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ABSTRACT

In this paper we present a horizontally two-dimensional theory based

on a variable-coefficient Kadomtsev-Petviashvili equation, which is devel-

oped to investigate oceanic internal solitary waves propagating over variable

bathymetry, for general background density stratification and current shear.

To illustrate the theory, we use a typical monthly averaged density stratifica-

tion, for the propagation of an internal solitary wave over either a submarine

canyon or a submarine plateau. The evolution is essentially determined by

two components, nonlinear effects in the main propagation direction, and the

diffraction modulation effects in the transverse direction. When the initial

solitary wave is located in a narrow area, the consequent spreading effects

are dominant, resulting in a wave field largely manifested by a significant

diminution of the leading waves, together with some trailing shelves of the

opposite polarity. On the other hand, if the initial solitary wave is uniform in

the transverse direction, then the evolution is more complicated, albeit can be

explained by an asymptotic theory for a slowly varying solitary wave com-

bined with the generation of trailing shelfs needed to satisfy conservation of

mass. This theory is used to demonstrate that it is the transverse dependence

of the nonlinear coefficient in the Kadomtsev-Petviashvili equation rather than

the coefficient of the linear transverse diffraction term which determines how

the wave field evolves. The MIT general circulation model is used to provide a

comparison with the variable-coefficient Kadomtsev-Petviashvili model, and

we find good qualitative and quantitative agreements.
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1. Introduction33

Interest in the nonlinear internal solitary waves (ISWs) that occur in the coastal ocean has been34

particularly strong during the last several decades owing to their important role on the marine35

ecosystem, marine geology and in coastal engineering. ISWs often have large amplitudes and36

strong currents, for instance, Huang et al. (2016) recorded an extreme ISW with an amplitude of37

240m and a peak westward current velocity of 2.55ms−1 in the northern South China Sea. The38

scale of these waves implies that they could pose potential hazards for underwater drilling, see39

Osborne et al. (1978). Moreover, the ability of these internal waves to propagate horizontally40

provides a mechanism for the transport of energy and momentum over large distances.41

A large number of observations demonstrate the existence of ISWs in numerous locations around42

the world’s ocean, both from the perspective of field measurements in Farmer and Smith (1978);43

Sandstrom and Elliott (1984); Ramp et al. (2004); Shroyer et al. (2010); Huang et al. (2016)44

and remote sensing images in New and Da Silva (2002); Zhao et al. (2004); Da Silva et al.45

(2009); Liu et al. (2013). These observations, together with numerical simulations (see Vlasenko46

and Stashchuk (2007) for instance), illustrate that due to the complicated and essentially two-47

dimensional (2D) bathymetry, wave refraction and diffraction can occur, indicating that the hori-48

zontal 2D effect is important and in some circumstances cannot be ignored, especially when there49

are strong variations in the transverse direction.50

The Korteweg-de Vries (KdV) equation embodying the cumulative and competing nonlinear and51

dispersive effects is commonly used to investigate internal waves in the coastal ocean, see Helfrich52

and Melville (2006); Ostrovsky and Stepanyants (2005) or the book by Vlasenko et al. (2005).53

There are various extensions, such as the variable-coefficient KdV equation and the extended KdV54

equation with a cubic nonlinear term, see Lamb and Yan (1996); Grimshaw et al. (1997, 2004,55
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2007, 2010) and the references therein. In the present context, an important extension from one56

to two horizontal space dimensions is the Kadomtsev-Petviashvili (KP) equation, which describes57

weakly nonlinear, long waves propagating along a predominant direction (say the positive x direc-58

tion) in a 2D domain, see Kadomtsev and Petviashvili (1970) for the original derivation, and the59

subsequent work by Johnson (1980); Katsis and Akylas (1987); Grimshaw and Melville (1989).60

However, these works and other more recent studies took a constant depth assumption, which, to61

some degree, limits its practical application, so several extended KP equations have been derived62

to take additional physical background factors into account, albeit we note that the general deriva-63

tion by Grimshaw (1981) allowed for variable depth, and also for horizontally varying background64

density and current fields. Although a large amount of closely related work has been done in many65

physical settings, for instance on surface waves in shallow water, see the review by Akylas (1994),66

our attention here will be confined to internal waves. A further extension to take account also of67

the Earth’s background rotation leads to the rotation-modified KP equation, Grimshaw (1985) for68

the case of internal waves in a rotating constant-depth channel. Taking the effect of rotation and69

a steady background current into account, Chen and Liu (1995) derived a unified KP equation for70

surface and interfacial waves propagating in a channel with varying topography and sidewalls.71

In summary, for internal waves, the existing KP-type equations are able to take one or some of72

the effects of rotation, background current, varying topography and also boundary walls into con-73

sideration, but nonetheless many of them are still based on model density stratifications, such as74

a two-layered system. Especially we note that Pierini (1989) used the two-layered so-called reg-75

ularised long wave equation, a slightly different version of the KP equation, to simulate internal76

solitary waves in the Alboran Sea under some quite simple assumptions, namely that there is no77

background rotation, that the topography is constant, that the interface depth is constant and that78

there is no background current. Subsequently Cai and Xie (2010) invoked a similar model, again79
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in the configuration of two-layered fluid, to investigate the propagation of ISWs in the northern80

South China Sea. Despite the apparent simplicity of the two-layered model and its wide adoption,81

the oceanic density stratification is better represented as continuous when examining oceanic sce-82

narios, see Grimshaw et al. (2017) for instance. The main objective of this paper is to describe83

and use a new variable-coefficient KP equation, which is based on quite general continuous den-84

sity stratification, and importantly has variable 2D topography. The basis of this model was first85

proposed by Grimshaw (1981) in a theoretical analysis, and here we develop it further for use in86

practical applications, and also provide some supplementary analyses. A detailed comparison be-87

tween in situ observations and our presented theory is not shown here, as it is difficult to follow the88

space-time evolution of observed ISWs in detail. Instead we compare numerical simulations of the89

KP model with those from the fully nonlinear and non-hydrostatic MIT general circulation model90

(MITgcm). We focus on two scenarios, propagation of ISWs over a canyon and propagation over91

a submarine plateau.92

In Section 2, we present the variable-coefficient KP equation, together with some preliminary93

analysis of how variable 2D topography affects the propagation of ISWs. In Section 3, we describe94

a numerical scheme incorporating both a finite difference and a pseudo-spectral method to solve95

this equation accurately, and this is followed by the numerical simulations for the propagation of96

