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ABSTRACT

Background. Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting millions of

women worldwide. The pathophysiology of this condition is unclear but is believed to be caused

by some genetic and environmental factors. PCOS is associated with a range of reproductive,

metabolic and dermatological disorders and therefore, the economic burden of this condition

can be potentially significant for the public health system in the UK.

Methods. The methodology used for this research includes several parts. Firstly, I conducted

literature reviews to identify studies reporting the prevalence of PCOS and morbidities associ-

ated PCOS. The Bayesian hierarchical model was then applied to model data from the published

studies. This forms the first part of this research for which the analysis was based on aggre-

gate data. In the second part, I investigated the incidence and prevalence of PCOS under the

specific UK context using data from The Health Improvement Network (THIN), a primary care

database with over 500 general practices contributing data each year. I then used a multi-state

Markov model to simulate the population dynamics of PCOS and evaluated the associated eco-

nomic burden of care as well as the quality of life for the entire population with this condition

in the UK.

Results. The prevalence estimates from community studies are generally much higher compared

with that from database studies. The prevalence of PCOS varies for different diagnostic criteria

and across distinct ethnic groups. Women with PCOS are at higher risk of type 2 diabetes,

obesity, cardiovascular diseases and pregnancy complications and are more likely to experience

psychological disorders. The prevalence of PCOS in the UK is estimated to be approximately

2% based on the primary care data, with an annual incidence rate of 2 per 1000 person-year.

There is wide variation in the prescriptions initiated for the PCOS patients. The prevalence of
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type 2 diabetes in the PCOS population is estimated to increase to approximately 26% in the

next 25 years in the UK, which significantly reduces the quality of life for individual patients

and incurs massive amount of healthcare-related costs for the National Health Service (NHS).

Conclusions. The large gap between the prevalence rates estimated from community and

database studies suggests that PCOS is a condition without much public awareness and under-

reporting is often observed. The differences in prevalence rates estimated according to different

diagnostic criteria indicates the potential issue of under- and over-diagnosis of the condition

at present. The ethnic variation in terms of the diagnostic criteria, disease monitoring and

management may need to be considered carefully. The prescribing patterns of PCOS in the

primary care suggest that currently, there is lack of most effective treatment for this condition

and patients generally receive treatments tailored to their external symptoms. The prevalence

of type 2 diabetes among PCOS patients is estimated to be high, resulting in massive amount

of healthcare costs and reduced quality of life for PCOS population in the UK. Early screening

is likely to help reduce the adverse outcomes associated with PCOS for this selected population

and it may be cost effective to include them in the current Diabetes Prevention Programme.

This may help improve the detection of symptoms indicative of diabetes in PCOS patients to

allow early interventions and save significant amount of healthcare costs for the NHS from the

country perspective.
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THESIS AIM AND STRUCTURE

The aim of the research presented in the current thesis was to apply statistical approach for

health research to explore various aspects of polycystic ovary syndrome (PCOS), a disease

affecting millions of women worldwide.

Specific objectives were to:

� Conduct search to identify relevant literature reporting epidemiological outcomes of PCOS

and use statistical approach to establish the prevalence of PCOS in population with dif-

ferent ethnicity backgrounds;

� Explore the incidence/prevalence and prescribing patterns of PCOS in the UK using pri-

mary care database;

� Investigate the population dynamics of PCOS and evaluate the healthcare-related eco-

nomic burden and quality of life associated with this condition in the UK from 2014 to

2039.

The thesis consists of two main parts. In Part I, which consists of 3 chapters, I present

existing evidence in the empirical studies and modelling results based on aggregate data from

literature review for PCOS, which are presented in Chapter 1, 2 and 3. In Part II (including

Chapter 4 and 5), I discuss analyses conducted for PCOS mainly under the specific UK context,

including an exploratory analysis on the epidemiological outcomes and an economic evaluation

using individual level patient data from primary care in the UK. Finally, Chapter 6 summarises

and concludes the main findings from the current research and discusses the impact of the

results from both a global and country perspective as well as the implication for practice and

future research.

The thesis is structured as follows: Chapter 1 gives an overview of PCOS including the
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discovery and major diagnostic criteria of PCOS, morbidities associated with PCOS and the

common treatments for the condition. This chapter aims at providing the reader some back-

ground information of PCOS such that the reader can grasp some basic understanding about

the disease.

Chapter 2 describes the proceedings and results of systematic literature reviews. This is

of great importance because from the literature review, I obtained extensive knowledge about

various aspects of PCOS. In addition, previous studies enable me to further investigate my main

research questions into depths. This chapter introduces the methods and results of database

searches, including details of search words, inclusion criteria for study selection, qualitative

results from individual studies and quality assessment for each study considered. The majority

of the data identified from this Chapter were further used to populate our statistical models,

which is discussed in Chapter 3.

Chapter 3 introduces the methods and main findings for our prevalence estimation of PCOS

and its associated diseases. I firstly provide some background information about evidence syn-

thesis and meta-analysis, which are the main methodologies leading the whole chapter. I then

discuss the specific modelling approach used to establish the prevalence of PCOS and its associ-

ated diseases by synthesising evidence from the published studies. Furthermore, the generalised

meta-analytic models using Bayesian methods are described, which forms the basis of the pack-

age I created for R named bmeta. The bmeta package was motivated by the need to combine

evidence from multiple sources for decision making. The implementation and graphical functions

as well as the web application of bmeta are discussed through sample data for PCOS obtained

from the literature review in Chapter 2.

Chapter 4 presents the methods and results from a database study where I used The Health

Improvement Network (THIN) to evaluate the epidemiology and prescribing patterns of PCOS

under the UK context. I firstly introduce the UK primary care and the motivation of this

database study. The data analysis plan (i.e. patient identification process, statistical modelling

approach for individual level patient data) and main findings for this database study are then

described. Finally, I interpret the results and compare with evidence from empirical studies to

make conclusions and discuss the potential implications.

In Chapter 5, I discuss the economic and utility analysis conducted for PCOS. I attempted to

estimate the healthcare burden of PCOS in the UK in the next 25 years by using a Markov multi-
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state model. Different health states through the disease progression were considered and included

in the model. The model was populated by data from multiple sources and for parameters that

lack enough data to inform, reasonable assumptions were used and uncertainties were assessed

through sensitivity analysis. The results from the model included the epidemiology of type

2 diabetes in the PCOS population, disease burden and quality of life for PCOS population

in the UK from 2014 to 2039. The implications of the main findings are described and some

recommendations for improving the current screening and diagnosis of PCOS are raised.

Finally, in Chapter 6, I summarise the main findings throughout the chapters of the thesis

and discuss the impact and implications of this research.
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Chapter 1

BACKGROUND

1.1 Chapter summary

Polycystic ovary syndrome (PCOS) has been recognised as the most common endocrine ab-

normality, affecting millions of women in reproductive age worldwide. In this chapter, I firstly

introduce the discovery of PCOS and the diagnostic criteria associated with it. I then discuss

PCOS-related diseases and common treatments prescribed to women with PCOS. This intro-

ductory chapter about PCOS aims at giving the reader a general understanding of the disease.

1.2 Discovery and definition of PCOS

Polycystic ovary syndrome (PCOS) remained clinically unexplored until 1935 when two Amer-

ican gynaecologists, Irving Stein and Michael Leventhal, reported seven women who presented

with amenorrhea and excess growth of terminal hair had enlarged ovaries containing small col-

lections of follicles (Adi and Tank, 2010). PCOS was called Stein-Leventhal Syndrome for a

number of decades after their first description to honour the pioneering achievements by these

two gynaecologists.

Since its discovery, many medical specialists have manifested great interests in this research

area and, over the past years, the scientific community has witnessed a rapid increase in the

amount of published literature for this complex syndrome. PCOS is nowadays recognised as

a heterogeneous endocrine abnormality whose principle clinical characteristics include oligo-

ovulation (light or infrequent menstrual periods) or anovulation (failure of the ovary to release
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ova for more than 3 months), hyperandrogenism (elevated androgen level which may lead to

acnes or excess growth of terminal hair on body and face), and polycystic ovaries (many small

cysts in the ovary) (Sirmans and Pate, 2014). Its pathophysiology remains largely unknown but

many believe that PCOS appears to be familial, with its various aspects differentially inherited

from one generation to the next (Livadas and Diamanti-Kandarakis, 2013).

The phenotypes of PCOS are observed to vary in each case as well as in different ethnic

groups and, for an individual case, symptoms and signs of PCOS also change gradually over

time, making its diagnosis and evaluation challenging for clinical practice (Livadas and Diamanti-

Kandarakis, 2013; Balen et al., 2005).

The three major diagnostic criteria for PCOS that are widely followed are the 1990 National

Institutes of Health (which is abbreviate as “NIH”, Zawadzki and Dunaif, 1992), the 2003

Rotterdam Consensus (“Rotterdam”, Rotterdam and ASRM-Sponsored, 2004a,b) and the 2006

Androgen Excess Society (“AES”, Azziz et al., 2006). Details of these 3 definitions are provided

in Table 1.1.

Table 1.1: Three major diagnostic criteria of PCOS.

1990 NIH 2003 Rotterdam 2006 AES

Includes all of the followings:
1. Clinical and/or biochemical
signs of hyperandrogenism
2. Menstrual dysfunction
AND exclusion of other
disorders*

Includes any 2 of the followings:
1. Clinical and/or biochemical
signs of hyperandrogenism
2. Ovarian dysfunction
(Oligo-ovulation or anovulation)
3. Polycystic ovaries
AND exclusion of related
disorders*

Includes all of the followings:
1. Hyperandrogenism
(hirsutism and/or
hyperandrogenemia)
2. Ovarian dysfunction
(Oligo-anovulation and/or
polycystic ovaries)
AND exclusion of related
disorders*

*Possibly exclude congenital adrenal hyperplasia, 21-hydroxylase-deficient non-classic adrenal hyperpla-
sia, androgen-secreting neoplasms, androgenic/anabolic drug use or abuse, Cushing’s syndrome, thyroid
dysfunction, the syndromes of severe insulin resistance and hyperprolactinemia

Arguably, the NIH is the strictest criterion while the Rotterdam covers a broadest spectrum.

The AES removes a combination of terms from the Rotterdam. Therefore, there is an inclusive

and exclusive relationship between the three major criteria of PCOS: the Rotterdam contains

the AES, which in turn contains the NIH.
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1.3 PCOS-related disorders

PCOS is associated with a variety of reproductive, cardiometabolic and dermatologic abnormal-

ities. Patients are often observed to have psychological problems as well as reduced quality of

life (Azziz et al., 2005).

Menstrual irregularity, one of the major diagnostic criteria of this complex syndrome, is

considered to be prevalent among the PCOS population in reproductive age (Fauser et al.,

2012). The cyclic vaginal bleeding (generally known as “menses” or “periods”), normally occurs

at intervals within the range of 22 to 35 days, with variation in length of no more than 2 or 3

days every month (Balen et al., 2005; Azziz et al., 2005). However, the frequency of ovulation

for PCOS patients is largely unpredictable (Fauser et al., 2012). The presence and severity of

ovulation dysfunction is related to many factors, for instance body mass index (obese or not), or

whether the patient has other hormonal disorders (Balen et al., 2005). As menstrual disturbance

is a common clinical presentation for PCOS patients, their overall fecundability is reduced and

a great number of PCOS patients is reported to suffer from infertility (Azziz et al., 2005).

Apart from infertility, there is evidence that menstrual dysfunction may result in an increased

risk of endometrial hyperplasia (Cheung, 2001), which is caused by the continuous secretion of

unopposed oestrogen without regular ovulation (Hardiman et al., 2003). This may further lead

to various gynaecological neoplasia although currently we still lack enough supporting evidence

due to the scarcity of large-scale studies (Balen et al., 2005).

A growing body of literature has suggested that PCOS patients are at increased risks for

cardiometabolic disturbances (Moran et al., 2010b) because insulin resistance is observed to

appear in approximately 50-70% of PCOS population (Ovalle and Azziz, 2002). The most

common metabolic disorder associated with PCOS is type 2 diabetes and it is suggested that

the healthcare-related economic burden of PCOS is largely attributed to diabetic care (Azziz

et al., 2005). The elevated level of insulin also stimulates the ovary to generate excess androgen

and inhibits the production of sex hormone-binding globulin (SHBG), with the latter process

allowing more free androgen as well as oestrogen to be biologically active (Tsilchorozidou et al.,

2004). This “vicious cycle” of continued excess hormonal secretion aggravates anovulation and

possibly endometrial hyperplasia that mentioned previously (Teede et al., 2010a).

Not surprisingly, it is also common for PCOS patients to have androgen excess diseases such

as hirsutism—the presence of excess terminal hairs in a male pattern in women (Bode et al.,
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2012), acne and alopecia. Studies have indicated that acne and hirsutism appear more frequently

in younger women while older women are more likely to experience alopecia (Balen et al., 2005).

However, due to the fact that levels of androgen in circulation are negatively associated with age,

it is expected that the degree of various symptoms of hyperandrogenism may decrease gradually

over time (Winters et al., 2000; Piltonen et al., 2004).

As women with PCOS are plagued with a great number of complications across the lifespan,

many of them experience different degree of psychological disorders and have reduced quality of

life. For example, infertility may lead to tensions between family members; acne and hirsutism

can result in altered self-perception and low self-esteem; metabolic disorders such as type 2

diabetes mellitus can cause severe problems at work (Balen et al., 2005; Li et al., 2011a).

Overall, it is universally accepted that PCOS is a complex and heterogeneous disorder ad-

versely affecting women throughout the lifespan. This pinpoints the importance of early detec-

tion, long term monitoring and management of PCOS for clinical practice as well as the public

awareness of this syndrome.

1.4 Treatments of PCOS

The exact ætiology of PCOS remains unclear and is believed to be due to some inherited

genetic characteristic. Consequently, PCOS itself is largely incurable and treatment are tailored

to various health consequences of PCOS (Barthelmess and Naz, 2014; Teede et al., 2010b).

As PCOS is largely caused by hormonal imbalances, many treatments are designed to break

the “vicious cycle” of excess hormonal production. Oral contraceptive pills (OCP) are the most

common treatment for PCOS women presenting menstrual disturbances but not desiring preg-

nancy (Barthelmess and Naz, 2014; Meyer et al., 2007). They help regulate the cycle of menses

and protect from endometrial hyperplasia (Teede et al., 2010b), with an additional advantage

of reducing androgen production, which relieves the clinical symptoms of hyperandrogenism

(Barthelmess and Naz, 2014; Meyer et al., 2007). However, there are concerns that high doses of

OCP may be a risk factor for both metabolic and cardiovascular diseases by worsening glucose

tolerance and arterial stiffness (Meyer et al., 2007).

This draws the attention to another treatment, metformin, which can ameliorate clinical

presentations of PCOS such as menstrual irregularity and hirsutism without negative car-

diometabolic impacts (Teede et al., 2007). It is also suggested by the International Diabetes
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Federation (IDF) that metformin can, to some extent, prevent diabetes when lifestyle modifica-

tion is not an adequate approach (Meyer et al., 2007; Alberti et al., 2007).

While both oral contraceptive pills and metformin are recommended treatments for PCOS

by numerous endocrine societies worldwide, it should be noted that neither of them are approved

specifically for PCOS by a majority of regulatory bodies (Teede et al., 2010b).

Lifestyle modification, including dietary therapies and regular exercises, is another treatment

option and has been proved to be especially suitable for obese PCOS women (Moran et al., 2009)

as obesity worsens hormonal imbalances and exacerbates many adverse health consequences

associated with PCOS (Legro, 2012). There is evidence that for the obese PCOS population,

weight loss is significantly beneficial to ameliorate anovulation, menstrual irregularity, infertility,

psychological disorders as well as cardiometabolic risk factors associated with PCOS (Clark et al.,

1998; Huber-Buchholz et al., 1999). Even for PCOS women who have normal weight, weight

control should still be emphasised (Barthelmess and Naz, 2014).

Several treatments have been proved to be effective for infertility. Ovulation induction using

clomiphene citrate or clomiphene is probably the simplest one (Barthelmess and Naz, 2014; Azziz

et al., 2005). Another method of ovulation induction called laparoscopic ovarian drilling (LOD)

can be used in case that clomiphene citrate therapy fails to induce ovulation (Barthelmess and

Naz, 2014). This has achieved a remarkably high success rate of 84% in infertile PCOS women

(Gjønnaess, 1994). A major advantage of this method is that it improves hormonal balances.

Specifically speaking, both insulin resistance and excess androgen production are improved by

means of LOD (Seow et al., 2007), which also lowers risks of multiple pregnancies and ovarian

hyperstimulation syndrome frequently associated with clomiphene citrate therapy (Flyckt and

Goldberg, 2011). Furthermore, there is a higher chance for PCOS women to have a second child

by using LOD (Nahuis et al., 2011).

In vitro fertilisation (IVF) is probably a last resort for infertile PCOS women if the above

methods fail to create a pregnancy (Barthelmess and Naz, 2014), with similar rates achieved as

women received a mechanical tubal factor (Homburg et al., 1993). A new method called in vitro

maturation has been utilised although its implantation has not achieved rates as high as that

of traditional IVF procedure. However, it reduces the multiple pregnancy rate while maintains

a similar delivery rate compared to outcomes of IVF (Shalom-Paz et al., 2012).

The most common treatments of hirsutism are pharmacological and cosmetic therapies
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(Moghetti and Toscano, 2006; Azziz et al., 2005). Pharmacological therapies aim at reduc-

ing the androgen level in hirsute PCOS women while cosmetic therapies help remove the excess

terminal hair. In terms of pharmacological therapies, oral contraceptives, which suppress excess

androgen production by the ovary, is widely used although limited efficacy is observed. Some

studies have suggested that anti-androgen drugs such as cyproterone acetate, spironolactone

and flutamide appear to be highly effective treatments for hirsutism (Moghetti and Toscano,

2006). Laser treatment, which can result in large reduction in the severity of excess facial hair,

is generally considered to be an optimal alternative for hirsutism (Clayton et al., 2005). It is

also worth mentioning that eflornithine cream has recently become a licensed treatment, with a

main function of removing excess facial hair (Moghetti and Toscano, 2006).

Acne, another dermatological disorder caused by hyerandrogenism in PCOS patients, is often

treated by a combination of anti-androgens (mentioned previously as an option for treating

hirsutism) and traditional methods. Applications of retinoids, tretinoin, antibacterial agents,

azelaic acid, benzoyl peroxide as well as antibiotics such as topical treatments have been proved

to be effective for ameliorating acne but each of them has limitations (Moghetti and Toscano,

2006; Balen et al., 2005). For example, tretinoin may lead to skin irritation (Moghetti and

Toscano, 2006).

In conclusion, treatments of health consequences associated with PCOS are of a wide variety

and many of them are interrelated. Therefore, an integrated care plan accounting for various

aspects of PCOS is probably in need to achieve best treatment outcomes for PCOS population.

In the next chapter, I will introduce the evidence on major aspects of PCOS obtained from

systematic literature review, which provide further insight into the epidemiology of PCOS and

its associated morbidities.
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Chapter 2

PREVALENCE AND

COMORBIDITIES OF PCOS:

EVIDENCE FROM LITERATURE

2.1 Chapter summary

This chapter presents existing evidence on major aspects of PCOS identified through systematic

literature reviews conducted in common online databases including PubMed, EMBASE, The

Cochrane Library and CINAHL. This mainly includes data from published studies in terms of

the epidemiology of PCOS in the general population and the prevalence of morbidities associated

with PCOS (e.g. type 2 diabetes, metabolic syndrome) among PCOS population. The methods

used for the literature search and results from qualitative analysis are presented below.

2.2 Aim

The aim of the reviews was firstly to expand my knowledge of PCOS and then collect relevant

data to explore its epidemiology. Given there had been no review for the prevalence of PCOS

in the general population when the search was conducted, it was hoped that the findings from

the review can provide guidance for this aspect and if sufficient data were identified, statistical

modelling can be used to investigate the epidemiology of PCOS under a specific country context

or for different ethnic populations. Another objective was to collect relevant data for common
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metabolic disorders associated with PCOS, which can give me a better understanding of the

relationship between PCOS and other disease areas and potentially be relevant when proceeding

to the latter part of this thesis, e.g. economic evaluation of PCOS in the UK (discussed in detail

in Chapter 5).

2.3 Methods

2.3.1 Search strategies

A literature review for prevalence studies of PCOS was conducted up to January 2015 in the

following electronic databases: PubMed, The Cochrane Library, EMBASE, CINAHL. These are

common databases where medical literature was indexed. The following combination of essential

search words were used to identify studies evaluating epidemiology of PCOS:

((Stein-Leventhal syndrome) OR (polycystic ovary syndrome) OR

(PCOS)) AND ((prevalence) OR (incidence) OR (epidemiology))

The search was restricted to the English language.

Another search was conducted to identify studies that reported relative risk of common

metabolic disorders associated with PCOS, including impaired glucose tolerance (IGT), type 2

diabetes (DM2), metabolic syndrome(MetS). The methods for the key words search followed

exactly the same as the previous review (Moran et al., 2010b). The updated search extended

from March 2009 to January 2015 was conducted in the following databases: PubMed, EMBASE,

CINAHL (Cumulated index to Nursing and Allied Health Literature). Only articles published

in English language were considered.

2.3.2 Inclusion and exclusion criteria

The inclusion/exclusion criteria of prevalence studies were developed considering a list of

factors, e.g. population, intervention, comparator, outcomes and study type (abbreviated as

PICOS), as displayed in Table 2.1.

In terms of PCOS-related metabolic disorders, I followed the selection criteria as the

previous review (Moran et al., 2010b).
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Table 2.1: Eligibility criteria for study inclusion/exclusion.
Criterion Description

Population
Restricted to the general population, excluding patients seeking
care for specific diseases, e.g. type 2 diabetes, infertility

Intervention Not applicable

Comparator Not applicable

Outcomes Epidemiological outcomes of PCOS, i.e. prevalence, incidence

Study type
Studies were excluded if they were:
1. Reviews of PCOS
2. Prevalence of PCOS-related disorders

2.3.3 Data extraction

The following information was extracted from each of the prevalence studies considered:

� General characteristics of the study including author, year of publication, study period

and location

� Characteristics of the study sample, e.g. sampling scheme, sample size, number of PCOS

cases, age range, body mass index (BMI) and ethnicity

� Definition of PCOS (3 major criteria as suggested in Table 1.1, ICD-9 codes, medical

diagnosed PCOS, clinical PCOS, self-reported PCOS)

The data from studies of PCOS-related metabolic disorders were extracted in the same way

as the previous review, including setting and recruitment methods, diagnostic criteria of PCOS

and metabolic disorders (i.e. IGT, DM2, MetS), characteristics of sample population (e.g. age,

BMI), the total number of individuals who developed metabolic disorders in cases and controls

as well as the total number of individuals in case and control arm.

2.3.4 Quality assessment

To ensure the quality of studies included in the qualitative analysis and quantitative analysis

in Chapter 3, a methodological evaluation was performed for all the prevalence studies.

Given that few instruments have been designed to evaluate prevalence studies, I referred to

the Newcastle-Ottawa Scale (Stang, 2010) and the Joanna Briggs Institute critical appraisal

tool (Munn et al., 2014) and modified a few items within some of their categories. Seven items

with respect to various aspects were included (shown in Table 2.2):
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Table 2.2: Definition of items and score awarding criteria in quality assessment for prevalence
studies.
Item assessed Score 1 Score 0

Sampling
Appropriate sampling with
target population clearly defined
and probability sampling applied

Inappropriate sampling, i.e. convenient
sampling OR cases based on medical
records where schematic sampling was
not applied OR sampling scheme not
stated/unknown

PCOS measured
reliably and
objectively

Systematic screening performed
for sample population and PCOS
strictly defined

Medical records based on studies
where no systematic screening was
performed OR studies which used
self-reported PCOS (e.g. based on
questionnaire)

Response rate

Low non-participant rates (<30%)
of the initial target sample
population for further study
(systematic screening) OR low
non-response rate (<30%) of a
deliberated designed questionnaire

High non-response rate or refusal
rate to further study (≥30%) of the
initial target sample population
OR high non-response rate (≥30%)
of a deliberated-designed questionnaire
OR studies based on electronic
medical record where incomplete
patient information (i.e. missing data)
is a routine problem, leading to
incomplete ascertainment of cases
OR not stated/unknown

Sample size Sample size clearly stated Sample size not stated/unknown

Crude number
of cases

Crude number of cases clearly
stated

Crude number of cases not clearly stated

Age range

Age range of the sample
population is approximately same
as the reproductive age,
e.g. 15-45 years, 18-45 years,
17-45 years

Otherwise (narrower age range
OR upper/lower bound of age range
lying outside the limit, e.g. 18-24 years,
12-44 years OR not stated/unknown)

Ethnicity
Ethnicity of PCOS cases and
sample population clearly stated

Ethnicity not clearly stated/unknown

The Newcastle-Ottawa scale was applied as the critical appraisal tool to assess the quality

of studies of PCOS-related metabolic disorders, as suggested by the previous review by Moran

et al. (2010b). The Newcastle-Ottawa scale for the current analysis mainly assesses the following

three aspects:

� Selection of subjects in PCOS and control group

(a) Adequate case definition
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– yes, with independent validation? 1

– yes, i.e. record linkage or based on self-reports

– no description

(b) Representativeness of cases

– consecutive or obviously representative series of cases?

– potential for selection bias or not stated

(c) Selection of controls

– community controls?

– hospital controls

– no description

(d) Definition of controls:

– no history of disease (end-point)?

– no description of source

� Comparability of cases and controls on the basis of the study design and analysis

(a) control for important factor such as age and BMI (most important factors)?

(b) control for any additional factors?

� Exposure

(a) ascertainment of exposure

– secure record (i.e. surgical records)?

– structured interview where blind to case/control status?

– interview not blinded to case/control status

– written self-report or medical record only

– no description

1A star (?) can be awarded to this item if a study provides adequate case definition. Similarly, for the remaining
items, a star indicates providing adequate and quality information for the item assessed.
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(b) same method of ascertainment for case and control group

– yes?

– no

(c) non-response rate

– same rate for both groups?

– non-respondents described

– rate different and no designation

Note that studies with 3 or 4 stars in the selection domain AND 1 or 2 stars in comparability

domain AND 2 or 3 stars in exposure domain were considered to be of good quality; those with

2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in

exposure domain were considered to be of fair quality; those with 0 or 1 star in selection domain

OR 0 stars in comparability domain OR 0 or 1 stars in exposure domain were considered to be

of poor quality.
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2.4 Results

2.4.1 Search results

For prevalence studies, the search initially produced 2420 citations in total. Papers with

irrelevant titles or abstracts, e.g. reviews of epidemiology of PCOS or prevalence studies of

PCOS-related diseases, were excluded leaving 41 records for further consideration. The reference

list of included studies and relevant reviews were searched in order to locate other potential

eligible articles and 3 additional studies were identified. Two presentation posters were excluded

as these studies did not appear to have been published in peer reviewed journals. One study

was also excluded after full-text screening because it evaluated prevalence of PCOS in patients

with DM2. Figure 2.1 presents a consort diagram summarising the search.

Figure 2.1: Flow chart of search process of prevalence studies.

In terms of major PCOS-related diseases, seven reviews and meta-analyses were identified

and presented in Table 2.3. Notice that I further collected more studies for IGT, DM2 and MetS

with the updated number of studies. The search end date and the new PCOS criterion included
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are shown in the brackets. The consort diagram for the updated search for IGT, DM2 and

metabolic syndrome related to PCOS is shown in Figure 2.2. The extended search initially

yielded 2029 articles and after excluding irrelevant titles or abstracts, 128 studies were included

for full-text screening. Of these, 76 were removed due to various reasons, e.g. duplicates (studies

with different titles but included same study population thus reporting repeated results), lack

of data or unable to determine prevalence or incidence of IGT, DM2 or MetS, studies without

controls. In the previous review by Moran et al. (2010b), 35 studies were included and after this

updated search, I eventually found 87 eligible studies for inclusion.
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Table 2.3: Systematic reviews and meta-analyses of major PCOS-related diseases.
Article Disease No. of studies Search end date Sources PCOS criteria

Moran et al. (2010b)
IGT
DM2
MetS

35 (87)
Mar. 2009
(Jan.2015)

MEDLINE
CINAHL
EMBASE

NIH
Rotterdam
(AES)

Anderson et al. (2014)
Cardiovascular
diseases

9 Up to 2014
MEDLINE
EMBASE

WHO
NIH
Rotterdam
AES
Self-reported

Qin et al. (2013)
Pregnancy
complications

27 Jul. 2012

PubMed
MEDLINE
EMBASE
Cochrane

NIH
Rotterdam
AES

Barry et al. (2014)

Endometrial,
ovarian
and breast
cancer

11 Oct. 2013
MEDLINE
EMBASE

Most
Self-reported
1 Rotterdam

Lim et al. (2012) Obesity 106 Nov. 2010

MEDLINE
EMBASE
CINAHL
Cochrane
PSYCINFO

NIH
Rotterdam

Barry et al. (2011)
Anxiety
Depression

12 Dec. 2010

MEDLINE
EMBASE
Cochrane
PubMed

Mostly
Rotterdam
Self-reported

Li et al. (2011b)
Quality of
life

5 Dec. 2009

MEDLINE
EMBASE
CINAHL
EMBR
CNKI
Wanfang
Vip

2 NIH
3 Rotterdam
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Figure 2.2: Flow chart of search process of metabolic disorders associated with PCOS.

2.4.2 Qualitative analysis

Results of prevalence

Forty-one studies were identified evaluating the epidemiology of PCOS in the general population

but I only retrieved the full text for 39 of them, with the remaining 2 articles inaccessible: there

was no link to follow on the websites where these two articles were indexed and attempts to

contact the original authors also failed to receive responses. However, in the abstracts of these

articles, Jiao et al. (2013) clearly presented source of recruitment, sample size, age range, eth-

nicity, definition of PCOS, prevalence data and the corresponding crude number of PCOS cases;

Sung et al. (2010) provided source of recruitment, age range, definition of PCOS, prevalence

data, with the crude number of PCOS cases and sample size irretrievable.

Geographically speaking, there were 10 studies in America, 6 in Europe, 11 in Asia, 10 in the

Middle East and 4 in Oceania. All studies were cross-sectional, with 4 (Lo et al., 2006a; Okoroh

et al., 2012; Christensen et al., 2013; Sirmans et al., 2014a) in the US reported using databases
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and 3 (Jiao et al., 2013; Al Khaduri et al., 2014; March et al., 2010) using a retrospective

study design. The sample size of the studies ranged from 50 to 12,171,830. Most of the studies

included sample population within a reproductive age range (15-45 years). The weight status

of the sample population varied significantly for sample population in different studies. The

characteristics of each study (displayed by geographical locations) are listed in Appendix A.

The prevalence of PCOS ranged from as low as 0.56% (Christensen et al., 2013) using the

NIH criterion in the US population to as high as 22.5% (Joshi et al., 2014) using the Rotterdam

criterion in Indian population, as marked by the data labels in Figure 2.3.

