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Abstract

The ubiquity of sensing devices, the low cost of data storage, and the commodi-

tization of computing have together led to a big data revolution. We discuss

the implication of this revolution for statistics, focusing on how our discipline

can best contribute to the emerging field of data science.
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1. Introduction

The Danish physicist Niels Bohr is said to have remarked: “Prediction is

very difficult, especially about the future.” Predicting the future of statistics in

the era of big data is not so very different from prediction about anything else.

Ever since we started to collect data to predict cycles of the moon, seasons,5

and hence future agriculture yields, humankind has worked to infer information

from indirect observations for the purpose of making predictions.

Even while acknowledging the momentous difficulty in making predictions

about the future, a few topics stand out clearly as lying at the current and future

intersection of statistics and data science. Not all of these topics are of a strictly10

technical nature, but all have technical repercussions for our field. How might

these repercussions shape the still relatively young field of statistics? And what
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can sound statistical theory and methods bring to our understanding of the

foundations of data science? In this article we discuss these issues and explore

how new open questions motivated by data science may in turn necessitate new15

statistical theory and methods now and in the future.

Together, the ubiquity of sensing devices, the low cost of data storage, and

the commoditization of computing have led to a volume and variety of modern

data sets that would have been unthinkable even a decade ago. We see four

important implications for statistics.20

First, many modern data sets are related in some way to human behavior.

Data might have been collected by interacting with human beings, or personal or

private information traceable back to a given set of individuals might have been

handled at some stage. Mathematical or theoretical statistics traditionally does

not concern itself with the finer points of human behavior, and indeed many25

of us have only had limited training in the rules and regulations that pertain

to data derived from human subjects. Yet inevitably in a data-rich world, our

technical developments cannot be divorced from the types of data sets we can

collect and analyze, and how we can handle and store them.

Second, the importance of data to our economies and civil societies means30

that the future of regulation will look not only to protect our privacy, and how

we store information about ourselves, but also to include what we are allowed

to do with that data. For example, as we collect high-dimensional vectors about

many family units across time and space in a given region or country, privacy

will be limited by that high-dimensional space, but our wish to control what we35

do with data will go beyond that. At the same time, a key problem we face in

the wish to regulate or control what we do with data is the increasing complexity

of algorithms. On one hand, the concepts behind algorithmic thinking can be

challenging to explain in layman’s terms so that anyone–for example, a jury of

one’s peers–can understand the principles by which an algorithm functions, and40

on the other hand algorithms themselves are becoming so complex that when

coupled with the vast amounts of data we can now employ, it can at times be

very hard to understand the rationale for their output. Clearly we require a way
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to balance algorithmic interpretability with predictive performance—especially

if we are making important decisions on the basis of a given algorithm.45

Third, the growing complexity of algorithms is matched by an increasing

variety and complexity of data. Data sets now come in a variety of forms that

can be highly unstructured, including images, text, sound, and various other

new forms. These different types of observations have to be understood to-

gether, resulting in multimodal data, in which a single phenomenon or event is50

observed through different types of measurement devices. Rather than having

one phenomenon corresponding to single scalar values, a much more complex

object is typically recorded. This could be a three-dimensional shape, for ex-

ample in medical imaging, or multiple types of recordings such as functional

magnetic resonance imaging and simultaneous electroencephalography in neu-55

roscience. Data science therefore challenges us to describe these more complex

structures, modeling them in terms of their intrinsic patterns.

Finally, the types of data sets we now face are far from satisfying the classical

statistical assumptions of identically distributed and independent observations.

Observations are often “found” or repurposed from other sampling mechanisms,60

rather than necessarily resulting from designed experiments. They may corre-

spond to a mixture of many heterogeneous populations, with the differences

within populations proving challenging to analysis. To remove unwanted arti-

facts, extensive preprocessing (sometimes aptly described as “data wrangling”

[1]) must often take place—leading to an 80/20 rule of thumb amongst practi-65

tioners suggesting that four times as much time should be set aside for wrangling

than for actual analysis and inference. The complexities of heterogenous, un-

structured data requiring substantial preprocessing is challenging to statistical

modelers, and calls for new approaches to theoretical concepts and methodolog-

ical developments, as well as the pipeline that turns these into rigorous applica-70

tions of modern statistics in practice. Our field will either meet these challenges

and become increasingly ubiquitous, or risk rapidly becoming irrelevant to the

future of data science and artificial intelligence.
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2. Missing the Data Science Boat?