ISWs over a submarine canyon and over a submarine plateau. In Section 4 we describe the set-up97

and analogous results from the MITgcm model. We conclude with a discussion in Section 5.98

5



2. Formulation99

a. Kadomtsev-Petviashvili equation100

In the absence of dissipation and background rotation, and in a uniform background environ-101

ment, that is the topographic depth is constant and the background density field and current do102

not vary horizontally, the KP equation in the usual physical variables pertinent to oceanographic103

applications is given by, see Grimshaw (1981, 1985) and the review by Helfrich and Melville104

(2006),105

{At + cAx +αAAx +βAxxx}x +
γ

2
Ayy = 0 , (1)

where A(x,y, t) is the amplitude of the wave, x, y and t are space and time variables respectively,106

and subscripts denote derivatives. Here x is chosen to be along the primary wave propagation di-107

rection, where the waves have a linear long-wave phase speed c, while y is the transverse direction108

where there are weak diffraction effects. The nonlinear coefficient α , and dispersive coefficients109

β , γ are determined by the waveguide properties, and for the specific oceanic application, are110

defined below.111

To leading order in an asymptotic expansion, the vertical particle displacement relative to the112

basic state is113

ζ (x,y,z, t) = A(x,y, t)φ(z), (2)

where φ(z) is the modal function, defined by114

{
ρ0 (c−u0)

2
φz

}
z
+ρ0N2

φ = 0 , for −h < z < 0 , (3)

115

φ = 0 at z =−h , (c−u0)
2

φz = gφ at z = 0 . (4)

Here ρ0(z) is the background density distribution of a stable stratified fluid, which is mostly char-116

acterised by the buoyancy frequency N, represented by ρ0N2 =−gρ0z, and u0(z) is a background117
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horizontal shear flow. Note that if the rigid lid approximation is assumed, then the free surface118

boundary condition is replaced by φ = 0 at z = 0. Then the coefficients α and β in equation (1)119

are given by the usual expressions as for the well-known KdV equation,120

Iα = 3
∫ 0

−h
ρ0 (c−u0)

2
φ

3
z dz , (5)

121

Iβ =
∫ 0

−h
ρ0 (c−u0)

2
φ

2 dz , (6)
122

I = 2
∫ 0

−h
ρ0 (c−u0)φ

2
z dz , (7)

whereas the coefficient γ is given by γ = c when there is no shear flow, u0(z)≡ 0, but when there123

is a shear flow it is given by124

Iγ = I2 , I2 = 2
∫ 0

−h
ρ0(c−u0)

2
φ

2
z dz . (8)

The KP equation (1) has two important conservation laws,125 ∫ +∞

−∞

Adx = [B]+∞
−∞ = f (t) , Bx = A , (9)

126

∂

∂ t

∫ +∞

−∞

A2

2
dx+

γ

2
∂

∂y

∫ +∞

−∞

ABy dx = 0 , (10)

for solutions A(x,y, t) localized (or periodic) in x. They represent the conservation of mass and127

wave action flux respectively.128

b. Variable background129

When the depth h, background current u0 and density ρ0 vary slowly with x and y, the KP130

equation (1), see Grimshaw (1981), is replaced by the variable-coefficient KP (vKP) equation131

{At + cAx +
cQx

2Q
A+αAAx +βAxxx}x +

γ

2
Ayy = 0 , (11)

where Q = c2I is the linear magnification factor, usually scaled to132

Q̄ =
c2I
c2

0I0
, (12)
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where the subscript 0 indicates the values at a specific location, say x = x0 where Q is normalised133

to be unity, and hereafter we will omit the ¯ . The modal function φ and speed c now depend134

and hence the coefficients α,β ,γ also depend (slowly) on both x and y. The derivation of the135

evolution equation (11) requires the introduction of two small parameters δ and ε , respectively136

characterising the wave amplitude and dispersion, and they relate to each other by δ = ε2 in the137

usual KdV balance. Then to leading order of the asymptotic analysis, see Grimshaw (1981),138

the amplitude is ε2Â(εx,ε2y,εt) and the coefficients depend on the slow variables x̂ = ε3x and139

ŷ= ε3y. As a consequence, to keep the vKP equation (11) in a valid asymptotic regime, in essence,140

the y-variations should be suppressed vis-a-vis the x-variations, since x is the dominant direction.141

Although this property might seem to impose another limitation on any application, in practice this142

is often the situation in the real ocean, that is, if the wave propagation direction is selected to be x,143

then the variations along the transverse y direction are much smaller. Also note that the derivation144

of the vKP equation by Grimshaw (1981) was along the ray path determined by the linear long145

wave speed c, and then taking account of diffraction relative to this ray. But here we choose the146

x-direction as the ray, consistent with our choice of topography being symmetric about that axis.147

It is now useful for both analysis and numerical simulation, to transform equation (11) to a more148

convenient “spatial” evolution form,149

X =
∫ x

x0

dx
c
− t , T =

∫ x

x0

dx
c
. (13)

Then to leading order of the asymptotic approximation,150

{AT +
QT

2Q
A+µAAX +λAXXX}X +

σ

2
Ayy = 0 , (14)

151

µ =
α

c
, λ =

β

c3 , σ = cγ . (15)

All terms are now of the same order, that is, A ∼ ε2, ∂/∂X ∼ ε , ∂/∂T ∼ ε3, ∂/∂y ∼ ε2. Here152

the coefficients µ, λ , σ , Q depend on T and y, but note that the y-dependence in these coefficients153
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is order O(ε3), much slower than the y-variation of A, which is order O(ε2) formally. Further154

simplifications are155

U = A
√

Q , {UT +
µ

Q1/2UUX +λUXXX}X +
σ

2
Uyy = 0 . (16)

Without loss of generality, we can assume that the wave propagate in the positive x-direction, so156

that λ > 0. Then (16) can be further transformed exactly to157

{Uς +νUUX +UXXX}X + τUyy = 0 , (17)
158

where ς =
∫ T

0
λ (T ′)dT ′ , ν =

µ

λ
√

Q
, τ =

σ

2λ
. (18)

