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Abstract 15 

The quartz crystal microbalance (QCM) is a surface-sensitive measurement technique to characterize 16 
adsorption processes at solid-fluid interfaces. While QCM measurements are routinely applied to 17 
study homogenous thin films, characterizing heterogeneous films of adsorbed particles remains 18 
challenging because QCM is sensitive to not only the mass of adsorbed particles but also that of 19 
hydrodynamically-coupled fluid. To extract information about adsorbed particles, it is necessary to 20 
model these complex hydrodynamic effects, however, current QCM models are restricted to the limit 21 
of either a very low surface coverage or to the extrapolated limit of saturation coverage. Herein, we 22 
investigated QCM measurement responses in the intermediate surface coverage regime, by 23 
conducting lattice Boltzmann simulations of monodisperse, spherical particles that are attached to an 24 
oscillating surface. From the simulations, we relate the overtone-dependent QCM frequency and 25 
bandwidth shifts to particle size, interparticle distance, and the relevant hydrodynamic length scale. 26 
The corresponding results are in qualitative agreement with experimental QCM data for sub-100 nm, 27 
gel-phase liposomes. Furthermore, the data provide a theoretical basis for extracting particle sizes 28 
from QCM data in the high surface coverage limit.  29 
 30 
  31 
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Introduction 32 

The quartz crystal microbalance (QCM) is a widely used, surface-sensitive measurement technique 33 

to characterize adsorption events at solid-fluid interfaces.1,2 QCM measurements involve tracking the 34 

resonance behavior of shear-thickness oscillations of a piezoelectric quartz crystal at its fundamental 35 

frequency and odd overtones thereof.3,4 The presence of an adsorbate on the QCM sensor surface 36 

influences this resonance behavior, and corresponding shifts can be monitored in order to obtain 37 

information about physical properties of the adsorbate.5,6  38 

The QCM detects not only the adlayer but also the fluid that is coupled to the oscillating 39 

adlayer.7,8 As a result, translating QCM data to adlayer properties requires so-called ‘QCM models’, 40 

which are based on hydrodynamic analysis. Analytical QCM models have been developed to extract 41 

the mass and viscoelastic properties of homogenous, thin-film adsorbates.9-12 On the other hand, 42 

layers of adsorbed particles are governed by heterogeneous hydrodynamic coupling between the 43 

adlayer and surrounding fluid.3,12-20 These complex hydrodynamic effects have hindered the 44 

development of corresponding QCM models that relate QCM measurement responses, via the 45 

hydrodynamic force, to the properties of adsorbed particles, e.g., surface coverage, size, and shape. 46 

As a result, current QCM models are restricted to the limit of either a very low surface coverage21,22 47 

or to the extrapolated limit of saturation coverage.23,24  Specifically, this latter model extrapolates 48 

QCM data to a hypothetical scenario, where the adsorbed particles behave as a rigid, densely-packed 49 

layer. The thickness of the corresponding adlayer is determined by using a simple analytical model, 50 

which is valid for homogenous films.9 In some cases, the resulting adlayer thickness agreed well with 51 

the known size of adsorbed particles.23-27 However, a theoretical basis for this ‘extrapolation method’ 52 

remains to be established.  53 

Constructing such theory requires analyzing the hydrodynamic force acting on a collection of 54 

particles attached to an oscillating surface. Previously, we combined numerical simulation with 55 

dimensional analysis to study the corresponding problem for a single spherical21 or ellipsoidal22 56 

particle. From those analyses, we derived QCM models for extracting the size and shape of adsorbed 57 
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particles at low QCM surface coverages.21,22 Herein, we extend this methodology and investigate the 58 

hydrodynamics of adsorbed particles, not only for a low surface coverage but also for higher surface 59 

coverages where hydrodynamic interactions between adsorbed particles are important. By 60 

systematically varying the independent, dimensionless parameters in the simulation, we provide a 61 

comprehensive description of the hydrodynamic interaction between monodisperse, spherical 62 

particles adsorbed on the QCM sensor surface, as a function of particle size and surface coverage. 63 