As part of the thirty-eighth Conference on Stochastic Processes and their75

Applications in 2015, we took part in a debate at the Oxford Union, where we

were asked to take opposing side on the following motion: This house believes

that the mathematical scientists will miss the data science boat. The argument of

the “for” side was not that statistics would be prevented from climbing aboard,

but rather that statisticians might willingly choose to maroon themselves on80

shore, forsaking messy data science challenges for the purity of fundamental

theoretical challenges in stylized circumstances that have been abstracted away

from the reality of modern-day data sets. The argument of the “against” side

was that statistics was so integral to data science, the boat would sink without

it! Rather dramatically, neither side won, as the house vote of over 100 people85

left us at a perfect draw. Perhaps neither side won the debate simply because

both arguments have merit.

This makes for a rather amusing anecdote, but underneath the superficial

there is an element of seriousness. A significant portion of what we have come

to call data science is not statistics per se, and does not emphasize modeling90

and inference skills that statisticians have long been trained to value [2]. Part

of data science is architecting, understanding how to store and access data; part

of it is algorithms, understanding how to implement a chosen analysis method;

and part of it is simple common sense. None of these aspects is necessarily well

suited to developing statistical theory, though some thought to implementation95

and analysis trade-offs has started to appear in the literature [3].

The statistical theory and methods that our field will develop in an era of

big data must be adapted to the types of data that we encounter in the world

around us—or we risk putting ourselves in grave danger of becoming irrelevant.

What is more, statistics also needs to adjust to other societal constraints and100

implications that are becoming apparent. A large part of this is developing an

awareness and general broad understanding of the extent to which data will

affect everyone’s daily lives—not only through technology, but also through
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policy, commerce, privacy, and trust.

3. Data Governance105

The availability of “big data” poses great opportunities for societal gain,

but also threats. Such data sets often comprise observations collected from, or

about, human subjects. The potential privacy implications of such volumes of

personally identifiable information are enormous, and consequently it has mo-

tivated (for example) the development of statistical methods that can calculate110

meaningful summaries from anonymized data. Ensuring that our field helps

contribute in this and other ways to an informed public discourse is crucial for

the future potential of data science to be realized—otherwise abuse and misuse

of data can generate strong public mistrust. Existing principles for working

with human subjects data at smaller scales and levels of pervasiveness–such as115

the principle of informed consent—are under ever greater pressure thanks to the

continuous technological developments of algorithms and analytics.

Part of the solution to this conundrum will inevitably be technological, or

at least technical. Recent years have seen considerable innovation in combining

statistics with encryption as a means to ensure privacy—for example, under-120

standing how to do inference when encryption has already taken place [4, 5].

Additional technical challenges arise when we consider how to design fail-safe

anonymization schemes and methods to analyze anonymized data.

Various international efforts have been launched to determine overarching

principles in respect to the usage of personally identifiable information, and125

also to understand the consequences for analysis when individuals are granted

the right to have their data removed from databases (for instance, as a con-

sequence of the forthcoming European General Data Protection Regulation).

For example, a recent professional society report [6] spells out recommenda-

tions concerning privacy and data access as well as control; similarly a recent130

British Academy and UK Royal Society report sets out principles for data gov-

ernance [7, 8]. These documents recognize the rapid advances both of data-
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enabled technologies and of data collection activities. As technology advances

in this manner, with rapid and widespread adoption, the risk of a major public

backlash is considerable.135

4. Regulation and Algorithmic Transparency

Data collection and the governance thereof is therefore a subject of signifi-

cant immediate concern. Rather more futuristically, the regulation of algorithms

is also generating considerable debate. For example, the Association for Com-

puting Machinery has weighed in with a statement on algorithmic transparency140

and accountability [9]. The new European General Data Protection Regulation

details the rights of citizens, if affected by a particular algorithmic decision, to

an explanation of why that decision was arrived at. In this way regulation is

beginning to interact with the latest technological developments in data science.