The vKP equation (17) can be written in a form of a “forced” KdV equation,159

Uς +νUUX +UXXX + τVyy = 0 , VX =U , V =−
∫ +∞

X
U(X ′,y,ς)dX ′ . (19)

Here it is assumed that V → 0 as X → +∞ since small amplitude waves all propagate in the160

negative X-direction. The vKP equation (19) has two conservation laws, analogous to (9, 10),161

∫ +∞

−∞

U dX = [V ]+∞
−∞ = 0 , (20)

162

∂

∂ς

∫ +∞

−∞

U2

2
dX + τ

∂

∂y

∫ +∞

−∞

UVy dX = 0 , (21)

for solutions U(X ,y,ς) localised (or periodic) in X . Note that four expressions of the vKP equa-163

tion are available, that is (11, 16, 17, 19), of which (16, 17, 19) are exactly equivalent, while164

(11) is asymptotically equivalent to each. Which one should be chosen depends on the specific165

application. For example, if the intention is to make comparisons with the data captured from a166

fixed mooring site, then the form (16) could be used, and no extra interpolations are needed. But167

for numerical simulations of a process model as here, and analytical analyses, the form (17) is168

recommended as all the variability is represented by just two coefficients ν and τ .169
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It is useful to clarify here the relationship between the wave amplitude in the transformed space170

and the wave amplitude in the physical space. For a solitary wave in the transformed space171

(X ,y,ς), along a fixed y section line (y = 0 for instance), the maximum amplitude at “time” ς172

can be expressed as173

Um =U(ς ,Xm(ς)) , where UX = 0 at X = Xm(ς) , (22)

where |Um| is a local maximum, and the y-dependence is suppressed. Analogously in the physical174

space, the maximum amplitude at the location x is written as175

Am = A(tm(x),x) , where At = 0 at t = tm(x) , (23)

where |Am| is a local maximum. Then since U = A
√

Q (16), and using the transforms (13),176

λUς = (A
√

Q)t + c(A
√

Q)x , UX =−(A
√

Q)t . (24)

Since here it transpires that the variation of Q is quite small, see figure 6 in our cases, we see that177

the maximum in the transformed and physical spaces approximately coincide. Importantly, note178

that the maximum in the transformed space is a maximum over X at a fixed “time” ς , and this179

coincides, modulo any small variation in Q, with a maximum over time t in the physical space at180

a fixed location x, such as would be observed at a fixed mooring site.181

c. Slowly varying solitary waves182

One of the basic assumptions of this vKP model is that the y-variations should be sufficiently183

slow relative to a typical solitary wave scale in the x-direction. This suggests an asymptotic anal-184

ysis for a slowly varying solitary wave solution of (17) represented by,185

U ∼ asech2{κ[X−P(y,ς)]} , W = Pς =
νa
3

= 4κ
2 , (25)

186

V =−
∫ +∞

X
U dX =

a
κ
{tanh [κ(X−P)]−1} . (26)
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In this scenario, the amplitude a and hence the wavenumber κ and the nonlinear phase speed187

W vary slowly with y,ς . Note that (25) is defined in a reference frame with linear phase188

speed c, so that from the mappings (13, 18), the total phase speed in the physical space is189

csol = c(1−Wλ )−1 ≈ c(1+Wλ ) since the solitary wave amplitude is required to be small. Using190

the transformations in (13, 18) csol = c+αasol/3 where asol = a/Q1/2 as expected. To determine191

the variation on the amplitude it is sufficient to substitute (25) into the conservation law (21), with192

the outcome193 (
2a2

3κ

)
ς

= τ

[
4a2

3κ
Py +(

a2

κ2 )y

]
y
. (27)

Using the relations that νa = 12κ2,Pς = 4κ2 this reduces to194

(
κ3

ν2

)
ς

= τ

[
2κ3

ν2 Py +(
3κ2

2ν2 )y

]
y
, Pς = 4κ

2 , (28)

which can be written in the convenient form,195

θς = τ

[
2θPy +(

3θ 2/3

2ν2/3 )y

]
y

, Pς = 4ν
4/3

θ
2/3 , θ =

κ3

ν2 . (29)

This is a nonlinear mixed hyperbolic-parabolic type system for θ ,P, where the first term on the196

right-hand side of the first equation generates the hyperbolic part and the second term generates the197

parabolic part. It seems quite difficult to obtain an analytical solution, and hence in the following198

sections we will numerically solve this equation system with the constant initial condition that199

θ = θ0,P = P0.200

When there are no y-variations, equation (29) reduces to the well-known adiabatic law θ is201

a constant, that is κ ∝ |ν |2/3 and so a ∝ |ν |1/3. However when there are y-variations, then we202

note that the y-dependence in the coefficients ν ,τ can be taken as parametric, consistent with the203

assumptions made in the derivation of the vKP equation (11). Assuming here without loss of204
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generality that ν > 0, the system (29) can be simplified to an asymptotically equivalent form205

θς =
τ

ν2/3

[
2θν

2/3Py +(
3θ 2/3

2
)y

]
y

, θ =
κ3

ν2 , Pς = 4ν
4/3

θ
2/3 . (30)

But further analytical progress still seems quite difficult without further approximation. Hence, to206

provide some insight into the structure of the solutions, we linearise this system with respect to the207

“constant” state θ = θ0, noting that this is the adiabatic solution κ ∝ ν2/3, and so put θ = θ0 + θ̃ .208

Linearisation then yields209

θ̃ς = 2τθ0P̃yy +
τ

ν2/3θ
1/3
0

θ̃yy , P̃ς =
8ν2/3

3θ
1/3
0

θ̃ . (31)