Studies of PCOS-related morbidities

The results from seven meta-analyses for PCOS-related morbidities suggested that the preva-

lence of a range of disorders is higher in PCOS patients and women with PCOS are more likely

to suffer from psychological problems, thus having reduced quality of life compared with the

healthy controls (shown in Table 2.4).

The updated search for metabolic disorders associated with PCOS included 52 studies

in additional to previous reviews. The number of studies for IGT/DM2 and MetS distributed

across different geographical locations is displayed in Figure 2.4.

The detailed characteristics of studies assessing IGT/DM2 and MetS in women with and

without PCOS are presented in Appendix B and C, respectively. Of all the studies eligible for

inclusion, we found 11 assessing PCOS by all the 3 major diagnostic criteria. Seven studies

were identified to use more than one definition of metabolic syndrome. The majority of the

studies assessed women of reproductive age (15-45 years) with the exception of 15 studies where

sample population consisted of either adolescents only or post-menopausal women only. Most

studies included overweight and/or obese PCOS patients with a mean body mass index (BMI) ≥

25kg/m2. Only 15 studies reported including PCOS patients with normal weight as a subgroup

or the mean or median BMI of sample population smaller than 25kg/m2 or < 23kg/m2 for East

Asian countries.

There are 50 studies assessing prevalence or incidence of either IGT or DM2 or both. The

majority of the studies used the NIH criterion of PCOS and 5 studies were found to use more

than one definition of PCOS. In terms of the definition of IGT and DM2, 14 studies used World

Health Organisation (WHO) criteria of IGT (Alberti and Zimmet, 1998) and 16 used ADA
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definition (American Diabetes Association, 2010). Six studies used OGTT but did not state the

specific cut-off value for diagnosis of IGT and DM2. Fourteen used other definitions (National

Diabetes Data Group, 1979) or did not specifically state.

For the assessment of MetS, a total number of 50 studies were identified. Most of the

studies applied the Rotterdam criterion for PCOS. Ten studies used more than one diagnostic

standard of PCOS and 7 studies reported using more than one definition of MetS. Twenty-

eight studies used Adult Treatment Panel III or modifications (Williams et al., 2002) whereas

10 used International Diabetes Federation (IDF) or modifications (Alberti et al., 2005). Seven

studies used American Heart Association/National Heart Lung Blood Institute or modifications

(Grundy et al., 2005) and 4 used WHO criteria (Alberti and Zimmet, 1998). Fourteen studies

were found to apply other criteria (Cook et al., 2003; de Ferranti et al., 2004; Coviello et al.,

2006; Caliskan et al., 2007; Rotterdam and ASRM-Sponsored, 2004a,b) or not specifically state

the definition of MetS.

The majority of the studies reported higher prevalence of IGT, DM2 or MetS among women

with PCOS compared with controls. While most of the studies assessed the point prevalence of

metabolic disorders of interest, a few long-term follow-up studies were identified. Five studies

evaluated the incidence of IGT and DM2 comparing women with and without PCOS. Legro

et al. (1999) performed a 2- to 3-year follow-up, reporting an odds ratio of 2.7 (95% CI: 0.7,

8.0) for conversion from normal glucose tolerance to IGT/DM2 in 71 women with PCOS and

25 controls. Boudreaux et al. (2006) conducted an 8-year follow-up study, presenting an odds

ratio of 2.07 (95% CI: 0.68, 6.30) for incidence of DM2 in 97 PCOS patients and 95 controls.

Hudecova et al. (2011a) followed age-matched populations over a period of 13.9 years and found

that 9.5% of the women with PCOS developed IGT and 8.3% had DM2. The corresponding

proportions for controls were 2.3% for IGT and 1.1% for DM2, respectively. Schmidt et al. (2011)

conducted a prospective 21-year follow-up study using 35 PCOS patients and 120 age-matched

controls. By the end of study, 7 out of 32 (22%) PCOS patients and 13 of 95 (14%) controls

had diabetes although the difference was not statistically significant. Another study by Celik

et al. (2014) reported that among women with PCOS who had normal glucose tolerance (NGT)

at baseline, 11.5% were observed to develop IGT. For PCOS patients who had IGT at baseline,

33.3% had converted into DM2. In contrast, 2.3% of the controls with NGT at baseline had

IGT at follow-up and no controls with IGT at baseline were observed to convert into DM2 later
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on. One study by Hudecova et al. (2011b) was found to assess the incidence of MetS comparing

84 women with PCOS and 87 controls. This study reported that 23.8% of women with PCOS

and 8% of controls had developed MetS by the end of study period.
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Figure 2.3: Summary of prevalence results reported by studies identified through literature
review (categorised by geographical location). The results are presented based on the diagnostic
criteria of PCOS. The two studies with a data label are the ones that reported the lowest and
highest prevalence of PCOS.
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Figure 2.4: The distribution of studies across geographical locations. The bars in blue and red
represent the number of studies identified in each continent reporting data on impaired glucose
tolerance (IGT)/type 2 diabetes (DM2) and metabolic syndrome (MetS), respectively.
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Table 2.4: Summary of results from reviews for PCOS-related

morbidities.

Study Sample size Main results

Moran et al. (2010b)

IGT: 1403

DM2: 59064

MetS: 6386

Higher prevalence of IGT, DM2 and MetS in PCOS compared to controls:

Odds Ratios (95% CI):

IGT: 2.48 (95% CI: 1.63, 3.77)

DM2: 4.43 (95% CI: 4.06, 4.82)

MetS: 2.88 (95% CI: 2.40, 3.45)

Anderson et al. (2014)
Stroke: 3194

CHD: 3974

Higher prevalence of non-fatal stroke and coronary heart disease in women

with PCOS but is not significant

Odds Ratios (95% CI):

Stroke: 1.61 (95% CI 0.82, 3.15)

Coronary heart disease (CHD): 1.63 (95% CI 0.96, 2.78)
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Study Sample size Main results

Qin et al. (2013) 124674

Higher prevalence of pregnancy complications in women with PCOS:

Odds Ratios (95% CI):

Gestational diabetes: 3.43 (95% CI: 2.49, 4.74)

Pregnancy-induced hypertension: 3.43 (95% CI: 2.49, 4.74)

Preeclampsia: 2.17 (95% CI: 1.91, 2.46)

Preterm birth: 1.93 (95% CI: 1.45, 2.57)

Caesarean section: 1.74 (95% CI: 1.38, 2.11)

Babies delivered by PCOS patients have lower birth weight

(weighted mean difference 0.11g 95% CI: -0.19, -0.03),

and higher risk of admission to neonatal ICU (OR 2.32 95% CI: 1.40, 3.85)

Barry et al. (2014) 72973

Higher prevalence of endometrial cancer in women with PCOS

(OR 2.79 95% CI 1.31, 5.95)

Higher prevalence of ovarian and breast cancer in women with PCOS but

is not significant (both ORs include 1)

Lim et al. (2012)
Overweight: 7633

Obesity: 9045

The prevalence of overweight and obesity is significantly higher in women

with PCOS compared with controls

(RR 1.95 95% CI: 1.52, 2.50; RR 2.77 95% CI: 1.88, 4.10 respectively)

Barry et al. (2011)
Depression: 2257

Anxiety: 377

Higher depression (mean difference: 0.82 95% CI: 0.73, 0.92) and anxiety

(mean difference: 0.54 95% CI: 0.33, 0.75) measured in terms of score are

observed in women with PCOS compared with controls
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Study Sample size Main results

Li et al. (2011b) 708

Women with PCOS demonstrate a significant lower score in all SF-36

dimensions compared with controls, with a reduction in score as high as

-23.86 (95% CI: 27.51, 20.21) for emotional role function and as low as

-4.55 (95% CI: 7.99, 1.11) for body pain.
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2.4.3 Results from quality assessment

The results from the quality assessment for prevalence studies are presented in Table 2.5

(ordered by geographical location). It should be noted that most of the prevalence studies

scored 5 and above (n=27), with 8 studies rated very low score (i.e. ≤ 3).

Given that there is a large number of studies reporting data on metabolic disorders

associated with PCOS, the results of quality assessment for these studies from my updated

search are presented in Appendix D. In a nutshell, most of the studies identified are cross-

sectional using non-randomised sampling. Consequently, the majority of the studies included

were considered to be at least at some degree of selection bias and reporting bias. For diagnosis

of PCOS, the exclusion of related reproductive disorders that may mimic symptoms of PCOS

was absent in 23 studies and the medication use that might affect the outcomes was not assessed

in 32 studies. The majority of the studies included used adequate diagnostic criteria for IGT,

DM2 and MetS and all studies described the methods used to measure the outcomes. Eight

studies did not report whether the same methods were applied to case and control to measure

the outcomes of interest. Most studies did not state whether subjects had family history of

IGT, DM2 and MetS. Four studies excluded controls with family history of DM, potentially

introduce bias towards a more significant odds ratio. Comparability of subjects was evaluated

based on age and BMI. Only 14 studies were found to strictly use age- and/or BMI-matched

populations with an additional 24 reported non-significant difference in mean age and/or BMI

between PCOS and control group.
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Table 2.5: Summary of quality assessment of prevalence studies.

Study
Appropriate

sampling

PCOS measured

reliably and

objectively

Response

rate

Sample

size

Crude number

of cases
Age range Ethnicity Score

America

Knochenhauer et al. (1998) 0 1 1 1 1 1 1 6

Azziz et al. (2004) 0 1 0 1 1 1 1 5

Goodarzi et al. (2005) 0 0 1 1 1 1 1 5

Lo et al. (2006a) 0 0 0 0 0 1 0 1

Okoroh et al. (2012) 0 0 0 1 0 1 0 2

Christensen et al. (2013) 0 0 0 1 1 0 0 2

Sirmans et al. (2014a) 0 0 0 1 1 1 1 4

Moran et al. (2010a) 0 1 1 1 1 1 1 6

Gabrielli and Aquino (2012) 1 1 1 1 1 1 1 7

Faria et al. (2013) 0 0 0 1 1 0 0 2

Europe

Michelmore et al. (1999) 0 1 0 1 0 0 1 3

Diamanti-Kandarakis et al. (1999) 0 1 1 1 1 1 1 6

Asunción et al. (2000) 0 1 1 1 1 1 1 6

Sanchón et al. (2012) 0 1 1 1 1 1 0 5

Lindholm et al. (2008) 1 1 1 1 1 0 1 6

Lauritsen et al. (2014) 0 1 0 1 1 1 1 5

Asia

Chen et al. (2008) 0 1 1 1 1 1 1 6
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Study
Appropriate

sampling

PCOS measured

reliably and

objectively

Response

rate

Sample

size

Crude number

of cases
Age range Ethnicity Score

Ma et al. (2010) 1 1 1 1 1 1 1 7

Li et al. (2013a) 1 1 1 1 1 1 1 7

Jiao et al. (2013) 0 1 0 1 1 1 1 5

Zhuang et al. (2014) 1 1 1 1 1 0 1 6

Sung et al. (2010) 0 1 0 0 0 1 0 2

Nidhi et al. (2011) 0 1 1 1 1 0 1 5

Gill et al. (2012) 0 1 0 1 1 0 1 4

Joshi et al. (2014) 1 1 1 1 1 0 1 6

Kumarapeli et al. (2008) 1 1 1 1 1 1 1 7

Vutyavanich et al. (2007) 0 1 1 1 1 1 1 6

Middle East

Musmar et al. (2013) 0 1 1 1 1 0 1 5

Hashemipour et al. (2004) 1 1 1 1 1 0 1 6

Mehrabian et al. (2011) 0 1 0 1 1 0 1 4

Asgharnia et al. (2011) 1 1 1 1 1 0 1 6

Tehrani et al. (2011) 1 1 1 1 1 1 1 7

Esmaeilzadeh et al. (2014) 1 1 1 1 1 0 1 6

Rashidi et al. (2014) 1 1 1 1 1 1 1 7

Yildiz et al. (2012) 0 1 1 1 1 1 1 6

Al Khaduri et al. (2014) 0 0 0 1 1 1 0 3

Attlee et al. (2014) 0 0 1 1 1 0 1 4
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Study
Appropriate

sampling

PCOS measured

reliably and

objectively

Response

rate

Sample

size

Crude number

of cases
Age range Ethnicity Score

Australia

Lowe et al. (2005) 0 0 1 1 1 0 0 3

March et al. (2010) 0 1 0 1 1 0 1 4

Boyle et al. (2012) 0 1 1 1 1 1 1 6

Joham et al. (2013) 1 0 0 1 1 0 1 4
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2.5 Discussion

2.5.1 Prevalence studies identified

For prevalence studies identified from the literature, it is suggested that for the same study,

the prevalence under the NIH criterion is always the lowest, followed by that estimated using

the AES criterion and then the Rotterdam criterion. This verifies the inclusive and exclusive

relationship between the 3 major criteria in Table 1.1.

In term of sample size, there are 4 studies (Lo et al., 2006a; Okoroh et al., 2012; Christensen

et al., 2013; Sirmans et al., 2014a) in the US using fairly large sample sizes based on electronic

medical records. However, all these studies presented a much lower prevalence of PCOS com-

pared to community-based studies, underlying the fact that PCOS is a syndrome without much

awareness by both the public and the healthcare workers. As a consequence, women with PCOS

often do not seek for care and the diagnosis of PCOS is likely to be under-reported by clinicians.

However, there are some concerns about the quality of the studies included which may

limit the interpretation of results from this qualitative analysis. As there are few instruments

specifically designed (i.e. the Newcastle-Ottawa scale for case-control and cohort studies) for

prevalence studies, the formal evaluation of included studies was challenged. It is suggested

by Munn et al. (2014) that the followings are all essential factors to be considered for preva-

lence studies: sampling scheme, sample representativeness, recruitment strategy, sample size

calculation, description of study subjects and settings, response rate, standard criteria used for

measurement of a specific condition, reliable measurement instrument, appropriate statistical

analysis. However, few studies met all of the above criteria. For example, there were differences

in the outcomes due to hormonal assays and measurement techniques (Knochenhauer et al.,

1998; Asunción et al., 2000). The understanding and application of the diagnostic criteria of

PCOS in distinct studies also varied as some studies reported using less stringent definitions

(Asunción et al., 2000). Selection bias was also observed because not all studies used an entirely

randomised sampling scheme (Diamanti-Kandarakis et al., 1999). Other concerns with respect

to study design included low response rate (Azziz et al., 2004), self-rated questionnaire (Gabrielli

and Aquino, 2012), biases against the diagnosis of PCOS (e.g. a negative evaluation is easier

to be made compared with a positive one since a confirmed diagnosis of PCOS requires a full

blood test whereas there were potential cases with suggestive symptoms who did not complete
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the full evaluation) (Azziz et al., 2004). The above factors all have influence on the accuracy of

the prevalence estimates in individual studies.

2.5.2 Studies for PCOS-related morbidities

The results from the reviews suggested that the prevalence of common metabolic disorders and

cardiovascular diseases is generally higher in women with PCOS compared with the general

population. PCOS patients are also at elevated risk of pregnancy complications and their ba-

bies tend to have higher chance of suffering from neonatal complications. In addition, women

with PCOS are more likely to develop endometrial cancer due to irregular menstruation. The

consequences of PCOS exert significantly negative psychological impact on patients, which fur-

ther lead to an overall reduced quality of life. Methodological issues raised by these reviews

include that confoundings were not able to be controlled for when examining the association

between PCOS-related disorders and PCOS. For example, these confoundings may include age,

concomitant treatments, diet history, socio-economc status (Anderson et al., 2014; Lim et al.,

2012).

The results from the updated search for metabolic disorders associated with PCOS also

largely supported the main conclusions raised in the previous review on this aspect. However,

methodological quality is a concern, which limit the interpretation of results from studies in-

cluded in the systematic review. For example, the majority of the studies used non-randomised

sampling scheme and therefore, were found to be at high risk of bias. In view of study design,

most studies used cross-sectional design, with PCOS and metabolic risk factor status being

evaluated concurrently at a single time point, which raised the issue of ‘prevalence bias’. For

instance, PCOS patients who suffer from the disease for a longer time are more likely to de-

velop metabolic disturbances whereas the sample is taken at a single time point. Consequently,

the prevalence odds ratios tend to overestimate the true risk factor because for most studies,

PCOS patients with different durations of disease history are equally weighted, with the former

being over-represented. There is also concern about the optimal comparison group as the con-

trol population in many studies comprised of population controls or pre-determined clinically

examined individuals without PCOS or even subject with partial PCOS features. Evidence has

been found to support an unselected age-matched control population rather than predefined

non-PCOS population to be the optimal comparison group such that this prevalence bias can
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be minimised (Bloom et al., 2006). The previous review by Moran et al. (2010b) suggested a

prospective (or retrospective) cohort study design as it allows the timing and directionality of

event (incidence) to be clearly established.

Despite the challenges mainly related to study design, I was able to explore the associations

of PCOS with a range of diseases and found that PCOS is likely to worsen many health aspects of

women, urging the need for early screening and monitoring as well as an integrated health plan.

In the next chapter, I will introduce the modelling approach and results obtained from the

modelling for the prevalence of PCOS in different ethnic groups and the prevalence of morbidities

associated with PCOS. These are largely based on modelling the data identified in the systematic

literature review in this chapter.
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Chapter 3

ESTIMATING

ETHNICITY-SPECIFIC

PREVALENCE OF PCOS AND

THE RISK OF MORBIDITIES

ASSOCIATED WITH PCOS

3.1 Chapter summary

In this chapter, I firstly introduce background information of evidence synthesis and meta-

analysis given that these are the key concepts leading through the whole chapter. I then describe

the methods of prevalence estimation for both PCOS and its associated morbidities. After

that, I discuss the generalised models for meta-analysis using a Bayesian approach, which was

motivated by the need to integrate data from multiple sources for comparing the relative risk

of common metabolic disorders associated with PCOS. I then present results from evidence

synthesis and a package created for R named bmeta. The package is largely based on the

generalised meta-analytic models and various functions of this package are illustrated through

examples, with sample data from the published studies for PCOS. The web application of the

package (bmetaweb) is also presented, which was created to facilitate users without knowledge
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of R. It should be noted that a paper derived from prevalence estimation of PCOS among

different ethnic groups in this chapter has been published in Oncotarget (Ding et al., 2017).

3.2 Background

It is often the case that important medical questions are studied more than once by different

research teams at different locations and the outcomes from small studies can be diverse and

conflicting, which may result in difficulties in making clinical decisions (Haidich, 2010). For

example, as described in Figure 3.1 (a fictional example is used here), suppose that four studies

conducted in different countries have been found to provide odds ratio (OR) comparing the

relative risk of developing type 2 diabetes in PCOS and general population. In such case,

combining available information from multiple sources to generate an integrated result may

provide more indications for decision making.

Figure 3.1: A fictional example: synthesise evidence from individual studies conducted in dif-
ferent countries to compare the relative risk of diabetes in PCOS and general population. Here
four studies conducted in three countries all provided odds ratio and it is of our interest to
estimate the ‘true’ effect of PCOS on the risk of diabetes.

Meta-analysis is a commonly used statistical approach to achieve this goal by integrating

results from independent studies and is considered to play an essential role in evidence-based
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medicine (Sackett et al., 1996). While meta-analysis based on Frequentist methods has been

widely applied in medical research, the application of a Bayesian approach can be beneficial in

the context of meta-analysis for several reasons (Sutton and Abrams, 2001a; Spiegelhalter et al.,

2004; Gelman et al., 2014). The main advantage of a Bayesian approach is that the observed data

can be complemented by a formal representation of prior belief to produce posterior probability

distributions for parameters of interest, especially when there is little information provided by

the observed data. Incidentally, this is exactly the case for studies that estimated the prevalence

of PCOS in different ethnic groups as only a limited number of high quality studies has been

identified through the literature search. For example, the prevalence of many chronic diseases is

not expected to go beyond 50% in the general population and prior distributions based on this

information can be included in the models. This helps stabilise the estimates, e.g. if we know the

prevalence of a disease is expected to be around 5% and is unlikely to go beyond 10%, a small

variance associated with the parameter representing the prevalence of the disease can be defined.

This reduces the variances of the estimates we finally obtain, thus increasing the precision of the

estimates. Moreover, compared to the traditional Frequentist methods where the parameters are

often assumed to be fixed values (i.e. maximum likelihood estimation), the Bayesian approach

allows to take fuller account of the uncertainties related to models and parameter values by

producing a distribution of parameters (also called the posterior distribution) to sample from.

This is a crucial aspect in decision making as in such way, the uncertainties can be propagated,

e.g. in models that are used for health economic evaluation. These advantages motivate me to

use the Bayesian approach in prevalence estimation for both PCOS and its associated morbidities

as well as to develop a package including a set of Bayesian meta-analytic models.

3.3 Aim

In Chapter 2, 41 prevalence studies have been identified, with a few of high quality and po-

tentially eligible for modelling. Therefore, the first objective was to establish the prevalence of

PCOS among different ethnic populations. The second objective was to establish the prevalence

of PCOS-related disorders in PCOS population. Along with this, I also aimed at creating some

basic templates of meta-analytic models using Bayesian approach. This is because that although

the idea of performing meta-analysis within the Bayesian framework has been widely accepted

and recommended (Sutton and Abrams, 2001b; Higgins et al., 2009) due to obvious advantages
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as discussed previously, there is no package identified that designed for Bayesian meta-analysis

(e.g. a set of models with vague prior which can be modified later on according to users’ need)

and its relevant post-hoc analysis. In other words, by then, most applied implementation of

meta-analysis are conducted under the Frequentist paradigm. For example, standard packages

such as ‘RevMan’ developed by the Cochrane Centre (Collaboration et al., 2011), ‘meta’ or

‘metareg’ in STATA (Sterne et al., 2008) and the 3 existing packages ‘metafor’,‘rmeta’ and

‘meta’ in R (Viechtbauer et al., 2010; Lumley, 2009; Schwarzer, 2007) all compute maximum

likelihood estimates. Therefore, it would provide much more convenience if such a package that

can perform Bayesian meta-analysis is available.

3.4 Methods

3.4.1 Estimating prevalence of PCOS

Modelling approach

This section presents the Bayesian hierarchical model used for the prevalence estimation. The

underlying reason for using a Bayesian approach is discussed previously in the background of

this chapter. The software used to perform the analysis is Just Another Gibbs Sampler

(JAGS, Plummer et al., 2003). It is a software that can perform simulations from Bayesian

hierarchical models using Markov Chain Monte Carlo (MCMC) and the concepts related to

MCMC will be discussed later. The modelling approach is described through an explicit example

of the White population and the same method was applied to establish the prevalence of PCOS

for all the ethnic groups.

The model includes several modules. Suppose that there are I studies in total for a certain

ethnic group (e.g. Caucasian) and for each study i = 1, 2, . . . , I, the number of PCOS cases out

of the total female population was observed. A Binomial distribution was used to model data

in these studies:

yi ∼ Binomial(πi,mi),

where yi is the total number of women observed to develop PCOS in the ith study; πi represents

the probability of developing PCOS for the population in study i and mi is the total number of
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women in the study.

A logistic link (defined as log( p
1−p), where p is the probability of a binary outcome, i.e.

success or failure) was used to model the probability of developing PCOS in this case. The

most obvious reason for applying a logit link is that it rescales a probability with values varying

between −∞ and ∞.

The model is specified as

logit(πi) = βi ∼ Normal(µ, σ2),

where βi is the study-level prevalence of PCOS on the logit scale and was further assumed to

follow a Normal distribution with a mean µ and variance σ2. The parameter µ represents the

pooled mean prevalence of PCOS (on the logit scale) for all the studies using population of the

same ethnicity. This can be transformed back to the natural scale and the overall prevalence p

was calculated as follows:

p =
exp(µ)

1 + exp(µ)
.

This module was completed by including some prior distributions for µ and σ and several

versions of priors were attempted. For example, the simplest model specification assumes:

µ ∼ Normal(µ̂, σ2)

σ ∼ Uniform(0, 2).

It is often the case that “off-the-shelf” vague priors are used for the parameters in the

model. This would mean that the probability of developing PCOS is 50% and one does not

favour any value between 0 and 1 (which can be represented by µ̂ = logit(p) = log( 0.5
1−0.5) = 0

and a large value such as 10, on the logit scale, for σ). However, this was considered to be

inappropriate because we do not expect such high prevalence of PCOS in the general population

(e.g. >20%) associated with high uncertainties. Therefore, some common-sense information was

used on what the likely range of probability of the condition may be and the prior for µ was

informed accordingly. For example, values ranging from 2.5% to 15% for µ̂ were considered to

be reasonable.
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It should be noted that for most ethnic groups, fewer than 5 studies met the inclusion criteria

for modelling (e.g. pooling is inappropriate for studies that used electronic databases and those

that sampled study population from the community). Given that the amount of information

present in the data is limited, the estimation for the parameter σ is likely to be associated with

high variability. In particular, if a very vague prior specification, i.e. Uniform(0,k), for some

relatively large value k was selected, it is possible that the data would not be able to update

this in a consistent way, resulting in a highly unstable posterior distribution for statistical

inference. To mitigate this problem, it is possible to include more information in the prior,

for example, here, a half-Cauchy distribution was specified as prior for σ. This distribution

can be expressed as: σ ∼half-Cauchy(B), where B is the population median residual standard

deviation (also called the scale parameter). The half-Cauchy distribution belongs to the half-t

family of distributions and is recommended when a more informative prior is needed (Gelman

et al., 2006). Its probability density function is defined as:

f(x) =
2

πB

1

1 + (x/B)2
, x > 0

Note that the scale parameter B, can be modelled assuming a vague prior, e.g. a uniform

distribution with lower and upper bound as 0 and 100. By assigning proper values for the scale

parameter B, a weakly but reasonably informative prior can be included. For example, although

having heavy tails, the half-Cauchy distribution is less likely to produce extreme values and

distort inferences in the area of high likelihood. Therefore, including a half-Cauchy distribution

for the variance is advantageous in terms of allowing for outliers and accommodating small

variances close to zero.

One technical complication is that the half-Cauchy distribution is not one of the standard

distribution in software such as JAGS. However, it can be proved that if

εσ ∼ Gamma(0.5, 0.5)

Zσ ∼ Normal(0, σ2Zσ)

σ2Zσ =
1

B2
σ

,

where Bσ ∼ Uniform(0, k) for some upper limit k. Then σ = |Zσ |√
εσ

follows a half-Cauchy distri-
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Figure 3.2: Graphical representation of the half-Cauchy distribution with different scale param-
eters.

bution with a median of Bσ (Lunn et al., 2012). Using this coding trick allows us to implement

the half-Cauchy model in a relatively simple way.

In our case, we set B ∼ Uniform(0, 0.5) and Figure 3.2 shows different half-Cauchy distri-

butions for varying values of the scale B. As is possible to see, using an upper limit of 0.5 still

ensured that the prior for σ is concentrated closed to 0, while still allowing for large values (up

to around 20 — recall that σ is actually defined in the log scale).

The computation approach for this analysis is Markov Chain Monte Carlo (MCMC), which

is a widely used sampling method (Gamerman and Lopes, 2006; Gilks et al., 1996). A funda-

mental concept of MCMC methods is Markov chain. Consider a sequence of random variables

X0, X1, X2, . . . where we assume that the observation Xt+1 only depends on the current one Xt
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but does not depend on any observations before the previous one. This is equivalent to:

p(xt+1 | x0, x1, . . . , xt) = p(xt+1 | xt).

Note that MCMC methods largely depend on the construction of a Markov chain that can

converge to a target distribution p, from which one can simulate the distribution of interest,

e.g. a posterior for a set of parameters. The distribution p is formally called the stationary

distribution of the Markov chain. A stationary distribution can be described as that the prob-

ability distribution remains unchanged as time t progresses and is independent of the initial

value of X0, i.e. the distribution p no longer changes. In other words, the chain forgets where

it starts in the end and enters into an “equilibrium” state where there is no more change in the

distribution even we run the chain for a further number of iterations. In practice, under fairly

general regularity conditions (MCMC works if the chains are irreducible and aperiodic such

that convergence to the stationary distribution can be reached when the number of iterations

becomes larger) (Brooks et al., 2011), the chain will converge after a sufficient large number

of iterations (also called burn-in). Once convergence is reached, it is possible to compute any

statistics such as mean and standard deviation from this distribution using random sampling

(i.e. Monte Carlo).

One of the most commonly used algorithms for simulating Markov chains is the Gibbs

sampling (Geman and Geman, 1984). The idea of this sampling method is to generate posterior

samples by blocking one parameter each time to sample from its conditional distribution, with

the remaining parameters fixed to their present values. More specifically, suppose the parameters

of interest are defined as θ = (θ1, θ2, . . . , θk) and the observed data are represented by y, then

the sampling methods can be described as follows:

� Select arbitrary starting values for all the parameters of interest, e.g. θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k ;

� Sample a new value, θ
(1)
1 , for θ1 from the conditional distribution p(θ1 | θ(0)2 , θ

(0)
3 , . . . , θ

(0)
k , y);

Sample a new value, θ
(1)
2 , for θ2 from the conditional distribution p(θ2 | θ(1)1 , θ

(0)
3 , . . . , θ

(0)
k , y);

Note that since a new value for θ1 has been sampled before, this most “recent” value is

included as an element to be conditioned upon.

This procedure continues until a new value of all the parameters has been sampled from

the conditional distribution, e.g. sample θ
(1)
k from p(θk | θ

(1)
1 , θ

(1)
2 , . . . , θ

(1)
k−1, y)
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� Repeat the previous step a sufficient large number of times until the chain converges and

then generate a sample from this distribution p.

MCMC is particularly important in Bayesian inference because it is often difficult to perform

analytic examination on the posterior distributions given its complexity. MCMC allows one to

take random samples from a distribution even without any knowledge of its mathematical prop-

erties.

Given the paucity of data, the estimates obtained from the posterior distribution are expected

to be largely driven by the priors. I attempted to address this by looking at the Deviance

Information Criterion (DIC, Spiegelhalter et al., 2002) of each model. The DIC is a common

measure for comparing Bayesian models and can be used to perform model selection. The

definition of DIC is described in the following steps. The model deviance, a likelihood-based

measure of the model fit, is defined as:

D(θ) = −2 log p(y | θ),

where θ represents the parameters of interest.

It is often the case that models with a large number of parameters are more likely to be

subjected to ‘over-fitting’. In other words, these models may fit the observed data (also called

training dataset) quite well, while perform much worse for other datasets of similar structure.

However, since these model fit the training dataset quite well, they are associated with smaller

values of D(θ) and therefore, it may be of interest to penalise the complexity of a set of different

models. This can be quantified by the following function:

pD = Eθ|y[D(θ)]−D(Eθ|y[θ])

= D −D(θ),

where D is the posterior mean deviance and D(θ) represents deviance evaluated at the posterior

mean of the parameters. pD measures the complexity of the model structure and the strengths

of the prior at the same time. The DIC is then defined as follows:

DIC = D(θ) + 2pD

= D + pD.
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Models with lower values of DIC are considered to perform better. However, only differences

in the DIC are of interest whereas its absolute value is not relevant. This is because that the

computation of model deviance depends on the observed data. A set of alternative models can

then be compared by DIC however it may be possible that none of the models in comparison

are correct.

It should be noted that the use of DIC may be a concern when the models are only populated

by limited amount of information. This is due to the fact that the posterior distribution of the

parameters of interest can be approximated to a Normal distribution only when the sample size

of the observed data is large enough.

