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Phase modulation due to crystal diffraction by ptychographic imaging
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Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th
century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an
interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming
beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal
is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of
a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using
the ptychography method, which provides some of the most accurate x-ray phase-contrast images.
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I. INTRODUCTION

Phase problems occur widely in experimental physics
whenever the amplitude of a complex wave is accessible while
its phase is not. A famous example is the phase of a monochro-
matic x-ray wave Bragg diffracted by a crystal lattice, which
is represented by a complex-valued structure factor and can
reveal information about the atomic structure of the unit cell
of the crystal. While the relative intensities of the various
diffraction orders can be measured, their relative phases are lost
by the detection process. In crystallography, the missing phases
are usually derived by self-consistency with known physical
properties of the crystal, for example that the electron density
is real and mostly confined to the cores of the atoms in the unit
cell. The development of computational “direct methods” in
the 1950s has led to a revolution in crystallography because
it allows direct inversion of diffraction patterns to atomic-
resolution real-space images of the crystal structure [1,2].

Interference methods can be used to measure phases ex-
perimentally. In “three-beam” diffraction experiments, the
magnitude of one structure factor becomes modulated in a
characteristic way when a second Bragg peak is simultaneously
excited [3]. The shape of the interference is determined by the
relative phases of the two reflections involved and implicitly
by that of the difference reflection [4,5], which are all coupled
through the dynamical theory of x-ray diffraction [6]. This has
been developed into a practical method for measuring “triplet
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phases” comprising the sums of the three phases involved.
When enough triplets are known, the individual phases can be
deduced and the structure solved [7,8]. A Bonse-Hart interfer-
ometer was used by Hirano and Momose to measure the change
in phase of an x-ray beam transmitted through a diamond
crystal when a Bragg reflection was excited [9]. The change in
phase shift of the transmitted beam through a diffracting crystal
has also been derived by a novel Kramers-Kronig method
and found to have important applications to self-seeding of
free-electron lasers [10]. A more direct interference method
was recently proposed by Wolf [11] in which the mutual
coherence function is evaluated between the direct beam and a
single Bragg reflected beam. Since this contains their relative
phases, the unknown phase of the Bragg reflection can be
extracted. Such a method has not yet been demonstrated for
x rays and is likely to be rather difficult to implement.

II. PTYCHOGRAPHY EXPERIMENT

Here we demonstrate an experimental method, somewhat
related to that of Wolf [11], in which the phase of the direct
beam transmitted through a crystal is shown to change when-
ever a Bragg peak is generated. The reflected beam needs to be
strong enough to influence the forward beam, so the diffraction
has to be at least at the beginning of the dynamical regime [6].
Our method measures the phase of the forward beam, using the
powerful phase sensitivity of the x-ray ptychography method
[12]. By imaging the phase of the crystal under investigation by
ptychography [13], we can accurately measure the phase shift
of the beam as it is transmitted through the crystal. By imaging a
region beyond the edges of the sample, we are able to determine
precisely the phase shift of the object relative to the empty re-
gion surrounding it. This phase shift, which is known to be sen-
sitive to the x-ray refractive index and thickness, is then found
to change when a Bragg peak is generated inside the crystal.
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The x-ray ptychography method is based on the use of a
spatially confined, coherent beam, conventionally called the
“probe,” to scan an extended object at different positions.
The resulting set of diffraction patterns is then collected in
the far field and used to retrieve the sample’s electron density.
The probe position is controlled by scanning stages to always
assure significant overlap between contiguous positions. In
contrast to what happens in traditional coherent x-ray diffrac-
tion imaging methods [14], ptychography incorporates this
additional overlap information to reconstruct the sample image
using iterative inversion algorithms [15]. It avoids the need
to impose a support constraint in real space, so an image
of the probe is also derived. The diversity in the measured
intensities measured from partially overlapping illuminated
areas, together with the knowledge of each scanning position,
enables the reconstruction of the phase of an extended sample
without being limited to a maximum sample size as in coherent
diffractive imaging methods. Ptychography also allows a clear
separation of the two contributions of sample and illuminating
probe. Ptychography is a fundamentally phase-sensitive imag-
ing technique because it measures the phase of one part of an
object relative to other parts with high sensitivity. This new
method has seen rapid development over the past few years
and it has been used in many fields, from imaging computer
chips [16,17] to biological samples [18–20]. Phase sensitivity
as good as 0.005 radians has been achieved [21], which is very
powerful for identifying materials by their electron density
level and enables material-specific segmentation of the images.

