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Abstract

Common variant genome-wide association studies (GWASs) have, to date, identified >24 risk loci 

for Parkinson’s disease (PD). To discover additional loci, we carried out a GWAS comparing 

6,476 PD cases with 302,042 controls, followed by a meta-analysis with a recent study of over 

13,000 PD cases and 95,000 controls at 9,830 overlapping variants. We then tested 35 loci (P < 1 × 

10−6) in a replication cohort of 5,851 cases and 5,866 controls. We identified 17 novel risk loci (P 
< 5 × 10−8) in a joint analysis of 26,035 cases and 403,190 controls. We used a neurocentric 

strategy to assign candidate risk genes to the loci. We identified protein-altering or cis–expression 

quantitative trait locus (cis-eQTL) variants in linkage disequilibrium with the index variant in 29 

of the 41 PD loci. These results indicate a key role for autophagy and lysosomal biology in PD 

risk, and suggest potential new drug targets for PD.
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PD is the second most common neurodegenerative disorder1,2, with a prevalence of 3–4% in 

individuals over 80 years of age3. PD is characterized by the loss of dopaminergic neurons 

in the substantia nigra and the presence of Lewy bodies1,2. These neuropathologies manifest 

in affected individuals primarily as motor-related symptoms, but the involvement of other 

brain regions can lead to nonmotor symptoms4.

Early-onset, familial PD (onset at <60 years of age) accounts for a small fraction of cases5, 

but the identified associated genes, including LRRK2, GBA, and SNCA, provide insight into 

disease pathogenesis6,7. For the later-onset, common form of PD, at least 24 loci have been 

associated at a genome-wide significant level with disease risk in individuals of European 

ancestry8. The narrow-sense heritability (h2) explained by the confirmed PD risk loci is low 

(0.033)9; however, the heritability explained by common variants is estimated at 0.227 (s.d.: 

0.08)9, which suggests that additional loci with smaller effect sizes remain to be discovered.

We carried out a GWAS of 6,476 subjects from a 23andMe PD cohort (PDWBS (Web-Based 

Study of Parkinson’s Disease)) and 302,042 controls genotyped on custom Illumina arrays 

(Fig. 1). The 6,476 PD cases of European ancestry were independent from those previously 

reported8 but met the same inclusion criteria, except that carriers of the LRRK2 G2019S 

mutation were not removed8,10. The 302,042 controls did not report having PD and were of 

similar ancestry as the cases. The data were imputed with Minimac2 using 1000 Genomes 

phase 1 haplotypes11,12. Single-nucleotide polymorphisms (SNPs) with low imputation 

quality or that failed general quality control metrics were removed (Online Methods). After 

correcting for age, sex, and the top principal components (Online Methods), we observed 

minimal inflation for P values genome-wide (λgc = 1.057; λ1000 = 1.004; Supplementary 

Fig. 1).

A total of 12 loci had P < 5 × 10−8 in the PDWBS analysis, including 11 of the loci that 

were reported in a previous GWAS in individuals of European ancestry8 (Table 1). For the 

remaining 13 previously reported loci, we observed P < 0.05 for 11 loci, with no significant 

evidence for association observed in the PDWBS sample for CHMP2B (rs115185635) or 

TMEM229B (rs155399). The remaining novel locus in the PDWBS analysis, rs9468199 (P 
= 1.77 × 10−9), is more than 4 Mb from the nearest PD association in the HLA class II 

region and is independent of rs9275326 (Pconditional = 2.64 × 10−9).

Using genome-wide summary statistics from the PDWBS analysis, we estimated the h2 

value for PD explained by common variants as 0.209 (95% confidence interval (CI): 0.148–

0.271, assuming a prevalence of 0.01), which is similar to the h2 value reported 

previously9,10. Regions contributing to PD heritability were significantly enriched for 

acetylation of histone H3 at lysine 27 (P = 0.001; Supplementary Table 1), a mark of active 

regulatory regions. PD heritability was also enriched for histone marks in central nervous 

system, adrenal, and pancreatic cell types (Supplementary Table 2), in agreement with a 

previous study13.