Despite this limitation, the DIC is simple to be obtained in the MCMC procedures and it

can also be used to produce results by model averaging. Model averaging is a formal approach

to account for model uncertainties in the predictions from a series of competing models. From

a Bayesian perspective, the main interest of model averaging would be laid on the posterior

predictive distributions, which can be computed as a weighted average of the model specific

posterior predictive distribution (Hoeting et al., 1999). Suppose there is a set of models M =

(M1,M2, . . . ,MH), the weights attached to individual models can be defined using the following

formula (Baio, 2012):

wh =
exp(−0.5∆DICh)

ΣH
h=1 exp(−0.5∆DICh)

, (3.1)

where ∆DICh =| minh(DICh)−DICh | and h = 1, ...,H, indicating the set of models.

For the current analysis, models with relatively small DIC were identified and the model

averaging methods introduced above was applied to combine results from these models. This

means that models with lower DIC were still favoured, however, instead of choosing a discrete

cut-off (the lowest DIC) and discarding information from all the other models, our assessment

is more continuous and effective by using the results from all the models in a principled way.

Data source and selection criteria for modelling

The source of data for prevalence estimation were from the literature review conducted in Chap-

ter 2. Studies rated less than 5 in the quality assessment were deemed as low quality studies

and therefore, were not included for further analysis (refer to Table 2.2). It should be noted
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that I also excluded studies that did not apply the same diagnostic criterion as the majority of

the studies reporting data for the same ethnicity (see Table 3.1). For example, Lauritsen et al.

(2014) applied the Rotterdam criterion of PCOS whereas the other studies conducted in the

Europe all followed the NIH criterion of PCOS. Another 5 studies were removed (Musmar et al.,

2013; Hashemipour et al., 2004; Mehrabian et al., 2011; Asgharnia et al., 2011; Zhuang et al.,

2014) due to that the age range of study population recruited was either narrower or wider than

the reproductive age range (e.g. 17-18 years, 14-18 years, 12-44 years). Similarly, given that

the age range of the study population are all different, statistical modelling was considered to

be inappropriate for certain ethnic groups, i.e. South Asians (from India and Sri Lanka) and

Australians. Likewise, modelling was not applied to ethnic populations such as Mexicans and

Thai since only one study was identified to report relevant data. This is because if the result

from a single study is unreliable, one would have no choice but to include it as the ‘best’ source

of data, which largely bias the estimation.

For studies that reported data for more than one ethnic group (i.e. White and Black pop-

ulation), data for subgroups were used to populate the model. In other words, data from all

eligible studies for a certain ethnic groups were included for modelling regardless of the country

origin of the studies. For example, studies conducted in the US and Europe providing data for

the Caucasians were synthesised together to generate estimates for the White population.

3.4.2 Modelling approach for comorbidities of PCOS

Meta-regression is an extension of standard meta-analysis in order to control for the moderator

effect such as age or ethnicity (Borenstein et al., 2009). However, it should be noted that meta-

regression accounts for the effect of study level covariates (e.g. mean age of the population in

one study) rather than those at individual level.

The random-effects meta-regression for binary outcome was used to establish the prevalence

of morbidities associated with PCOS, i.e. impaired glucose tolerance (IGT), type 2 diabetes

(DM2) and metabolic syndrome (MetS). Meta-regression rather than meta-analysis was used

because variation in the prevalence of IGT, DM2 and MetS in different geographical locations

was expected and therefore needed to be controlled for. The meta-regression model was fitted

using Bayesian methods such that the observed data were complemented by information from

empirical studies reporting prevalence estimates of metabolic disorders in the general population
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residing in different geographical locations. A random-effects model was selected as it is more

sensible to assume that the ‘true’ study effect varies across studies in a same region.

The prevalence of DM2 in PCOS patients (using the NIH criterion) in comparison with

controls was used as an illustrated example. The results for other combinations of metabolic

morbidities and diagnostic criteria of PCOS were obtained using the same method. The model

includes several modules.

Suppose that there are I eligible studies and each study i = 1, 2, . . . , I has 2 arms. The total

number of events out of the total number of PCOS patients and controls was observed. Let yi0,

yi1 denote the total number of events observed in case and control arm, respectively, for study

i. Similarly, ni0 and ni1 were defined as the total number of cases and controls. A Binomial

distribution was used to model these studies:

yi0 ∼ Binomial(πi0, ni0)

yi1 ∼ Binomial(πi1, ni1),

where πi0 and πi1 represent the probability of developing DM2 in the control arm and among

women with PCOS, respectively.

A logistic regression was used to obtain the pooled mean probability of developing DM2 in

women with PCOS and controls, respectively, in study i:

logit(πi0) = α+ β1Xi1 + β2Xi2 + β3Xi3

logit(πi1) = α+ β1Xi1 + β2Xi2 + β3Xi3 + δi,

where α is the baseline odds for controls in studies conducted in the Europe and the prevalence of

DM2 is reported to be 6.8% in this region; δi is the incremental risk of developing DM2 for women

with PCOS, in study i. Xi1,Xi2,Xi3 are indicators for region and were assumed to generate some

impacts on the study effect. Studies have suggested that the prevalence of DM2 is the highest in

North America (9.6%), then in a descending order by South East Asia (8.7%), South America

(8.2%), with the lowest prevalence reported in the Europe (IDF, 2013). Since Europe was

assumed to be the reference category, β1, β2, β3 were used to represent the incremental prevalence

of DM2 in North America, South East Asia and South America, respectively, compared with

that in the Europe, e.g. β1 was included to reflect the mean difference in prevalence of DM2
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comparing North America and Europe.

The model was completed by including prior distributions for all the parameters. For exam-

ple, the following distribution was included for α, which indicates that the prevalence of DM2 in

the general population residing in the Europe is expected to be 6.8% with some small variability:

α ∼ Normal(−2.62, 0.5).

Note that logit(0.068) = −2.62 and in this way, evidence from pilot studies was converted

to work as the prior distribution to inform our model. The variance of this prior distribution

for the reference group is small because the prevalence of DM2 is expected to be within some

reasonable range, e.g. 0-30% (Figure 3.3), with probabilities ranging from 0-15% more likely to

be favoured when the simulation procedure proceeds.

The incremental prevalence of DM2 for the remaining regions in comparison with Europe is

represented by the prior distribution of β1, β2, β3:

β1 ∼ Normal(0.375, 0.01)

β2 ∼ Normal(0.266, 0.01)

β3 ∼ Normal(0.202, 0.01).

Here the expected prevalence (mean) estimates correspond exactly to the regional estimates

mentioned previously, i.e. 9.6% in the North America, 8.7% in the South East Asia and 8.2%

in the South America. The variance of these prior distributions is small because these are all

population level estimates and therefore, high uncertainties are not expected. Note that when

two independent Normal distributions are summed up, the resulting distribution is also Normal

and the variance is equal to the sum of the variances of the two Normal distributions. Taking

studies evaluating the prevalence of DM2 in North America as an example, the regional indicator

β1 is equal to 1 so the probability of the disease is in fact based on the sum of the distribution of α

and β1. Since again the prevalence of DM2 in the general population residing in North America

is believed to lie within some reasonable range, the variance of the prior distribution included

for β1 is expected to be small. The resulting distribution after summing up the distribution of

α and β1 is shown in Figure 3.4. We can see that most of the bars lie within the range of 0

and 0.15, suggesting that the prevalence of DM2 is most likely to be in a range of 0-15% but
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Figure 3.3: Graphical representation of the prior distribution included for the prevalence on a
natural scale, which reflects the assumption made for the reference region (Europe) that the
prevalence of DM2 is centred at 6.8%. The horizonal bar in bold represents the 95% prior
interval.

unlikely to go beyond 25% for this given region. This figure reflects the assumptions made for

the prevalence of DM2 in North America.

The study-specific odds ratio (on log scale), δi, was assumed to follow a Normal distribution

with a mean of µ and a variance of σ2 and µ is the pooled odds ratio for all studies.

δi ∼ Normal(µ, σ2)

I selected a prior for µ following a Student t-distribution. This is because the data included

for this analysis are quite heterogeneous (e.g. some of the studies reported a high risk of diabetes

in the PCOS patients compared with the controls in contrast with other studies) and the Student
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Figure 3.4: Graphical representation of the prevalence of DM2 in North America, which is the
resulting distribution after summing up the distribution of α and β1. This is consistent with
the assumption made for North America that the prevalence of DM2 is centred at 9.6%. The
horizonal bar in bold represents the 95% prior interval.

t-distribution has heavy tails which can accommodate outliers. The degree of freedom of the

t-distribution is assumed to follow a uniform distribution within a range of 0 to 8. This is

because a degree of freedom of 4 is suggested to limit shrinkage too much (i.e. can generate too

extreme results). However using a Uniform(0,8) ensures on average a prior value for the degree

of freedom of 4, while allowing for some variability around it (Berger, 1990).

µ ∼ tv

v ∼ Uniform(0, 8)

Note that JAGS uses a “generalised” t-distribution where centrality and precision (i.e. inverse
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of the variance) need to be specified. In our case, a zero mean and a precision of 0.5 are included

and the variance can then be computed using the formula v
τ(v−2) for v ≥ 0 where τ is the precision

(Lunn et al., 2012). This is more or less equivalent to a Student t-distribution with zero mean

and a variance of 4, which is reasonably vague given that this is on the log scale. The standard

deviation σ is assumed to follow a Uniform distribution with a lower and upper bound of zero

and one, respectively (also considered reasonably large on the log scale).

σ ∼ Uniform(0, 1).

The graphical representation of the prior distribution for this parameter obtained from for-

ward sampling (running the simulation without including the observed data) is illustrated in

Figure 3.5. The majority of the bars lie within a range of 2 to 6, suggesting that the risk of

diabetes comparing PCOS patients and the general population is most likely to be in this range.

This assumption was validated with some clinical experts: the graphical illustration of the prior

distributions was presented to clinicians, who considered these distributions sensible to work as

prior information to complement the observed data.

The data from literature review were used to populate the meta-regression model and the

results from quality assessment for all the studies considered are introduced in Chapter 2.
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Figure 3.5: Graphical representation of the prior distribution included for the pooled odds ratio
µ, which reflects the assumption that women with PCOS are generally 2-6 times more likely to
develop DM2 compared with the general female population.

3.4.3 Generalised models for meta-analysis using Bayesian approach

In this section, I introduce generalised meta-analytic models using Bayesian approach, which

forms the basis of all models included in the bmeta package for R (Ding and Baio, 2016). The

modelling approach for the binary outcomes in the previous section was extended to fit other

types of outcomes such as continuous and count outcomes.

The framework of models included can be summarised as follows. Suppose yik denotes the

number of events or mean (i.e. continuous data) observed in arm k of study i. This is generally

modelled as

yik ∼ p(yik | θik),
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where the possible distributional assumptions are

p =


Binomial, binary outcome

Normal, continuous outcome

Poisson, count outcome

and θik = (φik,ψik) is a vector of parameters, specific to the chosen distribution (i.e. the mean

and the variance, in the case of a Normal distribution). Here φik represents the parameter of

interest whereas ψik is a vector representing a list of other parameters in the model.

Model Parameter of interest (φik) Nuisance parameters (ψik)

Binomial πik arm-specific probability of the event nik sample size of arm k
Normal µik arm-level mean τik arm-level precision
Poisson λik arm-specific event rate tik person-time in the follow-up in arm k

A link function g(·) is then used to construct a linear predictor for the main parameter

of interest, possibly as a function of observed covariates. For binary, continuous and count

outcome, this is considered to be the logit, identity and log, respectively. In general terms, this

is constructed as

g(φik) =


α+Xiβ, if k=0 (control arm)

α+Xiβ + δi, if k=1 (case arm)

where α represents the ‘baseline’ information of parameter of interest for the control arm (e.g.

probability of an event on logit scale for the control arm when the outcome is binary). δi is

the study-specific impact of an exposure (for observational studies) or intervention effects (for

randomised control trials). Xi is a matrix with covariates information (i.e. binary, continuous or

categorical variables) for the i−th study and β is a vector of coefficients for regression parameters

of interest. Xi and β only exist when a meta-regression is performed.

For fixed-effects models, it is assumed that all studies estimate the same intervention effect.

While for the random-effects models, the assumption of exchangeability between studies is made

and therefore, the ‘true’ intervention effect is modelled probabilistically:

δi = µ Fixed-effects model

δi ∼ p(δi | µ) Random-effects models

69



where µ is the pooled estimate and p is a probability distribution of µ.

The model is completed by including minimally informative prior for the model parameters.

For example, for binary outcome, a Normal prior is included, e.g. Normal(0,10000), for the

pooled estimate µ. This indicates that the probability of developing a certain disease is 50% but

is not likely to favour any particular value within the range of 0 and 1. This is a vague prior

with large variability to represent the uncertainties so the results would be driven by the data.

These generalised models can be applied to synthesise evidence from multiple sources for the

major data types in the medical research.

3.5 Results

3.5.1 Prevalence of PCOS in different ethnic populations

Using the modelling approach described in the Section 3.4.1, the following results were obtained

(see Table 3.1).

For the NIH criterion, the prevalence of PCOS for White women was estimated at 5.5%

and the 95% credible interval (CrI) is 4.8-6.3%. In other words, there is 95% chance that the

mean prevalence of PCOS for the White women lie in the range between 4.8% and 6.3%. The

corresponding figures for Black women and women residing in the Middle East are 7.4% (95%

CrI: 6.3-8.7%) and 6.1% (95% CrI: 5.3-7.1%), respectively.

Using the Rotterdam criterion, prevalence estimation is only feasible for Chinese women

(5.6%, 95% CrI: 4.4-7.3%) and women in the Middle East (16.0%, 95% CrI: 13.8-18.6%).

The prevalence for females in Middle East according to different criteria were estimated,

which is 6.1% (95% CrI: 5.3-7.1%) under the NIH criterion, 16.0% (95% CrI: 13.8-18.6%) under

the Rotterdam criterion, and 12.0% (95% CrI: 11.3-14.2%) under the AES criterion.

3.5.2 Prevalence of metabolic disorders in PCOS population

The odds ratios comparing the prevalence of impaired glucose tolerance (IGT), type 2 diabetes

(DM2) and metabolic syndrome (MetS) in women with and without PCOS are presented in the

Table 3.2. The prevalence of all the metabolic disorders examined is notably higher in women

with PCOS given that all the 95% credible intervals exclude 1, regardless of the diagnostic

criteria of PCOS applied. For example, under the NIH criterion, the risk of IGT is 3.86 times
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Table 3.1: Estimated prevalence of PCOS using 3 major criteria for different ethnic groups. The
results are presented as posterior mean with 95% credible interval (CrI) after weighted averaging
results from a set of models based on Deviance Information Criteria (DIC).

Ethnicity
Estimated Prevalence (%) of PCOS in general
population (95% CrI)
1990 NIH 2003 Rotterdam 2006 AES

White
(Caucasian)

5.5
(4.8-6.3)

- -

Black
(African-American
and Afro-Brazilian)

7.4
(6.3-8.7)

- -

Chinese -
5.6
(4.4-7.3)

-

Middle East
(Iranian and Turkish)

6.1
(5.3-7.1)

16.0
(13.8-18.6)

12.6
(11.3-14.2)

higher for women with PCOS compared with the general population and there is 95% probability

that the true odds ratio lie within the range of 2.28 and 6.47. It should be noted that for IGT

and DM2, the odds ratio is larger for studies that used the Rotterdam criterion compared with

the NIH criterion. While for MetS, the odds ratio is the largest for studies that applied the AES

criterion, followed by the NIH criterion and then the Rotterdam criterion.

Table 3.2: The estimated odds ratio of IGT, DM2 and MetS comparing women with and without
PCOS. The posterior means with 95% credible interval (CrI) are presented for each combination
of diagnostic criteria and PCOS-related comorbidity.

Prevalence of metabolic disorders in women with and without PCOS
(OR with 95% CrI)

1990 NIH 2003 Rotterdam 2006 AES

IGT 3.86 (2.28, 6.47) 4.17 (2.42, 6.77) -

DM2 3.95 (2.33, 6.40) 4.71 (1.85, 10.59) -

MetS 3.14 (2.04, 4.69) 2.81 (1.85, 4.11) 3.89 (2.15, 6.54)

3.6 Discussion

3.6.1 Prevalence of PCOS in different ethnic groups

In terms of disease risk, Caucasian women in the US and Europe are less likely to develop

PCOS compared with women residing in the Middle East. The Black women (the majority are

African-Americans and Afro-Brazilians) are at the highest risks of PCOS. The 95% CrI of the
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PCOS prevalence for White female and Black females do not overlap, indicating that White and

Black females are at substantially different risk of PCOS. For Chinese women, the prevalence

is merely 5.6% even when the Rotterdam criterion was applied. This figure is comparable with

the prevalence for White females under the NIH criterion. Although estimates for Chinese

women under the NIH criterion and the AES criterion was not modelled due to lack of data, it

is expected that the prevalence using these two criteria would be even smaller, had data been

available. The credible intervals of the estimates under the NIH criterion and the AES criterion

for women in Middle East indicate that the prevalence of PCOS for women residing in this

region differs according to these two criteria. It should be noted that the prevalence of PCOS

is quite high for women in the Middle East when using the Rotterdam criterion, i.e. 16% (95%

CrI: 13.8-18.6%). However, this finding is supported by a recent study where the prevalence

was found to be 20% in this ethnic group based on the same criterion (Dargham et al., 2017).

The prevalence of PCOS using different criteria for women in the Middle East supports the

inclusive and exclusive relationship of the 3 major diagnostic criteria (i.e. the AES criterion is

an extension of the NIH criterion and the Rotterdam criterion covers the broadest spectrum) as

discussed in Chapter 1.

Generally speaking, under the same diagnostic criterion, Asian women are at a lowest risk

of developing PCOS and then, in ascending order through Caucasians, Middle Eastern women,

with the highest prevalence reported in Black women.

The results from the current analysis may be interpreted by the genetic ancestry data (Louw-

ers et al., 2013). Evidence has suggested that the risk variants of PCOS in Korean women are

not replicated in female Caucasians (Kim et al., 2014) and there is wide variation in the clinical

presentations, hormonal and metabolic characteristics of PCOS across different ethnic popula-

tions (Wang and Alvero, 2013). As a consequence, the ethnic variation in terms of the diagnostic

criteria, disease monitoring and management needs to be considered carefully.

Our results also indicated that even for the same ethnic group (e.g. women in the Middle

East), there is large variation in the prevalence of PCOS when different diagnostic criteria

were applied. This potentially pointed out the issue of under- or over-diagnosis of PCOS at

present. Since the major concern for PCOS patients is the long-term metabolic risk, the clinical

management of PCOS is often suggested to be at the earliest possible when a confirmed diagnosis

is made because with proper interventions, the rapid conversion into complications such as type
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2 diabetes may be controlled or even avoided (Conway et al., 2014). However, on the other hand,

healthcare workers should be aware to avoid over-diagnosis of PCOS because it can negatively

affect the mood of potential cases, which may consequently worsen some major symptoms of

PCOS (i.e. menstrual dysfunction), thus increasing the chance for a potential case to be qualified

as a true case. A recent study supported this argument by stating that the occurrence of severe

dysmenorrhoea and irregular cycles can be induced by high stress (Kollipaka et al., 2013).

Admittedly, there are some limitations in this analysis, which is largely attributed to the

paucity of data identified from the literature. Given that the published studies only provided

limited prevalence data for different ethnic groups, the extrapolation of prevalence was largely

driven by the prior distributions. The prior included may have some influence on the pooled

estimates. However since experts’ opinions were consulted, they were considered to be sensible.

For example, the prevalence of PCOS was expected to be lie within a range of 2-20% and

this information was represented by some suitable prior distributions (i.e. the prevalence is

bounded within this range with certain degree of variability). Note that a prominent advantage

of Bayesian methods is that the prior distributions can be updated by the observed data to

generate posterior distributions of parameters of interest through the application of simulations.

For example, in our case, the posterior distributions of prevalence in different ethnic groups were

generated. Random sampling can then be proceeded by drawing a large sample size from the

posterior distributions and this is expected to provide much more reliable results. Moreover,

sensitivity analysis was conducted by attempting different versions of prior for our Bayesian

model to identify the ones with relatively lower DIC and pooled estimates were obtained from

model averaging based on Formula 3.1 in Section 3.4.1. Specifically, models with smaller DIC,

indicating a better fit to the data, were weighted up while those with larger DIC were weighted

down. In this way, information from models with a slightly higher DIC but provide reasonable

estimates was not discarded. This tends to improve the accuracy of the estimation.

It is also suggested that the prevalence of PCOS varies in individuals with different weight

categories (i.e. normal, overweight, obese) (Yildiz et al., 2008). However, the model used did not

account for this factor due to lack of high quality body mass index (BMI) data from individual

studies and the significant heterogeneity in the way of how BMI data were provided by different

studies (e.g. some studies provided mean BMI of the entire study population whereas the other

studies provided the proportion of patients who were overweight or obese).
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There is also evidence that lifestyle modification ameliorates presentations of PCOS (Domecq

et al., 2013). Consequently, the assumption that individuals of the same ethnicity have similar

risk of developing PCOS may not be sensible in reality (as they may have quite different lifestyles)

although we have accounted for individual level variability for prevalence estimates in our model.

3.6.2 Prevalence of morbidities associated with PCOS

In the current analysis, a larger number of studies were included compared with the previous

review, allowing the studies to be categorised by diagnostic criteria and geographical location.

The latter factor was controlled for in the meta-analytic model.

The results from our meta-analysis supported that significant greater prevalence of IGT,

DM2 and MetS is observed in women with PCOS compared with controls regardless of which

diagnostic standard of PCOS is applied: the odds ratios in Table 3.2 suggested that women with

PCOS are generally 2-6 times more likely to develop various metabolic abnormalities than the

general female population. Since the exact pathophysiology of PCOS remains largely unclear,

the metabolic disorders associated with PCOS is often considered to be attributed to a combi-

nation of factors. For example, the elevated risk of IGT and DM2 in PCOS may be caused by

peripheral insulin resistance, insulin hypersecretion and elevated β-cell function (Dunaif et al.,

1989; O’Meara et al., 1993; Holte et al., 1995; Ciampelli et al., 1997; Vrb́ıková et al., 2002;

VrbIkova et al., 2004). It should be noted that insulin resistance appears in 50-70% of women

with PCOS (Legro et al., 2004), which augments androgen production and increases the level

of free androgens through reducing sex hormone binding globulin (Teede et al., 2010a). The

underlying hormonal imbalances form a vicious circle, which underpin PCOS.

Some studies have suggested that women with hyperandrogenic PCOS are more likely to

present a worse cardiometabolic profile (Daan et al., 2014). The results from the current study

tend to agree with this argument with respect to MetS as slightly higher ORs were observed

under both the NIH and the AES criterion where hyperandrogenism is a prerequisite for diagnosis

of PCOS. On the contrary, PCOS patients who met the Rotterdam criterion seem to be at a

higher risk of IGT and DM2 compared with those who met the NIH criterion. However, note that

there are uncertainties around estimates for IGT and DM2 (as suggested by the much wider 95%

CrI compared with that of estimates for MetS) because relatively more studies for MetS were

identified. Many studies investigating DM2 reported absence of DM2 in the control population,
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which potentially generates strong impact on the pooled estimates. The absence of DM2 in the

controls can be due to different reasons, e.g. selection bias, as discussed in the methodological

issues of the studies included in Section 2.5.2. Further research may need to be warranted to

investigate the metabolic features of PCOS population presenting different phenotypes.

Although the current model allowed to adjust for prevalence of IGT, DM2 and MetS in

populations living in different geographical locations, a range of other confounding factors were

not included. For example, it is well documented that obesity is a risk factor for glucose abnor-

malities and cardiovascular disorders, including metabolic syndrome and dyslipidaemia (Legro

et al., 1999, 2001; Ehrmann et al., 2006). There is also evidence that even the body weight or

BMI is controlled, central obesity may remain a contributing factor of increased cardiometabolic

risk in PCOS population (Escobar-Morreale and San Millán, 2007; Godoy-Matos et al., 2009;

Moran and Teede, 2009). Another example of confounding factor may be age as it is proposed

that glucose abnormalities often worsen gradually with aging (Aguiree et al., 2013). While the

confounding factors may bias the estimates, it was not possible to account for all of these vari-

ables due to lack of high quality data reported by empirical studies. In addition, the variation

across studies in terms of ethnicity, medication use, recruitment source of sample population,

family history of DM2 and definition of controls were also considered to substantially raise the

statistical heterogeneity in the current analysis. Further observational studies regarding these

aspects (e.g. matching by age, BMI and ethnicity) are in need to explore the causal relationship

between common metabolic disorders and PCOS.

3.7 The bmeta package for R

Based on the modelling approach introduced in Section 3.4.3, I also developed a specific R

package, named bmeta. The purpose of creating this package is to keep the users at least for

a selected range of model specifications by coding up a large set of predefined models. In this

way, all required for performing the Bayesian meta-analysis is a simple call to an R function and

a decision in terms of what type of model to fit the data. After model specification, the package

automatically calls JAGS and launches it in the background to conduct simulations. The results

obtained from simulations (e.g. estimates from posterior distributions) are then stored back to

R for post-hoc analysis. The package provides a relatively large class of models for conducting

Bayesian meta-analysis in R, which is an open source software and is easy to interface with
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Bayesian/MCMC software, e.g. WinBUGS (Spiegelhalter et al., 2003) or JAGS (Plummer et al.,

2003), for simulations. The package includes functions for the calculation of various effect size

or outcome measures (e.g. odds ratios, mean difference and incidence rate ratio) for different

types of data and users are allowed to fit fixed- and random-effects models with different priors

for the parameters. When effects of additional covariates are observed, meta-regression (Dias

et al., 2013) can be performed to adjust for moderators. The sample data collected from the

literature review for PCOS were used to present functions of this package.

3.7.1 Models included

There are 22 fixed-/random-effects meta-analysis/meta-regression included in the bmeta pack-

age (see Table 3.3 below for more details), which can be used to model different types of data (i.e.

binary, continuous and count). Users can select fixed- or random-effects standard meta-analysis

or meta-regression in conjunction with different types of prior distributions for the pooled mean

outcome. In this way, users can compare the effect of different models (e.g. prior effect) fitted

to their data and use the results from the optimal ones based on the diagnostic statistics.

The t-distribution prior was included for modelling the pooled estimates for binary outcome

due to the fact that it has heavier tails and therefore was considered to be more suitable (com-

pared with a Normal distribution prior) for dataset with outliers. The half-Cauchy distribution

was included as prior for modelling the variance of the pooled estimate for count outcome. The

underlying reason is that it has heavy tails and therefore can allow for outliers and accommodate

small variances close to zero. The heavy tail of the half-Cauchy distribution can lead to less

shrinkage to the population mean (in our case, the pooled estimates from all studies). However,

this is considered to be appropriate for certain types of dataset where there are outlying data

points. In terms of continuous outcome, some studies may report mean and standard deviation

for both the case and control arm separately. Conversely, other studies may only report a mean

difference between the two arms and pooled standard deviation. Thus, models that can fit data

in different formats were created.
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Table 3.3: Models provided by bmeta.
Outcome Model Model explanation Type

Binary

std.norm meta-analysis with normal prior fixed/random
std.dt meta-analysis with t-distribution prior fixed/random
reg.norm meta-regression with normal prior fixed/random
reg.dt meta-regression with t-distribution prior fixed/random

Continuous

std.ta meta-analysis for studies reporting two
arms separately

fixed/random

std.mv meta-analysis for studies reporting mean
difference and variance only

fixed/random

reg.ta meta-regression for studies reporting two
arms separately

fixed/random

reg.mv meta-regression for studies reporting mean
difference and variance only

fixed/random

Count

std meta-analysis fixed
std.unif meta-analysis with uniform prior random
std.hc meta-analysis with half-Cauchy prior random
reg meta-regression fixed
reg.unif meta-regression with uniform prior random
reg.hc meta-regression with half-Cauchy prior random

3.7.2 Implementation

The models introduced in the above section can be selected by users and bmeta calls JAGS to

perform simulations with output stored back in R. However, before making model selection, the

user firstly needs to create or load the data. For example, data stored in the Excel spreadsheet

can be loaded using the following code:

> data=read.csv("IGT-NIH.csv")

Once the data are loaded into R, the user needs to format the data as required by bmeta

using the list command. Moreover, the user needs to name the input variables with specific

names (e.g. y1, n1, y0, n0) for the package to process and perform further analysis. The

recommended format of the input data is shown below.

Study Year y1 n1 y0 n0 Region X0 X1 X2

1 dos Reis 1995 7 29 0 19 1 1 0 1

2 Dunaif 2001 3 14 0 12 1 1 0 1

3 Yarali 2001 1 30 0 30 2 0 1 1

4 Faloia 2004 3 50 1 20 2 0 1 1

5 Phy 2004 4 7 2 18 1 1 0 1

6 Diamanti-Kandarikis 2005 1 29 0 22 2 0 1 1

7 Sawathiparnich 2005 3 6 0 6 3 0 0 1

77



8 Alvarez-Blasco 2006 4 32 8 72 2 0 1 1

9 Echiburu 2008 17 159 1 93 1 1 0 1

10 Bhattacharya 2009 32 264 11 116 3 0 0 1

11 Kawai 2009 72 185 40 120 1 1 0 1

12 Wei 2009 27 356 28 974 3 0 0 1

13 Huang 2010 11 90 0 40 3 0 0 1

14 Luque-Ramirez 2010 12 112 2 86 2 0 1 1

15 Pall 2010 1 75 0 23 2 0 1 1

16 Wiltgen 2010 22 195 0 25 1 1 0 1

17 Huang 2010 13 128 0 40 3 0 0 2

18 Amato 2011 7 125 2 144 2 0 1 1

19 Wickham 2012 4 13 0 13 1 1 0 1

20 Guleria 2014 5 50 1 50 3 0 0 1

The first two columns show the study characteristics including author and year of publication.

Column 4-7 display the number of events and the total number of individuals in the case and

control arm. Column 8 contains the regional indicator and this categorical variable was further

converted into binary variables X0, X1, X2, which can only take either 0 (no) or 1 (yes), as

required by bmeta. Note that the data in Column 4-7 are the necessary information required

by bmeta to perform a standard meta-analysis and if a meta-regression model is selected,

then data from Column 9 and onwards are considered necessary depending on the number of

covariates included for the model. The variables (e.g. Study, year, y1) do not necessarily have

to be named as what are shown in the above table because the user will have to rename the

input variables to feed bmeta using the list command mentioned previously:

> data.list<-list(y0=data$y0,y1=data$y1,n0=data$n0,n1=data$n1,X=cbind(data$X0,data$X1,

data$X2))

After this, the user can proceed with model selection. Here, the random-effects meta-

regression model with normal prior for binary outcome was selected and the object x included

all the results.