The notion of algorithmic transparency may seem intuitively obvious, but145

there are clear problems with this notion when it is subject to the legal definition

of the “explanation” to which citizens may be entitled. To arrive at, say, a pre-

diction, we could posit an interpretable model (for example, logistic regression),

fit it using explanatory variables, and then predict binary outcomes. If we have

too many variables, then we could appeal to modern methods of model choice or150

sparsification, or we could even pre-process the set of explanatory variables–for

example, using principal components analysis. One way or another, we could

conceivably arrive at a model with clearly identified explanatory variables, and

we would then know why we arrive at a particular predicted value when appeal-

ing to the model. To “explain” this model out of its mathematical context, we155

could give a quantitative description of which variables impacted the prediction

or decision, and we could also explain how we arrived at the model itself (e.g.,

what choice of error metric we used when developing our inferential procedures).

Now suppose that things become gradually more complicated. Assume our

mechanism for generating a prediction involves a complex set of iterated non-160

linear operations. We can still assess predictive performance by keeping sets of
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data apart and held out, for example by having a separate training and testing

data set. However the explanation as to why we make a given prediction is no

longer very clear. We input data, which may be very high dimensional, into

some algorithmic procedure, and that procedure outputs a prediction or a de-165

cision. The complex interactions which generated the prediction are based on

(what may be) interpretable predictors, but the interpretation of their combi-

nation is unclear, and if we have very many predictors, their combined usage

may correspond to an approximation of variables whose use could reasonably

be perceived as discriminatory (for example, proxy variables for race or gender170

in determining an individual’s employment prospects or creditworthiness for a

loan). Currently, the more complex a predictive algorithm tends to be, the more

difficulty arises when seeking a clear understanding of its mechanisms. Even if,

say, our metric for good algorithmic performance in general is well understood–

mean squared prediction error as measured on a held-out test data set relative to175

a training data set, for example–this does not guarantee that our understanding

of the mechanism discovered in any given modeling problem yields any insight

into “why” a particular prediction is made. A set of key tools remains to be

discovered in this field, perhaps most importantly those which attempt to derive

interpretability (such as [10], for example).180

There are also interesting decision-theoretic problems that relate to our un-

derstanding of transparency. It may well be the case that in a given scenario,

predictive error will increase as we make models more transparent. What is a

reasonable trade-off between prediction error and transparency, and how can

we formally study and determine this trade-off? By using proper mathematical185

methods, with explicit and quantitative optimization criteria, we can envision

making this trade-off well defined, and hence eventually equally well understood.

5. Structured and Unstructured Data

Another area where modern statistics stands to contribute to data science

is the analysis of large data sets that correspond to more than collections of190
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just single scalar observations. Such data sets can take the form of shapes

such as curves or volumes, or even strongly non-Euclidean objects such as net-

works [11]. A network represents relationships (edges) between objects (nodes),

enabling the modeling and analysis of everything from social networks to phys-

ical infrastructure. Recent years have shown how statistics can contribute to195

the broader field of network analysis, by formulating models that are sufficiently

flexible to explain observed variation, but also tractable to analysis and forward

simulation (e.g. [12, 13]). Owing in large part to the lack of any unique underly-

ing vector space structure, many basic statistical questions remain open in the

study of networks: how do assess and compare model fit, how do we generate200

more heterogeneous yet structured observations that better match network data

sets, and how do we incorporate covariates and other non-network information

into our inference mechanisms in a manner that is provably consistent?

Data science faces a number of questions when multiple observations of very

large networks are considered: how to store them, how to access them effi-205

ciently, and how to compute meaningful summaries of the structures they con-

tain. Statistics can contribute in this setting through the development of theory

to quantify precisely what it means to have “more” observations: more repli-

cates of a single network structure, denser observations in time, asympototics

in network size and temporal evolution, and a greater degree of heterogeneity in210

node-to-node connectivity. A number of mathematical challenges stand in the

way of defining more complex limiting objects that encompass these ideas, and

statistics is needed to relate the network data sets we observe in practice to the

corresponding mathematical objects and models.

These questions require theoretical insights and algorithmic advancements215

to be developed in tandem, especially when considering the computational fea-

sibility of analyzing large networks. Some work is focused on proving results

about methods that are known to be efficiently implementable; other work seeks

to establish fundamental limits and optimality properties of idealized methods

that might not be sufficiently scalable to implement on all but the smallest of220

networks. As the field matures, we would ideally seek a continuum of meth-
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ods, from those that are linear in the number of nodes or edges and hence

inherently scalable—with suboptimal but hopefully provable properties—to al-

gorithms that scale with some power of the number of observations but may

yield optimal properties. Unfortunately we are often in a scenario where we225

can prove something about methods that are not scalable, but not about those

methods that are. Closing this gap is an important example of how statistics can

contribute to a rigorous notion of data science with firm theoretical foundations.