Ptychography has also been demonstrated in the case of
imperfect coherence in the beam [22]. Ptychography is usually
carried out in transmission to provide 2D projection phase-
contrast images, but can be combined with tomography to
give 3D images of the local phase which accurately represents
electron density and so allows segmentation of the images into
the various materials making up their composition [17,23].
Bragg ptychography, in which diffraction patterns are collected
around a diffraction peak from a crystalline sample, has
recently been demonstrated to be sensitive to strains [24].
This enables the exciting possibility of 3D strain imaging
of extended samples [25]. Ptychography has advantages over
other techniques in the accuracy of the relative phase infor-
mation about the sample because this couples directly to the
interference fringes seen in the coherent diffraction pattern.
It has a sensitivity of 0.005 rad [21] and its quantitative
phase-shift measurements provide accurate density values in
ptychographic tomography [26]. A comparison of different
phase-contrast imaging methods, notably the transport of in-
tensity equation and one based on the contrast transfer function,
found 20% variations for a phantom test sample, depending on
which method was used [27].

Our experiment was conducted at the coherent small-angle
x-ray scattering beamline at the Swiss Light Source, Paul
Scherrer Institut in Villigen, Switzerland. The experimental
setup is shown in Fig. 1 and was composed of several com-
ponents precisely aligned with the aid of an x-ray camera.
To focus the beam we used a 75-μm-diameter Fresnel zone
plate (FZP) made of Au with 100-nm outermost zone width,
and 1-μm thickness. A central stop of 30-μm diameter was
placed upstream of the FZP to block the zeroth diffraction
order. Downstream of the FZP we used a 20-μm pinhole as an

order-sorting aperture to select only the first diffraction order.
The focal length of the zone plate was 52.7 mm at the working
x-ray energy of 8.7 keV.

Our sample consisted of an array of 350-nm-diameter
cylindrically shaped gold nanocrystals, 100 nm thick, grown
on a 100-nm-thick Si3N4 membrane. A scanning electron
microscope analysis confirmed the size of the crystals and
showed a mutual spacing of approximately 1 μm. The Au
nanocrystals were oriented with their (111) crystallographic
planes normal to the substrate, but with random orientation
about this. By rotating the sample membrane to an angle of
−1.79°, we aligned one of the off-specular Au(111) reflections,
with Bragg angle θB = 17.68◦, but close to normal incidence.
The sample was located at the focus of the FZP which provided
a coherent ptychographic probe beam. The beam size obtained
from profiling the reconstructed probe was 110 nm, close
to the size expected from the FZP outermost zone width
of 100 nm.

We used two Pilatus detectors [28] to collect the diffracted
and transmitted intensity distributions while scanning the sam-
ple across the probe. As shown in Fig. 1, a Pilatus 2M detector
was placed at 7.20 m from the sample in the transmission di-
rection, while a smaller Pilatus 100k was placed at the reflected
Bragg direction at an angle 2θB = 35.4◦ and at a distance of
1.03 m. Bragg ptychography [24,25] was found to be possible
with these data, but not investigated further in this paper.