> x<-bmeta(data=data.list,outcome="bin",model="reg.norm",type="ran")

The following output table is automatically generated by bmeta after the model specifica-

tion. The second column presents the posterior mean of each model parameter and the associated

standard deviation is presented in Column 3. Columns 4-5 are the lower and upper bound of

95% credible interval of the posterior mean. Notice that alpha[] represents the study-specific

baseline odds whereas delta[] and gamma[] are the study-specific odds ratio (comparing the

relative risk of events in case and control arm) on log scale and natural scale, respectively. The
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pooled odds ratio rho is high (6.02) with a wide 95% credible interval of (2.60, 13.39). It is

worth mentioning that n.eff (effective sample size) for certain parameters of interest is low,

indicating potential autocorrelation. Note that under the context of MCMC, autocorrelation

is a measure of the independence of different samples drawn from the posterior distribution

and lower autocorrelation indicates more independent results and conversely, if there is high

autocorrelation, the sample drawn does not accurately represent the posterior distribution.

Inference for Bugs model at "model.txt", fit using jags,

2 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5

n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff

alpha[1] -3.718 1.261 -7.073 -2.094 1.093 55

alpha[2] -3.623 0.994 -5.713 -1.902 1.003 550

alpha[3] -6.062 1.484 -8.869 -3.489 1.063 31

alpha[4] -3.974 0.991 -6.237 -2.314 1.070 42

......

alpha[18] -4.422 0.594 -5.553 -3.297 1.013 120

alpha[19] -3.530 1.070 -5.860 -1.850 1.025 90

alpha[20] -3.986 0.712 -5.421 -2.667 1.073 27

delta[1] 2.394 1.265 0.721 5.413 1.020 88

delta[2] 2.050 0.946 0.449 4.145 1.001 1500

delta[3] 2.077 1.118 0.048 4.483 1.004 750

delta[4] 1.259 0.894 -0.287 3.200 1.059 34

......

delta[18] 1.542 0.642 0.318 2.841 1.010 1300

delta[19] 2.376 1.063 0.774 4.713 1.012 230

delta[20] 1.691 0.729 0.385 3.306 1.027 68

gamma[1] 178.820 1921.234 2.057 224.366 1.095 58

gamma[2] 13.654 27.510 1.567 63.125 1.001 1500

gamma[3] 15.484 24.030 1.049 88.506 1.004 750

gamma[4] 5.784 10.635 0.750 24.530 1.059 34

......

gamma[18] 5.786 4.355 1.375 17.140 1.010 1300

gamma[19] 24.141 75.662 2.169 111.374 1.012 230

gamma[20] 7.253 7.059 1.470 27.267 1.027 68

mu 1.695 0.433 0.956 2.595 1.003 520

rho 6.016 3.055 2.600 13.394 1.003 510

sigma 1.060 0.424 0.383 2.054 1.003 720

tau 1.587 2.298 0.237 6.805 1.003 720

deviance 141.753 8.141 127.402 159.204 1.014 110

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
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DIC info (using the rule, pD = var(deviance)/2)

pD = 32.9 and DIC = 174.6

DIC is an estimate of expected predictive error (lower deviance is better).

Apart from the output table, the JAGS file for the required model configuration (random vs

fixed effects; choice of outcome and prior distributions; presence of covariates) is saved in the

working directory. This is considered as a sort of “template” and can then be modified to extend

the modelling by changing priors in a way that is not automatically done by bmeta or saved for

future reference. For example, if the model convergence is poor, one may consider changing the

prior to be more informative as the prevalence of most diseases is likely to be restricted within

some reasonable range. The output table above suggests that more informative priors based on

pilot studies may need to be included in the analysis for this particular dataset.

3.7.3 Graphical functions

The bmeta package includes a range of graphical functions to produce not only standard plots

for output display but also diagnostics to assess heterogeneity between studies, publication bias

as well as model fit and convergence (Table 3.4).

Table 3.4: Plots produced by bmeta.
Plots Function

posterior.plot Posterior distribution plot of the summary estimate and between-
study standard deviation

forest.plot Graphical display of study-specific estimates and the pooled esti-
mate. Need to install package ‘forestplot’ from R library to
implement command

funnel.plot Scatter plot to present publication bias
diag.plot Diagnostic plot to present Gelman-Rubin statistic (Rhat) or effec-

tive sample size from MCMC simulations
traceplot.bmeta Trace plot to examine the model convergence for each node
acf.plot Autocorrelation plot to examine model convergence for each node

The function posterior.plot provides the posterior distribution of the summary estimate

and the between-study standard deviation (when a random-effects model is selected). As all

the models in bmeta employ the Bayesian approach, it is natural to look at the posterior

distributions of the parameters of interest. Figure 3.6 shows the posterior plot for the summary

estimate from the previous output table (Figure 3.6). We can see that all the bars lie to the right
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of the reference line x = 0, suggesting that the prevalence of DM2 is notably higher in PCOS

patients compared with the general population. The horizontal line in bold on the bottom of

the bars represents the 95% credible interval.

de
ns
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Figure 3.6: Posterior plot for the overall estimate obtained from pooling results from all studies
included. The results are presented on a log scale and the reference line is therefore x=0. The
horizonal line in bold represents the 95% credible interval of the estimate.

The forest plot is commonly used to graphically illustrate the outcomes obtained from meta-

analysis. In a forest plot, a box or a circle is normally used to represent the study-specific

estimates, which is displayed somewhere on a line that represents the 95% Credible Interval

(CrI) of the estimate. The overall estimate obtained from pooling all studies is drawn like a

diamond and a vertical reference line is used to show whether the outcome favours intervention

or control. It should be noted that this function in bmeta is based on calling the R package

‘forestplot’ (note that bmeta automatically loads the forestplot package). A set of

arguments is provided to edit the plot according to the user’s preference. The user can change
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the scale of the x-axis easily to make the estimates to be shown either on the log or natural

scale. The color of the boxes and diamond can be changed and titles and study details including

author and the year of publication can easily be added on the plot. For example, the following

command defines a log scale and all the study characteristics are added, with the colour of the

boxes and the diamond being specified as blue and orange, respectively.

> forest.plot(x,log=T,study.label=c(paste0(data$Study ,",", data$Year),"Summary estimate

"), box="blue", summary="orange")

Figure 3.7 is a forest plot generated from the previous output table for the relative risk of

IGT comparing the PCOS patients and controls. The boxes in blue represent study-specific

odds ratio and the diamond in orange represents the summary estimate obtained by pooling

all studies together. Note that the size of diamond is proportional to the uncertainties in the

pooled estimate. There are 20 studies and for each of them, the study-specific log odds ratio are

presented, with the pooled estimate at the bottom. We can see that all the boxes lie to the right

of the reference line x=0, indicating significant increased prevalence of IGT in PCOS patients

compared with controls.

Another important aspect when performing a meta-analysis is to examine the publication

bias and Figure 3.8 presents a sample funnel plot produced by bmeta for the previous sample

data of IGT. The function funnel.plot in bmeta displays study effect on log scale against

the standard error of the study effect. It is suggested that when bias and between-study het-

erogeneity are completely absent, the scatter resembles a symmetrical funnel and the triangle

area formed by connecting the centred summary estimate with its 2.5% and 97.5% quantiles on

either side includes about 95% of the studies if the fixed-effects model assumption holds (i.e. all

the studies estimate the same effect). Therefore, for the current plot, we can see that the scatter

is not quite symmetrical with several dots lying outside the triangle, suggesting some extent of

violation of the fixed-effects model assumption.

It is also worth commenting that bmeta allows to visualise diagnostics to assess model

convergence, i.e. diagnostic plot, trace plot and autocorrelation plot, and these diagnostics are

provided for all parameters in the output table.

Figure 3.9 presents the diagnostic plot for all nodes and we can see that the number of

effective sample size for many parameters is quite low (much smaller than the actual number

of simulated iterations as represented by the dash line at the top), suggesting issue of high
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Figure 3.7: Forest plot for studies comparing relative risk of IGT in women with and without
PCOS. The blue boxes represent the study-specific odds ratios and the lines are the corre-
sponding 95% credible intervals. The diamond on the bottom represents the summary estimate
obtained from pooling results from all the studies. The odds ratios are presented on a log scale
so the reference line is x=0.

autocorrelation.

This is confirmed by Figure 3.10 where a certain node gamma[18] in the output table

is presented. The autocorrelation plot often helps to check dependency among Markov chain

samples. The reason behind is that the distribution of the current observation always depends

on that of the previous one (a critical property of MCMC simulation), therefore the iterations

of a Markov chain are observed to be correlated. However, it is expected that the kth lag

autocorrelation (defined as the correlation between every draw and its kth lag) gets smaller as

k increases (i.e. the 5th and 100th draws should be less correlated than 5th and 10th draws).

Therefore, if autocorrelation continues to be high for larger values of k, we would suspect that

there is a slow mixing of chains and high degree of correlation between draws. The plot presented
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Figure 3.8: Funnel plot for studies comparing relative risk of IGT in women with and without
PCOS.

here shows moderate autocorrelation as although the correlation (represented by each vertical

line) between every draw of this node and its kth lag decreases when k increases, high correlation

was still observed for larger value of k (e.g. k=25), with the vertical lines exceeding the border

formed by the two dash lines.
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Figure 3.9: Diagnostic plot (display the number of effective sample size against the total number
of saved simulations after burn-in) for main parameters in the model.

The traceplot of the node gamma[18] is provided (Figure 3.11). The two chains in the

traceplot do not mix quite well and fluctuate around a certain horizontal line (represents a fixed

value) even after a large number of burn-ins. This indicates that the model convergence has

not been reached. It could be caused by the minimally informative prior in the model template

provided by the package. Therefore, more informative prior distributions for this dataset may

be considered or a larger number of iterations may need to be specified.
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Figure 3.10: Autocorrelation plot produced by bmeta.

Note that the bmeta package has been released to CRAN, the offcial repository of R packages.
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Figure 3.11: Traceplot produced by bmeta.

3.7.4 Web application of bmeta

A web application of bmeta has been created to facilitate users without direct knowledge of R.

By using bmetaweb, users only need to upload data in the required format in Excel spreadsheet

and specify the model to populate the data. bmetaweb runs the package in the background

and the outcomes are presented in fairly straightforward way on the website page. A structured

report in either PDF or Word can be downloaded with some pre-formatted texts aiming at

guiding users through the interpretation of the results. The official website of bmetaweb is:

https://egon.stats.ucl.ac.uk/projects/bmetaweb/.

Some screen shots of the bmetaweb are presented in Figure 3.7.4. The top graph in Figure

3.7.4 shows the welcome page of the website. This web page introduces the concepts of Bayesian

meta-analysis and gives instructions of the data format required by the website. The bottom

graph shows one of the function tabs where users can make model selection and upload data
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for analysis. The right side of the window presents the output table obtained from the model

specified by the user.
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Figure 3.12: Screen shots of bmetaweb. The top plot is the welcome page which gives some
general introduction about Bayesian meta-analysis and then instructs the user of the data format
required by the website. The bottom plot shows one of the function tabs where users can make
model selection and upload data for analysis. The output table is automatically generated on
the right side of the window.
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Chapter 4

EVALUATING THE

PREVALENCE, INCIDENCE AND

PRESCRIBING PATTERNS OF

PCOS UNDER THE UK

CONTEXT

4.1 Chapter summary

This chapter presents the results of incidence, prevalence and prescribing patterns of PCOS from

a database study conducted in the UK context. The motivation of this database study is firstly

discussed and then I give an overview of the UK primary care and the database used specifically

for the current research. The methods for patient identification from the database and the

analysis plan are introduced afterwards. The epidemiological and pharmaceutical results are

presented and compared with studies conducted under similar settings. Finally, I describe the

main conclusions from this database study and give some suggestions on the clinical management

of PCOS from a primary care perspective. The main findings in this chapter have been converted

into a paper published in the BMJopen (Ding et al., 2016).
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4.2 Background

In Chapter 3, I present results from statistical modelling for prevalence estimation of PCOS in

the general population. However, from the literature review, limited amount of information was

identified with significant heterogeneity between studies. Since there are many uncertainties

around the prevalence estimates in the previous chapter, I was motivated to find alternative

methods to investigate the prevalence or other epidemiological outcomes of PCOS. Aside from

this, the database study would allow me to explore the incidence, prevalence and prescribing

patterns of the condition under the UK-specific context as well as to include more covariates

(these may have influence on the epidemiological outcomes), which can hardly be achieved by

looking at data provided by published studies.

4.2.1 UK primary care

In the UK, in general, most of the patients’ experience is considered to be within primary care

and the majority of the general practitioners (GPs) record patient information by computer. In

the past, the main function of the information system in the general practices was to inform GPs

or other clinical members to provide care on a day-to-day basis. The patient information was

also used for registration and delivery of payments made to practices under a new GP contract.

The National Health Service (NHS) aims to provide care from cradle to grave through a uni-

versal coverage of services by GPs in the primary care and as early as in 1998, the Department of

Health’s strategy Information for Health (National Heatlh Service, 1998) attempted to establish

lifelong electronic health records for all the patients. The data collected in routine clinical prac-

tices are population-based, extending from birth information to details of diagnoses recording

as well as management and health outcomes. Therefore, by exploring primary care data, it is

possible to grasp a better understanding of the disease history including access to healthcare by

individual patients and the patterns of care (i.e. prescribing rates) in the general practices.

In 2006, the UK Department of Health has introduced a scheme termed the “Quality and

Outcome Framework” (QOF), whose objective was to encourage the delivery of high quality

primary medical services. Since the introduction of the QOF, GPs have been required to record a

wider range of data electronically. For example, GPs are required to record clinical management

following a diagnosis. Given that these data are also linked with payments to general practices, it

is expected that the accuracy and quality of electronic health records can be improved gradually
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in the primary care (Gnani and Majeed, 2006).

4.2.2 THIN database

History of the database

The primary care database used for this piece of analysis is The Health Improvement Network

(THIN). The idea of developing a database was firstly brought up in mid-1970s by a GP, Dr.

Alan Dean, who attempted to computerise the patient records and make these files paperless

(Health Service Journal, 1999). He managed to build this program with the help from some IT

staff and then began to sold it to other practices in 1979. By the end of the 1980s, an increasing

proportion of GPs in the UK started to work in computerised practices and the need for large

databases to conduct pharmaceuticoepidemiological research was raised (Hall, 1992).

In 1987, Dr. Alan Dean established a company — Value Added Information Medical Prod-

ucts (VAMP) and he aimed to include patient data from 950 practices. This first database

was named the Vamp Research Databank (VRD) however the way that GPs used computers

largely complicated its development. This is due to the fact that GPs generally needed to take

three steps to convert the paper records to computerised records. For example, they firstly

used the computer system to record prescriptions and then, to record details of consultations

and finally, other relevant information such as secondary care information or medical history

was recorded. Apparently, the analyses of the database were considered to be optimal by using

data contributed from practices that completed all these three steps. As a consequence, free

computers were offered to practices in order to incentivise more GPs to join this program.

In 1993, VAMP was sold to Reuters who later donated the VRD database to the Department

of Health for the purpose of public health research. After this, the VRD database was renamed

as the General Practice Research Database (GPRD, Ogdie et al., 2012) and regulated by the

Office for National Statistics (ONS). The database was further moved to the Medicines and

Healthcare products Regulatory Agency who is in charge of it nowadays. The name of the

database was changed again to Clinical Practice Research Datalink (CPRD) in 2012.

In 1994, Dr. Dean set up a new company called EPIC to regain the license of GPRD and at

the same time, VAMP was renamed as In Practice Systems Ltd (INPS) who bought back the

software platform (named Vision) for data management from Reuters. In 2002, EPIC, INPS and

Vision teamed up to establish The Health Improvement Network (THIN). It should be noted
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that although the data collection process of THIN was started in 2003, the patient records can

be retrieved back to 1980s for certain practices.

THIN at present

Nowadays, if a practice decides to join the THIN scheme, an initial process of full data collection

is carried out. In order words, the practice needs to provide all the retrospective data available

from the time point when the practice firstly began to use Vision or VAMP. The incremental

data collected each year are then automatically downloaded and stored in an electronic form.

This makes it less likely to incur disruptions to the daily activities of the practice while ensures

the data security.

It is estimated that THIN collects data on 3 to 5 million of patients on an annual basis

(Lewis et al., 2007). The latest data showed that the database included 559 practices covering

over 11,350,933 patients (among which over 3.8 million are active patients who are eligible to

be followed prospectively). It should be noted that the patient population accounted for 6.2%

of the total population in the UK (IMSHealth, 2015). Evidence has suggested that in 2011,

the number of patients on the NHS patient register record exceeded that of the population size

in the UK estimated by the Office for National Statistics (Office for National Statistics, 2014).

This could be due to the over and under coverage, e.g. patients registered in more than one area,

delays in birth or death notification.

Structure of THIN database

The information of patients in the THIN database is recorded in a range of different files as shown

in Table 4.1. There are seven files included in the database and some of the information may

be recorded in two files, e.g. additional health data may record the reason for death related to a

medical diagnosis indexed in the medical records. Due to the nature of the database structure,

when extracting data from separate files, it is essential to consider all the files that may contain

relevant information.

It should be noted that the symptoms and diagnoses are categorised using the so-called “Read

code” system, which is a unique hierarchical recording system developed by Dr. James Read

(Chisholm, 1990) and is widely used in the practices across UK. This classification codes disease

and its associated history and symptoms, findings and signs of the examination, diagnostic
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Table 4.1: Files that contain patient information in THIN database.
File name Information recorded in the file

Patient records
Age, sex, the date of registration and leaving the
practice

Medical records
Medical diagnosis and its associated date, the location
of the event and free text option

Therapy records
Prescription (indication not recorded) with formulation
and dosage information and the date issued, events
leading to withdrawal

Additional Health Data (AHD)
Records of vaccinations, other information such as
height, weight, smoking, birth, death, laboratory results

Postcode Variable Indicator (PVI)
The indices for postcode linked area-level socioeconomic,
ethnicity and environmental information

Consultation records Date, time and duration of consultation

Staff records Information of staff who entered the data

and test procedures, drugs prescribed as well as some social information. All the Read codes

are divided into chapters with a similar structure to the International Classification of Disease

(ICD). For example, Read codes starting with ‘C’ indicate endocrine and metabolic diseases

and “C11y200” is the Read code for impaired glucose tolerance. Over 100,000 Read codes are

currently included and the same condition can often be described by a range of Read codes

or the combination of different Read codes, e.g. ‘Stein-Leventhal syndrome’ is also used to

define PCOS.

Case identification from the database

In general, the primary step for research based on databases is case identification. This involves

extracting patient information from different files in the database to generate a big spreadsheet

containing individual level patient data (i.e. each line corresponds to a unique patient). This

spreadsheet can then be used to conduct more complicated analysis.

The data extraction process from THIN is graphically displayed in Figure 4.1 and can be

described as follows:

� The first step is to identify a list of Read codes relevant for a specific disease by looping

through the description fields of all the codes using ‘key’ words (Davé and Petersen, 2009).

These ‘key’ words are either definition of a disease or the descriptions of symptoms related

to a disease (see the rectangle with the terms ‘Read codes’ on the left side).
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� The code list is then merged with the medical records of patients for case identification.

� After identifying all the cases, this file is merged with other files such as patient record

(which contains the demographic information), therapy record (which contains the pre-

scription data), additional health data (which contains other variables) and postcode vari-

able indicator (PVI) records (which contains information on area-level social deprivation

level) depending on the research question and type of analysis needed. The final study

population file (see the bottom right rectangle) should contain all the disease and pre-

scription indicators as well as covariates of interest to facilitate the further analysis of the

dataset.

Figure 4.1: Overview of data extraction process from THIN. A list of Read codes defining a
disease or its major symptoms is identified to merge with the medical records of patients for
case identification. This file is then merged with all the other files (which contain other types
of patient information) to generate the final study population file for further analysis.
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4.3 Aim

The aim of this chapter was to firstly identify PCOS cases from the THIN database and then

estimate the incidence and prevalence of PCOS in the UK general population. The second

objective was to examine the impact of age, social deprivation level and time period on the

incidence rates. Finally, I aimed at investigating the prescribing patterns of PCOS in the UK

primary care.

4.4 Methods

4.4.1 Patient identification for PCOS

Specifically for PCOS, I primarily identified codes defining PCOS by looping through the de-

scription field including ‘key’ words such as ‘polycystic ovary syndrome’, ‘endoscopic drilling of

ovary’, ‘Stein-Leventhal syndrome’ or the symptoms of PCOS (i.e. irregular menstrual dysfunc-

tion, hirsutism, polycystic ovary). The code list of diseases that mimic PCOS was also developed

in the same way to be applied as exclusion criteria, including adrenal tumours, adrenal hyper-

plasia), Cushing’s syndrome, Nelson’s syndrome, pituitary disorders, prolactinoma. The reasons

for exclusion are presented in Table 4.2. The resulting code list is provided in the Appendix E.

This list was firstly developed based on the clinical guideline of PCOS and then was filtered and

modified through the discussion with clinical experts.

The THIN patient files were firstly restricted to only females who permanently registered.

The permanent patients refer to those who are residents in the practice area for more than 3

months. The identification process of the study population is graphically displayed in Figure 4.2.

Table 4.2: Diseases that mimic PCOS.
Disease Reason to exclude

Cushing’s syndrome
Make body produce excess cortisol hormone, leading to too much
hair in women and abnormal menstrual periods

Nelson’s syndrome Caused by operations that used to treat Cushings syndrome

Prolactinemia
Over production of prolactin, leading to oligomenorrhea or
amenorrhea, acne and excessive growth of facial and body hair

Adrenal disorders
Make body produce too little cortisol and too much male hormone,
leading to severe and early acne (before teenage),
facial hair in women and infrequent or absent menstrual periods

Pituitary disorders Can cause less frequent or no menstrual periods
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Figure 4.2: Identification of study population.

Two categories of PCOS cases were identified: diagnosed and probable cases. This is because

as described in Chapter 2, large data gaps between the prevalence rates estimated by community

studies and database studies were identified, suggesting that PCOS is a condition that is often

under-diagnosed. Since a combination of symptoms can also be indicative of PCOS, I included

probable cases in the analysis. It should be noted that the definition of probable cases was

validated through consultation with clinicians.

I now introduce how patients in these two categories were defined. The diagnosed case

group included PCOS patients with a record of either of the three Read codes: “Polycystic

ovary syndrome” (Read code C165.00), “Stein-Leventhal syndrome” (C164.12) and “Endo-

scopic drilling of ovary” (7E25300) recorded in their medical or additional health records. The

probable case group included patients with at least two Read codes from the following three

groups recorded in their medical or additional health records: Group A (menstrual or ovarian

dysfunction related PCOS features), Group B (androgen excess related PCOS features) and

Group C (Polycystic ovaries). Moreover, the Read codes must come from at least two different

groups, e.g. one from Group A and another from Group B or two from Group A and one from

Group C. The requirement for the (minimum) time between the 2 recorded features (or any 2

out of 3 features) for probable cases must not exceed 3 years. This time period was considered

to be long enough to capture half of the probable cases based on some pilot investigation of the
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study population (refer to Figure 4.5 in Section 4.5.2). The longer the time interval between

the two features, the less likely it is for a woman to be qualified as a case because one would

suspect that the woman may have developed some other conditions rather than PCOS.

Group B codes were further divided into two subgroups (I and II). Subgroup I included Read

codes for descriptive hyperandrogenic features (e.g. hirsutism, male pattern alopecia) whereas

subgroup II included Read codes for a range of laboratory tests for androgen related markers.

Subgroup I codes were considered if they were recorded in the medical or additional health

records. Subgroup II codes were only included if they were recorded in the additional health

records and have:

� A qualitative marker indicating that the test result was above the normal range (“high”,

“very high”, “significantly high”, “above high reference limit”);

� A quantitative marker indicating that the test result was above the normal range (where

the upper reference range for a quantitative result was not recorded in the additional health

records, the mode of the upper ranges for that practice in that year was used; where both

upper reference range and the mode of the upper ranges for that practice in that year

were not recorded, the mode of the upper reference ranges for all practices in that year

was used).

The following covariates were extracted, which may potentially be important factors affecting

epidemiological outcomes of interest in the current analysis:

� Age — age in 2014 was used here and women were categorised into 5-year age bands, i.e.

15-19, 20-24, 25-29, 30-34, 35-39, 40-44 years.

� Period — the whole study period was divided into 3 short periods, i.e. 2004-2007, 2008-

2011, 2012-2014.

� Townsend score — which describes the area-level social deprivation. The Townsend

score is a census-based index incorporating four variables (i.e. unemployment, non-car

ownership, non-home ownership, household crowding). Note that percentages rather than

absolute values are computed for each of the variables. For example, the percentage of

households without access to a car or van within an area (which is usually small geograph-

ical areas such as wards or local authorities across the whole country). These percentages
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are then standardised to a Z-score. The formulas for standardisation are shown below (the

first formula is for variables non-car ownership and non-home ownership and the second

formula is for variables unemployment and household overcrowding where log transforma-

tion is considered necessary):

Z scores = (percentage mean of all percentages)/ SD of all percentages

Z scores = (log percentage mean of log percentages)/ SD of log percentages

These standardised scores are then added up to be the final Townsend score, which ranges

from 1 to 5. Individuals with a score of 1 are considered to live in the least deprived areas

whereas those with a score of 5 reside in the most deprived areas (Townsend et al., 1988).

Similar to the wide accepted index of multiple deprivation (Department for Communities

and Local Government, 2015), Townsend score can be used to measure the deprivation

level of any geographical area where census data are available.

Since ethnicity information in THIN is incomplete and only reported by half of the patient

population, this variable was not included in the current analysis.

4.4.2 Analysis plan for PCOS

I performed analysis of both prevalence and incidence for the study population from 2004 to

2014. The start date was selected as 2004 because the second diagnostic criterion of PCOS

was established in 2003 and results from the literature review have suggested that very few

prevalence studies have been conducted before 2003. Therefore, it may be inferred that the

diagnostic criterion of PCOS was known by very few GPs and consequently hardly followed.

In other words, the recording rates of PCOS are expected to be lower before 2003, which may

bring in potential bias for the current analysis. In terms of the study end date, since the study

was performed in 2015, the end date was defined as the last date of 2014.

The incidence of PCOS records in the period from 2004 to 2014 were calculated for diag-

nosed cases, probable cases and both diagnosed and probable cases combined. The denominator

for the incidence calculation was the sum of all eligible follow-up time in the study population

with the start of each woman’s follow-up being defined as the latest of:

� 5,478 days after a woman’s date of birth (i.e. 15 years of age);
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� 1st January 2004;

� 365 days after a woman’s registration date;

� The date when practices met the criteria for continuously acceptable computer usage

(ACU), i.e. one medical record, one additional health record per patient per year, and at

least two prescription per patient per year (Horsfall et al., 2013);

� The date when practices were determined to have acceptable mortality reporting (AMR),

i.e. a time point at which the observed death rate for a practice reaches the standard pre-

dicted numbers of deaths derived from national statistics given the practice’s demographics

(Maguire et al., 2009).

The end date of each woman’s follow-up was defined as the earliest of:

� 16,436 days after a woman’s date of birth (i.e. 45 years of age);

� The date a woman transferred out of the practice;

� 31st December 2014;

� The date data were last collected from a woman’s practice;

� The date of the first PCOS diagnosis (for the probable case group, the date the second

PCOS feature is recorded was used as the date of first diagnosis of PCOS regardless of the

time interval between the first and second PCOS feature).

If presented in formula format, the start and end date were then defined as:

start date = max {15 years, 1st Jan. 2004, registration date + 1 year, ACU date, AMR date}

end date = min {45 years, 31st Dec. 2014, transfer out date, date of the first PCOS diagnosis}

The underlying reason for only including women in reproductive age range is that the major

symptoms of PCOS (i.e. menses) only appear within this age range and it is uncertain whether

a woman has developed PCOS before menarche or after menopause.

The incidence rates (raw data) were computed using the following formula:

Incidence rates =
Total number of events (new PCOS cases)

Total number of person-year at risk from 2004 to 2014
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The annual rates were then graphed to investigate the time trends of the diagnosis of PCOS

(diagnosed cases, probable cases and both diagnosed and probable cases combined). More-

over, I graphed the incidence rates (also raw data) according to age bands to see the change

of rates across different age groups. Multivariable Poisson regression models were used to eval-

uate recordings of all PCOS cases by age (in 5-year age band), social deprivation (quintiles of

Townsend scores) and effects of year (given the changing definition of PCOS, the study period

was split into 3 periods, i.e. 2004-2007, 2008-2011, 2012-2014) as well as to account for clus-

tering effect of patients nested in different practices. A two-level Poisson regression model was

considered here. Suppose there are j = 1, 2, ..., N practices with each practice consisting of

i = 1, 2, ...,mj patients. I then model:

yij ∼ Poisson(λij)

log(λij) = xijβ + uj

where yij are counts and λij = exp(xijβ+uj); the vector xij , a 1×p row vector, represents the co-

variates for the fixed-effects part of the model with regression coefficients β; uj is the random ef-

fects components, which is a multivariate normal distribution with mean 0 and q×q variance ma-

trix
∑∑∑

. The variance matrix is a diagonal matrix structured as
∑∑∑

=


σ21 0 0 . . . 0

0 σ22 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . σ2q

.

For the sake of simplicity and in view of the large amount of data (which would dominate in the

absence of particularly strong prior information on the model parameters), I have conducted this

exploratory analysis under a standard Frequentist approach. Note that this piece of analysis will

be fully expanded to a proper Bayesian model in Chapter 5 because the uncertainties associated

with both parameters and models can easily be propagated to the rest of the decision model

(e.g. Markov model) by using a Bayesian approach.

The period prevalence of PCOS records in calendar year 2014 was calculated for diagnosed

cases, probable cases and both diagnosed and probable cases combined (see formula below).

Prevalence =
Total number of PCOS cases in 2014

Total number of women eligible to be included in 2014
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The denominator of the prevalence study consisted of any woman with at least 12 months

of post-registration follow up, at least 6 months of which must have occurred in 2014. The

numerator consisted of all women in this denominator who were identified as PCOS cases defined

by the previous section. Secondary analysis in terms of post-registration period (i.e. 1 year, 2

years) and time registered within 2014 (i.e. 3, 6, 9 months) were also performed.

PCOS cases were then stratified by age (5-year age band) to investigate the age-specific

prevalence of PCOS for the study population.

The followings were also graphed to explore the characteristics of the patient cohort: (i) the

time distribution for a probable case to be formally indexed as a diagnosed case (diagnosed cases

with two or more features recorded before the date of their confirmed diagnosis were looked at);

(ii) the time between the index date of the first two diagnoses of PCOS features for probable

cases; (iii) the distribution of time between the date of PCOS diagnosis for cases and the end

of study period (31st Dec. 2014) stratified by age groups.

4.4.3 Analysis of drug treatment

Since there is variation in the symptoms of PCOS, it is expected that PCOS patients may

receive a wide range of prescriptions depending on their clinical presentations. Consequently,

different chapters of the British National Formulary were searched to identify drugs that are

most relevant to PCOS. e.g. oral contraceptives, metformin. I referred to the recommendations

of treatments in the PCOS guideline and other published studies on this aspect (Sheehan, 2004;

Conway et al., 2014).

The first record of a list of relevant treatments to PCOS was extracted both before and

after the diagnosis of PCOS. For each treatment included, the followings were computed:

� The proportion of PCOS patients who were on a certain type of drug before the diagnosis

of PCOS;

� The proportion of PCOS patients who newly (i.e. not on this drug before the diagnosis of

PCOS) initiate a certain type of drug following the diagnosis of PCOS.