The first term on the right-hand side generates a linear hyperbolic equation and small disturbances210

propagate outward in the y-direction with a speed y/ς ∼ ν1/3θ
1/3
0 (16τ/3)1/2, whereas the second211

term on the right-hand side generates a linear diffusion equation with a diffusion scale yd where212

y2
d/ς ∼ τ/(ν2/3θ

1/3
0 ), and it is apparent these two terms together constitute the spreading effect213

in the y-direction. This analysis is similar to that of Kadomtsev and Petviashvili (1970) for the214

stability of a KdV solitary wave to transverse modulations, but more generally, here it demonstrates215

the extension of that result to the vKP equation (17).216

As in the well-known KdV theory for a slowly-varying solitary wave, this asymptotic solution217

does not conserve the mass invariant (20), and the resolution is that as the solitary wave deforms a218

trailing shelf is generated to conserve the total mass. This trailing shelf is essentially a linear long219

wave of small amplitude but long wavelength and so can carry mass of the same order as that of220

the solitary wave. The solitary wave mass is 2a/κ and this varies as 24θ 1/3ν−1/3. Relative to the221

constant state θ = θ0, it follows that when ν increases (decreases), the solitary wave amplitude222

a= 12ν1/3θ 2/3 increases (decreases), then the trailing shelf has the same (opposite) polarity as the223

solitary wave. However, note that this conclusion could change if θ also has significant variations224

in the y-direction.225
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3. Two-dimensional topographic effects226

a. Model set-up227

As noted in the Introduction, 2D effects will be especially significant in an area with an abrupt228

change in the oceanic background state, such as in the bathymetry, or in the background density229

and current fields. A typical instance is the New York Bight, which is characterised by a large area230

of continental shelf containing the Hudson Canyon, see figure 1. This area is also affected by the231

strong Gulf Stream current, as well as by coastal river inflow, and all these factors together make232

the local wave dynamics quite complicated. As ISWs propagate up the shelf from deep water,233

and pass through the Hudson Canyon, we expect that wave diffraction and refraction will occur.234

Motivated by this and similar examples we set up an idealised undersea canyon-type topography235

h(x,y) with typical oceanic length scales, see figure 2,236

h =
tanhΩ+1

2
· (h1−h2)+h2 , (32)

237

where Ω =
K2−K1My

x1− x0
· (x− x0)+K1My , (33)

238

and My =

[
tanh(

y+ yts

ytw
)− tanh(

y− yts

ytw
)

]
·Ly +1.0 . (34)

Here we set yts = 6000m, ytw = 2000m, Ly = 0.7, K1 = −2.7, K2 = 2.7, and the topography is239

confined in a domain with size x×y = [0 : 80]× [−40 : 40]km2, so that two edges in the x direction240

are x0 = 0 and x1 = 80km, while the water depth parameter h1 = 350m and h2 = 500m respectively.241

We also consider an idealized plateau-type topography, see figure 2, whose expression is the same242

as that of the canyon case, except that243

My =

[
tanh(

y− yts

ytw
)− tanh(

y+ yts

ytw
)+2

]
·Ly +1.0 . (35)

Using these idealized topographies makes it feasible to conduct analytical work in the sequel. Al-244

though realistic topography is not considered here, we contend the framework used here can be245
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easily and effectively migrated to the implementation of real topography, whose transverse varia-246

tion is relatively slower than that in the wave propagation direction. Further, as customary, since247

the surface disturbances induced by ISW are usually very small (typically O(102) smaller), we248

make the rigid lid approximation, and also set the background current, u0(z)≡ 0. The background249

temperature and salinity profiles are the monthly averaged data from the World Ocean Atlas 2013.250

We choose data in July at 37.5◦N, 72.5◦W, in the vicinity of the Hudson Canyon, which is shown251

in figure 3.252

When examining 2D effects, another important issue is the preparation of the initial condition.253

To simulate the waves from a generation site, here we select the well-known KdV solitary wave254

but with a y-envelope imposed,255

U(X ,y,ς = 0) = E(y)
{

a0 sech2 [κ0(X−X0)+D(X)]
}
, ν0a0 = 12κ

2
0 . (36)

Here X0 is chosen to place the solitary wave in the deep water where ν = ν0. E(y) is an envelope256

function in the transverse y direction, equal to unity in a specified region |y| < L and tapering to257

zero outside that range,258

E(y) =
1
2
{tanh(

y+ ye

yw
)− tanh(

y− ye

yw
)} . (37)

Note that the attenuation in the y-direction should be greater than that in the X-direction, so we259

choose yw � 1/κ0, and also we require ye � yw to ensure a large value of L. To isolate the260

dynamics of the 2D topography, we also did simulations with a y-independent initial condition,261

that is E(y) ≡ 1. The mass constraint (20) must be satisfied, which implies that in the Fourier262

space, solutions have no energy at the zero wavenumber. As a consequence, a pedestal D(X)263

needs to be superimposed on the KdV solitary wave. For a numerical domain of total length 2LX264

in the X direction, the simplest choice is D(X) =−12κ0/(ν0LX), so that the initial mass is zero,265 ∫
∞

−∞

{
a0 sech2[κ0(X−X0)]+D(X)

}
dX =

2a0

κ0
− 24κ0

ν0
= 0 . (38)
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The expression (38) is a good choice for a periodic domain. However because here two sponge266

layers are deployed at the two edges of the X-domain (details below), a form with an envelope267

which avoids possible end effects is used,268

D(X) =
D0

2
{tanh(

X +Le

Lw
)− tanh(

X−Le

Lw
)} ,

∫
∞

−∞

D(X)dX = 2D0Le =−
24κ0

ν0
. (39)

In principle, the lengths Le and Lw can be chosen freely, but to facilitate the numerical calculations,269

it is better to keep the pedestal small, that is to say |D0| � a0, and hence |κ0|Le � 1, so one270

combination of the typical values is Le = LX/2,Lw = LX/4.271

The asymptotic theory developed in section c can be applied to estimate the deformation of the272

solitary wave amplitude a, ignoring any effect of the small pedestal. First, we use the asymptotic273

solution for θ ∼ θ0 in equation (30) where θ 2 ∝ a3/ν to estimate that overall the amplitude a274

will deform adiabatically as |ν |1/3, with a consequent effect on the phase speed. In the physical275

variables x, t this is c/(1−Wλ ) ≈ c(1+Wλ ) since W = νa/3 ∼ |ν |4/3 is a small perturbation.276

