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a b s t r a c t 

Robust characterisation of the thermal performance of buildings from in-situ measurements requires er- 

ror analysis to evaluate the certainty of estimates. A method for the quantification of systematic errors on 

the thermophysical properties of buildings obtained using dynamic grey-box methods is presented, and 

compared to error estimates from the average method. Different error propagation methods (accounting 

for equipment uncertainties) were introduced to reflect the different mathematical description of heat 

transfer in the static and dynamic approaches. 

Thermophysical properties and their associated errors were investigated using two case studies monitored 

long term. The analysis showed that the dynamic method (and in particular a three thermal resistance 

and two thermal mass model) reduced the systematic error compared to the static method, even for 

periods of low internal-to-external average temperature difference. It was also shown that the use of a 

uniform error as suggested in the ISO 9869-1:2014 Standard would generally be misrepresentative. The 

study highlighted that dynamic methods for the analysis of in-situ measurements may provide robust 

characterisation of the thermophysical behaviour of buildings and extend their application beyond the 

winter season in temperate climates ( e.g. , for quality assurance and informed decision making purposes) 

in support of closing the performance gap. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

It is essential to understand the energy performance of the

building stock to significantly reduce its associated energy demand

and meet climate-change mitigation and carbon-emission targets

[1] . In this regard, a number of software tools and calculation

methods [2,3] have been developed to forecast and evaluate the

energy consumption of buildings both at stock ( e.g., for policy-

making applications) and building scales ( e.g., to issue energy per-

formance certificates or evaluate retrofitting interventions). How-

ever, several studies [4–8] have shown a performance gap between

simulation outputs and as-built thermal behaviour of buildings,

identifying the thermophysical properties of the building envelope

as one of the most important causes of uncertainties in energy per-

formance models [9,10] . 

To address the current limited understanding of the as-built en-

ergy performance across the whole construction sector, the need
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or novel (or improved) standardised diagnostic tests and robust

nalysis methods has been identified as a priority to ensure con-

istency and repeatability of outcomes [11–14] . Within this con-

ext, a wider use of in-situ measurements for the estimation of

he thermophysical performance of the building fabric has been

dentified as key to tackle the problem [11] . However, stationary

ethods (particularly the average method [15] ) are currently still

he most common approaches adopted for the characterisation of

he as-built thermophysical properties of building elements [16] ,

ffectively limiting an extensive use of in-situ measurements for

arge-scale applications. The steady-state assumptions underlying

tationary methods imply time-independent thermophysical prop-

rties of building materials, constant boundary conditions, and ne-

lect heat storage effects [17] . Since these conditions are very un-

ikely to be achieved on site, stationary methods require long mon-

toring periods and large temperature differences (pref erably above

0 °C [18] ) between the two sides of the element surveyed to min-

mise the error introduced by neglecting dynamic effects and pro-

ide useful estimates [15,19] . Dynamic methods ( e.g. , [20–24] ) may

e able to overcome some of these limitations by accounting for
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1 The measurand is the “quantity intended to be measured” [ 29 , Section 2.3]. 
Nomenclature 

δa 
ε Total absolute uncertainty for each data stream 

ε
δr 
ε Total relative uncertainty for each data stream 

�T Temperature difference between the internal 

and external surface [ °C] 

σε Systematic measurement error on each data 

stream 

C n n -th lumped thermal mass (starting from the 

internal side) [ Jm 

−2 K 

−1 ] 

E 
p 
m ,ε Measured observation for data stream ε at time 

step p 

Q m,in , Q m,out Measured heat flux into and out of the internal 

and external surfaces [ Wm 

−2 ] 

R n n -th lumped thermal resistance (starting from 

the internal side) [ m 

2 KW 

−1 ] 

T 0 
C n 

Initial temperature of the n -th lumped thermal 

mass [ °C] 

T int , T ext Measured internal and external surface temper- 

ature [ °C] 

U U-value [ Wm 

−2 K 

−1 ] 

P( θ | H ) Prior probability distribution of the parameters 

( θ ) of model H 

P( θ | y, H ) Posrterior probability distribution of the param- 

eters, given the observations ( y ) and the model 

P( y | θ , H ) Likelihood function 

P( y | H ) Evidence 

θ Vector of the unknown parameters 

1TM Single thermal mass model 

2TM Two thermal mass model 

MAP Maximum a posteriori estimation 

he dynamic fluctuations of the system instead of neglecting them

16] , in addition to providing insights into the thermal mass of the

lement. Dynamic methods may enable an extension of the mon-

toring period to all times of the year and potentially a reduction

f the monitoring length, depending on the specific conditions en-

ountered and method used [25] . 

Robust characterisation of the thermophysical properties of

uilding elements cannot disregard the quantification of the asso-

iated error, to provide necessary context and facilitate the inter-

retation of results, for example to understand the significance of

ifferences between estimates, or the range of potential pay-back

imes for interventions. Error estimates themselves may vary ac-

ording to the context in which they are applied and interpreted.

or example, the purpose of a measurement may be to compare

he U-values at different points on a building element at a specific

ime or to compare the estimated U-values to a “true” value. In

he former case, seasonal variations in U-values may be neglected,

hilst the second case should address changes in parameters such

s the moisture content of the element and variation in the ra-

iative and convective heat transfer in surface resistances; both

hould consider error associated with the equipment ( e.g. , calibra-

ion and its impact on heat flow) and consider uncertainty in the

bility of the applied model to represent the concept of a U-value.

he causes and enumeration of error and uncertainties in the es-

imation of the thermophysical properties of buildings is discussed

urther in Section 2 . 

Mathematically, identified errors in the model inputs ( e.g. , on

n-situ measurements in this case) must be propagated to its out-

uts ( e.g. , the estimated R-values and U-value). Although error

ropagation is straightforward for static methods, this may be

ore complex for dynamic methods where the parameters are
ften estimated by means of optimisation techniques. This paper

resents a method for the quantification of systematic errors ( i.e.

rrors caused by biases in the system that affect all observations in

 consistent manner, following a constant or fixed pattern) affect-

ng the estimates of grey-box dynamic methods. The error prop-

gation method is then contextualised to the dynamic grey-box

ethod described in [22,25,26] , and tested on two in-situ walls us-

ng measurements collected at different times of the year. The av-

rage method is also applied to the same data to compare and con-

rast the performance of the two approaches across the seasons. 

. Uncertainties in the estimation of thermophysical properties 

rom in-situ measurements 

The thermophysical properties of in-situ building elements are

enerally estimated from non-destructive measurements of the

eat flowing through the structure and of the temperature (either

f the surface or the air) on either side of it [27,28] . Depending on

he purpose of the investigation, sensors are mounted at represen-

ative locations ideally using thermal imaging to inform the pro-

ess [18] . Good thermal contact between the equipment ( i.e. heat

ux meters and temperature sensors) and the structure must be

nsured, avoiding the formation of air pockets. The case study and

xperimental methods are discussed in detail in Section 4 , whilst

he methods of data analysis are reviewed in Section 3.1 . 