Guided by the simulation outcome, we also provide a theoretical basis for the aforementioned 64 

extrapolation method to determine the size of adsorbed particles from QCM data at high surface 65 

coverages.  66 

Theoretical Considerations 67 

We consider the QCM measurement response that occurs due to the adsorption of N solid, spherical 68 

particles of radius a. The surface area of the quartz crystal is AQ and the distance between the adsorbed 69 

particles is L = (AQ/N)1/2, which corresponds to a surface coverage of f = π(a/L)2. We assume that the 70 

particles are rigidly adhered to the substrate and remain spherical in the adsorbed state. ∆𝐹# denotes 71 

the complex-valued amplitude of the force oscillation, which is exerted on the quartz crystal due to 72 

the adsorption of one particle, and the hat ^ signifies a complex number. The force amplitude, ∆𝐹#, 73 

has an inertial (real) component, which is in phase with the quartz acceleration and responsible for 74 

the frequency shift, Δf, and a dissipative (imaginary) component, which is in phase with the quartz 75 

velocity and responsible for the bandwidth shift, ΔΓ = f ΔD/π. The bandwidth shift is equivalent to 76 

the dissipation shift, ΔD, where f = f0n = ω/2π is the (overtone) frequency, n is the overtone number, 77 

f0 is the fundamental frequency, and w is the (overtone) angular frequency of the quartz. In this work, 78 

the QCM data is presented in terms of the frequency and bandwidth shifts (Δf, ΔΓ). Since ΔΓ is 79 

dimensionally equivalent to Δf, this representation offers a seamless comparison between the two 80 

quantities. It also allows us to compare our theoretical approach with the extrapolation method, which 81 

was described in the Introduction and is henceforth referred to as the ΔΓ/Δf extrapolation method. 82 

Specifically, the ΔΓ/Δf extrapolation method involves plotting the -ΔΓ/Δf ratio versus -Δf/n at 83 
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multiple overtones in order to determine the adlayer height.23,24  84 

Based on the above definitions, the QCM frequency shift, Δf, and bandwidth shift, ΔΓ, can be 85 

expressed as follows:3,4   86 

−Δ𝑓 + 𝑖Δ𝛤 = +,-.#

/012
,                     (1) 87 

where mQ = AQlQρQ is the mass, lQ is the thickness, ρQ is the mass density of the quartz crystal, and 88 

𝑖 = √−1 is the imaginary unit. The force per adsorbed particle Δ𝐹# = Δ𝐹#5 +𝑚7𝜔𝑈	is the sum of the 89 

hydrodynamic force, Δ𝐹#5, and the inertia, 𝑚7𝜔𝑈, of one adsorbed particle, where U is the (real-90 

valued) quartz velocity amplitude and mP = ρF(4π/3)a3 is the mass of one particle, and it is assumed 91 

that the particle mass density equals the fluid mass density, ρF. The hydrodynamic force per particle, 92 

Δ𝐹#5, is the force acting on the combined system of N particles and the substrate minus the force acting 93 

on the substrate without the particles, divided by N.   94 

We use dimensional analysis to derive the general form of the governing relation between Δ𝐹#5 95 

and the operating conditions. The number of variables in the problem is seven, i.e., Δ𝐹#5, U, ω, a, f, 96 

ρF, and the fluid kinematic viscosity, νF. According to the Buckingham-Pi theorem,28 one can combine 97 

seven variables (with three units being length, time, and mass) into 7 – 3 = 4 independent 98 

dimensionless parameters such that Π<= = Δ𝐹#>?𝑈@𝜔A𝑎C𝜙E𝜈G
H𝜌.

J, where i = 1, 2, 3 or 4 and α, β, γ, δ, 99 

ε, ζ and η are determined by requiring that Π<= be dimensionless. This procedure results in the 100 

dimensionless force Π<K 	= Δ𝐹#5/(𝜌.𝑎N𝜔𝑈), the dimensionless size Π2 = a ω1/2νF-1/2, the surface 101 

coverage Π3 = f, and the dimensionless velocity ΠP 	= 	𝑈𝑎/𝜈.. The parameter Π4 is known as the 102 

Reynolds number, Re, which is estimated to be Re = 10-2 based on 𝑈 = 10-1 m s-1,29 a = 10-7 m, and 103 

νF = 10-6 m2s-1. Since Re is small compared to unity, the problem is independent of Re, and the 104 

dimensionless force Π<K is therefore a dimensionless, complex-valued function of only two 105 

dimensionless variables: Π2 and Π3, i.e. Π<K = Π<K(ΠQ, ΠN).  Expressing the dimensionless size as Π2 106 

= a/δ where the penetration depth is given by δ = (2νF/ω)1/2, the governing relation is written as: 107 

