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Abstract
The Rosalia longicorn (Rosalia alpina) is a strictly protected saproxylic beetle, widely distributed in Central and Southern
Europe and mainly associated with ancient beech forests. To improve knowledge about the conservation status of R. alpina
in Italy, available molecular markers (microsatellites and mitochondrial cytochrome c oxidase I(COI)) were tested for the
first time on Italian populations. The study was performed in four sampling sites distributed in two areas placed in Northern
(“Foreste Casentinesi” National Park) and Central Apennines (“Abruzzo, Lazio and Molise” National Park) where
populational data about Rosalia longicorn were collected in the framework of the European LIFE MIPP Project. The
genetic relationship among Apennine and Central/South-eastern European populations was explored by a comparison with
mitochondrial DNA (mtDNA) data from literature. Microsatellite markers were only partially informative when applied to
R. alpina Italian individuals, although providing some preliminary indication on an extensive gene flow among populations
from the Apennines and local ongoing processes of genetic erosion. Genetic data are consistent with previous ecological data
suggesting that the maintenance of variability in this species could be related to both habitat continuity and preservation of
large senescent or standing dead trees in forests. Finally, a peculiar origin of the Apennine populations of R. alpina from a
putative “Glacial Refugium” in Italy was inferred through COI data. The high genetic distance scored among the analysed
populations and those from Central and South-eastern Europe indicates that the R. alpina deme from Apennine Mountains
might represent a relevant conservation unit in Europe. Further genetic analyses will allow assessing other possible
conservation units of R. alpina and, thus, defining large-scale conservation strategies to protect this endangered longhorn
beetle in Europe.

Keywords: Saproxylic insects, Habitats Directive, population genetics, biogeography, conservation

Introduction

The longhorn beetle Rosalia alpina (Linnaeus, 1758)
(Coleoptera: Cerambycidae) is an obligate saproxylic
species which depends on dead wood of dying and
decaying trees, generally well spread in mature forests
(Speight 1989; Alexander 2008; Stokland et al. 2012).
The larvae of the Rosalia longicorn complete their
development in 2–3 years, mainly feeding on dead-
wood of mature, dead (or moribund) and sun-exposed

beech trees (Fagus sylvatica Linnaeus and F. orientalis
Lipsky). Therefore, the habitat of the species consists
in mountain forest clearings, wooded grasslands and
forest patches, having a low percentage of canopy
closure (Sama 1988, 2002; Duelli & Wermelinger
2005; Campanaro et al. 2017). It is worth noting that
the larval stage can also develop in other deciduous
trees (e.g. Ulmus, Acer, Carpinus, Tilia, Fraxinus,
Castanea, Juglans, etc.) along a wide altitudinal range
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from the coastline to about 2000 m above sea level
(asl; Švacha & Danilevsky 1988; Bense 1995; Ciach
et al. 2007; Cizek et al. 2009; Di Santo & Biscaccianti
2014).

The Rosalia longicorn is widespread in Europe,
mainly tracking the presence of the beech tree spe-
cies, its main host plant, with a geographic range
covering most of Central and Southern Europe
from Asturias to the Ural Mountains (Müller 1950;
von Demelt 1956; Sama 1988, 2002; Bense 1995;
Bense et al. 2003; but see also the distributional map
outlined in fig. 1B of Drag et al. 2015). The northern
limit of its current distribution runs through North-
western Spain, France (up to the Seine), Southern
Germany (Baden-Württemberg and Bavaria), the
Czech Republic, Poland (western and southern ter-
ritories), Southern Ukraine and the Southern Urals
(Bense 1995; Shapovalov 2012; Michalcewicz &
Ciach 2015); old records, not yet confirmed, exist
for Northern Germany, Denmark and Southern
Sweden (Lindhe et al. 2011). In Southern Europe,
the species occurs in most mountain areas of Italy
and Corsica, where some relict populations also
populate lowland forest fragments, but the core
area of its distribution lies in South-eastern Europe
and extends to the Caucasus through Northern
Anatolia (Müller 1950; Von Demelt 1956; Sama
1988, 2002; Bense et al. 2003). The southern limit
of the range runs through Northern Sicily (mainly
Madonie and Nebrodi Mts.) and the Greek main-
land, with a very isolated population in South-east-
ern Turkey (the western slope of the Nur Mts.),
where an endemic subspecies was described, R.
alpina syriaca Pic, 1895 (Sama 2002; Sama & Löbl
2010; Alì & Rapuzzi 2016).