Once the data are collected, their analysis (whether using a

teady-state or a dynamic method) should not disregard error anal-

sis to identify all the quantifiable uncertainties affecting the ob-

ervations ( i.e. the model’s input) and estimate how these com-

ine and propagate to the model estimates, as discussed above.

n overview of the main sources of uncertainties is provided be-

ow according to the definitions of the international vocabulary of

etrology [29] , contextualised to in-situ measurements and esti-

ates of the thermophysical properties of building elements. This

s followed by a description of the error analysis scheme suggested

n the ISO 9869-1:2014 Standard (standardised in the UK in [15] )

nd a discussion of the need for different error propagation ap-

roaches depending on the mathematical model adopted. 

.1. Monitoring and modelling uncertainties 

Several uncertainties affect estimates of the as-built thermo-

hysical performance of buildings and potentially contribute to

he observed discrepancies between thermophysical parameter es-

imation from published material properties and in-situ measure-

ents. The international vocabulary of metrology defines measure-

ent uncertainty as the “dispersion of the quantity values being at-

ributed to a measurand, 1 based on the information used” [ 29 , Sec-

ion 2.26] and usually includes definitional uncertainties and mea-

urement errors . Definitional uncertainties are a consequence of the

nite amount of detail in the definition of the quantity of interest

 29 , Section 2.27], and practically define the minimum uncertainty

chievable even in case no measurement errors have been intro-

uced by the monitoring process. As a result, there is no unique

rue value of the measurand but rather a range of true values that

re equally consistent with its definition [ 30 , p.87]. For example,

n the context of thermophysical characterisation of buildings, def-

nitional uncertainties occur when the measurand is defined as the

-value of a building element without specifying the exact location

ithin the element. 

Measurement errors describe the differences between the mag-

itude of the signal monitored by a sensor and a hypothetical ref-

rence quantity value of the phenomenon being surveyed [ 29 , Sec-
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2 For example, assuming the HFP has an accuracy of 5% (in line with commercial 

HFP sensors, e.g. , [35] ) and temperature sensors of 0.1 °C, the relative systematic 

error on the U-value for average temperature differences between 5 °C and 10 °C 
is in the range [5.1, 5.4]%. However, if the accuracy of the temperature sensors is 

0.5 °C (in line with commercial products often used for in-situ measurements in 

buildings) and leaving all other parameters unchanged, the relative systematic error 

increases to the range [7, 11]%. 
tion 2.16]. These are introduced for example by the presence and

intrusiveness of the equipment compared to the undisturbed con-

figuration, accuracy (including calibration and precision errors) and

state of repair of the sensors deployed, installation and placement

strategy. Some measurement errors can be mitigated by adopt-

ing good-practice precautions. For example, performing prelimi-

nary surveys of the case study to assess the placement of sensors,

or selecting appropriate monitoring set up and sampling intervals

in relation to the time period over which the physical process in-

vestigated is expected to occur and to the response time of the

equipment used [27,28] . This is crucial to avoid the introduction of

artefacts in the recorded signal ( e.g. , aliasing) or failing to capture

useful information [31] . Although the selection of the sampling in-

terval depends on several case-specific aspects (including the ex-

pected environmental conditions, the time constant of the struc-

ture, the specifications of the equipment, the method later adopted

for data analysis), sampling intervals between five and sixty min-

utes are generally considered appropriate [28,31] . 

Additional uncertainties are introduced when the measurand is

obtained indirectly from other measured quantities through a mea-

surement model [ 29 , Section 2.48]. These uncertainties arise both

from the process undertaken to abstract the reality into its model

representation required for parameter inference, and from the in-

cremental approximations and assumptions the modeller may in-

troduce during the modelling process ( e.g. , when representing the

reality by means of mathematical descriptions, or when discretis-

ing continuous processes on digital computers) [32,33] . Modelling

simplifications are generally introduced by neglecting in the model

features that are difficult or practically impossible to foresee and/or

to account for ( e.g. , structural and situational inhomogeneities, de-

fects), and by compromising between computational efficiency and

adequacy of the complexity of the model in relation to the purpose

of describing the physical phenomenon. 

Errors and uncertainties can further be categorised as random

or systematic . Random errors [ 29 , Section 2.19] represent fluctua-

tions of a quantity of interest around the value that would be ob-

tained by averaging the outcome of an infinite number of repeated

observations collected under consistent conditions [34] . Random

errors are inversely related to the precision [ 29 , Section 2.15] of the

measurement process. In case random errors can be considered in-

dependent of each other ( i.e. the occurrence of a specific error does

not imply an increase or decrease in others), the precision of the

combined result is improved by increasing the number of observa-

tions. Conversely, systematic errors are introduced by bias in the

system that affects repeated observations in a consistent manner,

following a fixed or predictable pattern [ 29 , Section 2.17]. Unlike

random errors, systematic errors are not minimised by increasing

the number of observations and are inversely related to measure-

ment trueness [ 29 , Section 2.14], which can be improved by an at-

tentive experimental procedure ( e.g. , use of calibrated sensors, or

care with placement and fixation method) or an improvement of

the model specification ( e.g., modelling of additional physical ef-

fects, or use of additional data streams). Measurement errors are

a combination of random and systematic errors, and are inversely

related to the measurement accuracy [ 29 , Section 2.13]. 

Within the context of the estimation of the thermophysical

characteristics of building elements from in-situ measurements,

four types of errors can be defined from the combination of those

listed above. Specifically, systematic measurement errors are gen-

erated by offsets in the monitoring equipment ( e.g. , due to sen-

sor drift, or erroneous experimental set up); random measure-

ment errors are generally introduced by noise in the system ( e.g. ,

grounding and shielding noise in the equipment); systematic mod-

elling errors occur when adopting an unrepresentative or incom-

plete model ( e.g. , due to the use of a limited number of parameters

or data streams, or to assumptions made during model specifica-
ion such as the one-dimensional or the steady-state assumption);

nally, random modelling errors (often referred to as “statistical er-

ors” [ 26,34 , Ch.4.2]) may be introduced by the use of digital com-

uters and can be generated by rounding effects, discretisation of

ontinuous time series, tolerance in the termination criteria of it-

rative algorithms. 

.2. Error analysis in ISO 9869-1:2014 Standard 

Besides methods for U-value estimation from in-situ measure-

ents, the ISO 9869-1:2014 Standard [ 15 , p.12] provides a guide-

ine for the calculation of the systematic error affecting estimates.

pecifically, it lists the main uncertainties affecting the measure-

ents and quantifies their proportional effect on the U-value. The

ncertainties cover: the accuracy of heat flux plates (HFPs), tem-

erature sensors, and data logging system(s); variations due to un-

ven thermal contact between the sensors and the surface; an op-

rational error of the HFPs caused by their presence; variations

ver time of temperatures and heat flow; temperature variation

ithin the space and between radiant and air temperature. Al-

hough these are useful references, the Standard does not detail

r refer to how these percentages (generally reported as a fixed

alue) were evaluated, nor the methods for the quantification of

ore appropriate values in specific circumstances. As an example,

t is stated that “the accuracy of the measurement depends on er-

ors caused by the variations over time of the temperatures and

eat flow” and that “such errors can be very large but, if the cri-

eria described in 7.1 and 7.2 or Annex C are fulfilled, they can be

educed to less than ±10% of the measured value” [ 15 , p.13]. How-

ver, a procedure to reduce the error when the criteria are met

which should represent the majority of cases if the Standard is

pplied correctly) is not provided nor is addressed the variation

n error according to the magnitude of the temperature difference

nd heat flow ( Section 2.3 ). 