We next carried out a meta-analysis between the PDWBS GWAS and results for the top 

10,000 variants available from a large-scale meta-analysis for PD with over 13,000 cases and 

95,000 controls8 (PDGene) (Fig. 1). For the 9,830 overlapping SNPs between the PDWBS 
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and PDGene studies, we used an inverse-variance weighted method to combine association 

statistics for meta-analysis14. The odds ratios and P values for the 9,830 overlapping SNPs 

in the PDWBS and PDGene studies were correlated (ρ−log10(P value) = 0.85, ρOR = 0.58). 

Furthermore, quantile–quantile (Q-Q) plots indicated an increase in the number of variants 

with low P values (Supplementary Fig. 1), even after the exclusion of variants in regions 

previously reported as associated with PD risk at a genome-wide significant level 

(Supplementary Table 3).

The meta-analysis identified 35 loci associated at P < 1 × 10−6, including 15 loci with P < 5 

× 10−8 (Fig. 2, Supplementary Figs. 2 and 3, Supplementary Table 4). Only two of the 

previously reported loci (BCKDK:rs14235 and MAPT:rs17649553) and 2 of the 20 

suggestive loci (FCGR2A:rs4657041, ITGA2B:rs5910) were in linkage disequilibrium (LD) 

(r2 > 0.8) with variants associated (at P < 5 × 10−8) with any phenotype in the NHGRI 

GWAS catalog15. Significant pleiotropy of PD risk loci with other complex diseases has not 

been identified16, but this pleiotropy landscape may change as more modest effects are 

uncovered.

We next sought validation of these 35 candidate loci in an independent cohort of 5,851 cases 

and 5,866 controls of European ancestry genotyped with the semi-customized NeuroX 

Illumina array8,17 (Fig. 1). Twenty-nine of the 35 loci either were directly genotyped on the 

NeuroX array or had suitable proxies (r2 > 0.9 with the original SNP; Supplementary Table 

5). Weaker proxies at four additional SNPs (r2 > 0.5) were available but were not used for 

validation in this study (Supplementary Table 5). In a replication-phase joint analysis of 

these 29 loci (meta-analysis of PDGene, PDWBS, and NeuroX), 16 had P < 5 × 10−8 (Table 

2). Of these 16, all but 3 (rs4073221, rs10906923, and rs9468199) were also nominally 

associated in the NeuroX study (one-sided P < 0.05). A genetic risk score8,18,19 defined by 

these 16 loci, in addition to the previously reported loci, had a non-negligible ability to 

predict PD case status (area under the curve, 0.6518; 95% CI, 0.6419–0.6616). This 

represents a significant improvement over the predictive power of risk scores defined by 

previously reported loci alone (P = 6 × 10−8) (Supplementary Note 1). In sum, we identified 

16 independent PD risk loci with a joint P < 5 × 10−8 and 1 locus (rs601999) with P < 5 × 

10−8 in the discovery cohort with no suitable proxy for replication in the NeuroX cohort 

(Table 2).

Overall, 11 of 17 novel loci were in high LD (r2 > 0.8) with at least one variant predicted to 

affect transcription factor binding (Supplementary Table 6). Of the 17 novel loci and 24 

previously reported loci, 10 contained residual associations with P < 1 × 10−3 after 

conditioning on each region’s most significant SNP in the PDWBS data (Supplementary 

Table 7). These regions included three of the four independent secondary signals reported by 

Nalls et al.8, as well as one variant previously reported at a non-genome-wide significant 

level (P = 5.15 × 10−7)20.

We note that the HLA region association with PD is particularly complex. Two candidate 

genes from the HLA region were nominated on the basis of support from either a protein-

coding variant or an eQTL (Fig. 3). This is in line with a previous study that suggested that 

the PD association in the HLA region may point to multiple HLA factors, including 
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independent regulatory factors21. The association pattern observed at this locus may be 

reminiscent of the HLA association observed in schizophrenia and linked to C4 copy 

number22.

The identification of the causal variants and genes underlying regions associated with 

common, complex disease is a major challenge23. Several statistical methods have been 

proposed for the fine-mapping of causal variants23–25. Alternatively, some studies have 

narrowed down lists of candidate genes by combining multiple levels of evidence with 

scoring-based strategies26,27. Here we implemented a neurocentric strategy to nominate 

candidate genes for PD-associated loci.

We incorporated seven sources of data to annotate the index variant and linked variants from 

PD-associated loci (including eQTLs and expression data from GTEx28, as well as 

expression data from brain cell types in mice29; a full list is provided in the Online 

Methods). We used a two-stage approach to assign candidate genes to each locus (see the 

Online Methods for further details, and Supplementary Fig. 4 for a graphical visualization). 