To better assess the conservation status of R.
alpina and to plan conservation strategies at both
fine and broad geographical scales, analysis of the
genetic viability of this species is urgently required to
supplement distributional and ecological data. To
this aim, suitable molecular markers were developed
(Drag et al. 2013) and have been used so far to

investigate patterns of genetic structure among
Central and South-eastern European populations
(Drag et al. 2015). These studies highlighted that
populations from Central Europe were genetically
less variable than those of the Southern area, i.e.
Northern-western Greece (Pindus range, Olympus
Mts), where, likely, a glacial refugium occurred
(Drag et al. 2015).
In Italy, R. alpina is mainly associated with

ancient deciduous forests dominated by Fagus syl-
vatica (Lachat et al. 2013) in both the Alpine and
Apennine ranges. The last assessment of the con-
servation status of this insect in the Italian penin-
sula (performed during the years 2006–2012)
placed this species in the category “Inadequate
(U1)” (Genovesi et al. 2014), and the recently
published Italian Red List of Italian Saproxylic
Beetles evaluated the species as “Nearly
Threatened” (Audisio et al. 2014; Carpaneto
et al. 2015). To perform a first genetic survey of
Italian populations, we gathered data from R.
alpina populations in two areas where monitoring
protocols were recently standardized and per-
formed in the framework of the EU-LIFE monitor-
ing insects with public participation (MIPP)
Project (Mason et al. 2015; Rossi De Gasperis
2016; Campanaro et al. 2017): the first area is
placed in the Northern Apennines (“Foreste
Casentinesi” National Park), and the second in
the Central Apennines (“Abruzzo, Lazio and
Molise” National Park).
With the present work we aimed at: (i) evaluating

for the first time the performance of the available
microsatellite markers (Drag et al. 2015) in Italian
populations of R. alpina, and assessing their useful-
ness in detecting genetic structure at a fine geogra-
phical scale; (ii) estimating polymorphism levels in
the two R. alpina Apennine populations and the gene
flow between them, in order to provide hints about
their current status of genetic conservation; and (iii)
tracing the biogeographic origin of Italian popula-
tions by exploring the relationship among

Figure 1. Microsatellite locus RA_23 sequence alignment. Motif 1 and Motif 2 are highlighted in red and green, respectively. Reference
sequence for RA_23 locus retrieved from GenBank, Acc. N° = KF114388.1 (Drag et al. 2015).
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mitochondrial DNA lineages of the Apennines and
those from Central and South-eastern Europe (Drag
et al. 2015).

Material and methods

Study areas, sample collection and DNA extraction

Collection of individuals was performed during the
monitoring of R. alpina carried out in the framework
of the EU LIFE-MIPP Project (Campanaro et al.
2017; Carpaneto et al. 2017; Rossi De Gasperis et al.
2017) in two Italian National Parks (also “Sites of
Community Importance” or SCI): “Foreste
Casentinesi, Monte Faltenora e Campigna” National
Park (hereafter abbreviated as “FC”; SCI:
IT4080001), located in the Northern Apennines
(Forlì-Cesena and Arezzo provinces), and “Abruzzo
Lazio e Molise” National Park (hereafter abbreviated
as “PA”; SCI: IT7110205), located in the Central
Apennines (L’Aquila, Isernia and Frosinone pro-
vinces). The distance between the two areas is about
250 km. The beetles were captured and handled under
a permit from the Italian Ministry of Environment
(Prot. 0044591/PNM 16/09/2013).