Combining the uncertainties stated and provided that the con-

itions listed in the guideline are met, the Standard suggests that

he total error on the U-value is expected between 14% (combining

he uncertainties in quadrature sum, i.e. considering them indepen-

ent) and 28% (arithmetic sum of uncertainties, representing cor-

elations between errors). However, adopting the percentages sug-

ested may result in an underestimation of the systematic error af-

ecting the estimates. Specifically, the standard lists the “accuracy

f the calibration of the HFP and the temperature sensors” among

he uncertainties suggesting that “the error is about 5% if these in-

truments are well calibrated” [ 15 , p.12]. However, it does not pro-

ide guidelines to determine whether the 5% uncertainty suggested

s representative of the case study nor a method for its quantifica-

ion based on sensor specifications. 2 Similarly, for the data logging

ystem the Standard only provides a procedure for the selection

f an appropriate device based on the ratio between the measure-

ent minimum output value and the density of heat flow rate [ 15 ,

nnex E], but it does not warn the user on the need to account for

he accuracy of the logger based on manufacturer specifications. 

.3. Systematic errors for static and dynamic methods in conditions 

ith low average temperature difference 

Since the average and the dynamic method adopted in this

aper for the estimation of the thermophysical properties of the
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Fig. 1. Measured temperature difference at each sampling interval (black line) and 

average temperature difference over the monitoring period (grey line). The arrow 

shows the amplitude of the temperature difference at a given sampling interval. 
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uilding fabric are based on a different mathematical model to de-

cribe the heat transfer, the error estimates are different in the

wo cases. In particular, the mathematical formulation of the av-

rage method (AM) introduces a fundamental limitation to the ap-

licability of this method when the average temperature difference

and consequently the heat flux) is close to zero ( e.g., when the

eat flux reverses over the monitoring period) since the tempera-

ure difference appears at the denominator of the U-value equation

see Eq. (1) , Section 3.1.1 ). This limitation affects both the U-value

stimate and its associated systematic error. Conversely, this is not

he case for the dynamic method where the parameters are esti-

ated from the comparison of the predicted and measured time

eries ( e.g. , the heat flux in this work) at each sampling interval.

his issue is illustrated in Fig. 1 , where the average internal-to-

xternal temperature difference is low (so would return a high er-

or using static methods) but the temperature difference at each

ampling interval is considerably higher, returning a lower system-

tic error. Given the limitation imposed on the AM by small tem-

erature differences, the application of this method restricts the

onditions in which measurements may be analysed yet return

oderate error compared to the dynamic method, as the average

emperature difference over the whole monitoring period is gener-

lly lower than the temperature difference at each time step. 

Although the propagation of systematic errors is easily quan-

ifiable for the AM based on the U-value definition ( Section 3.2.1 ),

his is not the case for dynamic methods (like the grey-box method

dopted in this paper) where the thermophysical parameters are

stimated by means of optimisation techniques. A method for the

stimation of the systematic errors on the estimates of dynamic

ethods is presented in Section 3.2.2 . 

. Thermophysical properties and systematic measurement 

rror estimation from in-situ measurements 

The average method [15] and the grey-box dynamic method

escribed in [22,25,26] were used to evaluate the thermophysical

roperties of in-situ building elements ( Section 3.1 ). The system-

tic measurement error associated with the parameters estimated

ith the two frameworks were also evaluated ( Section 3.2 ). Dif-

erent approaches were used for the propagation of systematic un-

ertainties to reflect the different mathematical formulation of the

wo methods, as discussed in Section 3.2 ; the two methods of U-

alue estimation are summarised in Section 3.1 . 

.1. Estimation of thermophysical properties 

.1.1. Average method 

Among static approaches, the average method is one of the

ost commonly adopted to analyse in-situ measurements and
valuate the thermophysical properties of building elements [16] .

ccording to the AM, the thermal transmittance (U-value) of a

uilding element is defined as the ratio of the mean integral heat

ow rate density and the mean integral temperature difference

ollected over a sufficiently long period of time [ 15 , p.6]: 

 = 

τ
n 

∑ n 
p=1 Q 

p 
m 

τ
n 

∑ n 
p=1 

(
T p 

int 
− T p ext 

) = 

∑ n 
p=1 Q 

p 
m ∑ n 

p=1 

(
T p 

int 
− T p ext 

) (1) 

here Q m 

is the measured heat flow rate density (usually taken

n the interior side of the element investigated, i.e. Q m 

≡ Q m,in 

n Fig. 2 ) at each time step p; τ is the duration of the time

tep between successive observations ( i.e. the recording interval for

he measured quantities); n is the number of observations; and

 

p 
int 

, T 
p 

ext are the internal and external temperatures at each time

tep. 

.1.2. Grey-box dynamic method 

A grey-box dynamic method based on Bayesian statistics was

dopted to estimate the thermophysical properties of the build-

ng element investigated ( i.e. walls in this paper). The method (in-

roduced and described in detail in [22,25,26] ) combines lumped-

hermal-mass models to simulate the heat transfer through a

uilding element, and a Bayesian framework to estimate the set of

arameters that best reproduce the monitored data ( i.e. the heat

ux into and out of the wall in this research). 

The two simplest equivalent electrical circuits of one-

imensional heat flow incorporating thermal mass effects ( Fig. 2 )

re applied here, consisting of one lumped thermal mass with

wo lumped thermal resistances (one thermal mass model, 1TM)

nd two lumped thermal masses with three lumped thermal

esistances (two thermal mass model, 2TM) [26] . More complex

odels of heat flow through the element are possible, such a

hree and four thermal mass models [25] ; the simpler models

re presented here to focus the discussion on error analysis. For

he 1TM model, the parameters were estimated both optimising

he heat flux measured on the internal side of the wall only

1 HF), and the internal and external heat fluxes simultaneously

2 HF) [26] . The latter configuration was also used to optimise the

arameters of the 2TM model. 