III. IMAGING RESULTS

We started our experiment by centering a crystal in the
beam and optimizing its precise Bragg angle to collect the
highest intensity in our reflection detector. Then we defined
a series of angles centered around the Bragg angle and we
performed a ptychographic acquisition at each of them. Each
ptychographic data set consisted of a series of 458 acquisitions
of 0.5 s in a grid of concentric circles with a radial step size
of 0.05 μm covering a field of view of 1.2 × 1.2 μm [20].
Since the sample is a weak phase object, the 458 patterns
are all very similar and differ mainly in their outer regions,
appearing as blue in the example shown in Fig 1. Flares
appear there whenever the probe crosses the sample edges,
which provides the information for the crystal shape to be
imaged. The change with Bragg angle is very hard to see in
the raw data. Ptychographic reconstructions were done using
a difference map algorithm described in Refs. [29,30]. For the
reconstructions, a region of the Pilatus 2M detector of 192
× 192 pixels of 172 µm was used, corresponding to a pixel
size of 31.2 nm in the reconstructed image. Reconstructed
phase images were then corrected for a phase offset and ramp
which are inherent ambiguities arising from the ptychographic
reconstructions [31]. Because there was a small drift on the
sample position at different angles, the reconstructed images
were registered with subpixel precision [32]. In Fig. 2(a) we
show a reconstructed phase image of the nanocrystal, while
Figs. 2(b) and 2(c) show the amplitude and phase of the
reconstructed probe. The crystal has the expected shape for
dewetting from the substrate. The probe has the complex Airy
pattern structure expected for the focus of a Fresnel zone plate,
with approximately constant phase over its central lobe.
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FIG. 1. Setup schematic. A Fresnel zone plate is used to focus the beam. The Au nanocrystals were placed at the focus with their (111)
crystal planes oriented at the angle θB with respect to the incoming beam. A 2D detector is placed in the forward direction and another 2D
detector in the direction of the Bragg reflection.

In Fig. 3(a) we show line profiles of the phase images along
the dashed-dotted line indicated in Fig. 2(a) as a function of
diffraction angle around the Bragg reflection. We observe a
phase shift between the Au particle and the surrounding area
of about 0.18 rad, which is the value expected for a crystal
thickness of 102 nm, assuming a refractive index of δ = 4.0 ×
10−5 for Au at 8.7 keV [33]. More importantly, we observe
that this phase shift varies slightly for different angles θ while
rocking the crystal around the Bragg angle, θB. In Fig. 3(b)
we plot the total phase shift as a function of �θ = θ − θB. We
determined these values by computing the difference between
the integrated values inside and outside the particle, using
the regions indicated in Fig. 2(a) with dotted lines. The error
bars were taken as twice the standard deviation of the pixel
values considered in the computation, which takes into account
inhomogeneities present in the crystal and its surroundings.

IV. KINEMATICAL MODEL

A preliminary explanation of why there is a change in phase
shift can be provided by consideration of the phase of the
diffraction scattered by a simple slab of crystal illuminated
with a plane wave in the specular Bragg geometry. Considering

the relative phases due to the path-length difference of each
diffracting plane, we can sum the complex amplitude of the
scattered beam as [34]

RN (Q) = A

N−1∑
j=0

eiQdj = A
1 − eiQdN

1 − eiQd
, (1)

where N is the number of planes in the crystal, A � 1 is a
dimensionless cross-section parameter (which can be used as
a scale factor in fitting to experimental data), and d is the
plane spacing, which is 0.235 nm for Au(111). The j = 0
to N − 1 individual layers are therefore at positions z = dj .
Q represents the component of momentum transfer along the
(111) surface-normal direction, as calculated from the beam
geometry.

As is customary for diffraction from a thin slab, the exper-
imental intensity rocking curve should agree with the square
amplitude of Eq. (1). Because of the inclined sample geometry
corresponding to the 111 reflection in Fig. 1, the momentum
transfer Q appearing in Eq. (1) is the component perpendicular
to the sample surface along the 111 direction, which we denote
Q⊥. The sample geometry in reciprocal space is shown in
Fig. 4, which defines the angle θ between the incident wave

FIG. 2. (a) Reconstructed phase image of a nanocrystal at an angle close to the (111) Bragg reflection. The regions marked with dotted and
dashed lines were used for quantitative analysis (see text for details). (b) Reconstructed amplitude of the illumination probe, showing a focused
beam of 110-nm size. (c) Reconstructed phase of the illumination probe.
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FIG. 3. (a) Phase profiles along the dashed-dotted line in Fig. 2(a) for different angles θ around the Bragg reflection. (b) Phase-shift
difference between the particle and the outside region as a function of the Bragg angle, θ .

vector ki and the Q⊥ axis, the surface normal 111 direction
of the sample. The exit wave vector kf is at an angle α. The
wave-vector magnitude, k = 2π/λ, where λ = 0.142 nm is the
x-ray wavelength used in the experiment. The perpendicular
component Q⊥ can be evaluated from the geometry in Fig. 4
as