In the first stage, we assigned a gene to a locus if (i) the index SNP or linked variants (r2 > 

0.6) altered the protein sequence or (ii) the index variant was a cis-eQTL for the gene. When 

no candidate genes were identified by the first stage, we ranked neighboring gene(s) on the 

basis of neurologically related phenotypes and expression and assigned the gene with the 

highest score to the locus (Online Methods).

With this strategy we identified a single candidate gene for 28 loci, and multiple candidate 

genes with similar levels of supporting evidence for 13 loci (Fig. 3, Supplementary Figs. 5 

and 6). The candidate-gene nomination strategy confirmed several known PD risk genes, 

including GBA, LRRK2, SNCA, and MAPT. Among the 41 PD risk loci, a total of 29 loci 

(71%) had either a protein-altering or a cis-eQTL variant linked to the index SNP 

(Supplementary Tables 8 and 9). In addition, we carried out a colocalization analysis to 

determine whether the GWAS signal and the eQTL signal pointed to the same causal 

variant30 (Supplementary Note 1). Seven candidate genes also had evidence for protein–

protein interaction (Online Methods, Supplementary Table 10). Further studies are needed to 

experimentally determine the causal genes in the PD risk loci; however, the identification of 

candidate genes provides testable hypotheses for functional studies.

To gain insight into the biology, we tested the identified candidate genes in the 41 PD risk 

loci for association with any pathways or gene sets compared with a background gene list 

(Online Methods). We investigated whether candidate genes were enriched for pathways 

previously implicated in PD: autophagy, lysosomal, and mitochondrial biology1. PD-

associated signals were enriched (at a threshold of P < 0.05/3 = 0.017) for lysosomal and 

autophagy genes (P = 3.35 × 10−6 and P = 5.71 × 10−3, respectively). The addition of 

candidate genes more than doubled the number of lysosomal genes observed in PD loci and 

improved the enrichment significance (Pall_loci = 3.35 × 10−6, Pnovel_loci = 3.64 × 10−5). We 

also observed that one previously identified gene (MCCC1) and two novel candidate genes 

(COQ7 and ALAS1) mapped to the mitochondrial gene set (Supplementary Table 11).
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Lysosomal biology and its role in the degradation of protein aggregates emerged as a highly 

significant pathway in PD risk. Among the five candidate genes linked to lysosomal biology, 

two were previously identified candidate genes (GBA (glucocerebrosidase) and TMEM175 
(transmembrane protein 175)), and three were newly identified candidate genes (CTSB 
(cathepsin B), ATP6V0A1 (ATPase H+ transporting V0 subunit a1), and GALC 
(galactosylceramidase)). Glucocerebrosidase is required for normal lysosomal activity and 

α-synuclein degradation. In addition, GBA loss-of-function alleles are a common PD risk 

factor31. TMEM175 was recently shown to encode a potassium channel that can regulate 

lysosomal function32, and the missense variant TMEM175 M393T is strongly linked to the 

index variant in the region (Supplementary Table 8). CTSB is a lysosomal cysteine protease. 

A PD risk allele is linked to a cis-eQTL for CTSB in multiple tissues (Supplementary Table 

9), where the risk allele is associated with reduced levels of CTSB mRNA. Double-knockout 

mice for Ctsb and Ctsl (cathepsin L) show a tremor phenotype with cerebral and cerebellar 

atrophy33. CTSB is also capable of degrading membrane-bound and soluble α-synuclein in 

mice34.

Autophagy is the catabolic process that targets long-lived proteins and dysfunctional 

organelles for lysosomal degradation. Autophagy and lysosomal degradation have been 

implicated in PD by rare familial and common GWAS-associated GBA variants. We note 

that a strong cis-eQTL for lysine acetyltransferase 8 (KAT8) is associated with PD risk, with 

lower levels of KAT8 mRNA linked to increased PD risk. Inhibition of KAT8 was recently 

shown to decrease autophagic flux35.

