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Abstract	

MRI	red	flags	proposed	over	a	decade	ago	by	the	European	Magnetic	Resonance	Network	in	

MS	(MAGNIMS)	have	guided	clinicians	in	the	diagnosis	of	multiple	sclerosis	(MS).	However,	

the	 past	 10	years	 has	 seen	 increased	 recognition	 that	 vascular	 disease	 can	 coexist	 and	

possibly	interact	with	MS,	improvements	in	the	reliability	of	ways	to	differentiate	MS	from	

novel	 antibody-mediated	 CNS	 disorders,	 such	 as	 anti-aquaporin-4	 antibody	 and	 myelin	

oligodendrocyte	glycoprotein	antibody	associated	diseases,	and	advances	in	MRI	techniques.	

In	this	Review,	MAGNIMS	updates	the	imaging	features	that	differentiate	the	most	common	

mimics	of	MS,	particularly	age-related	cerebrovascular	disease	and	neuromyelitis	optica,	from	

MS	 itself.	We	also	provide	a	pragmatic	 summary	of	 the	clinically	useful	MRI	 features	 that	

distinguish	MS	from	its	mimics,	and	discuss	the	future	of	non-conventional	techniques	that	

have	identified	promising		disease-specific	features.	
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[H1]	Introduction	

The	diagnosis	of	multiple	 sclerosis	 (MS)	 is	usually	 straightforward	 in	patients	who	present	

with	a	typical	clinical	history.	When	symptoms	that	are	not	specific	to	or	are	atypical	for	MS	

occur,	 however,	 ancillary	 tests	 have	 a	 more	 dominant	 role.	 MRI	 is	 the	 most	 commonly	

performed	investigation	that	can	support	a	clinical	diagnosis	of	MS1,2	and,	for	a	considerable	

proportion	of	patients,	can	even	replace	some	clinical	criteria	by	revealing	brain	and	spinal	

cord	 changes	 that	 are	 typical	 for	 MS.	 MRI	 can	 also	 be	 useful	 for	 ruling	 out	 alternative	

neurological	diseases3.	

The	diagnostic	 criteria	 for	MS	 focus	on	white	matter	 lesion	 (WML)	abundance	and	

dissemination	in	space	and	time4,	but	these	criteria	alone	cannot	confirm	a	diagnosis	of	MS	

or	rule	out	other	diagnoses	because	WMLs	occur	 in	many	diseases	and	clinical	conditions.	

Therefore,	 characteristics	 such	 as	 lesions	 at	 different	 ages	 (acute	 and	 chronic),	 Dawson	

fingers,	juxta-cortical	lesions,	and	short	partial	and	eccentric	spinal	cord	lesions	can	support	

a	diagnosis	of	MS2,5,6	 (Figure	2).	However,	diagnostic	 imaging	criteria1,2,4,7	were	created	to	

predict	 the	 development	 of	 MS	 in	 patients	 with	 a	 clinically	 isolated	 syndrome	 (CIS)	 that	

suggests	inflammatory	demyelination,	and	therefore	in	the	context	of	a	clinical	presentation	

typical	 of	MS.	 If	 used	 outside	 of	 this	 context	 in	 an	 attempt	 to	 distinguish	MS	 from	other	

disorders,	such	criteria	might	not	perform	well	because	they	are	fulfilled	by	a	considerable	

proportion	of	patients	with	other	neurological	diseases	 (Table	1)8–16.	Their	use	 in	 this	way	

could,	therefore,	lead	to	unnecessary	anxiety,	misdiagnosis	and	inappropriate	treatment17.		

Red	flags	that	were	described	over	a	decade	ago	by	the	European	Magnetic	Resonance	

Network	in	MS	(MAGNIMS)18	have	guided	clinicians	who	are	considering	a	diagnosis	of	MS,	

but	several	new	developments	in	the	MS	imaging	field	have	occurred	in	the	past	decade.	First,	

the	coexistence	of	age-related	changes	and	vascular	disease	has	been	recognized	in	patients	

with	MS,	 and	 these	 comorbidities	 pose	 particular	 diagnostic	 challenges.	 Second,	 features	

have	 been	 described	 that	 distinguish	 MS	 from	 the	 newly	 recognized	 antibody-mediated	

syndromes	of	neuromyelitis	optica	spectrum	disorders	(NMOSDs)	and	acute	demyelinating	

encephalomyelitis	 (ADEM),	 associated	 with	 anti-aquaporin-4	 (AQP4)	 antibodies	 and	 anti-

myelin	 oligodendrocyte	 glycoprotein	 (MOG)	 antibodies.	 Last,	 advances	 in	 the	 latest	 MRI	

techniques	have	identified	promising	disease-specific	features.		
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Taking	these	developments	into	account,	a	MAGNIMS	workshop	was	held	for	three	

purposes.	First,	to	update	the	imaging	features	that	differentiate	between	MS	and	its	most	

common	imaging	mimics,	particularly	age-related	cerebrovascular	disease,	NMOSD	(including	

anti-MOG	antibody	associated	disease)	on	1.5–3T	conventional	MRI	using	clinical	diagnostic	

sequences19	(for	example,	T2-weighted	and	T2-weighted	fluid-attenuated	inversion	recovery	

(T2-FLAIR),	and	pre-contrast	and	post-contrast	weighted	scans)20.	7T	data	was	not	considered	

in	this	 review	owing	to	the	 limited	clinical	 relevance	at	present.	Second,	 to	determine	the	

utility	 of	 other	 MRI	 techniques,	 such	 as	 susceptibility	 weighted	 imaging	 (SWI)	 double	

inversion	recovery	(DIR),	proton	MR	spectroscopy	(MRS),	magnetization	transfer	ratio	(MTR)	

and	diffusion	 tension	 imaging	 (DTI),	which	appear	promising	 in	 identifying	disease-specific	

features	21.	Finally,	we	also	examined	advances	that	have	been	made	in	identifying	imaging	

hallmarks	that	can	differentiate	relatively	uncommon	MS	mimics	from	MS.	In	this	Review,	we	

present	the	findings	of	this	workshop	in	relation	to	the	use	of	MRI	to	distinguish	MS	from	

other	white	matter	disorders,	and	propose	a	practical	diagnostic	algorithm	(Fig.	1).		