Applying a Bayesian approach, the best-fit parameters ( θMAP )

ere estimated using the maximum a posteriori (MAP) approach.

pecifically, these were estimated by maximising their posterior

robability distribution ( i.e. the probability of the vector of param-

ters, θ , given the measured data, y , and a model, H , of the under-

ying physical process of interest): 

MAP = arg max θ P ( θ | y, H ) = arg max θ
P ( y | θ, H ) P ( θ | H ) 

P ( y | H ) 
, (2) 

here P(y | θ, H) is the likelihood function; P(θ | H) is the prior

robability distribution of the parameters; P(y | H) is the evidence

or marginal likelihood). The likelihood describes the ability of the

odel to explain the measurements, the prior represents the ini-

ial estimated probability distribution of each parameter based on

xpert knowledge before observing any data, and the evidence is

 normalisation factor. The method used in this paper follows that

n [26] , but with an improved formulation for the likelihood func-

ion as in [25] . Owing to the Bayesian framework, the widely used

ssumption of independent and identically distributed (i.i.d.) resid-

als ( i.e. the difference between the measured and modelled time

eries) previously made in [26] was obviated by introducing a prior

istribution for the residuals that accounts for their potential auto-

orrelation [25] . This prior was chosen such that its scale parame-

er coincided with the variance of the noise term computed from

ll the known and quantifiable systematic uncertainties affecting

he data streams optimised ( i.e. the heat flow rate density in this

aper). Consequently, no tests on the residuals ( e.g. , analysis of the
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Fig. 2. Schematic of the one (left) and two thermal mass (right) models showing the equivalent electrical circuit for heat transfer simulation. Parameters of the models are 

the thermal resistances ( R 1 , R 2 , R 3 ), the effective thermal masses ( C 1 , C 2 ), and their initial temperatures 
(
T 0 C 1 

, T 0 C 2 

)
. The measured quantities are the internal ( T int ) and external 

( T ext ) temperatures, and the heat flow rate density entering the internal ( Q m,in ) and leaving the external ( Q m,out ) surfaces. 
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3 The chain rule for a composition of functions f ( x, g ( x )) states that: d f ( x,g ( x ) ) 
d x 

= 

∂ f ( x,w ) 
∣∣ + 

∂ f ( x,w ) g ′ ( x ) . 
autocorrelation function or the cumulated periodogram [36] ) are

required. 

Bayesian model comparison (described in [26] ) was undertaken

to select the model among the several devised that is most likely

to describe the underlying physical process. To be a fair compari-

son of models, the same input data is used: the 1TM (2 HF) and

2TM models are therefore compared in this work. 

3.2. Estimation of systematic measurement error on thermophysical 

properties 

Different approaches for the propagation of the systematic

measurement error on the thermophysical estimates were imple-

mented for the two methods to reflect their different mathemat-

ical modelling. Although the propagation of systematic errors is

easily quantifiable for the AM based on the U-value definition

( Section 3.2.1 ), this is not the case for dynamic methods (like the

grey-box method adopted here) where the thermophysical param-

eters are estimated by means of optimisation techniques. A method

for the quantification of the systematic errors on the estimates of

dynamic methods is presented below ( Section 3.2.2 ). 

3.2.1. Error propagation for the average method 

The systematic error affecting the U-value estimates obtained

with the AM was quantified using a linear error propagation by

means of a first-order Taylor expansion [ 34 , Ch.4.3] of the U-value

definition ( Eq. (1) ): 

d U = d 

(
Q m 

�T 

)
= 

∂U 

∂Q m 

d Q m 

+ 

∂U 

∂�T 
d�T 

= 

1 

�T 
d Q m 

− Q m 

�T 2 
d�T 

(3)

where Q m 

and �T are respectively the measured heat flux (usually

the heat flux into the internal surface) and the difference between

the internal and external temperatures; d Q m 

and d �T are their

differentials. Applying the propagation of error formulas [37] to

Eq. (3) and assuming that the systematic measurement errors on

the heat flux observations 
(
σQ m 

)
and the temperature data streams

( σ T, ε) are independent, the relative systematic error on the U-value

can be computed as: 

σU 

U 

= 

√ 

σ 2 
Q m 

Q 

2 
m 

+ 

σ 2 
T ,ε 

�T 2 
= 

√ 

σ 2 
Q m 

Q 

2 
m 

+ 

σ 2 
T ,ε 

( T int − T ext ) 
2 
. (4)

3.2.2. Error propagation for the dynamic method 

Propagation of error formulas [37] (like those adopted in

Section 3.2.1 ) cannot be directly applied for methods estimating

the parameters of interest by means of optimisation techniques, as

in this case the parameters are estimated by minimising a given
ost function ( e.g. , Eq. (2) ) instead of being explicitly calculated

rom a formula. The systematic measurement error affecting the

hermophysical parameters estimated with optimisation methods

an be quantified from the analysis of the global optimum of

he unnormalised posterior probability distribution [25] . Defining

 (y, θ ) as the log-posterior of the parameters given all observa-

ions ( i.e. both heat flux(es) and temperature data streams), its gra-

ient with respect to the parameters has to be zero at the maxi-

um of the function ( i.e. the MAP): 

d 	 ( y, θ ) 

d θ

∣∣∣∣
y,θMAP ( y ) 

= 0 . (5)

ince θMAP depends on the observations and Eq. (5) describes a

tationary point, using the chain rule 3 the derivative of Eq. (5) with

espect to the data is: 

∂ 2 	 ( y, θ ) 

∂ θ∂ y 

∣∣∣∣
y,θMAP ( y ) 

+ 

∂ 2 	 ( y, θ ) 

∂θ2 

∣∣∣∣
y,θMAP ( y ) 

d θMAP 

d y 
= 0 . (6)

herefore, the dependency of the MAP from the observations can

e calculated from Eq. (6) as: 

d θMAP 

d y 
= 

( 

−∂ 2 	 ( y, θ ) 

∂θ2 

∣∣∣∣
y,θMAP ( y ) 

) −1 

∂ 2 	 ( y, θ ) 

∂ θ∂ y 

∣∣∣∣
y,θMAP ( y ) 

(7)

here − ∂ 2 	 ( y,θ ) 

∂θ2 

∣∣∣
y,θMAP ( y ) 

is the Hessian of the minus logarithm of

he posterior probability distribution and its inverse coincides with

he covariance matrix under the Laplace approximation; 
∂ 2 	 ( y,θ ) 

∂ θ∂ y 

s a matrix whose elements i, j contain the derivative of the log-

osterior with respect to the i -th parameter and to perturbations

f the j -th data stream (this term can be easily computed using

nite differences). 

Since the variations of the total R-value ( R tot ) are simply the

um of the variations of the R parameters contributing to it, this

an be formally expressed as: 

d R tot , MAP 

d y 
= ∇ 

T 
f 

d θMAP 

d y 
. (8)

s the U-value is the inverse of the total R-value, its variations can

e calculated according to the formulas for the error propagation

f a ratio [ 34 , Ch.4.3]: 

d U MAP 

d y 
= − 1 

R 

2 
tot , MAP 

d R tot , MAP 

d y 
(9)
∂x x,g ( x ) ∂w 
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he absolute systematic error on the U-value is represented by the

uadrature sum of the uncertainties on each data stream, assuming

hat these are independent: 

U = 

√ ∑ 

ε 

(
d U MAP 

d y ε 
σε 

)2 

(10) 

here σε is the systematic measurement error on each data

tream, which comprises both the error on the heat flux ( σ Q , ε)

nd temperature ( σ T , ε) measurements. 