Next, we used INRICH36 to investigate whether PD-associated regions were enriched for 

gene sets in an unbiased fashion. Once again, we found significant enrichment of the 

lysosomal pathway (Padjusted = 0.02) (Supplementary Table 12). We further examined the 

expression of the PD candidate genes in a brain-specific cell-type expression data set in 

mice29; however, we observed broad expression across the major brain cell types, and no 

clear cell-type-specific pattern was evident (Supplementary Fig. 7).

Among the candidate genes newly identified in this study is SH3GL2 (SH3 domain-

containing GRB2-like 2, endophilin A1), a gene recently demonstrated to be phosphorylated 

by LRRK2 and which may have a role in clathrin-mediated endocytosis of synaptic 

vesicles37. Dysregulation of Elovl7 (elongation of very long chain fatty acids protein 7) in 

mice results in several neurological phenotypes, including inflammatory astrocytosis and 

microgliosis in the brain, and neuronal degeneration38. Upregulation of the candidate gene 

SCN3A (sodium voltage-gated channel α-subunit 3) enhances neuronal excitability and is 

associated with epilepsy in both humans and animal models39.

The new loci also encode three transcription factors: SATB1, ZNF184, and TOX3. TOX3 

has been implicated in neuronal survival40, and SATB1 has been associated with T cell 

function, particularly the development of regulatory T cells41.

Several of the PD candidate genes are within the ‘druggable’ genome42, including the 

previously identified serine/threonine kinase 39 (STK39) and the novel candidate gene 

inositol 1,4,5-trisphosphate kinase B (ITPKB). An in-frame deletion of ITPKB 
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(rs147889095) is linked to a PD-associated variant, and complete loss of ITPKB was 

reported in a patient with common-variable immunodeficiency43. STK39 is a kinase linked 

to hypertension44, regulation of K+ levels, and the cellular stress response.

In summary, this study presents what to our knowledge is the largest meta-analysis of PD so 

far, involving a total of 26,035 cases and 403,190 controls. We identified 17 novel PD loci 

and, using a neurocentric candidate-gene nomination pipeline, found that several of the 

newly identified PD risk genes have a role in lysosomal biology and autophagy. The 

identification of these candidate genes allows for the prioritization of functional studies to 

determine causal genes for PD and possible therapeutic targets.

ONLINE METHODS

PDWBS GWAS

The PDWBS is a genome-wide analysis of 6,476 PD cases and 302,042 control subjects, all 

of whom were customers of 23andMe Inc. and consented to participate in research. The 

study protocol was approved by the external AAHRPP-accredited institutional review board, 

Ethical and Independent Review Services (E&I Review). Cases and controls were 

designated on the basis of surveys10. Controls were selected from 23andMe Inc. research 

participants who did not self-report as having been diagnosed with PD. Although the use of 

self-reported controls can result in a reduction of power, the effect of this on the current 

study was probably minimal (Supplementary Note 1). Any samples present in the PDGene 

study8 were removed from the PDWBS analysis. The average age of cases and controls was 

67.6 and 50.8 years, respectively. The study also included 147 cases (2.3%) and 554 controls 

(0.18%) that were LRRK2 G2019S carriers. Removing LRRK2 G2019S carriers from the 

analysis removed genome-wide significant associations at the LRRK2 locus.

DNA extraction and genotyping were performed on saliva samples by CLIA-certified CAP-

accredited clinical laboratories of the Laboratory Corporation of America. Samples were 

genotyped on one of the following four platforms: V1 and V2, two variants of the Illumina 

HumanHap550+ BeadChip, with ~25,000 custom SNPs and ~950,000 total SNPs; V3, 

Illumina OmniExpress+BeadChip with custom SNPs to increase overlap with the V2 chip, 

with a total of ~950,000 SNPs; and V4, a custom chip that included SNPs overlapping V2 

and V3 chips, low-frequency coding variants and ~570,000 SNPs. Samples with a call rate 

lower than 98.5% were reanalyzed, and research participants with samples that failed 

repeatedly were re-contacted and asked to provide additional samples.