The study area within the FC corresponded to
the locality “Foresta della Lama” (700 m asl;
43.4312°N, 11.8381°E), characterized by closed
forests dominated by Fagus sylvatica and Abies
alba. In PA, three sub-areas were selected:
“Difesa di Pescasseroli” (DP; 1300 m asl;
41.8461°N, 13.8600°E), and “Val Fondillo” (VF;
1200 m asl; 41.7841°N, 13.9563°E), characterized
by pure beech forests with wide clearings and old
growth trees (the distance between these two sub-
areas is about 6.5 km); and “Zio Mas” (ZM;
1700 m asl; 42.0802°N, 14.0566°E), characterized
by fragmented beech woodlands interspersed
among open mountain grasslands (distant ~10 and
30 km from VF and DP, respectively; for more
detail on the ecological features of the sampling
areas see Carpaneto et al. 2017). The sample tis-
sues for molecular analysis were obtained over a 2-
year sampling period (2014–2015, during July and
August), from specimens caught on trees along
specific sampling transects (for details on positions
of “wild trees” and the areas covered by the sam-
pling transects, see figs 6 and 7 in Campanaro
et al. 2017). Tarsomeres of one middle leg of the
insect (as in Drag et al. 2015) were stored in vials
containing 96% ethanol. DNA was extracted from
a total of 89 specimens using the Genomic DNA
Mini Kit Tissue (Geneaid) following the manufac-
turer’s instructions, but performing a longer (12 h)
cell-lysis step.

Microsatellites: amplification, fragment size detection and
data analysis

Eight of the nine microsatellite loci available for R.
alpina (Drag et al. 2013) were amplified: RA_08,
RA_11, RA_13, RA_15, RA_23, RA_28, RA_37 and
RA_40 (loci alternatively labelled with 6-FAM or
HEX). RA_29 was excluded a priori, since failure in
DNA amplification at this locus was already reported
(Drag et al. 2015). Microsatellite amplification proto-
cols were optimized by a “touchdown” annealing pro-
cedure (Don et al. 1991) and extension of the final
elongation step to 15 min to ensure complete polyade-
nylation of DNA strands. Polymerase chain reaction
(PCR) thermal conditions were as follows: 4 min of
initial denaturation at 94°C, followed by 15 cycles of
94°C (30 sec), 58 to 54°C (60 sec) by decreasing 0.2°C/
cycle, 72°C (60 sec), followed by 25 cycles of 94°C (30
sec), 54°C (60 sec) and 72°C (60 sec), with final elon-
gation at 72°C for 15 min. PCR fragment lengths were
analysed with an ABI 3730XL automated sequencer
(Applied Biosystems) by Macrogen Europe (The
Netherlands). GeneMarker 2.6.3 (SoftGenetics
LLC®) was used to evaluate microsatellite peak quality.
Semi-automated selection of fragment-length poly-
morphisms at each locus was performed with STRand
Analysis Software 2.04.0059 (Toonen&Hughes 2001).
Frequencies of null alleles were estimated with Micro-
Checker 2.2.3 (Van Oosterhout et al. 2004). GenAlEx
6.502 (Peakall & Smouse 2012) was used to calculate
the observed (HO) and expected (HE) heterozygosity,
the number of alleles per locus (A), the number of
private alleles (AP), the allele frequencies (AF), the
inbreeding coefficient (FIS), the fixation index (FST)
and the multi-locus matches (GM) (i.e. to detect unique
or shared multi-locus genotypes in populations).
Computation of allelic richness (AR) was performed
with Fstat 2.9.3.2 (Goudet 2002). Hardy–Weinberg
equilibrium (HWE) at each locus/population was tested
both for “heterozygote deficiency” and for “heterozy-
gote excess” through the Markov chain algorithms
(MC) using the default parameters set on Genepop
4.2 (Rousset 2008). Significant genotypic differentia-
tion (GD) among populations was detected with
Genepop 4.2.