Then, in addition, the effect of the envelope function E(y) can be estimated using the linearised277

system (31). It is clear that the main variation will then come from the end-points y = ±ye of278

the envelope. These will generate small disturbances propagating in the y-direction with speeds279

proportional to ν1/3θ
1/3
0 (16τ/3)1/2, and at the same time diffusing on a length scale yd where280

y2
d/ς ∼ τ/(ν2/3θ

1/3
0 ). Both processes are enhanced as the initial wave amplitude increases through281

the dependence on θ
2/3
0 ∝ a0, and also enhanced as yw decreases, that is sharper fronts at the ends282

of E(y).283

b. Numerical method and results284

Although the formulation of the vKP equation (11) is for any mode, in this paper we focus on285

only mode-1 waves, which are the most commonly observed in the ocean, although there are some286
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observations of mode-2 waves, see for instance, Shroyer et al. (2010); Liu et al. (2013). Using287

the background profiles shown in figures 2 and 3, the nonlinear coefficient ν < 0, see figure 5,288

indicating that mode-1 ISWs are waves of depression. To ensure the simulations are in the weakly289

nonlinear regime, here we choose −15m as the initial amplitude in all cases.290

The numerical simulations are carried out in the transformed space, using the vKP equation (17).291

A pseudo-spectral method based on a Fourier interpolant is used in the primary wave propagation292

(that is X here) direction, and the dispersion along the y direction is simulated by a fourth order293

central finite difference scheme, while a classical Runge-Kutta fourth-order method, together with294

a very fine time step, provides an accurate outcome in the time domain. Two sponge layers are295

added in the X direction to absorb the incident waves and so avoid any reflection, while in the296

y direction, when E(y) ≡ 1 then a periodic boundary condition is used, otherwise two sponge297

layers are deployed at edges as that in the X direction. Once the results have been obtained in298

the transformed space, a 2D interpolation is implemented to transform back to the physical space,299

that is, from U in equation (17) to A in (11) or (14). Clearly the interpolation will introduce300

some further errors, but they are found with some experimentation to be quite small and can be301

ignored, and the following quantitative comparisons with the MITgcm model will put this claim302

on a firmer footing, see figure 11. Note that the essential dynamics takes place in the transformed303

space, and the mapping back to the physical space can only change the amplitude magnitudes in304

the evolving wave field, and cannot by itself generate new wave features, since U = A
√

Q (16) and305

the transformations (13) affect only the time and space scales. Note especially that the profile for306

U in the X-space at a fixed “time” ς corresponds to a time series for A at a fixed place x, see (24).307

In both cases of the undersea canyon-type and plateau-type topography, the initial solitary wave308

with the envelope E(y) defined in (37) immediately disperses along the transverse y direction309

when the simulations start, and importantly the wave fronts are not straight, but instead are curved310
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backwards relative to the x direction, see figure 4. This is because the local phase speed is a311

function of the local wave amplitude, which decays on both sides away in the y-direction from the312

initial main wave centred at y = 0. This permanent cross-domain dispersion results in a dramatic313

decrease of the amplitude of the main wave with distance in the x-direction of propagation. On the314

other hand, after propagating away from the flat bottom and up the slope, the waves also begin to315

deform in the x-direction due to the effect of the nonlinear coefficient ν in (17) which combines the316

physical nonlinear coefficient α with the physical linear dispersive coefficient β , and also absorbs317

the magnification factor Q, see figure 6. The asymptotic theory developed in section c predicts318

the deformation of the main wave is determined by two components in the mapping space, that319

is, the terms related with ν and τ respectively, see equation (30). More specifically, let us focus320

on the central line in the y direction, that is y = 0. Figure 5 shows that along the propagation321

direction |ν | increases, and hence the amplitude of the evolving main wave will increase, since it322

deforms as |ν |1/3/Q1/2 in the physical space, but at the same time the afore-mentioned spreading323

in the y-direction will lead to some amplitude decay. It turns out the latter is overwhelmingly324

significant and causes the wave amplitude to decay, see figure 4. To conserve the total mass, this325

decay generates a trailing shelf with positive polarity, and there is evidence that this shelf begins326

to fission into several small ISWs, see figure 11.327

The features described above occur for both the canyon and plateau cases, and the main differ-328

ence between these two cases is that the central part of the wave field around y = 0 is propagating329

faster over the canyon than over the plateau, see figure 4. This can be partly attributed to the topo-330

graphic variations in the linear phase speed c, see figure 6, which shows that c is greater over the331

canyon than over the plateau. However the difference is quite small, of O(5%), and comparable332

with the change in c from deep to shallow water, due to scaling dependence on
√

h. Furthermore,333

this effect is purely kinematic and linear, whereas the simulations of the nonlinear vKP equation334
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(17) are in a reference frame moving with the speed c, and will contain dynamic effects due to335

the amplitude-dependent phase speed W for the evolving ISW. This can be estimated from our336

simulations as follows. Suppose that the y-variations (the canyon or plateau) are removed from337

the topography, then the evolving ISW will deform according to the adiabatic law κ ∝ |ν |1/3 and338

then W = 4κ2, see (25). This forms a base level to determine the effect of a canyon, or plateau,339

on the nonlinear phase speed W . Then with the canyon or plateau topography restored we use the340

asymptotic expression that θ = θ0, see (30) and the accompanying discussions. Of course, this341

adiabatic estimate is within the confines of a slowly-varying assumption, so that at fixed “time”342

ς , the state θ is asymptotically equivalent no matter whether or not there are y-variations in the343

background topography. Then from equation (30) we get that344

Wc

Wr
=

(
νc

νr

)4/3

and
Wp

Wr
=

(
νp

νr

)4/3

, (40)

where the subscript r indicates the reference level without y-variations, while c and p indicate345

the canyon and plateau case respectively. The results of (40) are shown in figure 7. Initially, the346

waves are over the flat bottom where there are no y-variations, but with the propagation up the347

slope, which will then become more and more significant. We note immediately an important348

consequence, in view of the nonlinear effects of y-variations on W , the canyon-type topography349

actually slows down the propagation (Wc/Wr < 1), contrasting with the speed-up of the plateau-350

type topography (Wc/Wr > 1). Nevertheless, the magnitude of Wλ = νaλ/3 (O(10−1)) is much351

smaller than the corresponding linear phase speed c (O(1)), which is to say, although the effects352

of the y-variations can slightly modulate the phase speed csol ≈ c(1+Wλ ), the linear phase speed353

c is still dominant, and this is precisely what is seen in figure 4 and 8.354

Although the simulations shown in figure 4 are intended to describe the propagation of ISW over355