Given the post-registration time of individual patients (1 year), the cumulative incidence

plots of different drug categories were restricted to 2004 to 2012 (censored two year before the
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end of study period in case those who started in 2012 do not have enough follow-up time as the

post-registration time requirement is 1 year).

4.5 Results

4.5.1 Prevalence and incidence outcomes

In total, over 14,000 individuals (amongst 2,087,107 eligible women) aged 15-45 years old had a

medical record indicative of potential PCOS between 2004 and 2014, which equated to 1.84 per

1000 person-year at risk (PYAR, 95% CI: 1.81-1.87). The rate for diagnosed PCOS cases was

0.93 per 1000 PYAR (95% CI: 0.91-0.96) whereas the rate for probable cases was 0.91 per 1000

PYAR (95% CI: 0.89-0.93).

The change of incidence rates over time and the age-specific rates are presented in Figure

4.5.1. The overall incidence of PCOS increased from 1.67 (95% CI: 1.58-1.77) per 1000 PYAR in

2004 to 2.00 (95% CI: 1.89-2.10) per 1000 PYAR in 2010, after which the rate remained relatively

constant at approximately 2 per 1000 PYAR. The incidence rates after 2007 are significantly

higher compared with that before 2007 for probable cases as shown in Table 4.3.

The incidence was the highest for those in the 20-24 age group (3.59 per 1000 PYAR, 95%

CI: 3.47-3.70) whereas the age group 40-45 reported the lowest incidence at a rate of 0.62 (95%

CI: 0.58-0.66) per 1000 PYAR. The age-specific trend of PCOS diagnosis was similar for both

diagnosed and probable cases. After adjusting for effects of year, social deprivation and practice-

level variability, significant differences still remained in the incidence of PCOS, i.e. the incidence

rates estimated are significantly lower for all the other age groups compared with the reference

group (Table 4.4).

In terms of social deprivation (measured by Townsend score), there was an increase in record-

ing of PCOS for individuals living in more deprived areas. The incidence of PCOS for individuals

who lived in the least deprived areas was 1.59 (95% CI: 1.53-1.65) per 1000 PYAR whereas those

in most deprived areas reported a rate of 2.23 (95% CI: 2.15-2.32) per 1000 PYAR. This was

statistically significant even after adjusting for effects of other covariates (i.e. age, year) and

practice-level variability (Table 4.4).

The random effects variance estimates suggest that there are some differences in the incidence

estimates across practices.

103



The overall prevalence of PCOS in 2014 was approximately 2.27% (95% CI: 2.23-2.31%),

with diagnosed and probable cases reporting 1.34% and 0.93%, respectively. The age-specific

prevalence was the highest for the 30-34 age group and decreased for older age groups. Preva-

lence estimates were not sensitive to the varying post-registration period and the minimal time

registered in 2014, remaining consistently at about 2%.

Figure 4.3: Time trends in PCOS diagnosis record (top) and age-specific PCOS diagnosis record
(bottom) for diagnosed, probable and total cases.
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Table 4.3: Recorded rates (raw rates without modelling) of

PCOS by definition of PCOS, social and demographical char-

acteristics.

Diagnosed PCOS Probable PCOS Overall

Rate per 1000 PYAR (95%CI) Rate per 1000 PYAR (95%CI) Rate per 1000 PYAR (95%CI)

Townsend quintile

1
0.80

(0.76-0.84)

0.80

(0.76-0.84)

1.59

(1.53-1.65)

2
0.90

(0.85-0.95)

0.79

(0.75-0.84)

1.69

(1.62-1.75)

3
0.94

(0.90-0.99)

0.91

(0.86-0.96)

1.85

(1.78-1.92)

4
1.02

(0.97-1.07)

0.97

(0.92-1.02)

1.98

(1.91-2.05)

5
1.07

(1.01-1.13)

1.17

(1.11-1.23)

2.23

(2.15-2.32)

Age, years

15-19
1.20

(1.14-1.27)

0.54

(0.50-0.59)

1.75

(1.67-1.83)

20-24
1.72

(1.64-1.80)

1.87

(1.79-1.96)

3.59

(3.47-3.70)
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Diagnosed PCOS Probable PCOS Overall

Rate per 1000 PYAR (95%CI) Rate per 1000 PYAR (95%CI) Rate per 1000 PYAR (95%CI)

25-29
1.51

(1.44-1.58)

1.49

(1.42-1.56)

2.98

(2.88-3.08)

30-34
1.03

(0.98-1.09)

0.86

(0.81-0.91)

1.88

(1.81-1.96)

35-39
0.45

(0.42-0.49)

0.55

(0.51-0.59)

0.99

(0.94-1.05)

40-45
0.17

(0.15-0.19)

0.45

(0.42-0.48)

0.62

(0.58-0.66)

Period

2004-2007
0.91

(0.87-0.94)

0.82

(0.79-0.86)

1.73

(1.68-1.78)

2008-2011
0.94

(0.91-0.98)

0.95

(0.92-0.99)

1.89

(1.84-1.94)

2012-2014
0.96

(0.92-1.01)

0.98

(0.93-1.02)

1.92

(1.86-1.98)
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Table 4.4: The incidence rate ratios (IRR) and the random-

effects variance estimates obtained from multilevel Poisson

regression model are provided.

Diagnosed PCOS Probable PCOS Overall

Adjusted IRR (95%CI) Adjusted IRR (95%CI) Adjusted IRR (95%CI)

Townsend quintile

1 1 1 1

2
1.14

(1.06-1.23)

0.99

(0.92-1.07)

1.08

(1.02-1.14)

3
1.12

(1.04-1.21)

1.07

(0.99-1.15)

1.10

(1.05-1.16)

4
1.15

(1.06-1.24)

1.06

(0.98-1.15)

1.11

(1.05-1.17)

5
1.15

(1.05-1.25)

1.21

(1.11-1.32)

1.19

(1.11-1.26)

Age, years

15-19
0.69

(0.64-0.74)

0.29

(0.27-0.32)

0.49

(0.46-0.51)

20-24 1 1 1

25-29
0.86

(0.80-0.91)

0.78

(0.73-0.83)

0.81

(0.78-0.85)
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Diagnosed PCOS Probable PCOS Overall

Adjusted IRR (95%CI) Adjusted IRR (95%CI) Adjusted IRR (95%CI)

30-34
0.58

(0.54-0.62)

0.46

(0.42-0.49)

0.51

(0.49-0.54)

35-39
0.26

(0.24-0.28)

0.30

(0.27-0.32)

0.27

(0.26-0.29)

40-45
0.10

(0.08-0.11)

0.24

(0.22-0.26)

0.17

(0.16-0.18)

Period

2004-2007 1 1 1

2008-2011
1.00

(0.95-1.06)

1.13

(1.07-1.19)

1.06

(1.02-1.10)

2012-2014
0.98

(0.92-1.04)

1.13

(1.07-1.20)

1.04

(1.00-1.09)

Random-effects

variance estimates

0.52

(0.44-0.61)

0.32

(0.27-0.38)

0.25

(0.22-0.29)
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4.5.2 Features of patients

The proportion of diagnosed cases who had a PCOS feature of menstrual dysfunction, hyper-

andrgenism and polycystic ovaries (PCO) recorded was 28.4%, 39.2% and 2.8%, respectively

(Table 4.5). The results suggested that 8.3% of the diagnosed cases used to be a probable case

and the probability for a probable case to be formally indexed as a diagnosed case within 1 years

was about 7% (Figure 4.4). On the other hand, menstrual dysfunction, hyperandrogenism and

PCOS were captured in 88.8%, 88.2% and 23.2% of the probable cases, respectively.

Table 4.5: Number and proportion of diagnosed and probable cases with major PCOS features.
Features
No. (%)

Diagnosed cases
(n=7233)

Probable cases
(n=7057)

Menstrual
dysfunction

2055 (28.4) 6265 (88.8)

Hyperandrogenism 2836 (39.2) 6221 (88.2)

Polycystic overies 199 (2.8) 1636 (23.2)

≥2 features 597 (8.3) 7057 (100)

Figure 4.4: Histogram displaying the time distribution for a probable case to be formally indexed
as a diagnosed case.

The time between the index date of the first two diagnoses of PCOS features for probable

cases is presented in Figure 4.5. It suggests that approximately half of the probable cases

have their second PCOS feature recorded within 3 years after the index date of their first PCOS
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feature. This 3-year interval was used as the maximum inter-feature period for the identification

of probable cases as discussed in the methods section.

Figure 4.5: The time between the index date of the first two diagnoses of PCOS features for
probable cases.

As presented in Figure 4.6, older women with PCOS were more likely to have their diagnosis

recorded longer time ago (10-15 years ago) whereas for young women with PCOS, their PCOS

recordings were unlikely to be indexed more than 10 years ago.
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Figure 4.6: Distribution of time between the date of PCOS diagnosis and the end of study period
(31st Dec. 2014) stratified by ageband. Older women with PCOS generally have their date of
diagnosis recorded longer time ago compared with younger women with PCOS.

4.5.3 Prescribing patterns

As presented in Table 4.6, the results have demonstrated that before the diagnosis of PCOS, a

large proportion (over 40%) of women were on combined oral contraceptives (COC), followed

by acne-related drugs (about 30%) and then progestin oral contraceptives (POC, about 20%).

Approximately 18% of the women had previously been prescribed with at least one of the re-

maining drugs, i.e. intrauterine devices, clomiphene, metformin, gonadotrophins, spironolactone,

cyproterone, flutamide, eflornithine, weight control/loss drugs, lipid regulators. The cumulative

percentage of patients who newly initiated acne-related drugs, COC and metformin was the most

common drugs prescribed in the 24 months after a diagnosis of PCOS. The cumulative incidence

plots show that while there is an initial increase in prescribing on or within a short period after

the PCOS index date, this is greater for metformin, acne-related drugs compared with others

(COCs, POCs). Prescription results stratified by case definition indicated that acne-related
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drugs and POCs were more commonly prescribed for probable than diagnosed cases whereas

COCs, metformin, clomiphene, cyproterone, eflorinithine and weight loss drugs were prescribed

more commonly in diagnosed than probable cases (Figure 4.7).

Table 4.6: Number and percentage of PCOS women on relevant drugs for PCOS both
prior to and following the diagnosis of PCOS.

Types of drugs
No. (%)

Before
After
2004-2007

After
2008-2011

After
2011-2014

COC 12349 (40.22) 901 (17.01) 912 (18.87) 459 (17.88)

POC 5806 (18.91) 474 (6.45) 691 (10.22) 272 (7.80)

IUDs 733 (2.38) 44 (0.51) 64 (0.75) 25 (0.52)

Clomiphene 518 (1.69) 210 (2.46) 165 (1.92) 70 (1.43)

Metformin 1278 (4.16) 1212 (14.77) 1102 (13.25) 495 (10.52)

Gonadotrophins 435 (1.42) 29 (0.34) 13 (0.15) 13 (0.26)

Spironolactone 235 (0.77) 109 (1.26) 111 (1.28) 43 (0.87)

Cyproterone 91 (0.30) 28 (0.32) 19 (0.22) 3 (0.06)

Flutamide 6 (0.02) 4 (0.05) 1 (0.01) 0

Eflornithine 530 (1.79) 354 (4.10) 407 (4.81) 172 (3.58)

Weight control/loss drugs 1330 (4.33) 403 (4.84) 364 (4.43) 91 (1.95)

Lipid regulators 194 (0.63) 69 (0.79) 46 (0.53) 8 (0.16)

Acne-related drugs* 9000 (29.31) 1182 (19.52) 1234 (20.78) 582 (18.32)

COC: combined oral contraceptives; POC: progestin oral contraceptives; IUDs: intrauterine
devices; *Acne-related drugs also include a range of topical treatments, e.g. benzoyl peroxide
cream
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Figure 4.7: Cumulative incidence of women with a prescription for each drug type over the 24 months following their index date
stratified according case definition (dashed line for diagnosed case, solid line for probable case). Results shown for the eight most
commonly prescribed drugs. COC, combined oral contraceptive; POC, progestin oral contraceptive.
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4.6 Discussion

4.6.1 Summary of main findings

For the current analysis, over 14,000 potential PCOS cases in women of reproductive age were

identified in practices across UK during the 10-year period from 2004 to 2014. More than half of

the cases identified have received a confirmed diagnosis of PCOS (diagnosed cases) whereas the

remaining women only have features indicative of PCOS (probable cases). This corresponds to

an incidence rate of 0.93 per 1000 PYAR (95% CI 0.91 to 0.96) and 0.91 per 1000 PYAR (95%

CI 0.89 to 0.93) for the diagnosed and probable cases, respectively. The prevalence of PCOS in

2014 was estimated to be 2.27%. A wide range of treatments have been initiated in the primary

care for women with PCOS and the prescribing pattern varies for diagnosed and probable cases.

The results suggested that oral contraceptives have been frequently used by women with PCOS

both prior to and after the diagnosis of PCOS was recorded. A greater proportion of diagnosed

cases received metformin on the day, or after the diagnosis has been recorded while a greater

proportion of probable cases received treatments tailored to the external symptoms of PCOS

such as acne.

4.6.2 Comparison with literature

The prevalence of PCOS in the UK primary care in 2014 was comparable to that obtained from

studies using other databases with a range from 0.56% to 2.22% (Lo et al., 2006a; Okoroh et al.,

2012; Christensen et al., 2013; Sirmans et al., 2014a). However, the rates are significantly lower

than those from community-based studies in Europe where rates generally ranged from 5.4% to

8% were observed using the NIH criterion (Michelmore et al., 1999; Diamanti-Kandarakis et al.,

1999; Asunción et al., 2000; Sanchón et al., 2012).

The proportion of women with PCOS who had been using oral contraceptives prior to their

PCOS diagnosis is comparable to other studies (Okoroh et al., 2012; Glintborg et al., 2015).

The proportion of PCOS patients who initiated metformin following a diagnosis is also similar

to a Danish study that reported the percentage of the PCOS population in their sample who

have received metformin to be about 12% (Glintborg et al., 2015).
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4.6.3 Interpretation

The incidence of PCOS increased slightly over the study period although no significant changes

were observed in any consecutive year. This may suggest that there was increasing awareness

of this syndrome after the gradual establishment of major criteria of PCOS. However, the fact

that the database has been improved over the time could also be an underlying reason for the

increasing rates.

Results from the multilevel Poisson regression model suggested that women who lived in

more deprived areas had a larger incidence of PCOS compared with those living in the less

deprived areas. This could be due to that obesity is more prevalent among women living in

more deprived areas. Alternatively, women living in these areas may have more complications

and therefore visit their GPs more frequently to have PCOS diagnosed and recorded.

The incidence of probable cases was comparable to that of diagnosed cases, indicating that a

large number of women who present with features of PCOS (within a 3 year period) in primary

care do not receive PCOS diagnosis subsequently. However, it is possible that some of these

probable cases have been referred to the secondary care for a confirmed diagnosis whereas a

diagnosis has not been recorded in the primary care. While a confirmed diagnosis may not

be relevant for some of the probable cases, it is likely that some of the women with features

of PCOS actually meet the criteria of PCOS and should receive further assessment. Failure

to refer such women may result in that these women are not offered the proper care for the

treatment of PCOS such as lifestyle modification or medications. Considering the relative low

cost of screening/diagnosis and the high cost of care for the associated disorders (Azziz et al.,

2005), further work is needed to inform women and health care providers about this condition.

There is considerable variation in the treatments prescribed to diagnosed and probable cases,

for example, a greater proportion of diagnosed women received metformin as medication whereas

many probable cases received medication tailored to the features they present with. This sug-

gests that diagnosed and probable cases indeed received different care for this syndrome and

some of the probable cases may not receive the most effective treatments. The wide variation in

prescribing pattern could also be explained by the fact that the clinical presentations of PCOS

not only varies by individual but also by age, i.e. younger women are more likely to initiate

drugs to regulate their menses while older women may ask for drugs to prevent rapid conversion

to diabetes.
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The most common drugs prescribed for women with diagnosed PCOS were metformin and

oral contraceptives, possibly reflecting the major long-term metabolic concerns of this syndrome

as indicated by the PCOS consensuses. However, even among women with diagnosed PCOS, the

treatments prescribed varied, indicating the lack of consensus for the ideal treatment of PCOS.

Therefore, there is much potential for future research to investigate the most cost-effective

treatments for this condition.

4.6.4 Strengths and limitations

To the best of our knowledge, this piece of analysis is the first to investigate the diagnosis and

management of PCOS in the primary care setting in the UK. THIN contains patient information

from more than 500 practices and our study population included more than 2,000,000 women.

Therefore, the current analysis is advantageous in terms of sample size and because the data

were contributed from practices across the UK, the sample was also considered to be broad

representative for the UK population. The trends of PCOS recording was examined over a 10-

year period, which has not been explored by any previous epidemiological studies where study

population was often sampled at a single time point.

The results in the current study are largely likely to reflect the true burden of PCOS for

the healthcare system since the data were coming from the routine clinical practice. However,

notice that since only data considered relevant at a consultation are recorded, underdiagnosis

was a major concern for this analysis. Consequently, it is not surprising to observe a low

proportion (i.e. 8%) of diagnosed cases with 2 or more features of PCOS recorded because once

a confirmed diagnosis has been made by a specialist, general practitioners are unlikely to record

anything further. Attempts have been made to identify and include women with features of

PCOS (interfeature within 3 years) as probable cases to address the under-reporting issue. This

may introduce case misclassification since some of the probable cases may not be true cases.

On the contrary, it could also be that some of the probable cases indeed have developed the

condition but were not captured and recorded for some reasons.

Another issue is considered to be the incomplete information of ethnicity (less than 50% of

the patients have this variable recorded in THIN) and the incidence rates can be influenced by

the unobserved differences in ethnicity distributions across the other variables such as age and

deprivation level.
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The indication of drugs is not specified in the prescription files of each patient and therefore

it is uncertain if the drugs prescribed following a diagnosis or even on the day of a record were

indeed for the treatment of PCOS. The results suggested that approximately 30% of the PCOS

patients prescribed metformin had a diagnosis of type 2 diabetes before their PCOS diagnosis.

By excluding these patients, it is more certain that metformin was prescribed at least partly

for the treatment of PCOS, with the proportion of patients initiated the drug lying somewhere

between 8% (on the day of diagnosis) and 20% (cumulative proportion within 24 months).

The advantage of using a 24-month window is that it allowed to capture prescriptions initiated

by specialists in secondary care that are transferred back to primary care. This is supported

by the cumulative incidence curves because the initiation of drugs that are more commonly

prescribed in secondary care (e.g. spironolactone) was further away from the origin (the day of

PCOS diagnosis).

In the next chapter, I will explore the healthcare burden of PCOS and the quality of life for

PCOS population in the UK by synthesising evidence from previous chapters using modelling

approach.
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Chapter 5

MODELLING THE BURDEN OF

PCOS IN THE UK

5.1 Chapter summary

The previous chapters suggested that PCOS is associated with a range of morbidities, however

the major concern for PCOS patients raised by most endocrine societies is the elevated risk of

type 2 diabetes. Based on the evidence identified in the previous chapters, it is likely that a

substantial proportion of PCOS patients may develop type 2 diabetes later in life (e.g. after

the age of 35 or 40), exerting large economic impact on the National Health Service (NHS)

in the UK. Therefore, it is of great interest to project the prevalence/incidence of diabetes in

the PCOS population and evaluate the potential burden of disease as well as the quality of life

(QoL) of individual patients in the near future. In such way, one is likely to have a clear view

of the public health impact of PCOS and can attempt to propose some ways to improve the

current situation. This chapter introduces the economic evaluation of disease burden and the

analysis of QoL associated with PCOS under the UK context. I firstly gives an overview of the

methods commonly used for the health economic evaluation. After this, the specific methods for

modelling the population dynamics of PCOS (i.e. a multistate Markov model) and the sources

of data used to populate the model are described. I then present outcomes from simulations

(based on a virtual PCOS cohort estimated from the UK census data) in terms of the number of

patients ending up in different states of the model, the healthcare burden of disease and the QoL

for the entire PCOS population in the UK over a relatively long period of follow-up. The results
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of QoL were compared with the simulated outcomes for a virtual healthy cohort of the same

population size. The main findings in this chapter have been converted into a paper submitted

to Human Reproduction and is currently under revision.

5.2 Background

In clinical decision making, a decision tree can often model the prognosis of patients and help

to guide the choice of management strategy for the condition (Elwyn et al., 2001). Figure 5.1

presents a possible decision tree for PCOS patients who come to see the clinician for treatment

consultation. A woman with PCOS may already have developed diabetes and therefore, treat-

ments for diabetes such as metformin should be prescribed to such patients. However, if the

woman have not developed diabetes yet, the clinician may prescribe treatments tailored to the

most prominent external symptoms of the patient. For example, as suggested in Figure 5.1, a

non-diabetic but obese patient may receive orlistat and is asked to take a diet. Conversely, a

non-diabetic and non-obese patient may only need drugs such as oral contraceptives to regulate

menstrual dysfunction. It should be noted that although drugs for disease management are

prescribed for all the non-diabetic patients, an adverse event may still occur, e.g. non-obese

patient who receive oral contraceptives may still develop diabetes. For each clinical scenario,

the associated cost and utility can be measured. For example, for obese patients who received

orlistat and take a diet but still develop diabetes later in life, the overall cost is calculated as

the cost spent on orlistat and a diet plus the cost of treating diabetes. Similarly, the utilities

can be attached to patients under each clinical scenario, e.g. we would expect that patients

who eventually develop diabetes have lower quality of life compared with those who do not

develop diabetes.

However, there are a few shortcomings for this model. The most obvious one is that the

time when an event occur is not clearly indicated. Moreover, an adverse event may occur more

than once. For example, some women with PCOS may lose weight and have normal BMI after a

period of diet management while become obese again. The decision tree can be very complicated

to depict if there are too many branches and one may find it difficult to assign utilities for each

of the outcomes, e.g. non-obese PCOS patients without diabetes.

Consider another scenario where there are only four possible health states: Healthy, Disease,

Recovery, Death. If we use a decision tree to describe this, then a patient starts in healthy state,
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Figure 5.1: A possible decision tree for PCOS patients who come to see the clinician for drug
consultation. The recommended prescriptions for patients with different phenotypes of the
condition are indicated in green.

may develop the disease, stay healthy or die. However, apart from staying in death state (transit

from either healthy or disease state) forever, the patient can transit from healthy to disease state

(or back) recurrently. Consequently, the decision tree would get too many branches (see Figure

5.2) and become very complicated to analyse.

However, this situation can be much better depicted and analysed using Markov models

(MM, Sonnenberg and Beck, 1993). In a MM, a finite set of states (assumed to be mutually

exclusive and exhaustive) are used to represent possible health status of a progression disease.

It is assumed that patients can transit from one state to another with some probabilities which

may be based on patient characteristics such as age and sex or time point. For example,

Figure 5.3 presents the structure of a MM including the four health states defined previously.

Arrows indicate that individuals can move between the two states from the one where the arrow

originates to the one where it ends. The absence of an arrow indicates that the movement

between the two states is not possible. The healthy and disease state are recurrent states. The
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Figure 5.2: A decision tree for a scenario that only includes four possible health states: Healthy,
Disease, Recovery, Death. A patient starts in healthy state may develop the disease, stay
healthy or die. Apart from staying in death state (from either healthy or disease state) forever,
the patient can transit from healthy to disease state (or reversely) recurrently.

death state is an absorbing state such that once individuals move there, they will remain there

forever. In this way, one can easily get rid of the large number of branches of the decision tree.

Given that MM provides a much more convenient and efficient way to model the likely outcomes

of a disease, particularly for recurrent events occurring over time, they are widely used for health

economic evaluation.

Once the structure of the model is specified (e.g. the number of health states), we need to

define the time horizon (e.g. 15 years) and then estimate the transition probabilities. The time

horizon (also called the follow-up period) can often be modelled by discrete cycles (e.g. months,

years). This “virtual” follow-up period can be determined depending on the specific disease or

outcome of interest examined and we would expect that if the follow-up period is long enough

(e.g. 100 years), all the individuals coming into the model would end up in the absorbing state

of death. After defining all these quantities, we can use the MM to simulate the likely outcomes
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Figure 5.3: The structure of a basic Markov model involving four possible states. The circle
represents each possible health state. Arrows indicate that individuals can move between the two
states from the one where the arrow originates to the one where it ends. If an arrow connecting
the two states is absent, then a transition is not possible. The blue thick arrows represent that
individuals remain in the original state without transiting to another state in the model. The
state of death is considered to be an absorbing state such that individual moving from all the
states to there remain forever. The transition probabilities between the states are indicated as
“pij” where i, j = 1, 2, 3, 4. Since death is an absorbing state, p44 is equal to 1.

for a “virtual” cohort over a period of time. The outcomes (e.g. the number of individuals in

the disease state at endpoint) can then be summarised from these simulations. Note that it

is possible to evaluate the impact of some given interventions. For example, suppose that a

new drug is available on the market which largely increases the probability of recovery (this is

equivalent to the assumption that p23 in Figure 5.3 suddenly increases). Moreover, by attaching

costs and quality of life data to each state in the model, we can also perform economic evaluation

and utility analysis.

In reality, uncertainties are often expected because sometimes it is difficult to collect exper-

imental data to inform some of the parameters, e.g. the transition probabilities from PCOS to

diabetes for menopausal women. For these parameters, assumptions based on limited evidence

and/or clinical expert consultation are typically applied. A Bayesian approach can formally

incorporate existing evidence from several sources to construct a probabilistic MM (Baio, 2012).
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By using a simulation method, it is possible to characterise the uncertainties about all the pa-

rameters and further propagate these uncertainties to the MM. In fact, the Bayesian procedure

produces a large number of simulations from the joint distribution of all the parameters. These

can be used to simulate for a bunch of potential “futures” with respect to population dynamics

as determined by the transitions between either two states of the MM.

Suppose that for a given discrete time MM, there are S states and the simulations are

performed for K cycles. We use mk = (m1k,m2k, . . . ,mSk) to represent the total number of

patients who enter into each state, where the element msk included is defined as the number

of patients in state s at time k. Let Pk denote the matrix that includes all the transition

probabilities between states over the discrete time (i.e. k ∈ N = {0, 1, 2, . . . }). Then the

element pss′k arranged in Pk is defined as the probability for a patient to transit from state s

to s′ between the consecutive cycles k − 1 and k. The total number of patients at a given time

point for a given state can then be computed as follows:

mk = mk−1 × Pk.

In other words, the total number of patients distributed over the states at cycle k equals the

total number of patients at cycle k − 1 times the transition probabilities between cycles k − 1

and k.

The associated costs and utilities for each state at a given time point can be computed by

the multiplication of unit cost/utility and the absolute number of patients in that state. For

example, assuming that the cost of treatments for an individual patient who remains in State 1

is constant over time (represented by c1), then the overall cost for patients in this health state

at time k is estimated as m1k × c1. The utilities attached to each state at a given time can be

estimated in the same way.

Note that the time horizon of a MM is often large (e.g. 25 years) whereas people are likely to

value more for the benefits that can be received closer to the present time compared with those

that they will get in the later future. As a consequence, it is essential to apply discounting when

measuring the costs and utilities in the future (Torgerson and Raftery, 1999). Discounting dif-

ferentiates outcomes that occur at different time point and accounts for people’s time preference

by devaluing the costs and benefits that will be seen in the future. It is generally accepted that

if the time horizon for an economic evaluation is greater than 1 year, then a discounting factor
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(1 + d)k needs to be applied for the costs or other outcomes measured where d is the discount

rate and k is the time when the costs/outcomes occur (Drummond et al., 2015). It may also

be of interest to compute the present value (PV) of costs or other outcomes that occur over the

entire time horizon examined. For example, the PV of the total costs over the follow-up period

examined for a MM can be specified as

PV =

K∑
k=0

S∑
s=1

ck ×msk

(1 + d)k
,

where ck represents the costs of the treatment at time k and K is defined as the number of

time points included in the analysis. This is equivalent to summing up the discounted costs

at each time point for all the states included in the model. Similarly, this formula also applies

for the calculation of the PV of benefits. Note that NICE suggests a discount rate of 3.5%

(i.e. d = 0.035) for all the costs and outcome measurements (National Institute for Clinical

Excellence, 2004).

To conclude, the general steps required to conduct a health economic evaluation using the

MM include:

� Specify the model structure including the number of possible states through the disease

progression;

� Define the time horizon of the model;

� Construct the matrix including transition probabilities between either two of the possible

states at each time point evaluated;

� Define the cohort matrix which includes the number of patients in each possible state at

each time point evaluated for the purpose of simulation;

� Run the MM model (multiplication of the cohort matrix and matrix of transition proba-

bilities) to get a large set of simulated “futures”;

� Summarise results from simulations and record the economic and utility outcomes associ-

ated with each state at each time point;

� Discounting should be applied if the time horizon of the MM exceeds one year.
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5.3 Aim

The objective of this chapter was to firstly estimate the prevalence of type 2 diabetes among

PCOS population in the UK over a 25-year follow-up period from 2014 to 2039. This would

further allow me to establish the economic burden related to healthcare for PCOS and evaluate

the quality of life for the entire PCOS population in this country over the period examined.

5.4 Modelling approach

5.4.1 Overview of the model

For PCOS, it is assumed that there are four possible states for the disease progression (as shown

in Figure 5.4) and the descriptions for each state are described below:

� State 1 (Probable PCOS ): Women with PCOS in this state are assumed to have developed

PCOS but remain clinically undiagnosed. From the previous chapters, we have seen that

there is a large number of women with symptoms indicative of PCOS but have not received

a confirmed diagnosis.

� State 2 (Diagnosed PCOS ): Women with PCOS in State 2 have been clinically diagnosed

and this population consists of prevalent cases and incidence cases (newly emergent cases

each year).

� State 3 (PCOS with diabetes): This state includes PCOS patients who have developed

diabetes. The number of patients in this state would increase if the accumulative number

of patients who gradually develop diabetes (coming from both State 1 and 2) exceeds those

who have died (transit into State 4).

� State 4 (Death): This state includes individuals who are dead from all states.

The assumptions for this proposed model include:

� Each year, a certain proportion of probable cases convert into diagnosed cases with a

transition probability p12. Women who remain undiagnosed after the age of 45 are assumed

to be unable to receive a diagnosis for this syndrome since the most prominent external

presentation (i.e. menses) disappears after reproductive age.
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Figure 5.4: The structure of Markov model for modelling the population dynamics of PCOS.
It is assumed that there are four possible states for the disease progression of PCOS: Probable
PCOS (State 1), Diagnosed PCOS (State 2), PCOS with diabetes (State 3) and Death (State
4). Rounded rectangles represent a single health state. Arrows indicate that women can move
across two states (from the one at which the arrow originates, to the one where it ends). If the
arrow is absent between the two states, then the assumption is that a particular transition is
not possible. The state of death is an absorbing state and individuals from any state can move
there and stay forever.

� The total number of cases in State 2 in a calendar year is then assumed to be equal to

the number of newly emergent cases plus the prevalent cases (defined as cases that have

already been diagnosed in the previous year).