Q‖ = k sin α − k sin θ

Q⊥ = k cos θ − k cos α

= k

[
cos θ −

√
1 −

(
Q‖
k

+ sin θ

)2]
, (2)

where Q‖ = 2π/d
√

8/3 is fixed by the reciprocal lattice
geometry. The agreement of the measurement with Eq. (1),
using the perpendicular component, Q⊥, from Eq, (2), is shown
in Fig. 5(a). The data points in Fig. 5(a) were obtained by
integrating the intensities collected on the reflection detector.
These are overlaid with the function |RN(Q⊥)|2 calculated for
thickness Nd = 100 nm, after adjustment of the arbitrary scale
factor, A, and a small offset of the θ angle by 0.14° (accounting
for the sample alignment on the tilt stage), to compare experi-
mental and theoretical data, as shown in Fig. 5(a) in the red and
blue lines, respectively. This shows the agreement expected for
a finite slab of material, following the form of a sinc2 function,
in which the width of the peak is inversely related to the slab

FIG. 4. Reciprocal space construction of the perpendicular com-
ponent of momentum transfer needed to calculate the sample re-
flectivity profile. The orientation is the same as the experimental
schematic layout in Fig. 1. The thickness fringes of the sample slab,
perpendicular to the surface, are shown schematically as ellipses.

thickness, which was independently determined to be 102 nm
by the phase-shift measurement.

What is addressed in this study is the phase of expression
(1) for the reflected beam, which is plotted in Fig. 5(b). The
phase can be seen to ramp strongly within the fringes of the
sinc function, including its central maximum around the Bragg
angle, and to jump by π upon crossing each node. We note that
the steepness of the ramping behavior depends on the choice of
origin used to derive Eq. (1), but the phase reversal crossing the
nodes does not. Another example is the dynamical diffraction
consideration of the Darwin curve, where the reflected phase
changes from 0 to π , linearly with angle within the total
reflection region, resulting in x-ray standing waves when it

FIG. 5. (a) Rocking curve of diffracted intensity points with
kinematical fitting curves from Eq. (1) shown as a blue line and
the dynamical calculation as a red line. (b) Corresponding phase of
the diffracted intensity in Eq. (1). (c) Measured transmitted phase
shift, identical data to those shown in Fig. 3(b), together with the
dynamical curve, calculated from Eq. (3) by the method of Gorobtsov
and Vartanyants [36].
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interferes with the incoming beam [35]. We also note that the
phase of the reflected beam is difficult to measure directly
because this would require some phase reference, usually
obtained by wave interference. Instead, we turn our attention to
the phase of the transmitted beam, which is the one accessible
by ptychography.

V. DYNAMICAL MODEL

Central to the result reported here is how this strong modu-
lation of the reflected phase in turn influences the transmitted
beam, as seen by Hirano and Momose [9]. It is this phase which
is measured in our ptychography experiment. In the forward
direction there is a portion of the incident wave front passing
beside the sample crystal, which serves as a reference wave for
establishing the phase shift of the wave passing through to the
sample. To understand the phase shift of the transmitted wave
due to the creation of the Bragg reflection requires use of the
dynamical diffraction theory to account for the redirection of
energy from one beam to the other as it passes the crystal. In our
case, this is more closely approximated by the Laue geometry
[6,35] for which the energy oscillates between the transmitted
and reflected beams over the extinction length, which is 610 nm
for 8.5-keV x rays in gold [36]. Our sample is much thinner
than this length, so only the beginning of the oscillation is
probed.

Gorobtsov and Vartanyants [36] have analyzed this situation
using the dynamical theory by use of the Takagi-Taupin
method [37,38]. Plane-wave illumination was assumed in this
work, which is an approximation for the central lobe of the
reconstructed probe in our experiment shown in Fig. 2(c). In
the simpler version of their result, called the quasikinematical
approximation, the degree of phase modulation depends on the
Bragg reflection h as χhχh, where χh is the complex dielectric
susceptibility of the crystal [39]. While a quadratic dependence
is expected of the phase modulation on the crystal thickness,
we are in the “thin-crystal” limit where the quasikinematical
approximation applies. Given that the dynamical theory is
quantitative and that all the coupling coefficients are known
for Au, the diffraction geometry is known, so the amplitude
and phase of both the transmitted and reflected beams can be
calculated from the crystal slab thickness. In the quasikinemat-
ical limit, the phase shift of the transmitted beam δφdyn can be
approximated [36]:

δφdyn(�θ ) = − (kdN)2

8 cos 2θB

[
�(

χhχh̄

) 1




[
1 − cos 


(
sin 





)]

+�(
χhχh̄

) 1



sin 


(
sin 





)]
,


 	 kdN sin 2θB

2 cos 2θB

�θ, (3)

where all the symbols are previously defined.
Figure 5(a) shows the reflectivity calculated using the

dynamical approach [36] for a 100-nm-thick Au crystal slab
in our geometry, described below. One single parameter, a
scale factor, has been adjusted to overlay with the measured
data points. Good general agreement is found with the data
as well as the simple reflectivity function of Eq. (1). The side
fringes were not resolved in the measurement because, in the

oblique sample geometry, the integration of the diffraction
pattern on the detector washes out most of the fringes, but
they can be clearly seen in both theory curves. The transmitted
wave is a complex function whose phase, relative to that
of the incident beam, is measured in our experiment. The
dynamical calculation for δφdyn from Eq. (3) is superimposed
on our experimental results in Fig. 5(c). While the agreement
is generally good, it is worth noticing that there is some
discrepancy with the last two points of the phase-shift curve.
This mismatch is believed to be connected with the fact that
the sample was seen to be drifting slightly from its original
position, which negatively affected our reconstructions at the
last two angular positions. This result demonstrates that the
phase of the beam transmitted through a finite crystal varies
across the rocking curve and this causes an angle-dependent
phase shift in the transmitted beam which is understood from
the dynamical theory [36].

The detailed theoretical predictions assumed the incident
radiation to be a plane wave with 8.7 keV of photon energy,
calculating the diffraction from a laterally infinite 100-nm-
thick crystalline plate of gold. Strictly the beam is focused,
rather than plane wave, but since most of the intensity is in the
center, where it can be considered planar, we conclude that
it is safe to model the phase shift with an incident plane
wave to a good approximation. The crystalline planes were
inclined by about 18° to the surface, which corresponds to
the case of roughly normal incidence for the (111) reflection.
The complex wave field on the exit surface of the crystal
was obtained by two different approaches based on dynamical
theory of x-ray diffraction [6,35]. In the first method, the
Takagi-Taupin equations [37,38] were solved numerically on a
two-dimensional integration network [40]; in the second one an
analytical solution based on the Green functions approach [41]
was used. The complex diffracted and transmitted amplitudes
for different angle deviations from the Bragg condition were
obtained by these two methods as shown in Figs. 5(a) and
5(c). Results of both approaches were consistent with each
other within the thickness of the lines in Fig. 5. The rocking
curve in Fig. 5(a) has the expected form of a sinc2-function
that corresponds to the kinematical limit discussed in Eq. (1)
above. In Fig. 5(c) the angular dependence of the phase of
the transmitted wave is presented. This curve reveals small
variations from the constant refraction phase shift of 0.18 rad
which are clearly visible. These variations of about 0.016 rad
in total originate from coupling between the transmitted and
diffracted beams. We emphasize that only tabulated values of
the material constants were used in the calculation with the only
adjustable parameters being the height of the reflectivity curve
and the Bragg angle. Both the magnitude and its modulation
amplitude are predicted correctly by the dynamical theory.

VI. DISCUSSION

In summary, using a ptychographic approach [15] we have
measured how the phase of an x-ray beam transmitted through
a thin crystal changes when a diffracted beam is generated
inside the crystal. The observed phase change is found to agree
with predictions of the dynamical theory of diffraction [6,35],
evaluated numerically for the specific sample thickness. For the
case we considered, the phase change follows a derivative line
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shape, advanced on one side of the rocking curve and retarded
on the other.

This work also demonstrates the high sensitivity with which
the phase can be measured using the x-ray ptychography
approach. This quality arises directly from the high coherence
of the x-ray beam used. The beam traversing the crystal is
coherently mixed with the beam that passes around it, resulting
in a deviation of the phase of the transmitted beam. The pattern
of these deviations is reconstructed as a phase contrast image
self-consistently for all angular positions of the sample.
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