Research participants were restricted to those of mainly (>97%) European ancestry10,45. All 

research participants in the study were also required to share <700 cM identity by descent 

(IBD) (estimated by a segmental IBD estimation algorithm46), corresponding approximately 

to the sharing expected between first cousins. We additionally excluded individuals who 

shared >700 cM IBD with any 23andMe research participant whose data was used in the 

PDGene GWAS. Data were imputed on 1000 Genomes phase 1 haplotypes (September 2013 

release) with Minimac2 on default settings11,47. Imputation was run separately on data from 

each genotyping platform.
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For genotyped SNPs, SNPs were removed if they were genotyped on only the V1 and/or the 

V2 chip, if they failed a parent–offspring transmission test on trio data, if they were not in 

Hardy–Weinberg equilibrium (P < 10−20), or if they had a call rate < 0.90. For imputed 

SNPs, SNPs were removed if they had an average r2 < 0.5 or minimum r2 < 0.3 in any 

imputation batch, or failed a test for imputation batch effect (testing imputation dosage with 

imputation batch; P < 10−50).

We applied logistic regression assuming an additive model to test for association between 

case/control status and either genotypes or imputed dosages (for imputed SNPs). Only SNPs 

with minor allele frequency (MAF) > 0.1% were analyzed. Covariates were added to adjust 

for age, sex, the first five principal components, and genotyping platform version. A total of 

12,896,220 variants (11,933,700 SNPs) were analyzed. The genomic inflation factor was 

calculated from the median P value of analyzed variants. Scaling of the genomic inflation 

factor by sample size was carried out as described previously for 1,000 cases and 1,000 

controls48.

Meta-analysis of PD GWASs

Summary odds ratios, 95% CIs, and P values of the 10,000 most significant GWAS meta-

analysis results were obtained from PDGene (“URLs”). Cohort descriptions, quality control, 

and meta-analysis for this study have been described previously8. SNP s.e. was derived from 

the reported P values and odds ratios. More specifically, the z-statistic was calculated as the 

square root of the inverse χ-square transformation of the P value, and the s.e. was calculated 

as follows: s.e.m. = ln(odds ratio)/absolute(z-score).

There were 9,830 SNPs in common between the PDGene and the PDWBS data sets. A 

fixed-effects model based on inverse-variance weighting, as implemented in METAL, was 

used to combine summary statistics from the two studies14. Heterogeneity values (I2 and Q) 

were obtained with PLINK49. Novel signals of association were defined as genome-wide 

significant associations in the meta-analysis that did not overlap loci associated with PD at 

genome-wide significant thresholds in the PDGene data (35 loci with P < 1 × 10−6).

Joint analysis with NeuroX

The NeuroX cohort was previously described8,17. Briefly, 5,851 cases and 5,866 controls of 

European ancestry were genotyped on a semi-custom NeuroX array. A logistic regression 

was carried out to test for association, with covariates to adjust for age, sex, and population 

ancestry (the first five principal components). Twenty-five of the 35 novel loci were directly 

genotyped on the chip, and four additional SNPs had suitable proxies (r2 > 0.9). At these 29 

SNPs, we carried out a fixed-effects inverse-variance weighted meta-analysis14 for all three 

studies (PDGene, PDWBS, and NeuroX) as described above.

Conditional analysis

Conditional analysis was run on all 17 loci that were significantly associated with PD in the 

joint meta-analysis (P < 5 × 10−8) and the 24 previously reported PD loci using the PDWBS 

study. For each locus, SNPs within 500 kb of the index SNP (the SNP with the most 
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significant P value) were tested for association by the same methods as described above for 

the PDWBS GWAS with the index SNP added as an additional covariate.

Heritability estimates

We used LD score regression (LDSC)50,51 to compute the narrow-sense heritability (h2) 

estimates of PD in the PDWBS GWAS data (described above). Several methods exist for 

estimating h2 with GWAS data50–52. We used LDSC to estimate h2 in this study because it 

requires only summary-level data and is more computationally efficient for larger data sets. 

Reference LD scores were computed with the European ancestry subset of the 1000 

Genomes data for SNPs within 500 kb of the SNP to be scored. Strict filtering was applied 

to ensure the robustness of heritability estimates as recommended50,51. After filtering, Z-

scores for 7,629,099 SNPs from the 23andMe study were used as input to LDSC. We further 

used the stratified LD-score regression approach to partition heritability into 24 different 

cell-type-agnostic annotation categories including conserved regions, histone marks, DNase 

I hypersensitivity sites, ENCODE chromatin states, and enhancers51, as well as 10 different 

cell-type-specific histone annotations. Significant enrichment was assessed at a strict 

Bonferroni threshold of 0.0021 (0.05/24) for the 24 general categories, and 0.005 for the 

cell-type-specific enrichment.