COI: amplification, sequencing and data analysis

A partial fragment of the mitochondrial cytochrome
c oxidase subunit I (COI, ~760 bp) was amplified on
a sub-sample of 36 individuals (N = 13 in FC;
N = 23 in PA). Amplifications were carried out
using universal primers (F: C1-J-2183; R: TL2-N-
3014; Simon et al. 1994) and thermal conditions
reported in Drag et al. (2015). Sequencing of PCR
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products was performed by Macrogen Europe (The
Netherlands). Quality of COI chromatograms was
assessed by PREGAP4 and GAP4 software imple-
mented in the Staden Package 2.0.0 (Staden et al.
1998). COI sequences (deposited in GenBank under
accession numbers MG930944-MG930979) were
aligned with those already available in GenBank
from other European R. alpina populations (Drag
et al. 2015). Genetic polymorphism parameters,
such as number of haplotypes, haplotype diversity
(h), nucleotide diversity (π) and Tajima’s D
(Tajima 1989) were computed using DnaSP v5.10
(Librado & Rozas 2009). Relationship among haplo-
types were built in a phylogenetic network produced
using the Statistical Parsimony method (TCS)
(Clement et al. 2000) and depicted with the help of
POPArt 1.7 (http://popart.otago.ac.nz).

Results

Microsatellites

Despite optimization, loci RA_11 and RA_15 failed
to amplify in almost all samples, and, thus, these loci
were excluded from subsequent analyses.
Polymorphism levels for each amplified locus are
reported in Table I. Among loci, RA_23 appeared
to be the most variable (14 alleles). However, after
sequencing five homozygote individuals showing dif-
ferent fragment lengths (132–164 bp), RA_23
proved to be a “complex microsatellite” composed
by at least two highly variable and different repeated
motifs (“TG” and “GTCRTTGTC”; Figure 1).
Due to its complex nature, RA_23 was not further
considered for polymorphism analysis. The mean
number of alleles ranged from a monomorphic con-
dition in RA_37 to a maximum of six alleles in
RA_13 (Table I). Thirteen percent null alleles was
estimated in RA_40, in which one of the two alleles
was rare (2.8%) and exclusive of DP. The FC popu-
lation was in HWE over all loci (Tables II and III),
while a significant deviation from HWE was detected
in the PA population (Table II), with high (and

significant) FIS, at both RA_13 and RA_40
(Table III). Indeed, data indicated HWE for the
three populations from PA sub-areas (i.e. DP, VF
and ZM; Table II). Mean HE and AR values were
comparable between Apennine populations from the
two study sites, although both were slightly higher in
PA (HE = 0.310 ± 0.119; AR = 2.49) than in FC

Table I. Microsatellite polymorphism at each locus. A = number
of alleles; HO = observed heterozygosity; HE = expected
heterozygosity.

Locus Size range (bp) A HO HE

RA_13 213–233 6 0.525 0.556
RA_28 137–151 3 0.573 0.553
RA_40 220–222 2 0.011 0.055
RA_08 130–134 3 0.379 0.368
RA_23 132–164 14 0.685 0.807
RA_37 250 1 - -

Table II. Microsatellite polymorphism in Apennine Rosalia alpina
populations. N = number of individuals; HO =mean observed hetero-
zygosity; HE =mean expected heterozygosity; FIS = inbreeding coeffi-
cient (** p-value < 0.01; *** p-value < 0.001). FC = “Foreste
Casentinesi” National Park; PA = “Abruzzo Lazio e Molise”
National Park; ZM = “Zio Mas” sub-area; DP = “Difesa di
Pescasseroli” sub-area; VF = “Val Fondillo” sub-area.