The random modelling (or statistical [26,34] ) error on the pa-

ameter estimates is quantified from the covariance matrix ob-

ained during the Bayesian inference [26] . A first-order Taylor se-

ies expansion is applied to calculate the modelling error on the

-value given the thermal resistances contributing to it. 

. Experimental method and analysis 

.1. Case studies 

Two in-situ walls of different construction ( i.e. one solid and

ne full-fill cavity wall) were monitored long term and used as

ase studies to investigate the effects of seasonal and temperature

ariations on the estimation of thermophysical properties and the

ssociated systematic errors. A description of the monitoring cam-

aigns is provided below. 

.1.1. Solid wall in an office building (OWall) 

The OWall case study was a traditional north-west-facing solid

all located on the first floor above ground of an occupied office

uilding in London (UK). From the outside, the wall is made of

 layer of exposed brick 350 ± 5 mm and a layer of plaster 20 ±
 mm expected to be lime, for a total thickness of 370 ± 7 mm .

he wall was instrumented with a pair of heat flux plates [35] and

ype-T thermocouples, placed in-line with each other on opposite

ides of the wall [26] . The internal HFP was secured to the wall

sing a layer of low-tack tape on the wall-facing side of the sensor

ollowed by a layer of double-sided tape [38] , while for the ex-

ernal HFP a thin layer of water-resistant elastomeric polymer was

sed on the edges (only) and a layer of heat compound on the re-

aining area. The thermocouples were taped on the guard ring of

ach HFP, using thermal paste on the hot junction to ensure good

hermal contact with the wall [38] . Measurements were sampled

very 5 s and averaged over 5-min intervals using a Campbell Sci-

ntific CR10 0 0 [39] data logger. The OWall was monitored for a full

ear, from the 2nd of November 2013 to the 1st of December 2014

40] . 

.1.2. Cavity wall in an unoccupied residential building (UHWall) 

The UHWall case study was a 1970s north-facing filled cavity

all located at the ground floor of an unoccupied residential build-

ng in Cambridgeshire (UK). The wall is 275 ± 10 mm thick and

onsists of four layers. From the exterior, 100 ± 5 mm of exposed

ricks are followed by a 65 ± 5 mm cavity likely to be filled with

rea formaldehyde foam, 100 ± 5 mm aerated concrete blocks, and

0 ± 5 mm plaster. According to visual inspection (also on a neigh-

ouring property of same structure and period of construction) and

o literature on the performance of urea formaldehyde foam [41] ,

he insulation layer is expected to have shrunk inside the wall cav-

ty and the thermal resistance of the wall is expected to have de-

reased accordingly. 

A pair of HFPs [35] and thermistors was placed in-line with

ach other on opposite sides of the wall. A thin layer of silicon-

ree heat compound was used under each sensor to ensure good

hermal contact with the wall. Indoor sensors were secured using

asking tape (only on the guard ring for the HFP), while a thin
ayer of silicon sealant was applied on the edges of the external

quipment. Data were sampled every 5 s and averaged over 5-min

ntervals using Eltek 451/L and 851/L data loggers [42] . The UHWall

as monitored from the 12th of March 2015 to the 30th of August

015 [43] . 

.2. Experimental analysis 

A number of quantities have to be pre-computed to initialise

he Bayesian analysis, including the quantification of the system-

tic measurement error on each data stream and the prior prob-

bility distribution on the parameters of the dynamic model. The

ata analysis framework is also described below. 

.2.1. Systematic measurement error on the data streams 

To estimate the systematic error affecting the thermophysical

roperties of the element under study ( Sections 3.2.1 and 3.2.2 ),

ll the known and quantifiable systematic uncertainties affecting

oth the heat flux and temperature measurements have to be con-

idered. Depending on the nature of the uncertainties, these can

e classified as relative (if proportional to the magnitude of the

bservation) or absolute. Assuming that the uncertainties affect-

ng the observations can be considered independent, the system-

tic measurement error on each data stream can be calculated as

he quadrature sum of the individual relative and absolute uncer-

ainties: 

ε = 

√ 

( δa 
ε ) 

2 + 

(∑ n 
p=1 | E p m , ε | 

n 

δr 
ε 

)2 

(11) 

here δa 
ε is the total absolute uncertainty for each data stream; δr 

ε 

s the total relative uncertainty for each data stream; E 
p 
m , ε are the

easured observations for each data stream at each time step; n

s the number of observations analysed. 

In this paper, the systematic measurement error on the tem-

erature data streams was calculated combining the accuracy of

he temperature sensors and the data logging system in quadra-

ure sum according to Eq. (11) . Similarly, the following uncertain-

ies were considered to calculate the systematic measurement er-

or on each heat flux data stream: (a) the accuracy of the equip-

ent ( i.e. HFP and data logging system(s) involved in the analysis,

ccording to manufacturers’ specifications); (b) the effect of ran-

om variations caused by imperfect thermal contact between the

ensor and the wall (5% according to [15 , p.13]); (c) an uncertainty

ue to the modification of the isotherms caused by the presence

f the HFP (3% according to [ 15 , p.13]). Owing to the use of sur-

ace temperatures, the calculation omitted the 5% uncertainty in

 15 , p.13] to account for differences between air and radiant tem-

erature, and temperature variations within the space [26] . For the

M, an extra 10% was added in quadrature sum to account for er-

ors caused by the variations over time of the temperatures and

eat flow, as suggested in [ 15 , p.13]. 

.2.2. Priors on the parameters of the model 

The use of prior probability distributions enables the coupling

f information extracted from measurements with tabulated val-

es; utilising this expert information enhances the robustness of

he estimates and potentially reduces the monitoring time and

osts. In general, either uniform or non-uniform priors ( e.g. , log-

ormal distributions as in [25] ) can be defined depending on the

mount of information available on the parameters of the prob-

em. Uniform priors were used in this paper since the distributions

f the thermophysical properties for some of the materials consti-

uting the cavity wall ( e.g. , aerated concrete blocks) were not read-

ly available in the literature. It is hoped that stochastic data bases

uch the one developed by Zhao and colleagues [32] will be read-

ly available for all building materials in the future as these would
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be a useful resource for the development of probabilistic methods

for the assessment of the hygrothermal behaviour of buildings and

building components. 

For both case studies large priors were defined to encompass

all expected values for the thermophysical parameters, with signif-

icant safety margin. These ranged between [0.01, 4.00] m 

2 K W 

−1 for

all thermal resistances, between [0.1, 2 · 10 6 ] Jm 

−2 K 

−1 for all effec-

tive thermal masses, and in [ −5 , 40 ] °C for their initial tempera-

ture. 