2D topography in the ocean, the underlying dynamics induced by the topography alone is not very356
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well exhibited, since it is mostly hidden by the significant y spreading induced by the truncated357

initial condition. In practice oceanic ISWs are limited in the transverse direction, however this358

scale could be quite long, and hence in figure 8 we show the simulations when the initial condition359

on the flat bottom before the waves reach the slope has no y-dependence, that is E(y) ≡ 1. The360

evolution of the wave again obeys the adiabatic law in the physical space, the amplitude of the361

leading wave |a| ∼ |ν |1/3/Q1/2, and due to mass conservation, a trailing shelf (indicated by light362

green colour) of the same polarity is generated. Initially, the wave evolution at the central part363

around y = 0 behave qualitatively similar to the previous cases, that is, it is largely determined by364

the liner phase speed c, but at the same time, is slightly modulated by the small nonlinear phase365

speed W , which has an opposite effect to that of c. Then after moving up the slope, the effects366

of the y-variations in the bathymetry become important and so the adiabatic law fails, and the y-367

dependence has to be taken into account in equation (28) or (29). With the gradual propagation up368

the slope, the waves in the canyon (plateau) propagate ahead (behind) the waves outside, and the369

non-adiabatic effects due to the y-variations of the topography become further enhanced, leading370

to a significant distinction between the wave amplitudes at different y-locations. Nevertheless, the371

total mass along the x direction on each y-section has to be conserved, which, together with the372

spreading effect in the y direction, leads to a complicated transverse modulation (shown by the373

dark blue colour).374

To examine this explanation in more detail, a set of calculations based on the equation system375

(29) is shown in figure 9 where we plot the amplitude of the leading wave using the expressions376

for θ = κ3/ν2 in (29) and the solitary wave expression νa = 12κ2 (25) so that a = 12(θ 2ν)1/3.377

Note that the asymptotic theory (29) is based on the (21) and so conservation of wave action flux378

is automatically satisfied. It is apparent that in the canyon case, over the slope, the amplitude of379

the leading wave |a| = 12(θ 2|ν |)1/3 in the canyon increases, contrasting with the decline in the380
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periphery of the canyon. Moreover, this feature expands with “time” ς and exerts more influence381

on the wave field, as the asymptotic theory based on (29) predicts. Simultaneously, at the central382

part, the increase of the mass represented by the leading wave 24(|θ/ν |)1/3 leads to an opposite383

polarity trailing shelf (see the dark blue colour in figure 8) in order to conserve the total mass in384

the X direction. In contrast, the mass undergoes a decrease outside the submarine canyon, and so385

using the mass conservation law again, a trailing shelf of the same polarity forms, which further386

develops into several small ISWs (see the light green colour in figure 8). A similar interpretation387

can be applied to the plateau case, but with an opposite structure. As we have noted, small y-388

variations of the topography can lead a significant distinction through the coefficients ν and τ . In389

order to examine which coefficient is the more effective, we show in figure 10 calculations from390

the system (29) when the y-dependence of ν and then τ are separately removed. We see that when391

only the y-dependence of the coefficient ν is removed, the wave field is quite different from that392

using the full expression for ν , see figure 9. However if instead only the y-variations in τ are393

removed, then the wave structure is almost the same as when the full expression for τ is used.394

We infer that it is the y-variations in the nonlinear coefficient ν which essentially determine the395

evolving wave field, at least for the system parameters used here.396

4. MITgcm model simulations397

Access to 2D observational data which incorporates a complete shoaling process is impractical.398

Thus here we use instead a fully nonlinear and non-hydrostatic three-dimensional (3D) primitive399

equation model, MITgcm, to do both qualitative and quantitative comparisons. For details of the400

MITgcm model, see Marshall et al. (1997).401

Since our presented KP theory is non-dissipative, the dissipation (eddy viscosity) in the MITgcm402

model is also set to be zero, so that formally it solves the incompressible Boussinesq equations.403

20



The simulation domain, topography and background profiles are exactly the same as in the KP404

theory, see figure 2 and 3. In the x direction, 60 of a total 800 grid points at the end of the405

domain are designed to be a boundary layer with a decrease of resolution, telescoped exponentially406

from 100 to 104 m, whereas the same strategy is used to avoid reflections from boundaries in407

the y direction, and both sides hold 30 grid points as boundary layers (totally there are 360 grid408

points), with resolution from 250 to 104 m. In the vertical direction, there are 190 z-levels with 2m409

resolution in the upper 175 layers followed by 15 bottom layers with 10m resolution. Note that410

as indicated by the modal function, see figure 3, the maximum vertical excursion should occur at411

approximately depth h = 165m, which is covered by the fine resolution. Time step is 2s, short412

enough compared with the typical temporal scale of a mode-1 ISW.413

To be succinct, here we only show the results with the truncated initial condition, which can be414

observed more often in the real ocean. As the KdV-type solitary wave, given by equation (36),415

is not fully compatible with the Boussinesq equations solved by the MITgcm model (although416

for small-amplitude waves which are in a weakly nonlinear regime, the difference is very small),417

thus a 2D simulation is first conducted on a flat bottom (depth h = 500m) environment with a418

KdV solitary wave as the initial incident wave, using the background profiles in figure 3. Then we419

let the wave evolve until it reaches a new stable solution, which is cut off and ready to be used.420

Essentially in the y direction, it is not easy to impose a smooth envelope on the initial solitary421

wave in the MITgcm 3D simulations, as described in equation (36). A compromise method is422

to copy this preliminary 2D solution to fill a central region whose y-direction width is almost423

the same as the central part of the envelope given in equation (37), whereas the other areas are424

assumed to be at rest. But these sudden jumps between the initial wave and its periphery will425

undoubtedly modulate the dynamics to some extent. Indeed, the discrepancy induced by the initial426

conditions is significant within several hours after the model launches, but nevertheless then a427
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good agreement between the MITgcm and the vKP theory is achieved, see figure 11.428

429

To further examine the robustness of the vKP simulations, the locations of the wavefronts in430

the x-y space at four different time layers are depicted in figure 11, and these demonstrate that431

overall a good agreement holds between the vKP simulations and the MITgcm model, except that432

the curvatures of the wave fronts in the vicinity of canyon (or plateau) topographic features are433

more abrupt in the KP simulation, which can be partly ascribed to the interpolation used when434

that is transformed back from the mapping space to the physical space. To make this claim more435

robust, a quantitative comparison in the amplitude A is also shown in figure 11, in which the wave436

amplitude of the MITgcm model is calculated using a mode decomposition technique developed437

by Yuan et al. (2017), which was originally derived in a 2D (x-z) domain. Howeve, since here the438

y-variations are assumed to be much slower than the x-variations, this technique can be applied439

in any (x-z) section lines without too much loss of accuracy. Here we will briefly introduce the440

derivation for our mode-1 wave, there are more details in Yuan et al. (2017). Starting from equation441