Population N HO HE FIS

FC 18 0.301 0.286 0.076
PA 71 0.298 0.310 0.163 **
DP 34 0.333 0.323 0.118
VF 24 0.300 0.314 0.052
ZM 13 0.211 0.230 0.046
Total 89 0.298 0.306 0.196 ***

Table III. Microsatellite polymorphism at each locus in Apennine
Rosalia alpina populations. HO = observed heterozygosity;
HE = expected heterozygosity; FIS inbreeding coefficient (*
p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001).
FC = “Foreste Casentinesi” National Park; PA = “Abruzzo
Lazio e Molise” National Park; ZM = “Zio Mas” sub-area;
DP = “Difesa di Pescasseroli” sub-area; VF = “Val Fondillo”
sub-area.

Population Locus HO HE FIS

FC RA_13 0.5 0.528 0.053
RA_28 0.444 0.5 0.111
RA_40 - - -
RA_08 0.562 0.404 0.391
RA_37 - - -

PA RA_13 0.532 0.559 0.047 *
RA_28 0.606 0.564 0.073
RA_40 0.014 0.068 0.793 ***
RA_08 0.338 0.358 0.055
RA_37 - - -

DP RA_13 0.666 0.614 0.086
RA_28 0.618 0.538 0.148
RA_40 0.029 0.136 0.784 **
RA_08 0.353 0.327 0.079
RA_37 - - -

VF RA_13 0.458 0.523 0.124
RA_28 0.625 0.569 0.098
RA_40 - - -
RA_08 0.417 0.478 0.129
RA_37 - - -

ZM RA_13 0.364 0.43 0.154
RA_28 0.538 0.577 0.067
RA_40 - - -
RA_08 0.154 0.142 0.083
RA_37 - - -
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(HE = 0.286 ± 0.119; AR = 2.20). In Abruzzo, the
highest HE and AR were recorded in DP
(HE = 0.323 ± 0.116; AR = 2.35), whereas the lowest
values were observed in ZM (HE = 0.230 ± 0.117;
AR = 2.00).

The allele frequencies for polymorphic loci are
reported in Figure 2. Four private alleles (one for
each locus) were found in PA (frequencies = 2–8%).
Among PA sub-areas, private alleles were observed in
VF (RA_08, freq. = 0.063; coloured green in Figure 2)
and in DP (RA_40, freq. = 0.074; coloured red in
Figure 2), but not in ZM. Among all loci, RA_13
(the most polymorphic) showed highly variable allele
frequencies among populations (Figure 2): a common
allele for FC and PA was found (freq. > 0.6), while the
other four alleles were equally frequent (~0.08) in FC,
but not in PA, where an additional (and private) fifth
allele was detected.

Overall, FC and PA populations were not signifi-
cantly differentiated (FST = 0.009, p > 0.05).
Comparisons among the three PA sub-areas high-
lighted a significant (but low) allelic (FST = 0.037,
p < 0.05) and genotypic differentiation (GD;
p = 0.023) between VF and ZM.

The multi-locus match analysis (also including
genotype data from the “complex microsatellite”
RA_23) showed that 88.8% of the analysed
Apennine individuals had exclusive multi-locus gen-
otypes, while 11.2% of them shared a multi-locus

combination with only one other individual. When
partitioning the data set into the two main Apennine
populations, exclusive multi-locus genotypes were
found in 88.7% and 100% of PA and FC indivi-
duals, respectively.

