 Neonates with gestational age 

 ≥32 weeks (this study) ≤28 weeks (previous study (9)) 

Study group 

based on 

dose 

25,000 IU/kg (n=12) 50,000 IU/kg 

(n=4) 

25,000 IU/kg 

(n=9) 

50,000 IU/kg 

(n=8) 

Actual dose 

(IU/kg) 

26,820 (25,845-

27,178) 

51,076 (50,594-

51,980) 

23,913 

(22,936-

24,124) 

46,875 (46,440-

48,143) 

VD (L/kg) 0.48 (0.38-0.51) 0.63 (0.58-0.67) 0.64 (0.50-

0.71) 

0.41 (0.33-0.57) 

CL (L/h/kg) 0.21 (0.17-0.29) 0.25 (0.19-0.35) 0.09 (0.07-

0.11) 

0.07 (0.07-0.08) 

t1/2 (h) 3.5 (3.0-4.2) 4.2 (3.9-5.0) 4.6 (3.8-5.6) 3.8 (3.3-7.0) 

Cmax (mg/L) 62.5 (51.1-74.8) 94.5 (87.3-98.7) 58.9 (52.9-

77.5) 

145.5 (108.6-

157.3) 

Cmin (mg/L) 3.3 (2.3-4.9) 6.4 (5.4-7.5) 3.4 (2.9-3.6) 7.1 (5.2-12.9) 

AUC0-12 

(h*mg/L) 

173.6 (127.6-205.7) 225.1 (212.0-

295.0) 

161.2 (136.3-

169.6) 

389.3 (341.3-

436.2) 

AUC0-12, area under the drug concentration-time curve over the dosing interval of 0 to 12 h; 473 

Cmax, the maximum concentration in serum; Cmin, the minimum concentration in serum; CL, 474 

clearance; VD, volume of distribution; t1/2, half-life.  475 
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Table 3. The pharmacokinetic parameters estimated by the final population pharmacokinetic 476 

model  477 

 Mean SE RSE (%) CV (%) ETA shrinkage (%) 

CL 

(L/h/70kg) 

13.2 1.04 7.9 39 2.00 

V (L/70kg) 10.3 2.17 21.0 23 55.1 

Q (L/h/70kg) 55.6 10.2 18.4 - - 

V2 (L/70kg) 29.8 2.56 8.6 35 23.8 

CL, clearance; CV, coefficient of variation; Q, intercompartmental clearance; RSE, relative 478 

standard error; SE, standard error; V, volume of distribution of the central compartment; V2, 479 

volume of distribution of the peripheral compartment. 480 

Residual error (proportional): 13% 481 

Residual error (additive): 0.278  482 
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Figure 1. Goodness-of-fit plots from the final population pharmacokinetic model. DV, 483 

observed penicillin G concentration (mg/L); PRED, population-predicted concentration 484 

(mg/L); IPRED, individual-predicted concentration (mg/L); CWRES, conditional weighted 485 

residuals; TAD, time after dose in hours.  486 

 487 

Figure 2. Visual predictive check. The points represent the observed data. The black lines 488 

(dashed and solid) represent the 2.5th, 50th, 97.5th percentiles of the observed data and the 489 

grey bands represent the 95% confidence interval around these percentiles (from n=1000 490 

simulations). 491 

 492 

Figure 3. Probability of target attainment of time above minimum inhibitory concentration 493 

(MIC) of 100% with doses of 25,000 (red), 50,000 (green) and 100,000 (blue) IU/kg for 494 

different MIC values if protein binding was not considered (panel A) and with the fraction of 495 

unbound penicillin G of 40% (panel B). Dotted line presents probability of target attainment 496 

of 90%. 497 

 498 

Figure 4. Probability of target attainment of the ratio of the 24-hour area under the unbound 499 

drug concentration-time curve to the minimum inhibitory concentration (MIC) >100 with 500 

doses of 25,000 (red), 50,000 (green) and 100,000 (blue) IU/kg for different MIC values if 501 

protein binding was not considered (panel A) and with the fraction of unbound penicillin G of 502 

40% (panel B). Dotted line presents probability of target attainment of 90%. 503 
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