(2), along one (x-z) section line we have442

c
∫ 0

−h
ζzφz dz = ΛS, S = c

∫ 0

−h
φ

2
z dz , (41)

where Λ is the calculated amplitude in the MITgcm model (as shown in figure 11). Note that443

in (41) the vertical displacement ζ can not be achieved directly from the model output, and also444

the z-derivative is not easy in practice, so an alternative (asymptotically) equivalent form will be445

implemented. In the linear long wave approximation446

ζt ≈ w , (42)

which can be combined with the conservation of mass equation447

ux +wz = 0 , (43)
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to yield448

ux ≈−ζtz . (44)

Then, also noting that to leading linear long wave order, ζt + cζx ≈ 0, the final approximate ex-449

pression for Λ is450

ΛS≈
∫ 0

−h
uφz dz , (45)

where u is the particle velocity in the primary wave propagation (here x) direction, one of the451

standard outputs from the MITgcm model. We see that the agreement is good, implying that here452

the variable coefficient KP model and the accompanying analytical interpretations are quite robust.453

5. Summary and discussion454

The vKP model can be widely applied to the real ocean, under the assumption that the y-455

variations are much slower than those in the propagation x-direction. In the simulations reported456

here we have considered 2D bathymetry which is either a submarine canyon or a submarine457

plateau, these being prototypes of more complicated topographic scenarios. For slowly-varying458

solitary waves, if there are no y-variations, then from the well-known KdV theory the evolution459

scenarios of ISWs can be expressed by the adiabatic law a ∝ |ν |1/3 relating the amplitude a with460

the nonlinear coefficient ν , assuming that, as here, ν does not change sign. However, when y-461

variations are taking into consideration, then an additional spreading effect in the y direction,462

characterised by a propagation speed proportional to ν1/3θ
1/3
0 (16τ/3)1/2 and a diffusion scale463

y2
d/ς ∼ τ/(ν2/3θ

1/3
0 ), will also play a crucial role. Our simulations show that this can even be464

overwhelmingly dominant, depending on the initial conditions, such as in our two cases shown in465

figure 4. But when the initial KdV solitary wave is y-independent in the flat bottom region before466

the topographic slope, then a very complicated scenario of evolution occurs, which can be ex-467
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plained by the asymptotic theory of the slowly varying solitary wave, combined with the creation468

of a trailing shelf, induced by mass conservation in the X direction.469

For the submarine canyon-type and plateau-type bathymetry, our numerical simulations are per-470

formed on the transformed equation (17) which indicates that the essential dynamics are controlled471

by the transformed coefficients ν and τ , representing the effects of nonlinearity and transverse472

diffraction respectively. For the simulations reported here, we have found that the former is the473

more effective. We have developed an asymptotic theory of a slowly varying solitary wave which474

can be used to examine the effect of y-variations in these coefficients. In particular we have found475

that the nonlinear phase speed W (25) has a tendency to oppose the change of the corresponding476

linear phase speed c due to the y-variations in the topography, although the nonlinear correction477

term Wλ is too small to fully compensate the change in c, as the ratio is typically O(10−1). That478

is the phase speed (in the physical space) csol ≈ c(1+Wλ ) is essentially determined by c.479

Further, we have found very good agreement between the vKP simulations and simulations480

using the MITgcm model, both qualitatively and quantitatively. Note that if we were to simplify481

our continuous stratification to a two-layer structure, using the modal function shown in figure 3,482

the thickness of the upper layer and lower layer could be estimated as h1 = 165m and h2 from483

185 to 335m respectively in the whole domain. Since our initial wave amplitude is 15m, then484

the nonlinearity parameter a/h1,2 is O(10−1) and the non-dimensional wavelength ∆/h1,2 (refer485

to figure 11) is O(101), which formally satisfies the weakly nonlinear long-wave assumptions.486

But we note that Ostrovsky and Stepanyants (2005) conducted a series of comparisons between487

the laboratory experiments and theoretical models and concluded that in some circumstances, the488

KdV equation, the one-dimensional version of the KP equation, is still adequate for the large489

amplitude ISWs, beyond the formal range of validity. To some extent the theory can be extended490

to larger amplitudes by incorporating a cubic nonlinear term, but this may also require additional491
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diffraction terms, and at present such a model is not available. Also, the vKP model is restricted to492

a single mode, here mode-1, and so cannot describe secondary generation of mode-2 waves, such493

as those found by Shroyer et al. (2010); Liu et al. (2013). Finally, as found by Ostrovsky (1978);494

Helfrich (2007); Grimshaw and Helfrich (2008), in some circumstances, the effect of the Earth’s495

background rotation may be quite important. This can be incorporated into the present vKP theory,496

see for instance Grimshaw (1985); Grimshaw and Melville (1989), but here the rotational effect497

can be neglected, since according to Farmer et al. (2009); Grimshaw et al. (2012), the importance498

of the rotation can be measured by the Ostrovsky number, essentially a ratio of the nonlinear term499

to a rotational term, and when written in the coefficients α, β , Os = 2cα2a2/(β f 2)∼O(103)� 1,500

where f is the Coriolis frequency chosen at latitude 40◦N (refer to figure 1). Thus we conclude501

that here the effect of the background rotation can be neglected.502
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LIST OF FIGURES599

Fig. 1. ERS-1 synthetic aperture radar (SAR) images of the New York Bight acquired on 18 July600

1992 at 15:35 UTC superimposed on the water depth contour lines. (Figure adapted from601

Jackson (2004).) . . . . . . . . . . . . . . . . . . . . . 33602

Fig. 2. Canyon-type (left panel) and plateau-type (right panel) topography. For both cases, the depth603

range is from 350 to 500m, while the width of the canyon (or plateau) is approximately604

20km. . . . . . . . . . . . . . . . . . . . . . . . . 34605

Fig. 3. The panels from left to right are vertical profiles of the salinity, temperature, buoyancy606

frequency N and corresponding mode-1 modal function φ from equation (3, 4) respectively.607