COI

Nine COI haplotypes (h = 0.59; π = 0.23%) were
detected for Apennine populations (Figure 3). No
genetic structure was observed, but a higher nucleo-
tide diversity was found in PA (π = 0.31%) than in
FC (π = 0.10%). Two haplotypes were shared and
more common in our sample (ITA1, freq. = 0.61;
ITA2, freq. = 0.19), whereas the remaining seven
haplotypes were unique for single FC (n = 3) and PA
(n = 4) individuals. Haplotype ITA1 was only found
in ZM. Haplotypes ITA8 (exclusive of VF) and
ITA9 (exclusive of DP), showed four and 18 muta-
tional steps from the most common haplotype
(ITA1), respectively. Tajima’s D was negative
(PA = −2.39; FC = −1.44) in both Apennine popu-
lations and significant only in PA (p < 0.01), indicat-
ing an excess of rare variants in this study area. All
scored haplotypes proved to be peculiar to the Italian
peninsula when compared with those observed in
Central and South-eastern European populations
(Figure 3; Drag et al. 2015). Furthermore,
Apennine haplotypes were more closely related to

Figure 2. Pie chart of allele frequencies for the four polymorphic microsatellite loci in each Apennine Rosalia alpina population. Graphic
representation of the mean allele number (A), mean allelic richness (AR) and mean number of private alleles (AP). Asterisks (*) indicate
private alleles. Above the dashed line: comparison between “Foreste Casentinesi” and “Abruzzo Lazio e Molise” National Park populations;
below the dashed line: comparison among populations from the three sub-areas of the “Abruzzo Lazio e Molise” National Park.
FC = “Foreste Casentinesi”; PA = “Abruzzo Lazio e Molise” National Park; ZM = “Zio Mas” sub-area; DP = “Difesa di Pescasseroli”
sub-area; VF = “Val Fondillo” sub-area.
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those from Northern Greece (e.g. two mutational
steps from ITA2) than to other European haplotypes
(Figure 3).

Discussion

Performance of microsatellite markers in Apennine
populations of Rosalia alpina

Microsatellite markers available from the literature
(Drag et al. 2013) proved to be only partially informa-
tive for estimating the genetic variability of Italian
populations of R. alpina. In fact, two out of the eight
analysed microsatellites (RA_11 and RA_15) failed to
amplify in almost all Italian samples, probably because
of point mutations in primer annealing sites.
Microsatellite RA_23 seemingly showed a very high
polymorphism (14 alleles), but sequencing revealed a
“complex”mutation pattern (i.e. the presence of more
than one repeat motif at this single locus), that strongly
hinders the application of this specific marker in evolu-
tionary analyses (Figure 1). Finally, RA_37 was not
informative at all, as it was found to be monomorphic
in all analysed individuals. The remaining four micro-
satellites (RA_08; RA_13; RA_28; RA_40) showed a
moderate to high polymorphism and, thus, provided
some preliminary information on R. alpina genetic
variability in Apennine populations.

Genetic structure of Rosalia alpina populations in the
study areas

Microsatellite analysis did not indicate any substantial
shared genetic structure between the two investigated
Apennine populations of R. alpina (PA and FC). This
could be explained assuming an historical gene flow
among R. alpina populations from these two Apennine
sectors, probably favoured by a rapid expansion of beech
forests in the post-glacial period of the Middle
Pleistocene (Magri et al. 2006) which ensured a conti-
nuity of suitable habitat for the expansion of this species.
The absence of a substantial genetic differentiation
between the twoApennine populations is also consistent
with previous studies suggesting a high vagility of this
beetle species (Russo et al. 2010;Bosso et al. 2013;Drag
et al. 2011, 2015; Campanaro et al. 2017; Rossi De
Gasperis et al. 2017). Indeed, R. alpina individuals can
fly for long distances (i.e. more than 1.5 km; Drag et al.
2011; Rossi De Gasperis et al. 2017) although they
usually move within a habitat patch in the range of
dozens or hundreds of metres (Drag et al. 2011).
However, the current habitat of this species is highly
fragmented in Italy, with an average gap-distance of
about 15 km that could be sufficient to represent an
obstacle to the movement of individuals (Bosso et al.
2013). Hence, Italian populations of R. alpinamight be
currently particularly prone to a geographic isolation,
leading to a reduction of gene flow and loss of diversity
by genetic drift. The lower genetic polymorphism (in
terms of both allele number and heterozygosity; Table II
and Figure 2) found in the population from FC in
comparison to those from PA might reflect an ongoing
reduction in the size of the effective population inhabit-
ing the former area. Indeed, suitable habitats constituted
by large decaying trees in opened areas (forest clearings
to wooded grasslands) are less abundant in FC (Rossi
De Gasperis 2016), and this might have represented a
limiting factor for the population size of R. alpina in this
study site. However, because of the scarce number of
captured individuals in FC (Campanaro et al. 2017), a
more extensive genetic survey in this area should be
performed to confirm the observed pattern. In PA, the
lowest genetic diversity (in both allelic richness and
heterozygosity) was observed in theR. alpina population
from the locality ZM, which also appeared genetically
isolated from that of VF (but not significantly isolated
from DP). This population is in fact more distant from
and less contiguous with the other two sub-areas
(Figure 2), and inhabits a locally “patchy” habitat char-
acterized by fragmented beech woodlands interspersed
with open mountain grasslands (Rossi De Gasperis
2016; Campanaro et al. 2017). Furthermore, in ZM
there are less suitable trees for R. alpina colonization
(i.e. decaying trees in an advanced state of