Δ𝐹#5 = 𝜌.𝑎N𝜔𝑈Π<K S
C
T
, 𝜙U.                    (2) 108 
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As described below, Π<K(d/𝑎,f) is determined by using numerical simulation. 109 

Materials and Methods 110 

Numerical Simulation. A lattice Boltzmann (LB) method was employed to compute the 111 

hydrodynamics of a single spherical particle, with radius a, which is attached to an oscillating surface. 112 

The specific details of the LB method are provided in the Supporting Information. The geometry and 113 

coordinate system of the simulation setup are presented in Fig. 1a. The surface has its normal in the 114 

z direction and oscillates in the x direction. The y direction is normal to the x and z directions. The 115 

domain sizes are L in the horizontal (x and y) directions and Lz in the vertical (z) direction. In the 116 

horizontal directions, periodic boundary conditions are employed. This means that the system 117 

represents a periodic array of spheres, with an interparticle separation distance of L. Thus, by varying 118 

the horizontal domain size L, we can modulate the particle surface fraction, f=p(a/L)2. 119 

The numerical method to solve the hydrodynamics problem is based on a three-dimensional 120 

staircase approximation of the spherical particle shape, as shown in Fig. 1b. The fluid kinematic 121 

viscosity was fixed at νF = Δx2/(6Δt), where Δx and Δt are the lattice spacing and computational time 122 

step, respectively. The simulations were conducted using a range of values for the horizontal and 123 

vertical domain sizes, L and Lz, particle radius a, and oscillation frequency f, which resulted in a 124 

surface coverage between f ≈ 0.01 and 0.8 and a scaled, viscous penetration depth that varied between 125 

δ/a ≈ 0.6 and 4.6. All simulation parameters are listed in Supporting Table S1. 126 

127 
Figure 1. (a) Computational domain of the lattice Boltzmann (LB) simulation. (b) Staircase 128 
approximation of a spherical particle in the LB simulation, where the particle radius spans ten lattice 129 
spacings. 130 

 131 
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Liposome Preparation. Liposomes (lipid vesicles), which are in the gel phase at room temperature, 132 

were prepared by the extrusion method.30 A dried film of 1,2-dipalmitoyl-sn-glycero-3-133 

phosphocholine (DPPC, Avanti Polar Lipids, Alabaster, AL, USA) lipids was hydrated in an aqueous 134 

buffer solution (10 mM Tris [pH 7.5] with 150 mM NaCl) at a lipid concentration of 5 mg/mL, using 135 

Milli-Q-treated water with a minimum resistivity of 18.2 MΩ·cm (Millipore, Billerica, MA, USA). 136 

After vortexing the sample, the liposomes were extruded through a track-etched polycarbonate 137 

membrane with a 50-nm diameter nominal pore size. As the fluid-to-gel phase transition temperature 138 

of the DPPC lipid is around 41 °C, the liposome suspension was heated to ~60 °C during the extrusion 139 

process, so that there was efficient sizing of the DPPC liposomes in the fluid-phase state.31 After the 140 

extrusion process was completed, the DPPC liposome suspension was cooled down to room 141 

temperature, and the liposomes returned to the gel-phase state. The mean and standard deviation of 142 

the liposome radius was measured by dynamic light scattering (DLS, Brookhaven Instruments, 143 

Holtsville, NY, USA), and was determined to be a = 38 ± 7 nm. The corresponding size distribution 144 

is given in Supporting Figure S1. Immediately before QCM experiments, the liposomes were diluted 145 

to a 0.05 mg/mL lipid concentration in 10 mM Tris buffer [pH 7.5] with 250 mM NaCl. The selected 146 

ionic strength promotes a strong adhesion force by shielding electrostatic repulsion between the TiO2-147 

coated substrate and DPPC liposomes,32 while it should be noted that the adsorbed, gel-phase DPPC 148 

liposomes remain spherical and do not deform appreciably, under these conditions.33  149 

QCM Experiments. Liposome adsorption was measured by using the Q-Sense E4 QCM instrument 150 