Note that the extrema of N and φ are achieved at depths h = 16 and h = 165m respectively,608

which indicates that the most significant internal wave disturbance occurs at a depth where609

the density gradient is not the largest. . . . . . . . . . . . . . . . . 35610

Fig. 4. Three snapshots of the wave amplitude A in equation (11) or (14) for the canyon-type (top611

left panel) and plateau-type (bottom left panel) topography at times t = 5.0, 10.3 and 15.7612

hours are illustrated. The initial solitary wave with an amplitude of −15m is indicated by613

a black rectangle, and the results at different times are separated by solid grey columns.614

The amplitude of the leading wave |a| in the x-direction at the central point y = 0, together615

with the |ν |1/3Q−1/2 times a normalising factor are plotted on the right two panels, where616

the discrepancy in the evolution of |a| and |ν |1/3Q−1/2 can be attributed to the significant617

spreading effect in the y direction due to the envelope E(y) imposed on the initial solitary618
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panels respectively, whereas the values at the centre point y = 0 are displayed on the lowest622
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Fig. 6. The linear phase speed c calculated from the modal function (3, 4) for cases of the canyon-624
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Fig. 10. The leading wave amplitude a = 12(θ 2ν)1/3 calculated from equation system (29) in the643

transformed space for the canyon-type ((a) and (c)) and plateau-type ((b) and (d)) topogra-644

phy, where (a) and (b) are the results based on the primitive τ(y,ς), but a new ν(ς) whose645

y-variations are removed. Similarly, (c) and (d) use ν(y,ς),τ(ς), in which the y-dependence646

of τ is erased. . . . . . . . . . . . . . . . . . . . . . . 42647

Fig. 11. The top two panels are the locations of the wavefronts from the MITgcm (solid red lines)648

and the vKP simulations (dashed blue lines) respectively in the cases of canyon-type and649

plateau-type topography, shown for times at t = 0.0, 5.0, 10.3 and 15.7 hours. Selected at650

the same times, the comparisons of the wave amplitude A on the central line y = 0 and the651

off-centre section y = 20km along the x-direction are shown in the middle and bottom two652

panels respectively. . . . . . . . . . . . . . . . . . . . . . 43653
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FIG. 1. ERS-1 synthetic aperture radar (SAR) images of the New York Bight acquired on 18 July 1992 at

15:35 UTC superimposed on the water depth contour lines. (Figure adapted from Jackson (2004).)
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FIG. 2. Canyon-type (left panel) and plateau-type (right panel) topography. For both cases, the depth range is

from 350 to 500m, while the width of the canyon (or plateau) is approximately 20km.
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FIG. 3. The panels from left to right are vertical profiles of the salinity, temperature, buoyancy frequency N

and corresponding mode-1 modal function φ from equation (3, 4) respectively. Note that the extrema of N and

φ are achieved at depths h = 16 and h = 165m respectively, which indicates that the most significant internal

wave disturbance occurs at a depth where the density gradient is not the largest.
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FIG. 4. Three snapshots of the wave amplitude A in equation (11) or (14) for the canyon-type (top left panel)

and plateau-type (bottom left panel) topography at times t = 5.0, 10.3 and 15.7 hours are illustrated. The initial

solitary wave with an amplitude of −15m is indicated by a black rectangle, and the results at different times are

separated by solid grey columns. The amplitude of the leading wave |a| in the x-direction at the central point

y = 0, together with the |ν |1/3Q−1/2 times a normalising factor are plotted on the right two panels, where the

discrepancy in the evolution of |a| and |ν |1/3Q−1/2 can be attributed to the significant spreading effect in the y

direction due to the envelope E(y) imposed on the initial solitary wave.
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FIG. 5. The nonlinear coefficient ν and the y-dispersive coefficient τ in the transformed space for both the

canyon-type and plateau-type topography are shown in the left two and right two panels respectively, whereas

the values at the centre point y = 0 are displayed on the lowest two panels.
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FIG. 6. The linear phase speed c calculated from the modal function (3, 4) for cases of the canyon-type (left

top panel) and plateau-type (right top panel) topography. Formally c is positively associated with the water depth

h, that is, c =
√

Nh for internal waves. The bottom two panels are the normalised linear magnification factor Q

also for canyon (left) and plateau (right) cases, which are of the same order as c.
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FIG. 7. The dimensionless nonlinear phase speed W with respect to the base level (without y-variations) for

the canyon-type and plateau-type topography.
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FIG. 8. The left two panels are the wave amplitudes A in equation (11) or (14) for both the canyon-type

(top panel) and plateau-type (bottom panel) topography, where three time layers are shown (marked over the

pictures), and each of them are separated by grey solid columns. The initial wave with an amplitude of −15m

is represented by a dark rectangle, which fills all the y domain and enters the region from x = 0. In each case,

typical wave amplitudes A at three points are listed. The right two panels show the corresponding amplitudes

of the leading waves |a| along the central line y = 0 in the y direction, and additionally |ν |1/3Q−1/2 times a

normalising factor is also plotted.
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FIG. 9. The leading amplitude a = 12(θ 2ν)1/3 calculated from equation system (29) in the transformed space

for the canyon-type (a) and plateau-type (b) topography, whereas the mass represented by the leading wave

24(θ/ν)1/3 is shown in (c) for the canyon-type topography, (d) for the plateau case.
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FIG. 10. The leading wave amplitude a= 12(θ 2ν)1/3 calculated from equation system (29) in the transformed

space for the canyon-type ((a) and (c)) and plateau-type ((b) and (d)) topography, where (a) and (b) are the

results based on the primitive τ(y,ς), but a new ν(ς) whose y-variations are removed. Similarly, (c) and (d) use

ν(y,ς),τ(ς), in which the y-dependence of τ is erased.
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FIG. 11. The top two panels are the locations of the wavefronts from the MITgcm (solid red lines) and the vKP

simulations (dashed blue lines) respectively in the cases of canyon-type and plateau-type topography, shown for

times at t = 0.0, 5.0, 10.3 and 15.7 hours. Selected at the same times, the comparisons of the wave amplitude A

on the central line y = 0 and the off-centre section y = 20km along the x-direction are shown in the middle and

bottom two panels respectively.
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