4.2.3. Hypothetical monitoring campaigns 

During experimental analysis, it is good practice to ensure that

the length of the time series used for parameter estimation is ap-

propriate, and consequently the estimates obtained are represen-

tative of the performance of the building element surveyed. Short

monitoring campaigns are preferable for practical reasons (such

as minimising the inconvenience to the occupants and costs) to

expand the use of in-situ measurements for the characterisation

of buildings in practice. Consequently, it is important to deter-

mine the minimum number of observations that return a robust

estimation of the thermophysical parameters of the building el-

ement investigated. This requirement arises from the contrasting

need for a time series that is sufficiently long to ensure that the

estimates are accurate and have small variability, but that is not

too long to ensure that the assumption of a unique model to ex-

plain the data over the monitoring period ( e.g., constant param-

eters) holds. At the beginning of the monitored time series, when

little data is available, the estimates are noisy and prone to overfit-

ting. Subsequently, with the supplement of new observations, the

estimates improve until the addition of new data does not enhance

the prediction of the parameters significantly and the values sta-

bilise around a final value. This concept is referred to as “stabilisa-

tion” in this paper. 

A number of stabilisation criteria are listed in Section 7.1 of [ 15 ,

p.9] to determine the minimum length of the time series anal-

ysed while ensuring that: (a) the steady-state assumption at the

basis of the AM holds for the period investigated, and (b) the es-

timates have converged to an asymptotic value. No standardised

criteria are available (to the authors’ knowledge) to determine the

minimum length of the time series to be analysed with a dynamic

method. Therefore, in this work the criteria in [ 15 , p.9] were also

imposed for the dynamic analysis, although these may be too con-

servative in this case (as shown by the evolution of the U-value

over time in [ 25 , Ch.5]). 

To test and compare the performance and robustness of the av-

erage and dynamic method (both in terms of U-value estimations

and associated systematic measurement errors) at different times

of the year, shorter time series were extracted from the two long-

term monitoring campaigns. Each shorter time series was started

seven days apart and lasted until the stabilisation criteria [ 15 , p.9]

were met using the AM. 4 The time series so obtained were adopted

with all data analysis methods ( i.e. average and dynamic). This ap-

proach, referred to as “hypothetical monitoring campaigns” in this

paper, effectively synthesises a large number of repeated measure-

ments at different times of the year to test the performance of the

methods when the buildings were exposed to different environ-

mental conditions. 

5. Results and discussion 

The OWall and UHWall case studies were used to test and com-

pare the performance of the average and dynamic methods at dif-

ferent times of the year, both in terms of U-value estimates and
4 It might be possible that the time series used for consecutive hypothetical mon- 

itoring campaigns partly overlap. 

 

i  

t  

h  
ssociated systematic measurement error. The modelling errors on

he U-values are not reported below as these were always substan-

ially smaller than the measurement errors (at least an order of

agnitude lower); the total error is dominated by the latter. Ini-

ially, the time series were checked and cross-referenced with the

etadata to exclude periods where problems in the data collec-

ion were identified or data were repeatedly missing. Hypothetical

onitoring campaigns that: (a) had not met the stabilisation crite-

ia (described in Section 4.2.3 ) before one of these periods, or (b)

ad not met the stabilisation criteria within 30 days were excluded

rom the analysis. The 30-day threshold on the length of the time

eries was selected to both reflect practical timescales to complete

uch measurements and to ensure that the assumption of constant

odel parameters is reasonable. For a longer monitoring campaign

he likelihood that this latter assumption holds reduces since as

he length of the monitoring campaign rises, the risk of changes

o parameter values increases ( e.g. , due to changes in the environ-

ental conditions the building element is exposed to during the

urvey, such as variations in moisture content, moisture penetra-

ion depth of wind-driven rain, wind patterns). A plausible range

f U-values was also determined on the basis of each wall struc-

ure using thermophysical properties in the literature. 

.1. Literature U-values 

A range of possible U-values was defined for each case study

ue to the lack of specific information about the thermophysical

roperties of its materials. The U-value ranges were determined

ombining the upper and lower values of tabulated thermal con-

uctivity for the materials constituting the layers and their known

hickness, and adding constant internal 
(
0 . 13 m 

2 KW 

−1 
)

and exter-

al 
(
0 . 04 m 

2 KW 

−1 
)

air film resistances [44] . 

Following the procedure above, the literature U-value for the

Wall is between 1.11 and 2.16 Wm 

−2 K 

−1 , as the thermal con-

uctivity of solid brick is expected to lie in the range 0.50

o 1.31 mKW 

−1 and that of lime plaster between 0.70 and

.80 mKW 

−1 [45] . The brick layer was considered homogeneous

n the calculation ( i.e. mortar joints were not accounted for sepa-

ately) as the range of thermal conductivity for mortar falls within

he values for solid brick. Similarly, the U-value for the UHWall

anged between 0.32 and 0.40 Wm 

−2 K 

−1 , using a thermal con-

uctivity between: 0.22 and 0.81 mKW 

−1 for plaster, 0.15 and

.24 mKW 

−1 for aerated concrete blocks, 0.031 and 0.035 mKW 

−1 

or urea formaldehyde foam, and 0.50 and 1.31 mKW 

−1 for the

uter-leaf brick work. 

.2. In-situ U-value estimates for the solid wall 

From the long-term time series collected on the OWall, two

eeks of data (between the 16th and the 30th of May 2014) were

xcluded from the analysis due to repeated missing data for the

nternal thermocouple. Of the remaining data, fifty-two hypotheti-

al monitoring campaigns were analysed after removing the peri-

ds where the acceptance criteria in Section 5 were not met. The

ength of each hypothetical monitoring campaign ( i.e. the num-

er of days required for the AM to stabilise, Section 4.2.3 ) ranged

etween three and thirty days. Time series of up to ten days

ere needed in the autumn and winter period, whilst the required

ength increased in warmer seasons. Note that three days is the

inimum length imposed by the ISO Standard [ 15 , p.9], however

 25 , Ch.5] showed that the evolution of the U-value over time may

e stable in a much shorter time span with the dynamic method. 

The U-value estimates from the AM and dynamic method (us-

ng the 1TM (1 HF), 1TM (2 HF) and the 2TM models) were within

he margin of the absolute systematic measurement error for all

ypothetical monitoring campaigns. The U-value estimates were
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Table 1 

Minimum, maximum, mean and standard deviation of the U-value estimates 

and the associated relative systematic measurement error for the OWall over 

the hypothetical monitoring campaigns, estimated with the average and the dy- 

namic method. The range of U-values from tabulated thermophysical properties 

is also reported. 

Min Max Mean St dev Units 

U-value Literature 1.11 2.16 – – Wm 

−2 K −1 

AM 1.28 1.92 1.71 0.14 Wm 

−2 K −1 

1TM (1 HF) 1.34 1.88 1.71 0.13 Wm 

−2 K −1 

1TM (2 HF) 1.61 2.00 1.77 0.11 Wm 

−2 K −1 

2TM 1.60 1.85 1.72 0.07 Wm 

−2 K −1 

Rel sys err AM 14% 50% 22% 8% –

1TM (1 HF) 10% 31% 17% 6% –

1TM (2 HF) 9% 51% 17% 8% –

2TM 9% 27% 16% 5% –
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Table 2 

Minimum, maximum, mean and standard deviation of the U-value estimates 

and the associated relative systematic measurement error for the UHWall over 

the hypothetical monitoring campaigns, estimated with the average and the dy- 

namic method. The range of U-values from tabulated thermophysical properties 

is also reported. 