6. Bias, Incompleteness, and Heterogeneity

We have seen how the statistical challenges presented by the present and230

future of data science look to be growing increasingly more difficult, demanding,

and urgent. We now discuss a particularly critical area—that of missing and

biased observations—which will require us to develop a new theory for data

science. In traditional statistics, we being by specifying a sampling mechanism

and a population from which a sample will be drawn. Despite enthusiastic235

claims that the availability of “all” data precludes the need for statistical models

or sampling methodologies, the opposite is in fact true. The more we strive

to make sense from repurposed or “found” data, where we may have limited

access to information about the sampling design or population composition,

the more crucial it is that we take considerations of bias and missingness into240

account [14]. But as we abandon well-designed experiments, and start to address

the properties of unbalanced random designs, much of statistical theory lies

underdeveloped. A classic example is the abandonment of “missing at random”

assumptions [15], for example when the act of observation is correlated with

the quantity that is the subject of inference [16]. For example, studying road245

conditions using self-reported smartphone data may tell one more about the

distribution of smartphones in a city than about the conditions of its roads [17].

Given the promise of the vast quantities and types of data were are now able to

collect, new statistical thinking must arise to help us make sense of non-ideal

sampling paradigms and develop mechanisms to enable repeatable, defensible250
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inferential conclusions to be drawn (even if on a very limited basis).

Another important challenge is the analysis of populations with a high degree

of heterogeneity [18]. Recognizing heterogeneity and trying to profit from it—by

understanding when to aggregate, smooth, and average versus when to disag-

gregate and stratify—has become increasingly important in areas such as speech255

recognition technology and precision medicine [19, 20]. Modeling heterogeneity

effectively, as well as correctly understanding the sampling replication proper-

ties of complex random objects, remains an outstanding problem [21]. Lacking

a sufficient wealth of heterogeneity in our models means that we risk failing to

reflect accurately all the potentially important structure in our data. Modeling260

and inference procedures specifically designed for these types of scenarios are

desperately needed if data science is ever to be put on a firm inferential footing.

7. Discussion

Much of data science to date has focused on purely predictive “black box”

tools rather than classical modeling, inference, and analysis. It is natural with265

richer sources of data to start by looking for patterns, rather than trying to fit

specific models. Yet this remains problematic: how can we determine if patterns

are significant if natural variation cannot be quantified by way of models?

The role of statistics is to make our understanding of observed phenomena

quantitative and precise. A number of new problems challenge that task: data270

sets are taking ever more complex forms than previously has been the case.

In addition observations are often made without proper experimental design,

resulting in biased and incomplete data.

Yet these technical challenges are not sufficient to describe the full set of

contributions which statistics must make to the field of data science. Much of275

“big data” concerns human subjects, raising ethical and governance challenges

that we have a responsibility to help resolve. Our teaching of statistics will need

to be adapted to encompass a broader degree of training in such areas.

It is still unclear how questions of ethics and algorithmic transparency will be
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resolved through data governance. Many learned societies, professional organi-280

zations, and national academies of science are taking a strong interest. Solutions

will inevitably involve technical developments and raise new methodological

challenges; these will in turn require strong involvement from statistics.

In the end it is clear that algorithms and the decisions they derive from data

will increasingly have an impact across nearly every aspect of society [22]. Many285

of these decisions will be automated, and harnessing the power of statistics and

the efficiency gains of automated decision making can potentially be incredi-

bly beneficial to our world at large. If, however, the inner workings of such

procedures remains shrouded in mystery in the public eye, and determining the

fairness of algorithmic decisions becomes hard, then data science will lose public290

trust. Opaque and purely predictive algorithms have served to demonstrate to

all of us the power of large-scale analysis, but as automation stands to impact

increasingly significant decisions, the need for greater scrutiny and transparency

is becoming apparent. Our field has an clear and present window of opportunity

to build new theory and methods to meet the current and future challenges of295

data science, which we must do to not risk missing the data science boat.
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