Pleiotropy analysis: overlap with EBI-NHGRI GWAS catalog

Data were downloaded from the EBI-NHGRI catalog15 (version available on 17 April 

2016). If a variant in the meta-analysis was within 500 kb and in LD (r2 > 0.8) with an 

association (P < 5 × 10−8) in the catalog, the meta-analysis signal was considered to be 

overlapping the reported signal.

A neurocentric strategy to identify candidate causal variants and genes

Associated index SNPs were paired to candidate genes on the basis of two broad levels of 

evidence: variant-level support and gene-level support (see Supplementary Fig. 4 for a 

graphic representation). In the former category, index SNPs were paired with candidate 

genes if there was evidence that the index SNP or an SNP in LD (r2 > 0.6) with the index 

SNP was annotated with a putative high-impact variant (chromosome number variation, 

exon loss variant, frame-shift variant, rare amino acid variant, splice donor or acceptor 

variant, start-lost, stop-gained or stop-lost, and transcript ablation) or moderate-impact 

variant (3′ or 5′ UTR truncation and exon loss, coding sequence variant, disruptive in-

frame deletion or insertion, in-frame deletion or insertion, missense variant, regulatory 

region ablation, splice region variant, and transcription factor binding-site ablation). We 

obtained variant annotations by running SnpEff53 on dbSNP build 142. A second source of 

variant-level support consisted of cis-eQTL evidence. Cis-eQTLs as pre-computed by GTEx 

(v6)28 were downloaded directly from the GTEx portal (“URLs”). Although eQTL results 

were available for 46 tissues, including ten regions from the brain, our search for eQTLs was 

limited by the sampled tissues and cell types, and therefore we might have missed any 

eQTLs that are cell-type or tissue specific, in addition to eQTLs that are present only under 

certain stimuli (for example, ‘response’ eQTLs). The index SNP was tested for significant 

association with any gene where the TSS was within 250 kb of the index SNP. As roughly 

90% of eQTLs are within 250 kb of a gene28, it is likely that we captured the majority of 
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eQTLs while missing rarer, more distal events. For brain eQTLs, a strict Bonferroni 

correction was applied to the raw eQTL P values to adjust for multiple testing of genes 

within 250 kb of the index SNP. For other tissues, only eQTLs with a false discovery rate of 

<0.05 as determined by GTEx28 were considered. We weighted brain and non-brain eQTLs 

equally.

Gene-level support was used when an index SNP had no candidate genes supported by 

variant-level data as described above. A list of genes within 250 kb of the index SNP was 

obtained (gene models used by GTEx were downloaded from the GTEx portal), and each 

gene was scored for neurological relevant features or annotations. Genes were first weighted 

for neurological relevant phenotypic annotations. Genes were (i) scored for being 

differentially expressed between PD patients and healthy controls (see Supplementary Note 

1 for further details) (311 genes total genome-wide); (ii) annotated with ‘neuro’-associated 

phenotypes in FlyBase54 (1,521 genes); (iii) scored for behavioral, neurological, and 

olfactory phenotypes annotated in MGI55 (3,890 genes); and (iv) annotated with any 

phenotypes related to neurological disorders or the brain in OMIM56 (521 genes). Lastly, 

genes were scored for being expressed (median expression across samples > 2 reads per 

kilobase per million mapped reads) in any cohort of GTEx brain region samples (15,197 

genes) or in at least one brain cell type in the mouse expression data set29 (astrocyte, 

microglia, neuron, or oligodendrocyte) (12,092 genes). For the gene-level support, we used a 

tiered scoring scheme to weight phenotypic annotations more heavily than expression in the 

brain (scores demarked in Supplementary Fig. 4) to enrich for genes with demonstrated 

neurological related roles. At each locus, the gene (or tied genes) with the highest score was 

nominated as the candidate gene for the region.

Protein–protein and coexpression analysis

All protein-coding genes within 250 kb of PD-associated loci (Supplementary Table 13) 

were used as input to STRING57. Gene pairs that were either coexpressed or involved in 

experimentally validated protein–protein interactions with a medium score or higher (score ≥ 

0.4) are reported in Supplementary Table 10.