Min Max Mean St dev Units 

U-value Literature 0.32 0.40 – – Wm 

−2 K −1 

AM 0.59 1.00 0.71 0.08 Wm 

−2 K −1 

1TM (1 HF) 0.63 0.79 0.69 0.04 Wm 

−2 K −1 

1TM (2 HF) 0.47 0.72 0.59 0.08 Wm 

−2 K −1 

2TM 0.63 0.82 0.70 0.05 Wm 

−2 K −1 

Rel sys err AM 13% 21% 16% 3% –

1TM (1 HF) 8% 18% 12% 3% –

1TM (2 HF) 7% 14% 10% 2% –

2TM 6% 16% 11% 2% –
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(

lso within the range of values expected from the literature for

 wall similar to the OWall ( Table 1 ). The minimum, maximum,

ean and standard deviation of the U-value estimates for each

odel are summarised in Table 1 . The mean U-value for the AM,

TM (1 HF) and the 2TM models virtually coincided, while it was

lightly higher (about 4% increase) for the 1TM (2 HF) model (al-

hough within the standard deviation of the other cases). The 2TM

odel had the smallest standard deviation ( i.e. the spread of the U-

alue estimates from their mean value over the fifty-two periods),

hile the AM had the largest. The standard deviation of the 2TM

odel was half that of the AM. The ranges of the relative system-

tic error on the U-values estimated with the different methods

nd models over the fifty-two hypothetical monitoring campaigns

re also summarised in Table 1 . The AM presented the highest

inimum and maximum values, while the dynamic method was

enerally characterised by smaller ranges. In particular, the 2TM

odel had the smallest range of relative systematic error through-

ut the year ( i.e. between 9% and 27%). The mean relative system-

tic error obtained from the dynamic method was comparable for

ll models considered. 

The relationship between U-value estimates and their associ-

ted relative systematic error as a function of the average temper-

ture difference between the internal and external environment 5 

as investigated ( Fig. 3 ). As expected from the mathematical for-

ulation of the AM, the relative systematic error increased as the

verage temperature difference decreased, reaching a maximum of

0% error for the smallest average temperature difference observed

1.6 °C). Similarly to the AM method, for the dynamic method the

agnitude of the relative systematic error increased as the temper-

ture difference decreased, although within a narrower range (gen-

rally up to 30%). This result can be ascribed to the different math-

matical modelling of the dynamic method, where the tempera-

ure difference is calculated at each observation instead of being

veraged over the monitoring period (as discussed in Section 3.2 ).

he 13% uniform relative systematic error obtained combining in

uadrature sum the uncertainties listed in the ISO 9869-1 Standard

15] excluding the temperature variations within the space (as dis-

ussed in Section 4.2.1 ) is also shown in Fig. 3 . 

.3. In-situ U-value estimates for the cavity wall 

Twenty-four hypothetical monitoring campaigns were analysed

or the UHWall, as all the periods met the acceptance criteria in

ection 5 . The length of each hypothetical monitoring campaign

anged between three and twenty-eight days. A summary of the

inimum, maximum, mean and standard deviation of the U-value

nd the associated relative systematic error for the UHWall es-
5 Referred to as “average temperature difference” in the following for conciseness. 

f

l

imated with the average and dynamic method (using the 1TM

1 HF), 1TM (2 HF) and 2TM models) is presented in Table 2 .

or each hypothetical monitoring campaign, the U-value estimates

btained with the average and dynamic method were within the

argin of the systematic measurement error. However, the in-situ

stimates were higher than the range of values that would be ex-

ected from literature calculation making the assumption that the

avity is fully-filled [25] ( Table 2 ). This result supports the expec-

ation that the foam insulation may have shrunk close to the mea-

urement location, leading to only partial-fill ( Section 4.1.2 ). 

Similarly to the OWall case study, the mean U-value was com-

arable in all cases except the 1TM (2 HF) model ( Table 2 ), where

he mean U-value was lower. As previously observed for the OWall,

he AM presented the highest minimum and maximum value for

he relative systematic error on the U-value, although the error

anges were usually smaller for the UHWall than the OWall. The

eduction of the systematic error may be ascribed to the use of

igher accuracy temperature sensors in this case study and the

arger minimum average temperature difference observed (2.4 °C)

ompared to the OWall (1.6 °C). The thermistors used on the UH-

all had an accuracy of 0.1 °C, while the type-T thermocouples

nstalled on the OWall had an accuracy of 0.5 °C. 

The U-value estimates and the associated relative systematic er-

or as a function of the average temperature difference observed

uring the corresponding hypothetical monitoring campaign are

resented in Fig. 4 , as well as the 13% uniform relative system-

tic error suggested in the ISO 9869-1 Standard [15] (as discussed

n Section 5.2 ). Similarly to the OWall, the U-value estimates ob-

ained with the 1TM (2 HF) had a different trend than the esti-

ates obtained with the other dynamic models and the AM. Fur-

hermore, the relative systematic error had comparable behaviour

o the OWall case study, although the error ranges were gener-

lly smaller ( Table 2 and Fig. 4 ). As previously observed, the rel-

tive systematic errors on the U-values tended to increase when

he wall was exposed to smaller average temperature differences. 

.4. Comparison of the error estimates from static and dynamic 

ethods across the case studies 

The analysis presented above shows that the insights derived

rom in-situ measurements may be considerably limited by the as-

ociated relative systematic error. This error generally increases as

he average temperature difference between the internal and ex-

ernal environment decreases, even when the stabilisation criteria

 Section 4.2.3 ) are met and the U-value estimates look plausible 6 
6 The U-value estimates for the OWall were within the literature range, and those 

or the UHWall were in line with the observed shrinkage of the full-fill insulation 

ayer. 
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Fig. 3. U-value and associated relative systematic measurement error for the OWall as a function of the average temperature difference. Estimates were obtained using 

the average (AM) and the dynamic method (with the 1TM (1 HF), 1TM (2 HF), 2TM models). The 13% relative systematic error suggested in the ISO 9869-1:2014 Standard 

( Section 4.2.1 ) is also shown (dashed line). 

Fig. 4. U-value and associated relative systematic measurement error for the UHWall as a function of the average temperature difference. Estimates were obtained using 

the average (AM) and the dynamic method (with the 1TM (1 HF), 1TM (2 HF), 2TM models). The 13% relative systematic error suggested in the ISO 9869-1:2014 Standard 

( Section 4.2.1 ) is also shown (dashed line). 
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compared to literature values ( Figs. 3 and 4 ; Tables 1 and 2 ). The

average temperature difference is particularly relevant for analysis

undertaken using the AM, as the measured heat flux and temper-

ature difference constitute the denominator of Eq. (4) . Conversely,

the use of monitored data at each sampling interval for param-

eter estimation with the dynamic method was shown to reduce
ystematic uncertainties ( Figs. 3 and 4 ) throughout the year. This

uggests that the choice of the estimation method for the ther-

al performance of building elements from in-situ measurements

hould account for several factors, including: the location of the

ase study, the time of the year, and the purpose of the survey.

or example, the use of a dynamic approach may decrease error
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stimates throughout the year for mild climates where the aver-

ge temperature difference may rarely be higher than 10 °C (as

ommonly recommended for best-practice in-situ monitoring [18] )

ven in the winter period [19] . 