(Biolin Scientific AB, Stockholm, Sweden). We used quartz crystal sensor chips, which had a sputter-151 

coated, 50-nm thick layer of TiO2 (model no. QSX 310, Biolin Scientific AB) and a fundamental 152 

frequency of f0 = 5 MHz, thickness of lQ = 0.3 mm, and mass density of rQ = 2.65 g/mL. A peristaltic 153 

pump (Reglo Digital, Ismatec, Glattbrugg, Switzerland) was used to inject liquid sample into the 154 

measurement chamber at a flow rate of 50 µL/min. The temperature in the measurement chamber was 155 

maintained at 25.0 ± 0.5 °C. The experimental data were collected at the 3rd to 11th odd overtones 156 

using the QSoft software program (Biolin Scientific AB). Baseline signals in aqueous buffer solution 157 
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(without liposomes) were recorded for 7 min prior to liposome injection under continuous flow 158 

conditions. 159 

Results 160 

Flow Field Visualizations 161 

Fig. 2 shows the simulated x-component of the fluid velocity in the (x, z)-plane for four different 162 

values of f at a fixed value of d/a ≈ 0.6. These visualizations illustrate the physical mechanism that 163 

is responsible for the overtone- and time-dependent frequency and bandwidth shifts, which are 164 

typically observed during particle adsorption. Below, we analyze these dependencies in detail, 165 

through both simulation and experiment. 166 

 167 
Figure 2. Simulated x-component of the fluid velocity field around spherical particles attached to an 168 
oscillating surface at different surface coverages: (a) f ≈ 0.01, (b) f ≈ 0.05, (c)  f ≈ 0.2, and (d) f  ≈ 169 
0.8. The snapshots are taken at the instant in the oscillation, when the velocity at the surface equals 170 
zero. For all cases, the viscous penetration depth scaled to the particle radius is δ/a ≈ 0.6.  171 
 172 
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 173 

FIG 3. (a) Simulated real part of the QCM force ∆ℜ(𝐹#) (corresponding to frequency shift) per 174 
particle versus scaled viscous, penetration depth d/a for various surface coverages f. (b) Simulated 175 
imaginary part of QCM force ∆ℑ(𝐹#) (corresponding to dissipation shift) per particle versus scaled 176 
penetration depth d/a for various surface coverages f. The simulated force ∆𝐹# is scaled with a3rFwU, 177 
where a is the particle radius, rF is the fluid mass density, w is the QCM (overtone) angular frequency, 178 
and U is the QCM (overtone) velocity amplitude. (c) Measured, negative QCM frequency shift per 179 
overtone -Δf/n versus scaled penetration depth d/a for various time points t. (d) Measured QCM 180 
bandwidth shift per overtone ΔΓ/n per particle versus scaled penetration depth d/a for various time 181 
points t. In order to compare the experimental data in (c, d) to the simulation data in (a, b), we divided 182 
-Δf/n and ΔΓ/n by the adsorption time t, which is, prior to saturation, assumed to be proportional to 183 
the number of adsorbed particles.  184 
 185 
QCM Response as a Function of Overtone Number 186 

In Figs. 3a and 3b, we investigate the simulated QCM force per particle, Δ𝐹#, as a function of the 187 

scaled penetration depth, d/a, for various fixed values of f. As mentioned above, Δ𝐹# is a complex-188 

valued force amplitude, and the real and imaginary parts correspond to the QCM frequency and 189 

bandwidth shifts, respectively [cf. Eq. (1)]. Fig. 3a shows the real part ∆ℜ(𝐹#), which is the sum of 190 

the inertial force of the particle and that of the coupled fluid. The results indicate that, for large f ≈ 191 

0.8, ∆ℜ(𝐹#) is independent of the penetration depth. In this regime, ∆ℜ(𝐹#) consists solely of particle 192 
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inertia, while there is no contribution from the coupled fluid, i.e., the coupled fluid resembles that of 193 

a flat surface, which can be seen from the visualization as presented in Fig. 2d.  On the other hand, at 194 

low f ≈ 0.01, ∆ℜ(𝐹#) contains the particle inertia (constant component as a function of d/a) as well 195 

as the inertia of the coupled fluid, which is reflected by an increase of ∆ℜX𝐹#Y	as a function of d/a. 196 

However, it is observed that ∆ℜ(𝐹#) does not continually increase as d/a becomes larger. At large d/a, 197 

∆ℜ(𝐹#) levels off, which reflects the hydrodynamic interactions between neighboring particles, i.e., 198 

the overlap of the coupled fluid of neighboring particles. With increasing f, the distance between 199 

neighboring particles decreases, and the hydrodynamic coupling is therefore observed to set in at 200 

smaller d/a.  201 

Fig. 3b shows the imaginary part of the force per particle, ∆ℑ(𝐹#), which measures the frictional 202 

force of the coupled fluid that is exerted at the solid-fluid interface. For f ≈ 0.8, the particles form a 203 

densely packed layer (cf. Fig. 2d) and the friction resembles that occurring on a flat surface, i.e., 204 