Figure 3. TCS network showing relationship among cytochrome c
oxidase I (COI) haplotypes from European Rosalia alpina popula-
tions. On the left, the nine Apennine COI haplotypes (in green);
on the right, haplotypes from Central/South-eastern Europe (in
blue) and North-west Greece (in yellow), modified from Drag
et al. (2015). Sizes of circles are proportional to haplotype fre-
quencies; black dots indicate evolutionary mutational steps.
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decompositionwith trunkdiameters larger than100 cm)
than in VF and DP (Rossi De Gasperis 2016).
Geographic isolation and loss of suitable habitats might
have contributed to trigger a process of genetic erosion
in ZM sub-population, but the analysis of a larger num-
ber of individualswould allow greater statistical power to
exclude possible sampling issues.

Comparison of mitochondrial patterns among Italian and
Central/South-eastern European populations of Rosalia
alpina

Thepresenceof exclusivemitochondrial (mtDNA)hap-
lotypes in the Italian samples suggests that the Apennine
populations of R. alpina are highly differentiated from
those ofCentral andSouth-easternEurope.This genetic
pattern recalls the isolation of North-western Greece
populations (Pindus range, Olympus Mts) of R. alpina
from those of Central Europe (Drag et al. 2015) and is a
likely consequence of palaeoecological events that
shaped the genetic variability of this species.The biogeo-
graphical history of R. alpina could overlap, at least in
part, with that of its main host plant F. sylvatica, which
survived in Europe during the Last Glacial period in
multiple refugial areas (Magri et al. 2006; Magri 2008).
Northern Greece and South-central Italian refugia for
beech forests were likely isolated from those of Central
Europe, and gave origin to three main genetic lineages
that colonized the European continent (Magri et al.
2006; Magri 2008). The presence of the three main
mitochondrial lineages of R. alpina in Europe, in line
with those detected inF. sylvaticaby chloroplastmarkers
(Magri et al. 2006), might reflect the expansion of this
beetle in Europe from different glacial refugia, following
the beech forest during re-colonization. The highest
mtDNA affinity observed among Apennine and
North-west Greek R. alpina populations reflects the
peculiar genetic similarity observed between Apennine
and Balkan populations of F. sylvatica (as suggested by
nuclear markers; Magri et al. 2006; Magri 2008) and
could be related to the biogeographic history of the
beech. The partial regression of the Adriatic Sea during
the Last Glacial period would have caused a connection
between the Northern and Central Italy and Balkan
Peninsula (Pilaar Birch & Vander Linden 2017), which
promoted the exchange of biota between the two penin-
sulas. Although this scenario should be investigatedwith
further analysis, the same palaeogeographic scenario has
been proposed to explain the high genetic affinity
between Greece and Southern Italian populations of
Morimus asper Sulzer, 1776 (Coleoptera,
Cerambycidae) (Solano et al. 2013), a flightless
saproxylic beetle inhabiting deciduous forests.