Pathway enrichment analysis

Previously reported PD loci and novel PD associations were tested for enrichment in 

particular pathways or gene sets. First, the nominated candidate genes for these PD-

associated loci were tested for enrichment in several targeted gene sets by a hypergeometric 

test. The background list of genes for comparison was matched to the neurological-centric 

candidate-gene nomination pipeline. The background list thus consisted of genes that had 

mouse knockout phenotypes, had fly mutant phenotypes, had OMIM-related phenotype 

annotations, had nominally significant cis-eQTLs in GTEx, were differentially expressed in 

PD patients versus controls, and were expressed in GTEx brain tissue or mouse brain cell 

types in the Barres data set.

We obtained mitochondrial genes from MitoMiner58 using the MitoCarta59,60 reference set 

after excluding genes that mapped to the mitochondria (genes that map to the mitochondria 

were not included in this metaanalysis). Lysosomal genes were obtained from the hlGDB61 
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using only the proteomics and literature resources. Finally, we obtained autophagy genes 

from the Human Autophagy Database62, as well as ten additional genes reported in a recent 

siRNA screen of autophagic flux modulators35. A list of all genes in each pathway is 

provided in Supplementary Note 1. The minimum P value per gene (for genes that an SNP 

within the 9,830 variants assayed in this meta-analysis mapped to) is provided in 

Supplementary Tables 14–16.

Second, we applied a non-targeted gene-set enrichment approach using INRICH36 to assess 

whether regions associated with PD were enriched for genes in KEGG63 and Gene Ontology 

(GO)64 gene sets. The 24 previously reported PD index variants and the 17 novel PD-

associated variants reported in this study were used as input into PLINK’s65 “show-tags” 

function. The European 1000 Genomes12 samples were used for reference LD patterns. An 

interval for each PD-associated variant was defined as the region from the leftmost tag 

variant to the rightmost tag variant in the 1000 Genomes data.

We ran INRICH on these 41 intervals with the default settings, with the exception of 

increasing the number of replicates and bootstraps to 5,000 (-r 5000 --q 5000) and setting 

the pre-compute feature to false for software stability (-c). Enrichment for KEGG and GO 

gene sets was assessed separately.

Data availability

A Life Sciences Reporting Summary for this paper is available. Summary statistics for the 

9,830 variants presented in the discovery phase meta-analysis are available at http://research-

pub.gene.com/chang_et_al_2017. The full GWAS summary statistics for PDWBS will be 

made available through 23andMe and Genentech to qualified researchers under an 

agreement with 23andMe that protects the privacy of the 23andMe participants and an 

agreement with Genentech for data sharing. Please contact D.H. (dhinds23andme.com) for 

more information and to apply to access the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A flow chart of the two-stage meta-analysis design. In stage 1, we carried out a meta-

analysis of 9,830 SNPs between the PDWBS and PDGene studies. Thirty-five loci with P < 

1 × 10−6 were carried forward into the replication-phase meta-analysis. In stage 2, we 

carried out a meta-analysis between the two discovery-phase studies and the NeuroX study 

for these 35 loci. Of these loci, 16 of the 29 available in NeuroX and 1 locus without 

replication data were carried forward for downstream analyses (see the main text for further 

details).
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Figure 2. 
Results of the Parkinson’s disease discovery-phase meta-analysis. The top SNPs in 

associated regions are indicated by pink symbols. Candidate genes for previously associated 

loci are labeled in black (P < 5 × 10−8 in the discovery phase) or gray text (P > 5 × 10−8 in 

the discovery phase); candidate genes for newly identified loci are labeled in red. The y-axis 

shows the two-sided unadjusted −log10(P) values for association with PD. SNPs with P < 1 

× 10−25 are indicated by triangles.
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Figure 3. 
The candidate genes for regions associated with Parkinson’s disease. The most likely 

candidate gene is annotated for each region that was significantly associated with PD in the 

final joint analysis. Black or gray text indicates previously reported loci that had P values 

less than or greater than 5 × 10−8 in the discovery phase, respectively. Red text indicates 

newly identified loci that were significantly associated with PD in the final joint analysis. 

Gray lines at the outer edge spanning multiple genes indicate candidate genes within a single 

locus. Chromosome numbers are shown in the gray shaded ring, and support for candidate 

genes is indicated by color-coding in the inner rings. The innermost ring indicates 

expression of the gene in brain cell types (in a mouse expression data set) or in human brain 

regions (in GTEx), or differential expression between PD brains and healthy control brains.
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