� For women who have developed PCOS (either probable or diagnosed cases), some propor-

tion will transit into State 3.

� Once a patient with PCOS have developed diabetes, she is assumed to remain in State 3

until death and can never recover given the nature of diabetes.

� PCOS itself does not increase mortality but mortality for PCOS patients who have devel-
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oped diabetes differs significantly from that for individuals in other states. This is a strong

assumption considering that cardiovascular diseases (CVD) can largely increase the mor-

tality rates and PCOS patients are found to at elevated risk of CVD compared with the

general population as suggested in Chapter 2. However, a review by Legro et al. pointed

out that while existing data suggested that PCOS is likely to adversely affect the cardio-

vascular risk profile, its impact is limited for pre-menopausal age group (Legro, 2003). This

is supported by the findings from a study conducted in the UK where the CHD-related

mortality among 786 women with PCOS (evaluated after 30 years of diagnosis) was not

found to be significantly higher than the national rates (Pierpoint et al., 1998). Therefore,

the current analysis only considered diabetes as the main cause of elevated mortality for

PCOS population.

The list of parameters in Figure 5.4 with their definition and sources of ‘real-world’ evidence

are presented in Table 5.1.

Table 5.1: Model inputs
Parameter Definition Source

p12
Transition probability from probable PCOS
to diagnosed PCOS

Estimated from THIN

p13
Transition probability from probable PCOS
to diabetes

Estimated from THIN

p24
Transition probability from diagnosed PCOS
to diabetes

Estimated from THIN and published
literature

p14, p24
Transition probabilities from probable and
diagnosed PCOS to death

Assumption based (assume that PCOS
does not increase mortality and
therefore is estimated using rates in
general population)

p34 Transition probability from diabetes to death
Based on mortality rates in published
studies

5.4.2 Estimating the transition probabilities

I started by estimating the transition probabilities between different disease states (State 1,

2 and 3) in the Markov model for PCOS cohort. A Poisson regression model fitted using a

Bayesian approach and its hierarchical version (to account for practice-level variability) were

used to obtain the incidence rates. Recall that in Chapter 4, the Frequentist method was used

to model the incidence rates of PCOS and in this Chapter, the model was fully expanded to
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a Bayesian version. This is particularly relevant as the Bayesian framework allows to easily

propagate uncertainty in the transition probability to the ultimate estimates through the MM.

This enables a better characterisation and quantification of the burden of the disease. The

incidence rates were converted into transition probabilities. The formula for conversion and its

associated assumptions will be discussed later on.

Age group specific incidence rates were estimated due to the fact that: (i) results in the

previous chapter suggested that younger women are more likely to be diagnosed and most women

with PCOS received a diagnosis before the age of 35; (ii) age is a factor strongly associated with

the onset of type 2 diabetes (Sharma et al., 2016).

The standard Poisson regression model used to estimate the age group specific incidence

rates was specified below:

yi ∼ Poisson(λi) (5.1)

log(λi) = β0 +Xiβ + log(ti), (5.2)

where yi is the event indicator representing a Poisson process for individual patient during the

entire follow-up period. The parameter β0 is the baseline incidence rate and β is the incremental

effects of other variables on the baseline rate. For the current analysis, age was included as a

categorical variable with 6 levels and β0 is the incidence rate for individuals aged 40-44. The

parameters β1, β2, . . . , β5 represent the effect of age on the incidence rates in age group 15-19,

20-24, 25-29, 30-34, 35-39 compared with the reference group. Note that ti is the time of follow-

up and was included as a log offset in the linear predictor. This model was applied to estimate

the parameters λ12, λ23 and λ13.

For the estimation of λ12 and λ13 (incidence rates for probable cases to receive a confirmed

diagnosis of PCOS and diabetes, respectively), minimally informative priors were used, e.g.

β0 ∼ Normal(0, 100). This is due to the fact that no studies have been identified that provide

some insights into such transition rates in women with symptoms indicative of PCOS. Therefore,

little is known (even after discussion with the clinician in the team) to allow me to make strong

assumptions for statistical inference. In terms of estimating λ23 (incidence rates for diagnosed

cases to convert to diabetes), different versions of prior were attempted due to the availability

of published studies. This is likely to help minimise the impact of bias (e.g. referral bias,
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incompleteness of patient information, recording errors of the database, etc.) that may exist in

the data I used and the published studies.

Three scenarios were considered.

� Scenario 1: minimally informative priors for baseline incidence rate and incidence rate

ratio in comparison with other age categories were included:

β0, β1, ..., β5 ∼ Normal(0, 100).

As all the parameters are on a log scale, the prior Normal(0, 100) is very vague. In this

scenario, no formal knowledge on the range of rates was included and consequently, the

results would be driven only by the data.

� Scenario 2: informative priors for baseline incidence rate and incidence rate ratio were

included based on external evidence from published literature. Firstly I referred to the

incidence of diabetes in the general female population aged 40-44, denoted by βpop on the

log scale. It is suggested that the incidence rate for this age group is 3 per 1000 person-

year (PY) (Sharma et al., 2016). This can be translated into a mean on the log scale of

ln(0.003) = −5.809. Thus the parameter βpop was modelled using a Normal distribution

centred at −5.809 with some variability that reflect the uncertainties of this estimate:

βpop ∼ Normal(−5.809, 0.01).

Figure 5.5 is a graphical representation of the distributional assumption made for the

parameter βpop. We can see that the mean is centred at 3 per 1000 PY with a small 95%

interval of (2.95, 3.05). This is consistent with what is reported in the study by Sharma

et al. (2016).

The relative risk of diabetes comparing PCOS patients and the general population was

then defined and represented by ρ. Therefore, the incidence of diabetes in PCOS patients

in the reference group (defined as β0) can be calculated as.

β0 = βpop × ρ.
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Figure 5.5: Graphical representation of the prior distribution of βpop on the natural scale, which
reflects the assumption that the incidence of diabetes in the general female population aged
40-44 is 3 per 1000 PY with a small variance (the horizonal bar in bold represents the 95%
interval: 2.95-3.05 per 1000 PY). This reflects the estimate in the published study by Sharma
et al. (2016).

Note that there is evidence that the relative risk of developing diabetes for women with

PCOS are 3.02 (95%: 2.73-3.33) compared with the general female population (Morgan

et al., 2012). Therefore, the incidence of diabetes in the PCOS patients aged 40-44 is

expected to be around 9 per 1000 PY (3 per 1000 PY times the relative risk of 3), with

some variability (95% interval: 8.1-10.2 per 1000 PY). After converting this rate to the log

scale, it corresponds to a value of −4.71 with a 95% interval of (−4.82 to −4.59). In other

words, the product of βpop and ρ (represented by β0) is expected to follow a distribution

shown as below:

βpop × ρ = β0 ∼ Normal(−4.71, 0.06).
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The resulting distribution of β0 on the natural scale is presented in Figure 5.6. We can

see that the mean is centred at 9 per 1000 PY. The 95% interval also largely corresponds

to the rates obtained in the previous calculation.

Figure 5.6: Graphical representation of the prior distribution of β0 on the natural scale, which
reflects the assumption that the incidence of diabetes in the PCOS population aged 40-44 is
9 per 1000 PY with a small variance (the horizonal bar in bold represents the 95% interval:
8.1-10.2 per 1000 PY). This is produced based on estimates in the published studies.

I further referred to the relative risk of diabetes (represented by β1, β2, ..., β5 on the log

scale) across different age groups compared with the reference age group in the study by

Sharma et al. (2016). The prior distributions for β1, β2, ..., β5 were included to encode

the assumption that, compared with the reference group, women aged 15-19, 20-29 and

30-39 are 0.09, 0.37 and 0.63 times less likely to develop diabetes. These relative risks

were converted to the log scale. For each parameter, the log mean is consistent with the

estimate on the natural scale and a relatively small variance was included to reflect the
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uncertainties of these estimates as reported by Sharma et al. (2016):

β1 ∼ Normal(−2.408, 0.001)

β2, β3 ∼ Normal(−0.994, 0.001)

β4, β5 ∼ Normal(−0.462, 0.001).

� Scenario 3: similarly, the priors included in this model were informed by external evidence

but in a slightly different manner. A case-control matched study using the General Practice

Research Data (GPRD) in the UK was identified that examined the incidence rate of type

2 diabetes in PCOS population from 1990 to 2010 (Morgan et al., 2012). The structure

of GPRD is similar to that of THIN. For example, GPRD also collects primary care data

across practices in the UK with a higher coverage (e.g. covering 7% of the total population

in the UK) and 50-60% of the practices contributing data to THIN also provide data to

GPRD. Note that the two databases also share the same coding system. Therefore, results

from this study were considered to be relevant to inform the model I used and help to

limit bias that may exist both in the THIN data and the previous study.

Equation 5.2 suggests that β0 is the baseline incidence rate (on a log scale) for the reference

group (i.e. women aged 40-44) and β1, β2, ..., β5 represent the relative risk of diabetes

across age groups compared with the baseline group. Therefore, the incidence rate on

the natural scale for women in the comparison groups can be computed as exp(β0 + βh)

where h = 1, 2, 3, 4, 5 represent women in age group 15-19, 20-24, 25-29, 30-34 and 35-

39, respectively. The overall incidence rate βprev then can be calculated by proportional

weighting using the following formula:

exp(β0 + β1)w1 + exp(β0 + β2)w2 + ...+ exp(β0 + β5)w5 + exp(β0)w6 = exp(βprev),

where w1, w2, ..., w5 are the proportion of women in each age group estimated from the

THIN cohort, e.g. the percentage of women aged 15-19 in the study population included

from THIN. Consequently, the assumption here is that the age distribution of the cohort

from THIN is the same as that of the GPRD study. This was considered to be reasonable

since the source of data and the structure of GPRD is quite similar to the THIN database.
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By rearranging the above formula, the following equation was obtained that can be used

to compute the baseline rate:

β0 = βprev − log
{ 5∑
n=1

[wh × exp(βh)] + w6

}
.

The model was completed by including informative prior distributions to encode assump-

tions that reflect estimates in the published studies. For example, the overall rate of

diabetes (represented by βprev and is on log scale) was estimated to be 5.7 per 1000 PY in

the PCOS population in the GPRD study, with a 95% interval of (5.17, 6.29). This was

converted to the log scale:

βprev ∼ Normal(−5.167, 0.05).

The same assumptions in Scenario 2 were still applied for women in the remaining age

groups: women aged 15-19, 20-29 and 30-39 are 0.09, 0.37 and 0.63, respectively, less likely

to develop diabetes compared with women aged 40-44. This is represented by the following

distributions on the log scale:

β1 ∼ Normal(−2.408, 0.001)

β2, β3 ∼ Normal(−0.994, 0.001)

β4, β5 ∼ Normal(−0.462, 0.001).

It should be noted that for Scenario 2 and 3, the variances of all the prior distributions

included are small and are consistent with the variability of the estimates provided in the

published studies by Sharma et al. (2016) and Morgan et al. (2012). In addition, sensitivity

analyses were performed to assess the impact of increasing the variance of some of the parameters

(e.g. increase the variance from 0.001 to 1 for relative risk of diabetes across different age groups).

Apart from the above standard model, a multilevel Poisson regression model was also fitted

to account for the variances that may exist across different practices. The hierarchical version
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of the model can be specified as below:

yij ∼ Poisson(λij)

log(λij) = β0 + βXij + log(tij) + uj ,

where yij was defined as the event indicator representing a Poisson process for the ith individual

in the jth practice; tij is the time of follow-up for the ith individual in the jth practice; uj is

the random components of the model indicating variability between practices and the following

prior distribution was included for this parameter:

uj ∼ Normal(0, σ2)

σ ∼ Uniform(0, 10).

This prior is quite vague and the underlying assumption is that the difference in the incidence

rates across practices in the UK is centred at zero whereas is associated with large variability.

The priors included for the regression coefficients (i.e. β) are exactly the same as those

discussed previously for the standard Poisson regression model because the purpose for this

hierarchical model was to assess whether there is variation in the incidence rates across practices.

The model convergence was assessed using the Gelman-Rubin statistics and the statistics

were provided for all the model parameters. The Gelman-Rubin statistic is designed specifically

to assess the output of MCMC algorithm by looking at differences between multiple Markov

chains (Gelman and Rubin, 1992). By comparing the estimated between- and within-chains

variances for each of the model parameters, the convergence can be examined and large differ-

ences between these two variances would indicate issue of non-convergence. Note that there is a

numerical cut-off value of 1.1 for Gelman-Rubin statistic, values below which indicate the Monte

Carlo Markov model procedure converges to the target posterior distribution.

The incidence rates estimated from the Poisson regression model (and its hierarchical version)

were then converted to annual transition probabilities using the following formula (Gidwani,

2014):

pij = 1− e−λij , i, j = 1, 2, 3.
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The underlying assumption is that the incidence rate is constant for a given age group over a

Markov cycle of 1 year. This was considered reasonable as PCOS and type 2 diabetes are chronic

disease and therefore, the population-level incidence rate is unlikely to change drastically over

a short period of time such as 1 year.

Mortality rates in the general population were referred to UK life table (Office for National

Statistics, 2016) whereas those in the diabetic patients were based on empirical studies on

diabetes, i.e. female patients with type 2 diabetes are 2.13 times more likely to die compared

with the general female population (Mulnier et al., 2006). These rates were directly applied as

the transition probabilities from disease states to death (p14, p24 and p34) without using any

modelling approach.

Note that a healthy cohort was simulated to work as the comparison group for the PCOS

cohort with respect to the reduction in quality of life over the follow-up period (which will be

discussed later in Section 5.4.5). Similarly, a Markov model with three health states (healthy,

diabetes and death) was specified and the transition probabilities between either two of the three

states were estimated. The incidence rates of diabetes in the general population suggested by

Sharma et al. (2016) were used to compute transition probabilities between the healthy and

diabetic state. Likewise, mortality rates in the general population and the diabetic patients

were referred to UK life table and Mulnier et al. (2006), respectively.

5.4.3 Cohort simulation

A virtual PCOS cohort estimated using the prevalence rates in 2014 (refer to Chapter 4) and UK

census data from the Office of National Statistics (Office for National Statistics, 2014) were used

to simulate the population dynamics of PCOS from 2014 to 2039. The transition probabilities

estimated in the previous section were applied. Two scenarios were considered:

� Closed cohort model: women aged 15-44 were included and the number of patients who

start in each state at the baseline year (2014) was assumed to be consistent with previous

estimates from THIN, i.e. 18.2% of the PCOS patients had a prior diagnosis of type 2

diabetes and therefore, these women start in State 3 (PCOS with diabetes). Another

assumption is that there is no death for the entire cohort simulated at the baseline year.

Given that a limited number of deaths occur in women aged below 45 (i.e. mortality

rates smaller than 0.13%), this assumption is not expected to have massive impact on the
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overall simulation.

� Open cohort model: while others remain the same as the closed cohort model, women

aged 1-14 at the baseline year were also simulated in a way such that this cohort enters

the study population gradually when they reach the age of 15. The number of probable

and diagnosed cases was calculated based on the prevalence rates estimated from THIN

for the age group 15-19. Therefore, women aged 1-14 were assumed to be diagnosed at

the same rates as the youngest age group once they are eligible to be included in the

study population.

Likewise, for the virtual healthy cohort, both closed and open cohort model were simulated.

Some of these women start in diabetic state and the number of women with diabetes was assumed

to be consistent with the report by Diabetes UK (2015) where age-specific prevalence of diabetes

is provided.

5.4.4 Economic analysis

In this section, the methods used to evaluate the healthcare-related economic burden of PCOS

is introduced. This is mainly based on summing up the costs of a range of possible treatments

to PCOS and care for patients who have developed diabetes. The treatments selected for the

analysis were those that tailored to the major symptoms of PCOS (i.e. menstrual dysfunction,

obesity, pre-diabetes, acne), with a proportion of patients receiving the treatments greater than

2% after the diagnosis of PCOS (refer to Table 4.6). Otherwise, the treatments were considered

to be rarely prescribed to the patients and therefore, are likely to contribute only a small amount

of costs to the overall burden of the condition. The total costs of an individual treatment were

computed as the multiplication of the unit price, the daily dose, treatment duration and the

proportion of patients who require that treatment. The recommended dose and duration of

treatment for each drug considered are displayed in Table 5.2. The unit price of treatments

was referred to the British National Formulary (BNF, 2014), conference abstracts and pub-

lished reports by the NHS. The prior distributions included for the calculation of drugs costs

are presented in Table 5.3. The range of drug dose for each treatment considered forms the

boundary of the prior distribution, e.g. suppose that m represents the daily dose for metformin

and consequently, m would follow a uniform distribution: m ∼ Uniform(1828, 1914). The total
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costs of metformin can then be computed as £0.19 (the unit price) times m and the duration of

the treatment as well as the total number of patients who require this treatment.

Table 5.2: The recommended dose and treatment duration for each drug considered.
Treatment Dose and instruction

Oral contraceptives
One tablet daily for 21 days and repeat for each menstrual cycle
until menopause

Metformin
500-1000mg daily for the first week and then 1000-1500mg daily
for the second week and 1500-2000mg daily if tolerated
thereafter for 3-6 month

Eflornithine
Apply twice daily and should be discontinued in the absence
of improvement after treatment for 4 months.

Weight loss/control drugs
Orlistat: 120mg for maximum 3 times daily and continue
treatment beyond 12 weeks only if weight loss since start of
treatment exceeds 5%.

Acne drugs

Most are topical cream or gel,including erythromycin, benzoyl
peroxide, tretinoin and isotretinoin. Apply 1-2 times daily and
review at 8 weeks. Treatment may take up to 6 months or beyond
depending on severity.

Table 5.3: The distributional assumptions of mean dose and duration of treatment for drug
considered.
Item Mean Distribution Note/source

Drug dose

Oral contraceptives 1 tablet daily Constant BNF

Metformin 1828-1914mg daily Uniform Daily average for 3-6 months (BNF)

Eflornithine 4 cream tubes Constant Expert interviews

Orlistat 120-360mg daily Uniform Daily average for 3 months (BNF)

Acne drugs 0.5-2g daily Uniform
Daily average for 2-6 months
(National Health Service, 2015)

Drug costs

Oral contraceptives £124.33 per year Constant
3-year average costs applied
(Praet and D’Oca, 2014)

Metformin £0.19 per gram Constant BNF

Eflornithine
£56.87
per cream tube

Constant BNF

Orlistat £3.14 per gram Constant BNF

Acne drugs
£0.047-0.398
per gram

Uniform National Health Service (2015)

Diabetic care £6400 per year Constant Published study (Hex et al., 2012)

The cumulative proportion of patients who receive a relevant treatment within one year

after their diagnosis was estimated from THIN using the methods introduced in Chapter 3. The
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overall healthcare burden was discounted at a rate of 3.5% as suggested by the National Institute

for health and Clinical Excellence (NICE) (National Institute for Clinical Excellence, 2004).

5.4.5 Utility analysis

Quality of life (QoL) data from published studies were used for this analysis. It is assumed that

the QoL of both probable and diagnosed cases are the same based on estimates reported by

Coffey et al. (2006). The assumption is likely to be reasonable since many probable cases may

be true cases but failed to receive a confirmed diagnosis due to the imperfection of the current

screening system for this condition. The QoL of diabetic patients were used to approximate that

of PCOS patients with diabetes because it was not able to identify any study reporting relevant

information for this specific cohort. Although EQ-5D is recommended by the NICE to facilitate

comparisons across economic evaluations (National Institute for Clinical Excellence, 2004), I

only identified studies that report the QoL estimates for PCOS patients based on the 36-Item

short survey form (SF-36). Therefore, the methods introduced by Ara and Brazier (2008) was

applied as the conversion method between the two score measurements. In a nutshell, this article

introduces a method to derive the mean EQ-5D score of a cohort using mean statistics of the

eight dimension scores of SF-36 of the same cohort. Specifically speaking, the EQ-5D score is

regressed on the eight dimension scores of the SF-36 form (e.g. physical function, mental health,

social function) to obtain coefficients for each dimensional considered. Although the estimation

is based on individual level patient data (sample data) but predictive abilities are assessed using

the summary statistics from both subgroups in the sample data and some published studies.

The regression coefficients (for each health component examined by SF-36) obtained from the

model in this study was applied for conversion in the current analysis.

As mentioned previously, the population dynamics of a healthy cohort of the same population

size as the PCOS cohort was also simulated. The purpose was to examine the reduction in

quality of life (QoL) comparing the PCOS cohort and the healthy cohort over the follow-up

period. This time, the MM only includes 3 states: healthy (State 1), diabetes (State 2), death

(State 3). Individuals start in State 1 can transit to State 2 and 3 and once individuals develop

diabetes, they were assumed to remain in State 2 or die (transit into State 3). I referred to QoL

suggested by Kind et al. (1999) and the QoL for diabetic patients was still applied for healthy

women who develop diabetes later in life.
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A discounting rate of 3.5% was also used for all the utility analyses.

5.5 Results

5.5.1 Characteristics of patient cohort selected from THIN

A total number of 14,135 eligible patients with PCOS selected from THIN were used for esti-

mating the incidence rates from one disease state to another. Among these patients, 776 (5.5%)

had a diagnosis of diabetes before the date when the diagnosis of PCOS was recorded. The

recording of an HbA1c test was reported in 2.4% of PCOS patients within one year after they

received their diagnosis of PCOS, which increased to slightly above 4% after 3 years of diagnosis.

5.5.2 Incidence rates estimated from the Poisson model

The incidence rates estimated from both the standard and multilevel Poisson regression model

are presented in Table 5.4. In general, the rates are smaller for the hierarchical model (bottom

line in the table) and associated with a narrower 95% credible interval (CrI) compared with the

standard model (top line in the table). The plots for rate comparison are presented in Figure

5.7 and 5.8.

Table 5.4: Incidence rates estimated from the Poisson model using Bayesian approach. The top
line in each row represents results from the standard model and the bottom line represents those
from the hierarchical model.

Age, years
Incidence rates, per 1000 person years (95% Credible Intervel, CrI)

Probable PCOS to
diagnosed PCOS

Probable PCOS to
diabetes

Diagnosed PCOS to diabetes

Scenario 1 Scenario 2 Scenario 3

15-19 121 (82-163) 26 (9-28) 27 (12-41) 3 (3-3) 3 (2-3)
94 (63-132) 17 (6-35) 18 (9-31) 2 (1-2) 2 (1-2)

20-24 58 (45-70) 11 (3-13) 22 (15-26) 13 (12-14) 10 (9-12)
48 (37-61) 5 (3-9) 15 (11-21) 6 (5-8) 7 (6-9)

25-29 24 (19-28) 8 (3-8) 23 (18-25) 13 (12-15) 11 (9-13)
18 (14-22) 4 (2-6) 16 (12-20) 7 (5-8) 7 (6-9)

30-34 17 (12-18) 6 (3-7) 30 (25-33) 22 (20-24) 18 (15-20)
12 (9-15) 4 (2-6) 22 (18-26) 11 (9-13) 12 (10-14)

35-39 10 (7-11) 8 (5-10) 28 (22-32) 22 (19-24) 17 (14-19)
7 (5-10) 5 (3-8) 20 (16-25) 11 (9-13) 11 (9-13)

40-44 6 (3-7) 7 (3-8) 32 (25-36) 33 (30-36) 26 (24-29)
3 (2-5) 4 (2-6) 24 (19-29) 17 (14-20) 17 (14-21)
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The incidence rates from probable to diagnosed PCOS obtained from both models suggest

that younger women more likely to receive a confirmed diagnosis of PCOS compared with

older women. For example, the rates for women aged 15-19 are as high as 121 per 1000 PY

whereas are below 20 per 1000 PY for women aged 30 and above as suggested by the standard

model. In terms of probable cases converting to diabetes, both of the models suggest that the

younger women are associated with higher rates in contrast to older women. The estimated

incidence rates of diagnosed cases converting to diabetes are presented by scenarios (based on

different assumptions as discussed in the methods section). When minimally informative prior

was included (Scenario 1), the rates remain constant across different age groups for both of the

models. However, when informative prior (Scenario 2 and 3) was included, variation arises in

the rates across age groups and the rates increase from young to older age groups, i.e. from 3

per 1000 PY in women aged 15-19 to around 30 per 1000 PY for women aged 40-44 for the

standard model. The results obtained from inflating the variances (from 0.001 to 1) in the prior

distributions for the relative risk of diabetes (across different age groups) are generally in line

with Scenario 1 with slightly lower rates for the younger age groups compared with Scenario 1.

For example, the incidence rates were estimated to be 19 per 1000 PY (95% CrI: 9-33 per 1000

PY) for the youngest age group whereas older women (aged 30 and above) are associated with

higher rates at around 28 per 1000 PY (95% CrI: 22-33 per 1000 PY). The model convergence was

reached for all the analyses and the plots of diagnostic statistics are presented in Appendix G.
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Figure 5.7: The plots are for model comparison in terms of age-specific incidence rates estimated under different scenarios: (i)
transition from probable to diagnosed PCOS (left plot); (ii) transition from probable PCOS to diabetes (right plot).
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Figure 5.8: The plots are for model comparison in terms of age-specific incidence rates estimated under different scenarios: (i)
transition from diagnosed PCOS to diabetes by including minimally informative prior in the model (left plot); (ii) transition from
diagnosed PCOS to diabetes by including informative prior (Scenario 3) in the model (right plot).
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5.5.3 Results from population dynamics simulation

The age distribution of the PCOS population estimated from the UK census data is presented

in the Table 5.5. There is a higher proportion of women in the older age groups (i.e. age above

25) compared with the younger age groups.

Table 5.5: Age distribution of PCOS population in the UK for baseline year (2014). The
number of patients who aged 1-14 in 2014 was estimated based on the assumption that they
will be diagnosed at the same rate as women aged 15-19 once they reach the age of 15.

Age in 2014, years Population size (%)

1-4 9,270 (2.91)

5-9 11,021 (3.46)

10-14 10,056 (3.16)

15-19 10,957 (3.44)

20-24 40,166 (12.62)

25-29 69,061 (21.70)

30-34 69,873 (21.96)

35-39 52,801 (16.59)

40-44 45,029 (14,15)

The projected number of patients ending up in each state from 2014 and onwards at a

consecutive 5-year interval is presented in Table 5.6. It should be noted that the results in this

table are based on the most conservative estimates in Table 5.4 (Scenario 3). Results from both

closed cohort and open cohort model are presented. The figures on the top and bottom line

in each row represents the number of patients estimated from the standard Poisson regression

model and the hierarchical version of the model, respectively.

For the standard model, at the baseline year, 12.3% of the PCOS patients had a diagnosis

of diabetes. The closed cohort model indicates that proportion of PCOS patients who are likely

to convert to type 2 diabetes is 26.3% (95% Credible Interval, CrI: 25.2-27.6%) after 25 years of

follow-up whereas the corresponding proportion estimated from the open cohort model is 26.5%

(95% CrI: 25.4-27.8%). The rainbow plot (Figure 5.5.3) graphically displays the distribution

of patients over states (same legend for both plots). It should be noted that these results are

generally robust even when different transition probabilities from diagnosed PCOS to diabetes

(Scenario 1, 2 and 3) were applied. For example, for the base case scenario, the proportion of

patients who end up in the diabetic state by the end of follow-up was estimated to be 30.4%

(95% interval: 29.2-31.9%).

The results obtained from the hierarchical model are slightly smaller but do not differ much
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from those using the standard model. For example, the closed cohort model estimates that

22.0% (95% CrI: 20.7-23.5%) of the patients are likely to end up in the diabetic states after the

follow-up period and corresponding estimates from the open cohort model are 22.1% (95% CrI:

20.8-23.7%).

The results from simulating the healthy cohort suggest that the prevalence of type 2 diabetes

in this population increases from 1.5% in the baseline year 2014 to 8.3% by the end of follow-up.

Table 5.6: The predicted distribution of cases over states in the follow-up period (estimates for
both closed and open cohort model presented). The figures on the top line in each row were
simulated based on estimates from standard Poisson regression model and those on the bottom
line were simulated using estimates from the hierarchical version of the model.

Year
Probable PCOS Diagnosed PCOS PCOS with diabetes Death
Closed Open Closed Open Closed Open Closed Open

2014 139,659 139,659 112,609 112,609 35,620 35,620 0 0
139,659 139,659 112,609 112,609 35,620 35,620 0 0

2019 122,628 126,588 115,750 120,318 48,704 50,229 806 809
127,235 132,126 115,411 119,098 44,442 45,916 800 803

2024 114,236 120,830 112,206 123,060 59,805 63,423 1,640 1,653
120,143 129,542 114,062 122,293 52,064 55,500 1,619 1,630

2029 109,599 117,135 107,267 124,128 68,529 74,450 2,494 2,520
116,192 128,340 111,135 123,846 58,111 63,573 2,450 2,475

2034 107,356 112,744 103,220 120,975 73,957 81,111 3,356 3,403
114,212 124,390 108,501 122,319 61,889 68,194 3,286 3,330

2039 106,486 111,096 101,073 118,232 76,110 84,617 4,220 4,287
113,378 122,380 107,023 121,152 63,364 70,515 4,122 4,186

144



Figure 5.9: Distribution of women over states in the follow-up: (i) closed cohort model (on
the top); (ii) open cohort model (on the bottom). The graphs are based on simulations using
estimates from the standard model.
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5.5.4 Pharmaceutical outcomes

The cumulative proportion of patients who receive a relevant prescription within one year after

their diagnosis is shown in Table 5.7. A higher proportion of diagnosed cases received oral

contraceptives (either combined or progestogen, 23.4%), metformin (17.8%) and eflornithine

(4.6%) compared with probable cases. In contrast, a notable higher proportion of probable

cases received acne drugs (24.9%), which more than doubles that of diagnosed cases. This is

consistent with results shown in Table 4.6.

Table 5.7: Cumulative proportion of cases receiving relevant prescription for PCOS by case
definition (between 2012 and 2014).

Treatment
Percentage of patients receiving prescription
Probable cases Diagnosed cases

Combined oral contraceptives 12.8% 17.5%

Progestogen oral contraceptives 4.8% 5.9%

Metformin 1.7% 17.8%

Eflornithine 1.8% 4.6%

Weight loss/control drugs 0.63% 2.3%

Acne drugs 24.9% 11.1%
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5.5.5 Economic burden

The economic burden of PCOS was estimated to be £237 million (95% CrI: £237-238 million)

in 2014 and it continues to increase, with a present value of overall economic burden of over £7

billion (95% CrI: £6.8-7.3 billion, these are conservative estimates from the standard model).

The overall burden of the disease estimated from the hierarchical model is slightly lower (£6.2

billion). Figure 5.10 presents the trend of the country level healthcare burden of PCOS over the

25-year follow-up (results from standard model). The average costs for an individual patient

per year were estimated to be within a range of £723 and £950 during the 25-year follow-up

(e.g. £723 in 2014 and increase to a discounted value of £950 in 2023). This corresponds to

an overall average costs per patient on an annual basis of £876 for the entire follow-up period.

A significant proportion (over 96%) of healthcare burden for PCOS population is attributed to

treating diabetes.