Finally, the higher mtDNA haplotype diversity
(as well as the higher polymorphism found in

microsatellites) found in PA than in FC, could
be consistent with the typical pattern of “southern
richness vs. northern purity” (Hewitt 2000). This
greater genetic richness is usually attributed to the
prolonged population stability of temperate spe-
cies in southern refugia coupled with the loss of
variation during post-glacial northward re-coloni-
zation. Hence, Apennine populations of R. alpina
could have originated through northward disper-
sal and expansion from ancestral populations con-
fined to glacial refugia of Southern and Central
Italy (as also suggested by the negative Tajima’s
D). The lower genetic variability observed in FC
could be related to the longer distance from this
site in the Northern Apennines, with respect to
the PA site, from a putative glacial refugium in
Central or Southern Italy.

Remarks on conservation of Rosalia alpina in Italy

The investigated Apennine R. alpina populations
appeared genetically distinct from all other European
populations and, therefore, these might represent
important conservation units for Europe. Our data sug-
gest that the effects of inbreeding can be negligible in the
analysed populations (Table II). The high percentage of
exclusive multi-locus genotypes in Apennine popula-
tions also points to the occurrence of outcrossing (and,
thus, recombination) redistributing the available genetic
diversity into novel genotypic combinations. The high
nucleotide diversity and presence of peculiar mtDNA
haplotypes in both VF and DP suggest that the effective
population sizes of these two populations may be suffi-
cient to maintain an adequate level of genetic variability
in these two sub-areas of the PA site.However, the lower
heterozygosity and allelic richness found in ZM and in
FCmay represent thefirst hints of an ongoing process of
loss of genetic variability in these two populations.
Although the low genetic variability in FC could also
be explained with the long distance of this site from a
putative “glacial refugium” in Central or Southern Italy
(Hewitt 2000), our data do not allow us to definitively
rule out the alternative hypothesis. However, the main-
tenance of genetic variability in R. alpina seems to be
strongly related to both habitat continuity and preserva-
tion. Finally, it is worth remarking that R. alpina has a
long larval developing time (2–3 years) that contributes
to lowering the intrinsic genetic polymorphism of the
species, especially at the nuclear genome, as in other
protected saproxylic beetles, i.e. M. asper (Solano et al.
2013) and the Osmoderma eremita (Scopoli, 1763)
(Coleoptera, Scarabeidae) complex (Oleksa et al.
2013; Zauli et al. 2016).
Rosalia alpinamight be more prone to rapid genetic

erosion in the future if special protection measures
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are not assured. The most important management
strategy to protect R. alpina and promote gene flow
among populations is the preservation of “key trees”
(large senescent or standing dead trees), on which
mating and oviposition occur more frequently
(Campanaro et al. 2017). Other effective actions
would be to pollard the tree branches to reduce the
risk of collapse of trees and expose their trunks to
sunlight (Castro & Fernández 2016), and to avoid
the stacking of timber in woodpiles that could act as
attractive traps during oviposition, as for other
saproxylic beetles (Ilić & Ćurčić 2013; Lachat et al.
2013). In addition, monitoring (for instance,
through a non-invasive photographic identification
method: Rossi De Gasperis et al. 2017) of popula-
tions will be necessary to assess the effectiveness of
the implemented conservation plans in natural areas.

Novel and additional molecular markers, as well as
further genetic analyses, will be necessary in the future to
investigate geneflowamongR. alpinapopulations atfine
and large geographic scales and to assess their conserva-
tion status.Gathering additional genetic data fromother
Italian and European populations will also allow a better
understanding of their phylogeographic relationship and
possibly highlight other conservation units of R. alpina
over its distributional range.
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