Figs. 3 and 4 show that for the AM the error on the U-value

s underestimated assuming independent uncertainties but without

ccounting for the accuracy of the equipment ( i.e. applying the 13%

niform relative systematic error obtained combining in quadra-

ure sum the uncertainties in [15] , as discussed in Section 5.2 ).

pecifically, for the AM the systematic error including the equip-

ent specification fell within the value in the ISO 9869-1 Stan-

ard [15] in only 12.5% of the cases ( i.e. 3 hypothetical monitor-

ng campaigns out of 24) for the UHWall and never for the OWall;

his comparison cannot be directly made for the dynamic method

s in this case the 10% uncertainty for errors caused by the vari-

tions over time of the temperatures and heat flow does not ap-

ly (see Section 4.2.1 ). In line with previous work [19] , this result

ighlights the role of the accuracy of the monitoring equipment

 ±0.1 °C for the temperature sensors on the UHWall compared to

.5 °C for those on the OWall) in the total error estimates from in-

itu measurements and the potentially significant impact of prop-

gating errors on the basis of the equipment used rather than ap-

lying assumed values. 

Applying the dynamic method, smaller relative systematic er-

ors were generally obtained ( Figs. 3 and 4 ; Tables 1 and 2 ) from

he models optimising two heat flux data streams (1TM (2 HF)

nd 2TM models) compared to that optimising only one (1TM

1 HF) model) heat flux time series (and also the AM). Addition-

lly, the relative systematic errors for the 2TM model were gen-

rally smaller than those for the 1TM (2 HF) model, and the U-

alue estimates were more stable throughout the year. Comparable

esults were observed for an additional fully-filled cavity wall be-

onging to a different case-study building monitored long term by

he authors and reported in [25] . 

The Bayesian analysis method enabled the comparison of the

robability of different models accurately describing the observed

ata, using the same input time series for the 1TM (2 HF) and

he 2TM models (as introduced in Section 3.1.2 ). The odds ratio

trongly supported the 2TM model for all hypothetical monitor-

ng campaigns in both case studies. The result suggests that al-

hough the 1TM (2 HF) model is useful for model comparison pur-

oses, the availability of only one effective thermal mass to si-

ultaneously describe heat flux measurements from the two heat

ux data streams is not sufficient. This complements the insights

ained from Tables 1 and 2 , where the 1TM (2 HF) model pre-

ented higher mean U-value, and from Figs. 3 and 4 , where the

-value estimates using the 1TM (2 HF) model had a different

rend (especially for low average temperature differences) com-

ared to the other methods and models. The lumped thermal mass

odel consisting of two thermal masses and three thermal resis-

ances was shown to provide a good description of data collected

t all times of the year for building elements of different construc-

ion ( i.e. solid and cavity walls), providing robust estimates of their

hermophysical properties. 

. Conclusions 

This research highlights the importance of error analysis to

ain robust insights into the actual thermal behaviour of buildings

rom measurements collected in situ. The propagation of system-

tic measurement uncertainties on the thermophysical properties

f building elements ( e.g. , R-values and U-value) was investigated

n this paper by means of two case studies ( i.e. a solid and a cav-

ty wall) monitored long-term. U-values were estimated both us-

ng the average method and a grey-box dynamic method based on

ayesian statistics. Different approaches were used to quantify the
ystematic measurement error on the U-value estimates to reflect

he different mathematical description of heat transfer in the two

ethods adopted. While a linear error propagation from the defi-

ition of U-value was applied for the AM, a method for the quan-

ification of the propagation of uncertainties on the parameters es-

imated using optimisation techniques was proposed. 

The results highlight the importance of the quantification of

he error based on the equipment used and the conditions experi-

nced. Whilst the required accuracy of a result may vary depend-

ng on the purpose of the analysis, quantifying the error estimate

acilitates informed decision making. In this work systematic er-

ors estimated through propagation, including equipment accuracy,

nly fell within the 13% relative systematic error suggested in the

SO 9869-1 Standard [15] for 12.5% of the cases for the cavity wall

nd never for the solid wall; errors were assumed independent

hroughout. Besides showing that the application of a uniform 13%

rror would be misrepresentative, this work highlights the impor-

ance of the equipment error and the impact of using lower accu-

acy equipment on the certainty of results. 

The analysis showed that, as expected, total relative error in-

reases as the difference between internal and external average

emperatures decreases. The relative systematic errors on the AM

stimates were highly sensitive to the average temperature differ-

nce observed during the monitoring period ( i.e. the lower the av-

rage temperature difference the higher the relative systematic er-

or). This result emphasises that the estimation of thermophysical

roperties from in-situ measurements cannot disregard error anal-

sis even when the estimates may look plausible and in line with

iterature calculation, as the magnitude of the systematic measure-

ent error may effectively nullify the insights gained from the

nalysis. 

Use of the dynamic method significantly reduced systematic er-

or at all times of year compared to the AM. A dynamic method,

nd derivation of error accounting for the use of optimisation

ethods, may therefore be applied to provide modest error esti-

ates also in cases that the average internal-to-external temper-

ture difference is considerably lower than 10 °C. The application

f a dynamic method of U-value estimation may extend the use

f in-situ measurements outside the winter period or to climatic

egions where the average temperature difference is generally low.

Results from three different dynamic models associated lower

ystematic measurement error with the use of more data, in the

orm of measurements from both an internal and external heat flux

late. The 2TM model presented the smallest relative errors among

ll models and its U-value estimates were the most stable through-

ut the year; Bayesian model comparison also favoured this model

ompared to the 1TM (2 HF) model, which also displayed unex-

ected trends in the results, most likely associated with challenges

f optimising the size of one effective thermal mass using two heat

ux data streams. 

Quantifying the errors associated with U-value estimates is

mportant to facilitate informed decision making and quality as-

urance, for example in the investigation into the quality of in-

tallation of a building component or to determine the cost-

ffectiveness of a retrofitting intervention. Whilst the error that

ay be tolerated in U-value estimates may vary according to the

urpose and use of the results, lower error (assuming that it is rep-

esentative) is generally desirable. This study shows that use of a

ynamic method of U-value estimation from in-situ measurements,

ith an error quantification method that accounts for the optimi-

ation technique used, can result in significantly lower error esti-

ates than those from propagation of error with a static method.

he associated decrease in internal-to-external temperature differ-

nce required during in-situ measurements that results in U-value

stimates with moderate errors extends the applicability of such

ethods in support of closing the performance gap. 
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