Figure 5.10: The estimated healthcare-related economic burden of PCOS over the follow-up
period (based on simulations using estimates from the standard model).
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5.5.6 Quality of life

The quality of life (QoL) measured by EQ-5D for women with PCOS (both diagnosed and

probable cases) was estimated to be at a mean score of 0.76. The EQ-5D score is 0.7 (SD 0.3)

for PCOS patients with type 2 diabetes. The results from the model suggested that over the

period of follow-up, there is a reduction in QoL from 0.75 (95% CrI: 0.67-0.79) to 0.31 (95%

CrI: 0.24-0.34) for the entire PCOS population in the UK (similar results were obtained from

the hierarchical model). This is significantly lower compared with the results simulated for the

healthy cohort, as represented by the shaded area in grey formed by the two lines in different

colours in Figure 5.11. The magnitude of quality deficits is within a range of 0.04-0.1 over the

follow-up period. Note that since discounting was applied in both PCOS and healthy cohort, the

quality deficits represent the loss of quality of life measured by EQ-5D score for PCOS cohort

compared with the healthy population. The results presented here were obtained from the open

cohort model and similar results were obtained from the closed cohort model.

Figure 5.11: Quality of life (QoL) simulated for the PCOS cohort (yellow line) and a healthy
cohort (blue line) in the UK over the follow-up period (2014-2039). The shaded area in grey
representes the loss of QoL of PCOS cohort compared with the healthy cohort. Results are
based on simulations using estimates from standard model (open cohort scenario).
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5.6 Discussion

5.6.1 Summary of main findings

In this chapter, I modelled the population dynamics of PCOS, the healthcare-related costs and

the quality of life for the entire patient cohort in the UK. The indication from this simulation-

based analysis is that approximately 26% of the PCOS patients are likely to develop type 2

diabetes over the next 25 years starting from 2014. This remains robust for transition rates

estimated based on different assumptions. The quality of life of PCOS patients is generally

lower compared with the general population throughout the follow-up period examined. The

costs to the NHS for this condition were estimated to be at least £237 million on an annual basis.

5.6.2 Interpretation

The results from the Poisson regression model suggested that only a very small proportion of

potential cases (the incidence rate is as high as 120 per 1000 PY for the youngest age group) is

expected to receive a confirmed diagnosis. This points out the issue of lack of public awareness

of this syndrome as indicated by previous chapters and also reflects the nature of primary care

recording: GPs are likely to record symptoms rather than making a confirmed diagnosis when

they are less certain about patients’ condition; the recording of some of the patients who are

referred to secondary care may be lost if care is not transferred back to the GPs. However,

high conversion rates from PCOS to diabetes were estimated from our model. The failure of

screening (to make a confirmed diagnosis of PCOS) and the rapid conversion from PCOS to

diabetes result in the fact that over a quarter of the PCOS population was projected to develop

diabetes by the end of the follow-up. This is likely to incur large amount of costs to the NHS (an

estimated present value of the overall economic burden of at least £6.2 billions) and significantly

impact the quality of life for individual patients (the magnitude of quality deficits ranges from

0.04 to 0.1 compared with the general population). All these urge the need for a more efficient

screening approach for PCOS given that an earlier diagnosis would allow interventions to reduce

the impact of the condition in this cohort (approximately three quarters of a million women in

the UK).

Screening with an HbA1c test has been found cost effective for other high risk populations

at diabetes, as the test is inexpensive (£4.04) (National Institute for Clinical Excellence, 2011)
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and facilitates intervention to prevent diabetes. The term HbA1c is used to refer to glycated

haemoglobin, which develops when haemoglobin (a protein in the red blood cells that carries

oxygen throughout one’s body) joins with glucose in the blood and becomes ‘glycated’. By

measuring glycated haemoglobin (HbA1c), the clinicians will be able to know the average blood

sugar level over a period of time. However, although an HbA1c test is recommended by the

guideline of PCOS (Legro et al., 2013), this is hardly followed at present: only 2.4% of the

PCOS patients eligible to be included from the THIN database for analysis had a recording

of HbA1c test within one year after the date of their diagnosis of PCOS, which increases to

slightly over 4% after 3 years of diagnosis (recall results in Section 5.5.1). Note that the HbA1c

test is already incorporated in the NHS health check and the National Diabetes Prevention

Programme (National Health Service). These programmes target those aged 40-74 with BMI>30

(or BMI>27.5 for South Asian population) in whom the incidence of diabetes ranges from 14.3

to 23.8 per 1000 PY (Tillin et al., 2015). Therefore, apart from improved screening for PCOS,

our finding of conversion rates of diabetes in women with PCOS also suggests a possible role for

screening PCOS patients for diabetes.

It is possible that expanding the current targeted population of these programmes to include

women with PCOS or symptoms indicative of this condition may be cost effective. For example,

this may help improve the detection of symptoms indicative of diabetes (e.g. pre-diabetes as

suggested by results from an HbA1c test ranging from 42 to 47 mmol/mol) and consequently,

more patients with PCOS can benefit from early intervention to prevent rapid conversion to

diabetes. From a country perspective, this is likely to produce massive amount of savings in

healthcare costs associated with PCOS.

5.6.3 Strength and limitation

This is the first study that applied modelling approach to simulate the population dynamics of

PCOS using the real world evidence. Modelling is often considered to be cost-effective to explore

what-if scenarios and allow data from multiple sources to partially inform the model to examine

more complicated research questions, which is unlikely to be achieved by an individual study.

The individual patient data (IPD) from THIN were used to estimate some of the transition

probabilities between possible states included in the Markov model. As the IPD are from routine

clinical practice, the estimated transition rates are likely to reflect the true conversion between
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the disease states. However, referral bias may exist which meant that women with severe PCOS

(e.g. obesity, prediabetes) are more likely to visit general practitioners (GPs) and receive a

diagnosis consequently. For these women, the duration between the consecutive consultations

also tends to be shorter. All these factors may introduce bias into our estimates. I attempted

to address this issue by using the Bayesian approach to allow the IPD to be complemented

by external evidence from other comparable observational studies conducted in similar context

(Morgan et al., 2012). While there may be bias in both our data and published studies, the

formal machinery of the Bayesian approach is likely to make a compromise and provide more

realistic estimates based on more sources of information.

The Poisson regression model and its hierarchical version were applied to estimate the tran-

sition probabilities and the results obtained from the two models largely agree with each other.

The estimates from the hierarchical model are generally more stable (with smaller variances)

due to the nature of the hierarchical structure. Specifically speaking, individual estimates that

are based on less information can borrow strengths from other estimates to be pooled closer to

the group mean and this is called the “shrinkage” property (Gelman et al., 2014). Both models

controlled for the age variable and the hierarchical version of the model further accounted for

the variability across practices.

Nevertheless, other factors may need to be considered in the Poisson regression model. There

is evidence that obesity may be a factor affecting the transition from PCOS to diabetes (Legro

et al., 1999; Zhao and Qiao, 2013). For example, obesity can worsen PCOS and thus result in a

faster conversion to diabetes (Sam, 2007). However, since part of the risk of developing PCOS

is obesity, it is not possible to separate the effect of obesity and PCOS on the higher conversion

rates from PCOS to diabetes. The previous chapters also suggested that the prevalence of

PCOS varies across different ethnic groups and a study by Zhao and Qiao (2013) indicated that

Southeast Asian women with PCOS are at higher risk of diabetes compared with PCOS patients

with other ethnic background. Therefore, higher conversion rates may be expected for certain

ethnic groups and this would further lead to higher prevalence of diabetes in patients with certain

ethnic backgrounds by the end of follow-up. Nonetheless, this may not have strong influence

on our estimates given that over 85% of the population in UK are White Caucasian (Office for

National Statistics, 2011) and THIN is considered to be a true reflection of the mixture of various

ethnic groups across different regions of the country. Another reason for not including obesity
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status and ethnicity into the current model is the incompleteness of data on these variables from

THIN database, i.e. the information of weight/BMI and ethnicity were only recorded in less

than 40% and less than 50% of the patients, respectively. The proportion of patients with both

weight/BMI and ethnicity information reported would be even lower (≤40%). Further analysis

considering these aspects needs to be warranted.

A further concern regarding the methods applied in this piece of analysis is that modelling

is often a simplification of the complex situation in reality. The current Markov model only

included four states however it is possible that other states may exist. For example, a state of

PCOS with pre-diabetes may be reasonable given that pre-diabetes is an independent state often

considered in modelling the population dynamics of diabetes (Thurecht et al., 2007; Bernier,

2012). Note that the state of resolved PCOS was not included due to the fact that PCOS is

believed to be generically inherited and is largely incurable (Bernier, 2012).

As for the economic analysis, the list of drugs considered as the major burden of care for

PCOS is supported by a recent European survey where a group of specialists in PCOS were

interviewed. The results from this survey suggested that obesity and diabetes were the major

concern by over 60% of the interviewees. Metformin was selected as the top line treatment by a

third of the interviewees, followed by lifestyle modification (25%) and oral contraceptives (22%)

(Conway et al., 2014).

However, the estimate for the overall healthcare costs of PCOS in the UK was considered to

be conservative due to several reasons. The primary reason is that the current analysis did not

include the costs associated with other comorbidities of PCOS such as cardiovascular diseases

(CVD), obstetrical complications and infertility due to lack of supporting evidence. For example,

Azziz et al. (2005) suggested that the annual cost of infertility care for PCOS patients in the

US is $533 million each year. While this may contribute a certain proportion to the overall

disease burden, it is less plausible to apply strong assumptions for the economic evaluation

of infertility given the fact that not all women desire pregnancy. Some studies reported that

women with PCOS are at elevated risks of CVD compared with the general population (Wild

et al., 2000; Dahlgren et al., 1992). Nevertheless, the review by Legro (2003) argued that the

premenopausal age group did not appear to be at higher risk of presenting clinical signs of CVD.

As a consequence, limited data with respect to these aspects are currently available to draw

definite conclusions. It is also suggested that women with PCOS are more likely to experience
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depression (Barry et al., 2011) and antidepressants and counselling or cognitive behavioural

therapy for psychological disorders may be costly. Besides, it is often the case that prescribing

rates in primary care are under-reported due to various reasons (e.g. patient records are not

transferred back from the secondary care). I attempted to address this issue by extracting the

first drug record within 12 months following a diagnosis of PCOS and this period was considered

to be relatively long to examine the treatments initiated in the secondary care, which made it

less likely to bias the estimate for overall healthcare costs.
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Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Chapter summary

This thesis explored the prevalence of PCOS from both a global and country-specific perspective

and established the healthcare related economic burden of the disease in the UK. It addressed

these objectives coherently through both empirical studies and individual level patient data from

primary care database in the UK, using a wide range of suitable methodologies for each of the

specific research questions. Each piece of analysis mirrored the aims and objectives of the thesis,

as represented by the flow of the chapters. This chapter starts by drawing together the main

findings from previous chapters. I then discuss the methodological strengths and weaknesses

and finally present the implications of the work in this thesis for practice and further research.

6.2 Main findings

There are several major findings from the analyses in this thesis. Firstly, there is a large gap

between the prevalence rates estimated from community studies and database studies (which is

often based on primary care database or medical insurance database), highlighting the issue of

under-diagnosis of PCOS. The under-diagnosis could be due to the wide variation in the clinical

presentations of the condition across individual patients and different populations, resulting in

difficulties for the clinicians to make a confirmed diagnosis. Another possible reason is the lack

of awareness of this syndrome by both the public and the healthcare workers given that the

major criteria of PCOS were established relatively recently. For example, the first criterion
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of PCOS (the NIH criterion) was established in 1990 and it may take years for clinicians to

start following the guideline for diagnosis. This is reflected by the limited number of studies

conducted in 1990s and the low recording rates in early 21st century.

The prevalence of PCOS varies across different ethnic groups and even for the same eth-

nic group, there is significant variation in the prevalence estimates under different diagnostic

standards. This raised the concern for the accuracy of current measurement techniques and the

applicability of current diagnostic criteria to populations with different ethnic backgrounds. Em-

pirical studies suggested that women with PCOS are at significantly higher risk of a wide range

of morbidities such as type 2 diabetes and infertility. Therefore, the failure of screening may lead

to serious health consequences for PCOS patients, which severely affect the daily activities and

quality of life for women with PCOS. On the other hand, while under-diagnosis remains a big

issue, over-diagnosis of the condition may exert negative psychological impact on women with

PCOS, which can worsen the major symptoms of PCOS such as menstrual dysfunction and thus

increase the chance for potential cases to be qualified as true cases. This further emphasises the

importance of diagnostic accuracy of this condition.

The prescribing patterns of PCOS in the primary care supported the previous argument be-

cause a wide range of treatments tend to be initiated for patients following a diagnosis of PCOS.

This also reflects the fact that currently, there is lack of most effective treatment for PCOS and

patients generally receive treatments tailored to the external symptoms they present with.

Given there is limited supporting evidence on the causal relationship between a range of

cardiometabolic diseases other than type 2 diabetes provided by the long-term follow-up studies,

a full economic evaluation by including costs of care for all the morbidities potentially induced by

PCOS was challenged. The current economic analysis estimated the costs of treating external

symptoms presented by patients and the care required by those who have converted to type

2 diabetes over a course of 25-year follow-up. The results suggested that the disease burden

associated with care for PCOS population in the UK is significant and the costs of treating type

2 diabetes account for an overwhelming proportion of the overall burden.

6.3 Methodological strengths and weaknesses

The work presented in this thesis had a number of strengths and some acknowledgeable weak-

nesses. Firstly, I systematically reviewed the published literature to collect evidence relevant
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to the main research questions and at the same time, to identify the aspects of disease that

had not been well explored (e.g. prevalence of PCOS in populations with different ethnic back-

grounds). Alongside the data collection process, the generalised models for evidence synthesis

using Bayesian approach were developed through the creation of an R package. The Bayesian

methods allow the observed data to be complemented by some formal representation of prior

belief based on empirical evidence or pilot studies when the available data are limited. The

model templates provided by the package can be applied to a wide range of disease areas and

therefore, are considered to be an important methodological highlight derived from the first

part of this thesis. However, it should be noted that the current models designed for evidence

synthesis fitted to observational studies or randomised trials can only account for confounding

factors at study level, which is likely to be inadequate. The heterogeneity in the way that

information is provided by individual studies also largely limited our ability to include some po-

tential factors. For example, the body mass index of patients are often observed to be provided

in different ways, e.g. mean BMI for the study population, range of BMI for subgroups. The

number of confounding factors to be considered in meta-regression models is limited because

model convergence may be an issue when a large number of parameters are included.

Apart from literature review, I also conducted analysis using real-world evidence from a pri-

mary care database in the UK, which largely formed the second part of this thesis. The database

analysis is advantageous in terms of sample size and is considered to be broadly representative

for the UK population. As the routine clinical data are collected, the results reflected the reality

in primary care. However, due to the nature of data recording in ‘real’ world setting of UK

primary care, under-reporting is expected because the general practitioners are likely to record

only the main diagnosis in the coded patient records but unlikely to code all the features related

to a diagnosis or all the other patient information. Moreover, due to the issue of missing data,

complete information cannot be obtained on variables such as ethnicity or drug indication, which

may potentially influence the epidemiological and pharmaceutical outcomes in this analysis.

Based on the aggregate data identified from empirical studies and the individual level patient

data extracted from THIN, I evaluated the economic burden and quality of life for PCOS popu-

lation in the UK over a relatively long period of follow-up by using a simulation-based method.

The modelling approach allowed me to explore what-if scenarios and synthesise evidence from

multiple sources to inform the model for examining more complicated research questions, which
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is unlikely to be achieved by an individual study. Nonetheless, modelling is almost always a

simplification of the complex real world situation and many factors were not able to be consid-

ered at the moment due to lack of supporting evidence, e.g. the costs of treating infertility and

cardiovascular diseases. This may lead to an underestimation of the true healthcare burden of

the disease for this country.

6.4 Implications of the findings

The findings in this thesis have significant public health impact and important implications for

practice and further research. The work presented is quite novel and add much to the current

state of science for this disease area. For example, by the time when the literature review

was conducted, there had been no studies attempting to investigate the prevalence of PCOS

in different ethnic groups by combining information from single observational studies using a

meta-analysis approach. Similarly, modelling approach was firstly introduced to simulate the

population dynamics of PCOS based on evidence from multiple sources. The specific implications

with respect to each of the main findings are discussed below.

Firstly, the significant difference in the prevalence rates estimated using medical recordings

and through systematic screening in designed studies suggested that the public awareness of

PCOS still remains to be improved. Health campaigns can be a potential way to allow the

public and general practitioners to learn more aspects of PCOS. Early screening may also be

recommended given the relatively low costs of care for PCOS itself compared with the high costs

of diabetic care required after disease progression. However, considering the frequent issue of

under- and over-diagnosis of PCOS, further work is still expected to enhance the accuracy of

current screening approach for PCOS. This could possibly be achieved through the establishment

of a more detailed ethnicity-specific diagnostic criteria, as suggested by the large variation in

prevalence rates and metabolic features of the condition across different ethnic groups.

The results from the current evaluation for the prevalence of type 2 diabetes in the PCOS

cohort indicated that PCOS or possibly menstrual dysfunction (major symptom of PCOS)

may be a marker for the detection of type 2 diabetes as a high proportion of women with

PCOS was estimated to develop diabetes by the end of the 25-year follow-up. Therefore, the

current targeted population of the Diabetes Prevention Programme may be recommended to

be expanded to include women with PCOS or symptoms suggestive of PCOS. This is likely
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to massively improve the detection of symptoms indicative of diabetes in PCOS patients and

prevent rapid conversion to diabetes for this selected population. In this way, significant amount

of healthcare costs associated with PCOS can be saved for the NHS in the UK.

The wide variation in the prescribing patterns of PCOS in the primary care suggested the

issue of lack of most effective treatment for this condition currently, urging the need for further

research to explore this area. While there are many trials comparing the efficacy of different

treatments on ameliorating the metabolic presentations of PCOS patients, longitudinal studies

are recommended to investigate the long-term effect of various treatments in terms of reducing

the risk of conversion from PCOS to diabetes as well as the improvement in quality of life for

individual patients. Data from this type of longitudinal studies are expected for conducting

further cost-effectiveness analysis based on the current model structure, e.g. the public health

impact of improved screening offered to PCOS patients. It is expected that if more effective

screening is available, a larger number of potential cases is likely to receive a confirmed diag-

nosis and proper care thereafter. Although this increases the number of diagnosed cases, the

actual number of cases transiting into diabetic state tend to be reduced given that appropriate

treatments are initiated following a diagnosis. The economic burden can then be re-evaluated

to see the effect of the new intervention from a country perspective. Similarly, the public health

impact of other interventions or the combination use of a range of interventions can be modelled

in the same way.
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Appendix A

Table 1. Summary of studies evaluationg the prevalence of PCOS in women of reproductive age.

Article Country
Sample
size

Age BMI Prevalence of PCOS (%)

NIH Rotterdam AES Other
Americas

Knochenhauer et al. (1998) US 277 18-45yrs 26.9+/-7.4 4.0 - - -
Azziz et al. (2004) US 400 18-45yrs 27.8+/-7.7 6.6 - - -

Goodarzi et al. (2005) US 156 34+/-8.6yrs 29.9+/-7.9 - - -
13(self-reported
NIH)

Lo et al. (2006a) US 644166 15-44yrs

50% of the
population
reported BMI
19.4%, 29.0%
overweight for
PCOS and
control,
respectively;
67.0%, 31.4%
obese for
PCOS and
control,
respectively

- - - 2.2(ICD-9)

Okoroh et al. (2012) US 12171830 18-45yrs

0.6%, 1.3% obese
for PCOS and
control,
respectively

1.11 1.59 1.20 -
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Article Country
Sample
size

Age BMI Prevalence of PCOS (%)

NIH Rotterdam AES Other

Christensen et al. (2013) US 137502 15-19yrs

21.2% overweight,
57.3% obese
for PCOS;
20.3% overweight,
16.5% obese
for control

0.56 - - -

Sirmans et al. (2014a) US 143413 15-45yrs

39.5%, 10.1%
obese for
PCOS and
control,
respectively

- - - 0.88(ICD-9)

Moran et al. (2010a) Mexico 150 20-45yrs 27.5+/-4.6 6.0 6.6 - -

Gabrielli and Aquino (2012) Brazil 859 18-45yrs

Median (IQR)
PCOS:
24.2(17.7-30.7)
control:
24.1(18.1-30.1)

8.03 8.5 - -

Faria et al. (2013) Brazil 485 15-18yrs

Median(min-max)
PCOS:
20.2(16.7-27.6)
control:
20.4(16.3-27.1)

- - -
6.2(medical
diagnosed
PCOS)

Europe

Michelmore et al. (1999) UK 230 18-25yrs

Median(IQR)
PCOS:
23.7(21.3-25.6)
PCO only:
20.7(19.7-22.0)
control:
22.3(20.4-24.7)

8.0 - - -
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Article Country
Sample
size

Age BMI Prevalence of PCOS (%)

NIH Rotterdam AES Other

Diamanti-Kandarakis et al. (1999) Greece 192 17-45yrs

27.2+/-0.7,
28.7+/-2.7
for 1 feature
group
28.9+/-1.6
for PCOS
25.9+/-0.6
for control

6.8 - - -

Asunción et al. (2000) Spain 154 18-45yrs 23.8+/-3.2 6.5 - - -

Sanchón et al. (2012) Spain 592
≥ 18yrs
Median:17-33*

25+/-5,
24+/-5
for women
from Spain
and Italy,
respectively

5.4 - - -

Lindholm et al. (2008) Sweden 147 25-40yrs

29.5+/-5.7
for PCOS;
25.1+/-6.9,
28.0+/-4.4
for 1 feature
group;
24.8+/-4.4
for control

- - -
4.8(self-reported
NIH)

Lauritsen et al. (2014) Denmark 447 20-40yrs 23.1+/-3.5 - 16.6 - -
Asia

Chen et al. (2008) China 915 19-45yrs 20.9+/-3.0 - 2.4 2.2 -
Ma et al. (2010) China 2111 19-45yrs - - 6.11 - -

Li et al. (2013a) China 15924 19-45yrs

22.2+/-4.2,
22.1+/-3.4
for PCOS
and control,
respectively

- 5.6 - -
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Article Country
Sample
size

Age BMI Prevalence of PCOS (%)

NIH Rotterdam AES Other

Jiao et al. (2013) China 1600 19-45yrs

25.8% obese
for PCOS
control not
known

- 8.25 - -

Zhuang et al. (2014) China 1645 12-44yrs - 7.1 11.2 7.4 -
Sung et al. (2010) Korea - 16-39yrs - 4.4 6.3 5.1 -

Nidhi et al. (2011) India 460 15-18yrs

14.3% overweight,
7.14% obese
for PCOS;
control
not known

2.61 9.13 -

Gill et al. (2012) India 1520 18-25yrs

21.7+/-5.5
for PCOS,
19.5+/-3.0
for control

3.7 - - -

Joshi et al. (2014) India 600 15-24yrs 19.4+/-3.7 - 22.5 10.7 -

Kumarapeli et al. (2008) Sri Lanka 2915 15-39yrs

Median(IQR)
PCOS:
24.2(16.1-32.3)
control
not known

- 6.3 - -

Vutyavanich et al. (2007) Thailand 1095 18-40yrs

23.8+/-5.1
for PCOS,
control
not known

5.7 - - -

Middle East
Musmar et al. (2013) Iran 137 18-24yrs 22.2+/-3.1 7.3 - - -

Hashemipour et al. (2004) Iran 1000 14-18yrs 9.1% obese - - - 3(clinical PCOS)

Mehrabian et al. (2011) Iran 820 17-34yrs
19% overweight
9% obese

7.0 15.2 7.92 -

Asgharnia et al. (2011) Iran 1850 17-18yrs

21.1+/-3.6
for PCOS,
control
not known

11.34 - - -
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Article Country
Sample
size

Age BMI Prevalence of PCOS (%)

NIH Rotterdam AES Other

Tehrani et al. (2011) Iran 929 18-45yrs

Median (IQR)
PCOS:
27.0(25.8-37.3),
25.0 (21.6-29.2),
25.6 (23.0-31.2)
control:
26.4(23.1-29.4)

7.1 14.6 11.7 -

Esmaeilzadeh et al. (2014) Iran 1549 16-20yrs 21.9+/-4.1 - - -
8.3 (criteria
not stated)

Rashidi et al. (2014) Iran 602 18-45yrs
36.9% overweight,
22.1% obese

4.8 14.1 12.0 -

Yildiz et al. (2012) Turkey 392 18-45yrs

Obese:
10.2% for total
25% for NIH
15.4% for
Rotterdam
15% for AES

6.1 19.9 15.3 -

Al Khaduri et al. (2014) Oman 3644 12-45yrs 25.5+/-4.7 - 7.0 - -

Attlee et al. (2014) UAE 50 17-23yrs 22.9+/-3.5 - - -
20(criteria
not stated)

Oceania

Lowe et al. (2005) Australia 100 -
23.4+/-3.8
for women
reported (11%)

- 12 - -

March et al. (2010) Australia 728 27-34yrs
Median 25.7
(22.5-30.9)

8.7 11.9 10.2 -

Boyle et al. (2012) Australia 248 15-45yrs
Median 27.0
(22.5-32.6)

15.3 - - -

Joham et al. (2013) Australia 8612 28-33yrs

28.0+/-7.2
25.1+/-5.6
for PCOS,
control,
respectively

- - -
5.8(self-reported
PCOS)
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Appendix B

Table 2. Summary of studies assessing impaired glucose tolerance (IGT) and type 2 diabetes (DM2) in women with and
without PCOS.

Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

Europe

Rajkhowa et al. (1996) 72/39
Mean:
cases: 26
controls: 30

Mean:
cases: 31.6
controls: 25.9

Rotterdam WHO

Ciampelli et al. (1998) 35/11
cases: 21-36
controls: 28-30

Not stated NIH NDG

Cibula et al. (2000) 28/752 45-59
Mean(SD):
cases: 28.0(4.2)
controls: 28.2(5.2)

NIH

Fasting glucose
≥ 7mmol/L
current medical
treatment

Yaralı et al. (2001) 30/30
Mean(SD):
cases: 27.9(6.1)
controls: 31.4(6.5)

Mean(SD):
cases: 27.3(6.0)
controls: 25.0(3.3)

NIH WHO

Faloia et al. (2004) 50/20

Mean(SD):
cases: 23(5)
controls: 12 lean,
8 overweight

cases: 23 lean,
27 overweight
controls: 12 lean,
8 overweight

NIH WHO
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Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

Diamanti-Kandarakis et al. (2005) 29/22
Mean(SD):
cases: 25.8(5.0)
controls: 28.1(4.0)

Mean(SD):
cases: 27.2(7.7)
controls: 23.3(5.7)

NIH
OGTT,
not stated

Álvarez-Blasco et al. (2006) 32/72
Mean(SD):
cases: 26(7)
controls: 32(8)

Mean(SD):
cases: 34.8(6.6)
controls: 35.2(6.2)

NIH Not stated

Attaoua et al. (2008) 207/100

Mean(SD):
cases:
lean: 23.1(0.5)
obese: 26.3(0.6)
controls: 31.4(1.1)

Mean(SD):
cases: 23.0(0.3)
controls: 22.2(0.4)

Rotterdam ADA(2006)

Alvarez-Blasco et al. (2009) 141/102 Not stated
Mean(SD):
cases: 30(8)
controls: 31(8)

NIH ADA

Vrbikova et al. (2009) 228/643
cases: 18-39
controls: 20-39

cases:
121 obese
or overweight,
107 lean
controls:
not stated

Rotterdam WHO

Karaer et al. (2010) 31/31 18-45 Mean: 28.9 Rotterdam OGTT

Luque-Ramı́rez et al. (2010) 112/86
Mean(SD):
cases: 27(6)
controls: 28(6)

Mean(SD):
cases: 31(8)
controls: 30(8)

NIH ADA
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Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

Pall et al. (2010) 75/23 14-45

Mean(SD):
54 obese,
52 lean
controls: 22(2)

NIH

OGTT, glucose level
100-126mg/dL
and/or 2-hr glucose
level of 140-199mg/dL
for IGT,
glucose level
≥ 126mg/dL and/or
2-hr glucose level
≥ 200mg/dL

Amato et al. (2011)
125/144
220/144
177/144

13-43
Mean(SD):
cases: 30.6(7.7)
controls: 31.3(7.7)

NIH
Rotterdam
AES

OGTT, ADA

Hudecova et al. (2011a) 84/87

Age at follow-up:
> 35yrs
mean follow-up:
13.9yrs

Mean(SD) at
follow-up:
cases:
29.2(5.7), 26.2(5.2)
controls: 25.6(4.2)

Rotterdam WHO

Schmidt et al. (2011) 25/95 40-59 at baseline

Mean(SD) at
follow-up:
cases: 27.1(5.0)
controls: 26.4(4.8)

Rotterdam

Medical or dietary
treatment for diabetes
and/or diagnosis of
diabetes
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Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

Celik et al. (2013) 252/117
Mean(SD):
cases: 24.8(5.5)
controls: 25.9(5.7)

Mean(SD):
cases: 26.1(5.7)
controls: 24.9(4.3)

Rotterdam OGTT, ADA

Dalamaga et al. (2013) 316/102 18-35

Mean(SD):
cases:
28.7(8.0), 24.9(6.3)
controls: 24.6(4.9)

Rotterdam WHO

Celik et al. (2014) Celik 84/45

Mean(SD) at
baseline:
cases: 24.7(6.5)
controls: 27.4(5.6)

Mean(SD) at
follow-up:
cases: 27.5(6.9)
controls: 24.6(5.0)

Rotterdam ADA

North America

Dunaif et al. (2001) 14/12 19-41
Mean(SD):
cases: 40.5(1.9)
controls: 40.5(1.6)

NIH WHO

Phy et al. (2004) 7/18
Mean(SD):
cases: 30.9(4.5)
controls: 31.1(2.6)

Mean(SD):
cases: 30.9(10.2)
controls: 25.0(5.8)

NIH ADA

Apridonidze et al. (2005) 106/-
cases: 29.1-31
controls:
not stated

cases: 33.7-39.2
controls: not stated

NIH ADA 1997

Legro et al. (2005) 71/23
Mean:
cases: 27, 29.6
controls: 36.2

Mean(SD):
cases:
35.7(7.5), 38.7(8.3)
controls: 29.3(6.5)

NIH ADA, WHO

Boudreaux et al. (2006) 97/95
Mean:
cases: 38.0
controls: 40.0

Mean:
cases: 31.6
controls: 26.2

NIH
Fasting glucose
≥ 7.0mmol/L or
doctor diagnosis
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Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

Leibel et al. (2006) 36/21 12-19

Mean(SD):
cases:
30.3(7.6), 37.9(8.2)
controls: 24.9(4.5)

Rotterdam ADA

Lo et al. (2006b) 11035/55175
Mean:
cases: 30.7
controls: 30.8

cases: 67% obese
controls: 31.4% obese

NIH
Hospital discharge
or ≥ 2 outpatient
diagnosis

Shaw et al. (2008) 104/286
Mean(SD):
cases: 62.5(10)
controls: 65.8(9)

Mean(SD):
cases: 31.1(7)
controls: 28.4(6)

NIH
Fasting glucose
≥ 7.8mmol/L or
medication

Kawai et al. (2009) 185/120

Mean(SD):
cases:
30.8(6.3), 28.4(6.1)
controls:
41.6(10.6), 32.3(10.9)