∆ℑX𝐹#Y = 	0.  On the other hand, for smaller f, ∆ℑX𝐹#Y shows non-monotonic behavior as a function 205 

of d/a, i.e., as a function of d/a, ∆ℑX𝐹#Y first increases and then decreases towards zero, due to the 206 

overlap of the coupled fluid of the neighboring particles.  207 

Figs. 3c and 3d show the experimentally measured force per particle as a function of d/a, which 208 

corresponds to various overtones n, and for various f, which corresponds to various time points t. 209 

The relative penetration depth, d/a, is related to the overtone, n, by δ/a= (νF/πf0n)1/2. The real and 210 

imaginary parts of the force are represented by the (negative) frequency shift per overtone number, -211 

Δf/n, and by the bandwidth shift per overtone number, ΔΓ/n. These quantities correspond to the force 212 

induced by all adsorbed particles. In order to obtain quantities that are proportional to the force per 213 

adsorbed particle, we need to divide -Δf/n and ΔΓ/n by the (areal) number (density) of adsorbed 214 

particles. Since the number density of adsorbed liposomes is not directly available, we take into 215 

account that the liposome adsorption process is diffusion-limited,34 which implies that the number 216 

density is proportional to the adsorption time t. For this reason, we divide the frequency and 217 
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bandwidth shifts (per overtone number) in Figs. 3c and 3d by t. Under diffusion-limited adsorption 218 

conditions, the resulting quantities, -Δf/nt and ΔΓ/nt, are equal to the force per particle, up to an 219 

unknown proportionality constant. We do not further consider this constant for the present purpose, 220 

which is focused on comparing the simulated and measured QCM force dependencies on d/a and f. 221 

The experimental data in Figs. 3c and 3d compare well with the simulated data in Figs. 3a and 3b, in 222 

terms of the aforementioned dependencies on d/a and f. 223 

QCM Response as a Function of Time 224 

We now turn our attention to the time dependence of the frequency and bandwidth shifts due to the 225 

entire ensemble of adsorbed particles. For this purpose, we multiply the real and imaginary parts of 226 

the simulated force per particle (cf. Figs. 3a and 3b) by the surface coverage, f. In Figs. 4a and 4b, 227 

we plot the resulting f∆ℜ(𝐹#) and 𝜙∆ℑX𝐹#Y	as functions of f, for various d/a. Experimentally, this 228 

representation corresponds (up to an unknown proportionality constant) to the frequency and 229 

bandwidth shifts as functions of time for the various overtones, which are shown for comparison in 230 

Figs. 4c and 4d.  231 

The simulated inertial force on the QCM response increases monotonically with f and with d/a 232 

(Fig. 4a), and these trends agree well with the experimental data (Fig. 4c). At saturation coverage, the 233 

different overtones collapse, i.e., the saturated layer of regularly distributed particles behaves as a 234 

uniform film.9 In the experiment, one nuance is that the different overtones do not collapse at 235 

saturation, which reflects that the saturated layer of adsorbed liposomes does not fully behave as a 236 

uniform film. This might reflect, the irregular, spatial particle arrangement, with gaps between the 237 

particles, as opposed to the regular, and closed packed particle arrangement in the simulation.  238 

The simulated frictional force on the QCM response is a non-monotonic function of f, which 239 

increases at low f and decreases towards zero at high f (Fig. 4b). These trends are also observed in 240 

the experimental data, albeit the decrease at higher f  does not continue to zero but instead saturates 241 

at a finite value (Fig. 4d). This again indicates, that the saturated layer is not closed packed. 242 
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 243 

FIG 4. (a) Simulated real part of QCM force per πa2 surface area 𝜙∆ℜ(𝐹#) (corresponding to 244 
frequency shift), as a function of surface coverage f, for various scaled penetration depths d/a. (b) 245 
Simulated imaginary part of QCM force per πa2 surface area	𝜙∆ℑ(𝐹#) (corresponding to dissipation 246 
shift), as a function of surface coverage f, for various scaled penetration depths d/a. (c) Measured 247 
QCM frequency shift per overtone -Δf/n as a function of time for various overtones n, corresponding 248 
to various scaled penetration depths d/a. (d) Measured QCM bandwidth shift per overtone ΔΓ/n as a 249 
function of time for various overtones n, corresponding to various scaled penetration depths d/a.  250 