Mean(SD):
cases:
38.2(7.3), 36.3(8.0)
controls:
31.6(8.4), 26.8(6.8)

NIH OGTT, ADA

Nur et al. (2009) 101/40 10-21
Mean(SD):
cases: 33.2(5.9)
controls: 32.4(5.3)

Rotterdam ADA

Wang et al. (2011) 53/1074
20-32 at baseline
34-46 at follow-up

At baseline:
cases:
22.6% obese
controls:
19.7% obese

NIH

Fasting plasma
glucose ≥ 126mg/dL
or use of diabetic
medications

Wickham et al. (2011) 13/13 18-40
Mean:
cases: 30.7
controls: 30.0

NIH OGTT, ADA

Roe et al. (2013) 148/57
cases: 13-20
controls: 14-20

cases: 38% obese
controls: 9%

AES (majority
also met NIH)

Glucose
≥ 100mg/dL

Sirmans et al. (2014b) 1689/5067 15-45
cases: 39.5% obese
controls: 10.1% obese

NIH (ICD-9) ICD-9
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Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

South America

Dos Reis et al. (1995) 29/19 18-37

cases:
14 lean, 15 obese
controls:
10 lean, 9 obese

NIH WHO

Sir-Petermann et al. (2004) 146/97
cases: 15-35
controls: 15-35

Median:
cases: 29.0
controls: 24.8

NIH WHO

Echiburú et al. (2008) 159/93 15-36
Mean(SD):
cases: 28.7(6.1)
controls: 25.5(4.3)

NIH WHO

Márquez et al. (2008) 50/70
cases: 16-43
controls: 20-45

Mean(SD):
cases: 33.3(8.1)
controls: 23.4(2.7)

NIH
Fasting glucose
≥ 7.8mmol/L or
history of DM2

Wiltgen and Spritzer (2010)
195/25
240/25

14-35

Mean(SD):
cases:
31.1(8.0), 27.0(6.4)
controls: 27.0(3.6)

NIH
Rotterdam

OGTT

East Asia

Sawathiparnich et al. (2005) 6/6
Mean:
cases: 14.1
controls: 14.5

Mean:
cases: 37.4
controls: 34.2

NIH ADA

Lee et al. (2009) 194/162
cases: 16-41
controls: 20-39

Mean(SD):
cases:
26.8(4.5), 22.3(3.8)
controls:
22.2(2.7), 23.7

Rotterdam WHO (1999)

Wei et al. (2009) 356/974 19-44
Mean(SD):
cases: 22.4(4.2)
controls: 20.6(2.4)

NIH OGTT, WHO
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Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

Huang et al. (2010)
90/40
128/40

Median:
cases: 18
controls: 19

Median:
NIH cases: 20.2
Rotterdam cases: 20.0
controls: 19.6

NIH
Rotterdam

ADA

Zhao et al. (2010)
647/717
818/717
678/717

cases: 18-41
controls: 20-45

NIH cases:
21.8% obese
Rotterdam cases:
19.7% obese
AES cases:
21.1% obese
controls: 8.8% obese

NIH
Rotterdam
AES

ADA

Li et al. (2012) 56/26 15-19
Mean(SD):
cases: 22.0(4.9)
controls: 19.7(1.6)

Rotterdam

OGTT
2-h PG
≥ 140mg/dL
but ≤ 200mg/dL

LIANG et al. (2012) 220/70
Mean(SD):
cases: 26.9(5.8)
controls: 28.3(4.4)

Mean(SD):
cases: 25.9(6.1)
controls: 28.3(4.4)

Rotterdam OGTT

HU et al. (2014) 234/39

Mean(SD): cases:
29.2(3.3), 30.6(3.4)
31.5(4.0)
controls: 31.8(4.3)

Mean(SD): cases:
26.6(10.9), 26.4(4.6)
25.5(9.1)
controls: 21.3(3.2)

Rotterdam OGTT

South Asia

Bhattacharya and Jha (2011) 264/116
cases: 16-39
controls: 16-35

Mean(SD): cases:
26.5(4.7), 28.6(4.2)
controls: not stated

NIH WHO

Guleria et al. (2014) 50/50 18-35
Mean(SD):
cases: 24.6(4.9)
controls: 23.9(3.8)

NIH OGTT
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Study
Total
case/control

Age(yrs) BMI(kg/m2)
PCOS
definition

IGT/DM2
definition

Middle East

Moini and Eslami (2009) 273/276
Mean(SD):
cases: 27.9(4.2)
controls: 31.1(5.8)

Mean(SD):
cases: 27.9(2.8)
controls: 25.6(4.4)

Rotterdam self-reported DM2

Australia

Chan et al. (2013) 109/133 18-60

Mean(SD):
cases:
29.5(1.4), 29.8(1.1)
32.1(1.5), 35(1.7)
controls:
22.2(0.6), 24.5(1.0)
27.7(0.9), 27.8(0.8)

Rotterdam
Self-reported DM2
history
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Appendix C

Table 3. Summary of studies assessing metabolic syndrome (MetS) in women with and without PCOS.

Study
Total
case/control

Age(yrs) BMI(kg/m2) PCOS definition MetS definition

Europe

Faloia et al. (2004) 50/20

Mean(SD):
cases:
23(5), 21(5)
controls:
age-matched

Mean: cases:
22 for lean,
32 for overweight
controls:
20 for lean,
37 for overweight

NIH ATP III

VrbÍková et al. (2004) 69/73

Mean(SD):
cases: 25.2(4.7)
controls:
age-matched

Median:
cases: 23.0
controls: 21.9

Rotterdam ATP III

Álvarez-Blasco et al. (2006) 32/72
Mean(SD):
cases: 26(7)
controls: 32(8)

Mean(SD):
cases: 34.8(6.6)
controls: 35.2(6.2)

NIH ATP III

Carmina et al. (2006) 282/85
cases: 18-40
controls: 18-35

Mean(SD):
cases: 27.2(0.3)
controls: 23.3(0.6)

Rotterdam ATP III, WHO
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Study
Total
case/control

Age(yrs) BMI(kg/m2) PCOS definition MetS definition

Attaoua et al. (2008) 107/100

Mean(SD): cases:
lean: 23.1(0.5)
obese: 26.3(0.6)
controls: 31.4(1.1)

Mean(SD): cases:
lean: 23.0(0.3)
obese: 34.9(0.4)
controls: 22.2(0.4)

Rotterdam ATP III

Fulghesu et al. (2010) 71/94
cases: 13-18
age-matched controls

Mean(SD):
cases: 24.0(0.7)
controls: 22.6(0.5)

Rotterdam
Adolescent-specific
3 out of 5

Gambineri et al. (2009) 200/200 14-49
Mean(SD):
cases: 31.7(7.4)
controls: 31.0(7.6)

Rotterdam
ATP III, IFD,
AHA

Tan et al. (2010) 186/73
Mean(SD):
cases: 28.4(6.7)
controls: 28.4(8.4)

Mean(SD):
cases: 31.5(8.3)
controls: 23.0(3.1)

AES Not stated

Veltman-Verhulst et al. (2010) 456/240
Mean(SD):
case: 30.6(4.4)
controls: 29.0(4.9)

Mean(SD):
cases: 26.6(7.0)
controls: 26.1(5.5)

Rotterdam ATP III

Hudecova et al. (2011a) 84/87
Age at follow-up: > 35
mean follow-up: 13.9yrs

Mean at follow-up:
cases:
29.2(5.7), 26.2(5.2)
controls: 25.6(4.2)

Rotterdam WHO

Amato et al. (2011)
125/144
220/144
177/144

13-43
Mean(SD):
cases: 30.6(7.7)
controls: 31.3(7.7)

NIH
Rotterdam
AES

ATP III

Rizzo et al. (2011) 350/185 18-40
Mean(SD):
cases: 27(7)
controls: 23(5)

AES AHA

VrbÍková et al. (2011) 43/48
Mean(SD):
cases: 16.8(2.0)
controls: 17.5(1.9)

Mean(SD):
cases: 23.6(6.2)
controls: 23.4(5.3)

Rotterdam IDF adolescent
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Study
Total
case/control

Age(yrs) BMI(kg/m2) PCOS definition MetS definition

Panidis et al. (2013)
905/277
1223/277

≤ 39

Mean(SD):
NIH cases: 28.1(7.0)
Rotterdam cases:
27.5(6.9)
controls: 26.6(6.7)

NIH
Rotterdam

ATP III, AHA,
IDF, Joint
definition

Albu et al. (2015) 398/126
Mean(SD):
cases: 24(7)
controls: 28(10)

Mean(SD):
cases: 26.1(10.9)
controls: 25.6(12)

Rotterdam ATP III

North America

Glueck et al. (2003) 138/1887
Mean(SD):
cases: 31(7)
controls: not stated

Not stated NIH ATP III

Apridonidze et al. (2005) 106/-
Mean:
cases: 29.1-31
controls: not stated

Mean:
cases: 33.7-39.2
controls: not stated

NIH
ATP III: BMI 31
as a surrogate
for WC 88cm

Dokras et al. (2005) 127/1887
cases: 18-49
controls: not stated

Not stated NIH WHO

Leibel et al. (2006) 36/21 12-19

Mean(SD):
cases:
30.3(7.6), 37.9(8.2)
controls: 24.9(4.5)

Rotterdam
Modified ATP III,
modified AHA

Coviello et al. (2006) 49/165
cases: 14-19
controls: 12-19

Mean(SD):
cases: 32(9)
controls: 23(5)

NIH Modified ATP III

Welt et al. (2006) 418/64
cases: 18-45
controls: 18-37

Mean(SD): cases:
32.0(8.6), 27.0(6.8),
24.7(5.4)
controls: 27.3(6.8)

Rotterdam Not stated
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Study
Total
case/control

Age(yrs) BMI(kg/m2) PCOS definition MetS definition

Shroff et al. (2007a) 24/24 21-50
Mean(SD):
cases: 36(5.4)
controls: 35(3.3)

NIH AHA

Shroff et al. (2007b) 258/110 18-45

Mean(SD): cases:
35(9), 36.6(10.9)
35.5(9.1), 29.4(9.3)
controls: 29(6)

Rotterdam

3 out of 5:
BMI>30,
TG≥1.7mmol/L,
HDL-C<1.3mmol/L
BP≥130/85,
FPG≥6.1mmol/L
or DM2 presence

Shaw et al. (2008) 104/286
Mean(SD):
cases: 62.5(10)
controls: 65.8(9)

Mean(SD):
cases: 31.1(7)
controls: 28.4(6)

NIH ATP III

Gulcelik et al. (2008) 60/60
Mean:
cases: 24.6
controls: 26.1

Mean:
cases: 28
controls: 26.7

Rotterdam ATP III

Nandalike et al. (2012) 28/28 13-18
Mean(SD):
cases: 44.8(8.8)
controls: 40.2(4.7)

Rotterdam Weiss criteria

Roe et al. (2013) 148/57
cases: 13-20
controls: 14-20

cases: 38% obese
controls: 9% obese

AES (majority
also met NIH)

Modified cook
criteria

South America

Wiltgen and Spritzer (2010)
195/25
240/25

14-35
Mean(SD): cases:
31.8(8.0), 27.0(6.4)
controls: 27.0(3.6)

NIH
Rotterdam

Not stated

Melo et al. (2011)
150/146
226/146
175/146

Mean(SD): cases:
26.6(5.1), 26.2(5.7),
25.9(5.3), 27(4.5)
controls: 28.9(0.5)

Mean(SD): cases:
31.3(8.7), 28.5(8.8),
34.1(8.7), 29.5(9.9)
controls: 24.4(4.9)

NIH
Rotterdam
AES

Modified ATP III

207



Study
Total
case/control

Age(yrs) BMI(kg/m2) PCOS definition MetS definition

Ramos and Spritzer (2015) 199/99 Mean(SD): 22.7(7.1)
Mean(SD):
cases: 29.6(6.4)
controls: 27.0(6.0)

Rotterdam
Joint Interim
criteria

East Asia

Cheung et al. (2008) 288/98
Mean(SD):
cases: 30.2(6.4)
controls: 33.4(5.9)

Mean(SD):
cases: 25.8(5.9)
controls: 21.3(2.6)

Rotterdam ATP III, AHA

Zhang et al. (2009)
248/85
719/85
344/85

Mean(SD): cases:
26(4.9), 25(5.1),
27(3.7), 26(4.5)
controls: (27(5.3))

Mean(SD): cases:
36.5(8.6), 35.8(9.3)
30.9(8.3), 28.6(6.5)
controls: 27.3(5.2)

NIH
Rotterdam
AES

IDF

Huang et al. (2010)
90/40
128/40

Median:
cases: 18
controls: 19

Median:
NIH cases: 20.2
Rotterdam cases: 20.0
controls: 19.6

NIH
Rotterdam

IDF

Zhang et al. (2009)
254/342
406/342
279/342

17-40
Mean(SD):
cases: 22.9(4.2)
controls: 20.8(2.6)

NIH
Rotterdam
AES

ATP III

LIANG et al. (2012) 220/70
Mean(SD):
cases: 26.9(5.8)
controls: 28.3(4.4)

Mean(SD):
cases: 25.9(6.1)
controls: 23.4(5.2)

Rotterdam ATP III

Li et al. (2013b)
397/2732
833/2732
708/2732

19-45
Mean(SD):
cases: 22.2(4.2)
controls: 22.1(3.4)

NIH
Rotterdam
AES

ATP III

Chen et al. (2015) 224/198 Mean(SD): 27.5(6.4) Mean(SD): 24.6(5.8) AES ATP III

HU et al. (2014) 234/39

Mean(SD):
cases: 29.2(3.3),
30.6(3.4), 31.5(4.0)
controls: 31.8(4.3)

Mean(SD):
cases: 26.6(10.9),
26.4(4.6), 25.5(9.1)
controls: 21.3(3.2)

Rotterdam
China Diabetes
Association criteria
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Study
Total
case/control

Age(yrs) BMI(kg/m2) PCOS definition MetS definition

South Asia

Bhattacharya and Jha (2011) 51/45
Mean(SD):
cases: 17.1(1.6)
controls: 16.7(1.7)

Mean(SD):
cases: 26.4(4.6)
controls: 25.4(4.6)

AES
Joint Interim
criteria

Wijeyaratne et al. (2010) 395/205
Median:
cases: 25
controls: 29

Median:
cases: 25
controls: not stated

Rotterdam ATP III

Karoli et al. (2013) 54/55
Mean(SD):
cases: 28.5(6.2)
controls: 27.8(7.5)

Mean(SD):
cases: 27.2(5.4)
controls: 26.8(6.7)

Rotterdam ATP III

Guleria et al. (2014) 50/50 18-35
Mean(SD):
cases: 24.6(4.9)
controls: 23.9(3.8)

NIH IDF

Thathapudi et al. (2014) 204/204 17-35

Mean(SD): cases:
29.3(4.2) for obese,
22.0(1.7) for lean
controls: 23.4(3.2)

AES ATP III, IDF

Middle East

Çalışkan et al. (2007) 182/182
Mean(SD):
cases: 23.2(4.5)
controls: 23.6(4.6)

Mean(SD):
cases: 25.0(5.1)
controls: 23.5(2.9)

Rotterdam
APT III, WHO,
AHA, IDF,
Rotterdam

Yilmaz et al. (2011)
85/44
127/44
103/44

Mean(SD): cases:
25.5(6.4), 25.3(5.2),
25.5(6.5), 25.3(5.8)

Mean(SD): cases:
25.4(5.6), 23.4(4.7),
21.7(3.2), 25.3(5.2)
controls: 22.0(2.5)

NIH
Rotterdam
AES

Study-specific
3 out of 5 criteria

Lankarani et al. (2009) 55/59 15-40
Mean(SD):
cases: 24.9(5.3)
controls: 21.6(2.6)

NIH ATP III
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Study
Total
case/control

Age(yrs) BMI(kg/m2) PCOS definition MetS definition

Rahmanpour et al. (2012) 30/71
Mean(SD):
cases: 17.7(1.0)
controls: 17.7(1.3)

Mean(SD):
cases: 23.4(3.1)
controls: 21.2(2.9)

Rotterdam
IDF for
adolescent

Hosseinpanah et al. (2014) 134/414 18-45
Mean(SD):
cases: 26.8(5.8)
controls: 26.8(4.9)

Rotterdam
Joint interim
statement

Tehrani et al. (2014)
30/517
85/517
72/517

18-45

Mean(SD): cases:
25.4(5.0), 26.4(4.8),
27.2(4.4), 24.1(5.5)
controls: 26.6(5.0)

NIH
Rotterdam
AES

Clinical diagnostic
criteria applied
for Iranian adult
(3 out of 5)

Australia

Cussons et al. (2008) 168/883
cases: 25-54
controls: 25-53

Mean(SD):
cases: 32.3(8.1)
controls: 25.8(5.8)

NIH ATP III, IDF

Hart et al. (2011)
34/169
61/143

14 Mean(SD): 22.8(3.8)
NIH
Rotterdam

ATP III, IDF,
WHO, EGIR
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Appendix D

Table 4. Summary of critical appraisal of studies reporting PCOS-related metabolic
disorders using the Newcastle-Ottawa Scale for case-control studies.

Study
Selection
(max 4 stars)

Comparability
(max 2 stars)

Exposure
(max 3 stars)

Dos Reis et al. (1995) ? ??

Rajkhowa et al. (1996) ?? ?? ??

Ciampelli et al. (1998) ? ??

Cibula et al. (2000) ? ?? ?

Dunaif et al. (2001) ? ? ? ?? ??

Yaralı et al. (2001) ?? ? ??

Glueck et al. (2003) ?? ? ??

Faloia et al. (2004) ? ?? ??

Phy et al. (2004) ? ?? ??

Sir-Petermann et al. (2004) ? ? ? ??

Apridonidze et al. (2005) ?? ?

Legro et al. (2005) ? ? ?? ??

Diamanti-Kandarakis et al. (2005) ?? ?? ??

Dokras et al. (2005) ? ? ? ?? ??

Sawathiparnich et al. (2005) ? ?? ?

VrbÍková et al. (2004) ? ? ??

Álvarez-Blasco et al. (2006) ? ? ? ? ??

Boudreaux et al. (2006) ? ? ? ?? ? ? ?

Carmina et al. (2006) ?? ? ??

Coviello et al. (2006) ?? ?? ??

Leibel et al. (2006) ? ?? ??

Lo et al. (2006b) ?? ? ??

Welt et al. (2006) ? ?? ??

Çalışkan et al. (2007) ?? ?? ??

Shroff et al. (2007a) ?? ?? ??

Shroff et al. (2007b) ? ? ? ?? ??

Cheung et al. (2008) ?? ?? ??

Cussons et al. (2008) ?? ?? ?

Echiburú et al. (2008) ? ? ? ? ??

Gulcelik et al. (2008) ?? ?? ??

Márquez et al. (2008) ?? ? ??
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Study
Selection
(max 4 stars)

Comparability
(max 2 stars)

Exposure
(max 3 stars)

Attaoua et al. (2008) ? ? ? ? ??

Shaw et al. (2008) ? ?

Alvarez-Blasco et al. (2009) ? ? ?? ? ??

Bhattacharya and Jha (2011) ?? ??

Moini and Eslami (2009) ?? ? ??

Fulghesu et al. (2010) ?? ?? ??

Gambineri et al. (2009) ?? ?? ??

Kawai et al. (2009) ?? ??

Lankarani et al. (2009) ? ? ? ? ??

Lee et al. (2009) ?? ? ?

Nur et al. (2009) ?? ?? ??

Vrbikova et al. (2009) ? ?

Wei et al. (2009) ?? ??

Zhang et al. (2009) ?? ? ??

Huang et al. (2010) ? ? ? ?? ??

Karaer et al. (2010) ? ?? ??

Luque-Ramı́rez et al. (2010) ? ? ? ?? ??

Pall et al. (2010) ? ? ? ? ??

Tan et al. (2010) ? ? ? ? ??

Veltman-Verhulst et al. (2010) ?? ??

Wiltgen and Spritzer (2010) ? ??

Zhao et al. (2010) ?? ?

Amato et al. (2011) ? ? ? ?? ??

Hudecova et al. (2011a) ?? ? ??

Hudecova et al. (2011b) ?? ? ??

Melo et al. (2011) ? ? ? ??

Rizzo et al. (2011) ?? ?? ??

Schmidt et al. (2011) ?? ? ??

VrbÍková et al. (2011) ? ?? ??

Wang et al. (2011) ? ? ? ?? ? ? ?

Wickham et al. (2011) ?? ?? ??

Wijeyaratne et al. (2010) ? ? ? ?? ??

Yilmaz et al. (2011) ?? ??

Karoli et al. (2013) ? ?? ??

Li et al. (2012) ? ? ? ? ??

LIANG et al. (2012) ? ? ??

Nandalike et al. (2012) ? ? ? ? ??

Rahmanpour et al. (2012) ?? ??

Zhang et al. (2012) ? ? ? ??

Dalamaga et al. (2013) ? ? ? ??

Celik et al. (2013) ? ? ? ??

Chan et al. (2013) ? ? ??

Li et al. (2013b) ? ? ? ? ??
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Study
Selection
(max 4 stars)

Comparability
(max 2 stars)

Exposure
(max 3 stars)

Panidis et al. (2013) ?? ? ??

Roe et al. (2013) ? ? ? ? ??

Albu et al. (2015) ? ? ? ? ??

Celik et al. (2014) ?? ? ? ?

Chen et al. (2015) ? ? ? ? ??

Guleria et al. (2014) ? ? ? ?? ??

Hosseinpanah et al. (2014) ? ? ? ??

HU et al. (2014) ?? ? ??

Tehrani et al. (2014) ? ? ? ? ??

Thathapudi et al. (2014) ? ? ? ? ??

Sirmans et al. (2014b) ?? ? ??

Ramos and Spritzer (2015) ? ? ? ? ??

Hart et al. (2011) ? ? ? ?
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Appendix E

Table 5. Read codes to identify PCOS cases.

medcode description

C164.12 Stein - Leventhal syndrome

C165.00 Polycystic ovarian syndrome

7E25300 Endoscopic drilling of ovary

K591100 Oligomenorrhoea

K591200 Primary oligomenorrhoea

K591300 Secondary oligomenorrhoea

K594.00 Irregular menstrual cycle

K594z00 Irregular menstrual cycle NOS

22D8.00 O/E - hirsutism

C161000 Hypersecretion of ovarian androgen

M240.00 Alopecia

M240000 Alopecia unspecified

M240200 Male pattern alopecia

M240300 Frontal alopecia of women

M240400 Premature alopecia

M240z00 Alopecia NOS

M241.00 Hirsutism - hypertrichosis

M260.00 Acne varioliformis

M260000 Acne frontalis

M260z00 Acne varioliformis NOS

M261.00 Other acne

M261000 Acne vulgaris

M261100 Acne conglobata

M261600 Cystic acne

M261A00 Pustular acne

M261E00 Acne excoriee des jeunes filles

M261F00 Acne fulminans

M261G00 Acne agminata

M261J00 Acne necrotica

M261K00 Acne keloidalis

M261X00 Acne, unspecified
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medcode description

M261z00 Other acne NOS

Myu6300 [X]Other androgenic alopecia

Myu6800 [X]Other acne

Myu6F00 [X]Acne, unspecified

4473 Serum testosterone

4473100 Serum testosterone level abnormal

4474 Free androgen index

4474100 Free androgenic index abnormal

447G.00 Plasma testosterone level

447H.00 Androgen level

4Q26.00 Dihydrotestosterone level

4Q2E.00 Free testosterone level

4Q2F.00 Calculated free testosterone

ZRBs.00 Ferriman and Galwey score

K53..11 Ovarian cysts

K532.00 Other ovarian cysts

K532z00 Ovarian cyst NOS

Kyu9500 [X]Other and unspecified ovarian cysts

B540.00 Malignant neoplasm of adrenal gland

B540000 Malignant neoplasm of adrenal cortex

B540100 Malignant neoplasm of adrenal medulla

B540z00 Malignant neoplasm of adrenal gland NOS

B587.00 Secondary malignant neoplasm of adrenal gland

B7H0.00 Benign neoplasm of adrenal gland

B8yy100 Carcinoma in situ of adrenal gland

B922.00 Neoplasm of uncertain behaviour of adrenal gland

BB5h.00 [M]Adrenal cortical tumours

BB5h000 [M]Adrenal cortical adenoma NOS

BB5h100 [M]Adrenal cortical carcinoma

BB5h300 [M]Adrenal cortical adenoma, heavily pigmented variant

BB5h400 [M]Adrenal cortical adenoma, clear cell type

BB5h500 [M]Adrenal cortical adenoma, glomerulosa cell type

BB5h600 [M]Adrenal cortical adenoma, mixed cell type

BB5hz00 [M]Adrenal cortical tumours NOS

BBCF.00 [M]Adrenal rest tumour

BBD7.00 [M]Extra-adrenal paraganglioma, NOS

C15..00 Disorders of adrenal glands

C153.00 Other corticoadrenal overactivity

C155000 Adrenal medullary insufficiency

C15y.00 Other specified adrenal disorders

C15yz00 Other specified adrenal disorder NOS

C15z.00 Adrenal gland disorder NOS

Cyu4A00 [X]Other specified disorders of adrenal gland
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medcode description

PK1..00 Anomalies of adrenal gland

PK10.00 Aberrant adrenal gland

PK12.00 Accessory adrenal gland

PK13.00 Hypoplasia of adrenal gland

PK14.00 Ectopic adrenal gland

PK1y.00 Other specified anomalies of adrenal gland

PK1y000 Congenital cyst of adrenal gland

PK1yz00 Other congenital anomaly of adrenal gland NOS

PK1z.00 Anomalies of adrenal gland NOS

2226.11 O/E - cushingoid facies

C150.00 Cushing’s syndrome

C150000 Idiopathic Cushing’s syndrome

C150100 Iatrogenic Cushing’s syndrome

C150111 Drug-induced Cushings syndrome

C150200 Pituitary dependent Cushing’s syndrome

C150300 Ectopic ACTH secretion causing Cushing’s syndrome

C150500 Alcohol-induced pseudo-Cushing’s syndrome

C150z00 Cushing’s syndrome NOS

Cyu4500 [X]Other Cushing’s syndrome

F395100 Myopathy due to Cushing’s syndrome

C150400 Nelson’s syndrome

BB5y400 [M]Prolactinoma

C131000 Hyperprolactinaemia

C134011 Hypoprolactinaemia

B542.00 Malignant neoplasm pituitary gland and craniopharyngeal duct

B542000 Malignant neoplasm of pituitary gland

B542z00 Malig neop pituitary gland or craniopharyngeal duct NOS

B7H2.00 Benign neoplasm of pituitary gland and craniopharyngeal duct

B7H2.11 Pituitary adenoma

B7H2000 Benign neoplasm of pituitary gland

B7H2z00 Benign neoplasm of pituitary and craniopharyngeal duct NOS

B8yy300 Carcinoma in situ of pituitary gland

B920.00 Neop uncertain behaviour pituitary and craniopharyngeal duct

B920000 Neoplasm of uncertain behaviour of pituitary gland

B920z00 Neop uncertain behaviour pituitary and craniopharyngeal NOS

BB5V.00 [M]Pituitary adenomas and carcinomas

BB5Vz00 [M]Pituitary adenoma or carcinoma NOS

C13..00 Disorders of pituitary gland and its hypothalamic control

C131.00 Other anterior pituitary hyperfunction

C134.00 Other anterior pituitary disorder

C134z00 Other anterior pituitary disorder NOS

C134z11 Anterior pituitary hormone deficiency NEC
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C137.00 Iatrogenic pituitary disorders

C137z00 Iatrogenic pituitary disorder NOS

C13z.00 Pituitary disorders NOS

Cyu4400 [X]Other disorders of pituitary gland

Cyu4M00 [X]Hyperfunction of pituitary gland, unspecified

K5B1.00 Female infertility of pituitary - hypothalamic origin

K5B1000 Primary pituitary - hypothalamic infertility

K5B1z00 Female infertility of pituitary - hypothalamic cause NOS

PK24.00 Anomalies of pituitary gland

PK24000 Aberrant pituitary gland

PK24z00 Anomaly of pituitary gland NOS
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Appendix F

Sample JAGS codes of Bayesian models for evidence synthesis

### Prevalence estimation for PCOS population with different ethnic backgrounds
model{
for( i in 1:I){
x[i]˜dbin(betau[i],m[i])
logit(betau[i])<- gamma[i]
gamma[i]˜dnorm(mu.gamma,tau.gamma)
}

# prior distribution
mu.gamma˜dnorm(-2.75,6.25)

# uniform distribution for tau.gamma
sigma.gamma˜dunif(0,2)
tau.gamma<-pow(sigma.gamma,-2)

# halfcauchy (as replacement prior for tau.gamma for sensitivity analysis)
# sigma.gamma <- abs(z.gamma)/pow(epsilon.gamma,0.5)
# z.gamma ˜ dnorm(0,tau.z.gamma)
# epsilon.gamma ˜ dgamma(0.5,0.5)
# tau.z.gamma <- pow(B.gamma,-2)
# B.gamma ˜ dunif(0,0.5)
# tau.gamma<-pow(sigma.gamma,-2)
# tau.gamma<-pow(sigma.gamma,-2)

p<-exp(mu.gamma)/(1+exp(mu.gamma))

}

### Meta-regression model for the evaluation of relative risk of metabolic disorders
among women with PCOS and controls
model{
for (s in 1:S){
pcos0evt[s]˜dbin(pi0[s],pcos0tl[s])
pcos1evt[s]˜dbin(pi1[s],pcos1tl[s])
logit(pi0[s])<-alpha+X1[s]*beta0+X2[s]*beta1+X3[s]*beta2+X4[s]*beta3
logit(pi1[s])<-alpha+X1[s]*beta0+X2[s]*beta1+X3[s]*beta2+X4[s]*beta3+delta[s]

delta[s]˜dnorm(mu.delta,tau.delta)
beta0˜dnorm(1.702,0.01)
beta1˜dnorm(1.296,0.01)
beta2˜dnorm(1.058,0.01)
beta3˜dnorm(0.967,0.01)
alpha˜dnorm(-3.585,0.01)
gamma[s]<-exp(delta[s])
}

# Prior distribution
mu.delta˜dnorm(0,2)
sigma.delta˜dunif(0,1)
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tau.delta<-pow(sigma.delta,-2)

# student-t distribution (as replacement prior for mu.delta for sensitivity analysis)
# mu.delta˜dt(0,0.5,v)
# v˜dunif(0,8)

rho<-exp(mu.delta)
p.harm<-1-step(mu.delta)

}
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Appendix G

Diagnostic plots for the assessment of model convergence with Gelman-Rubin statistics
provided for all model parameters.

Figure G.1: Convergence assessment for model estimating the incidence rates from probable to
diagnosed PCOS for standard model (left) and hierarchical model (right).
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Figure G.2: Convergence assessment for model estimating the incidence rates from diagnosed
PCOS to diabetes for standard model (left) and hierarchical model (right).

Figure G.3: Convergence assessment for model estimating the incidence rates from probable
PCOS to diabetes for standard model (left) and hierarchical model (right).
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