 251 
It is noted that the transient maximum in the bandwidth shift (cf. Figs. 4b and 4d) has been observed 252 

previously for globular proteins and virus particles, in which cases it was attributed to the softness of 253 

the linkers between the particles and substrate.3,27 Interestingly, the present results support that similar 254 

transient maxima occur in purely rigid systems, originating from the hydrodynamic interactions 255 

between particles and hence providing a physical mechanism to explain past experimental 256 

observations with adsorbed liposomes as well.24,33 257 

Onset of Hydrodynamic Coupling 258 

We continue by studying the relation between the hydrodynamic force per particle and the average 259 

distance between the particles, L = a(p/f)1/2, or equivalently the surface coverage f. To this end,  260 
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 261 
FIG 5. (a) Simulated real part of the QCM force per particle ∆ℜX𝐹#Y	as a function of the surface 262 
coverage f for various values of the scaled penetration depth d/a. (b) Simulated imaginary part of the 263 
QCM force per particle	∆ℑ(𝐹#) as a function of the surface coverage f for various values of the scaled 264 
penetration depth d/a. (c) Simulated real part of the QCM force per particle ∆ℜX𝐹#Y	as a function of 265 
the scaled interaction length (a2d)1/3/L for various values of the scaled penetration depth d/a. (d) 266 
Simulated imaginary part of the QCM force per particle	∆ℑ(𝐹#) as a function of the scaled interaction 267 
length (a2d)1/3/L for various values of the scaled penetration depth d/a.   268 
  269 
for various fixed values of d/a, the simulated inertial force ∆ℜ(𝐹#) and frictional force ∆ℑX𝐹#Y per 270 

particle are presented as functions of f in Figs. 5a and 5b, respectively. For small f (or large L), there 271 

is no hydrodynamic coupling between the particles, and hence the forces are independent of f. With 272 

increasing f, the separation between adsorbed particles decreases and hydrodynamic coupling sets in 273 

above a critical f*, as reflected by decreases in ∆ℜ(𝐹#) and ∆ℑX𝐹#Y as functions of f. Since the volume 274 

of the coupled fluid per particle increases with increasing d (cf. Fig. 3a), the critical f*, which marks 275 

the onset of hydrodynamic coupling, decreases with increasing d/a (cf. Figs. 5a and 5b). As the 276 

volume of the coupled fluid scales as a2d (cf. Fig. 3a), we define the interaction length scale as ℓ ~ 277 

(a2d)1/3, and equating this length scale with the interparticle distance, L ~ af-1/2, provides an onset 278 



13 
 

condition for hydrodynamic coupling, f* ~ (a/d)2/3. To test this scaling hypothesis, plots of ∆ℜ(𝐹#) 279 

and ∆ℑX𝐹#Y are presented in Figs 5c and 5d, respectively, as functions of ℓ/L ~ (a2d/L3)1/3 for various 280 

d/a. Hydrodynamic coupling is evident from the decreases in ∆ℜ(𝐹#) and ∆ℑX𝐹#Y that occur beyond 281 

(a2d/L3)1/3 ≈ 0.25, and this value is independent of d/a, which validates the proposed scaling, ℓ ~ 282 

(a2d)1/3.  283 

Theoretical Basis for the ΔΓ/Δf Extrapolation Method 284 

It is noted that the present simulation is based on the assumption of a regular spatial distribution of 285 

particles, and the corresponding hydrodynamic interactions are weaker than in the more realistic case 286 

of a random distribution, see, e.g., Refs. [16,20]. However, the qualitative behavior of the 287 

hydrodynamic interaction does not depend on the details of the spatial distribution, as demonstrated 288 

by the agreement between simulation and experiment in Figs. 3 and 4.  289 

This agreement supports the significance of the simulations for QCM data analysis. 290 

Consequently, we now analyze the asymptotic behavior of the simulations when f approaches the 291 

saturation density, fS, and provide a theoretical basis for the ΔΓ/Δf extrapolation method to extract 292 

particle sizes from QCM data at high surface coverage.23 We start by recalling that the frequency and 293 

bandwidth shifts are proportional to the real and imaginary components, respectively, of the force 294 

density, fΔ𝐹#, which is the force per πa2 surface area of the QCM response. Using N = AQf/πa2, Eq. 295 

(1) can be rewritten as: 296 

−Δ𝑓 + 𝑖ΔΓ = +\-.#

]T^_`a`0w
.                     (3) 297 

In Fig. 6a, it seen that for f ® fS, the real part of fΔℜ(𝐹#) approaches a constant that is independent 298 

of d/a, i.e., fΔℜX𝐹#Y®𝜒c𝜙𝜌.𝜔𝑈𝑎N. This situation resembles the rigid oscillation of a homogeneous 299 

film (cf. Fig. 2d). Fig. 6b shows that the imaginary part of the force density fΔℑ(𝐹#) ® 0, when f ® 300 

fS. If we choose fS ≈ 0.7, then the relation between fΔℑ(𝐹#) and the void fraction f’ = fS - f is linear 301 

for small f’, i.e., fΔℑX𝐹#Y®𝜒d	𝜌.𝜔𝑈𝑎N𝜙′, which is shown by the straight lines in Fig. 6b. Here the 302 

proportionality constant 𝜒d	is seen to depend on d/a. It is noted that the saturation surface coverage, 303 
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fS, beyond which the adlayer behaves as a uniform 304 

 305 
FIG 6. (a) Simulated real part of QCM force per πa2 surface area 𝜙∆ℜ(𝐹#) (corresponding to 306 
frequency shift), as a function of the void fraction f’ =fS - f, for various scaled penetration depths 307 
d/a. (b) Simulated imaginary part of QCM force per πa2 surface area	𝜙∆ℑ(𝐹#) (corresponding to 308 
dissipation shift), as a function of the void fraction f’ =fS - f, for various scaled penetration depths 309 
d/a. The data are fitted by linear functions that intercept the origin when choosing fS ≈ 0.7. (c) 310 
Simulated ratio of imaginary and real parts of the QCM force	as a function of the real part of the force 311 
density. In agreement with Eq. (7), the data for different d/a follow linear trends that intercept the 312 
horizontal at the same point. (d) Experimental ratio of bandwidth shift ΔΓ and negative frequency 313 
shift -Δf as a function of negative frequency shift per overtone -Δf/n for various overtones 314 
(corresponding to various d/a). The data for the different overtones follow linear trajectories, which 315 
intercept the horizontal axis at a frequency shift that, according to Eqs. (8) and (9), corresponds to a 316 
saturation surface coverage of fS  ≈ 0.6. 317 
 318 
and rigid film, is slightly smaller than the value at close packing of the current system, fS ≈ 0.8. 319 

Furthermore, it is expected that the value for fS varies under different experimental conditions, 320 

including the size distribution and spatial distribution of adsorbed particles. Inserting the above-321 

mentioned scaling relations for the real and imaginary parts of fΔ𝐹# into Eq. (3), we find:  322 

−-+
f
≈ 𝜒c

+haiT
]a`_`

(𝜙j − 𝜙′),                    (4) 323 

and 324 
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-k
f
≈ 𝜒d

+haiT
]a`_`

𝜙′.                                              (5) 325 

Dividing Eq. (5) by Eq. (4) and Taylor expanding the result up to the first order in f’: 326 

−-l
-+
≈ mn\o

mp\q
	,                                                       (6) 327 

and combining Eqs. (4) and (6) yields: 328 

−-l
-+
≈ mn

mp
S1 + -+]a`_`

f+hmp\qaiT
U,                     (7) 329 

i.e., on (-Δf/n,-ΔΓ/Δf ) coordinates, the QCM data appear as a straight line that intercepts the 330 

horizontal at: 331 

−∆+
f
= +hars

a`_`
,                      (8) 332 

and corresponds to the frequency shift for a uniform layer with a thickness of: 333 

ℎ = Tmp\q
u

.                       (9) 334 

Importantly, this result provides a theoretical basis for the -ΔΓ/Δf extrapolation method in order to 335 

determine the particle size from QCM data at high surface coverages.23,24   336 

Fig. 6c shows numerical data on [\∆ℜ(.
#)

arTw/0
, ∆ℑ(.

#)
∆ℜ(.#)

] coordinates, which are equivalent (up to some 337 

proportionality constants) to the (-Δf/n,-ΔΓ/Δf ) coordinates. On these equivalent coordinates, the 338 

numerical data for the different overtones (different d/a values) are observed to follow linear 339 

trajectories, which agree well with Eq. (7) and intercept the horizontal at the same point. Interestingly, 340 

while the linear relation [Eq. (7)] was derived by assuming f’ << 1, the numerical data in Fig. 6c 341 

follow a linear relationship for nearly the entire domain, especially for relatively large d/a ≥ 2. The 342 

same is observed in the experimental data in Fig. 6d, where according to Eq. (7), the intercept at -343 

Δf/n ≈ 300 Hz corresponds to a saturation density of fS ≈ 0.6 for the case we have used of a = 38 nm 344 

and cR = 7.1.  345 

Effect of Particle Polydispersity 346 

Let us finally comment on the effect of particle polydispersity. Olsson et al. used the ΔΓ/Δf 347 

extrapolation method to measures the effective film height [h in Eq. (8)] of a bimodal mixture of 348 
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spheres, with radii of a1 = 13 nm and a2 = 55 nm, using various sphere number ratios N1/N2. 25 Their 349 

measured, effective particle radius aeff = h/2 is well captured by:  350 

𝑎yzz =
,{T{w|,^T^w

,{T{^|,^T^^
,                            (10) 351 

which corresponds to the frequency shift, that one would get in vacuum, i.e. proportional to particle 352 

volume (numerator) per area (denominator). We generalize Eq. (10) to the case of a continuous 353 

particle size distribution N(a): 354 

𝑎yzz =
∫,(T)Tw~T
∫,(T)T^~T

,                    (11) 355 

and estimate the effect of polydispersity on the effective particle radius, obtained by the ΔΓ/Δf 356 

extrapolation method, applied to our QCM-D data. The particle radius in our experiment has a mean 357 

value of 𝑎� = 58 nm and a standard deviation of 𝑎′ = 7 nm. The particle size distribution (measured 358 

by DLS) is log-normal (Supporting Fig. S1). However, when (𝑎′ 𝑎�⁄ )Q ≪ 1, the log-normal is well 359 

approximated by the Gaussian:  360 

𝑁(𝑎)~exp �− (T�T�)
QTo^

Q
� .                  (12) 361 

Using that (𝑎′ 𝑎�⁄ )Q ≈ 0.04 ≪ 1, Eqs. (11) and (12) give an effective particle radius of 𝑎yzz ≈362 

𝑎�[1 + 2(𝑎′ 𝑎�⁄ )Q], which is estimated to be 8% larger, than the mean value 𝑎�.  363 

 It is finally noted, that the particle flux J from the bulk solution to the QCM-D surface is 364 

limited by diffusion,34 and according to boundary layer theory:35 J ~ a-2/3. Therefore, the size 365 

distribution on the surface Ns(a) differs from that in the bulk N(a): 366 

𝑁�(𝑎)~𝑁(𝑎)𝑎�Q/N.                    (13) 367 

Combining Eqs. (12) and (13), and dropping the (irrelevant) constant terms in the exponent gives: 368 

𝑁�(𝑎)~ exp �−
�T�T��K�^wS

��
�� U

^
��

QTo^

Q

� .                  (14) 369 

This means that the surface size distribution has a mean value of: 𝑎�� ≈ 𝑎�(1 − Q
N
(𝑎′ 𝑎�⁄ )Q), which is 370 

3% smaller than in bulk. Since this effect is small and counteracting the first (~10%) effect, we 371 
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conclude, that in the present QCM-D experiment, effects of polydispersity have a minor effect on the 372 

effective particle height obtained from the ΔΓ/Δf extrapolation method.  373 

 374 

Conclusion  375 

We have conducted numerical simulations of the hydrodynamics of spherical particles that are 376 

attached to an oscillating surface across a range of surface coverage values, f, and scaled penetration 377 

depths, d/a. The simulations compare well to experimental QCM data of adsorbed gel-phase 378 

liposomes (38-nm mean radius), offering a quantitative framework to understand how hydrodynamic 379 

coupling between adsorbed particles influences QCM measurement responses. In particular, the 380 

numerical data show that hydrodynamic coupling sets in beyond a critical surface coverage, f* ~ 381 

(a/d)2/3. The effect of the coupling is a decrease in the contribution per particle to both the frequency 382 

and bandwidth shifts. Guided by the simulation outcome, and by expanding the frequency and 383 

bandwidth shifts in the void fraction (gaps between particles), we derived a theoretical basis for the 384 

ΔΓ/Δf extrapolation method, further validating its utility for extracting particle size from QCM data 385 

collected at high surface coverages.  386 
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