	

[H1]	Cerebrovascular	disease	and	ageing	

[H2]	Imaging	similarities	to	MS		

Most	neurologists	and	neuroradiologists	would	be	unsure	of	the	diagnosis	for	a	50-year-old	

patient	who	smoked	and	presented	with	progressive	walking	difficulties	and	WMLs	on	brain	

MRI.	This	difficulty	is	because	the	most	common	cause	of	WMLs	is	age-related	changes	and/or	

vascular	disease,	but	MS	lesions	can	look	similar22–24.	WMLs	can	indicate	diverse	underlying	

processes	related	to	a	broad	spectrum	of	vascular	disorders,	amongst	which	cerebral	small	

vessel	disease	(SVD)	is	particularly	important.	SVD	is	pathologically	heterogeneous	and	best	

considered	as	a	group	of	diseases25	rather	than	a	single	entity	(Table	2).	Small	vessels,	such	

as	veins	and	arterioles	with	a	diameter	<500	μm,	cannot	be	studied	easily	in	vivo,	and	signs	

of	 parenchymal	 damage,	 such	 as	 WMLs,	 lacunae,	 widened	 Virchow–Robin	 spaces	 	 and	

microbleeds,	are	used	as	MRI	surrogate	markers	for	SVD26	(Fig.	3).	These	vascular	features	

become	more	numerous	with	age	and	influence	functional	outcomes	and	mortality27,28.	
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Age-related	white	matter	 changes	 are	 heterogeneous29.	 Periventricular	 pencil-thin	

lining	of	the	ventricles	is	commonly	seen	in	normal	ageing	(frequently	already	detectable		in	

the	fifth	to	sixth	decades	of	life),	followed	by	so-called	caps	(hyperintense	lining	of	the	frontal	

and	 occipital	 horns	 of	 the	 lateral	 ventricle;	 Fig.	 3)	 and	 bands	 (thicker	 hyperintense	 lining	

parallel	and	adjacent	to	the	walls	of	the	lateral	ventricles),	which	can	indicate	ependymal	loss,	

subependymal	 gliosis	 and	 widened	 extracellular	 spaces.	 Irregular	 and	 discontinuous	

periventricular	bands	are	also	common	in	ageing,	but	are	also	associated	with	other	features	

of	 SVD	and	with	periventricular	 venous	 collagenosis30.	 Punctate	periventricular	WMLs	 are	

frequently	seen	in	ageing,	even	in	people	aged	<50	years,	can	be	of	vascular	or	nonvascular	

origin,	 and	 are	 relatively	 stable	 over	 time29.	 Early	 confluent	 WMLs	 and	 confluent	

periventricular	WMLs	 are	 less	 common	 than	 the	 previously	 mentioned	 features,	 but	 can	

progress	 faster,	 thereby	 mimicking	 the	 evolution	 of	 MS	 lesions,	 and	 are	 more	 strongly	

associated	with	vascular	risk	factors31,	lacunae32		and	clinical	disability33.	These	age	related	

and	ischemic	periventricular	white	matter	changes	have	not	been	studied	separately	in	MS,	

but	are	difficult	to	distinguish	from	periventricular	MS	lesions.		

Widened	Virchow–Robin	spaces	often		are	seen	around	the	anterior	commissure	in	

early	adulthood,	and	near	the	vertex	in	older	people,	and	can	also	be	present	at	the	centrum	

semiovale	in	cerebral	amyloid	angiopathy34.	In	MS,	however,	widened	Virchow–Robin	spaces	

are	 more	 prevalent,	 particularly	 in	 high	 convexity	 brain	 areas35,	 which	 might	 indicate	 a	

perivascular	inflammatory	component	of	the	disease36,	or	be	an	indirect	marker	of	cerebral	

atrophy.	Brain	volume	loss	occurs	at	a	higher	rate	(0.5–1%	per	year)	in	MS	than	in	healthy	

ageing	(0.1–0.3%	per	year)37,	although	interpretation	of	volume	loss	at	the	individual	level	is	

difficult.		

Patients	with	MS	develop	age-related	changes	and	vascular	comorbidities	over	time,	

and	these	factors	can	affect	clinical	outcomes.	Indeed,	disability	in	MS	is	strongly	associated	

with	age38	and	vascular	risk	factors39,40.	Vascular	risk	factors	are	also	associated	with	worse	

imaging	outcomes	in	MS:	smoking	is	associated	with	decreased	whole	brain	volume,	obesity	

is	 associated	with	 increased	 T1-hypointense	 lesion	 volume,	 and	 arterial	 hypertension	 and	

heart	disease	are	associated	with	decreased	grey	matter	and	cortical	volumes41.	The	presence	

of	vascular	risk	factors	should,	therefore,	be	considered	when	interpreting	imaging	results	in	

patients	with	MS.	
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[H2]	Differentiation	from	MS		

[H3]	Brain	lesion	distribution	and	lesion	features		

The	 location	and	shape	of	 lesions	 (Figure	2),	as	well	as	 their	signal	behaviour	on	different	

sequences2,3,6,42,	 are	 useful	 in	 differentiating	MS	 from	 SVD	—	 lesions	 in	 the	 optic	 nerve,	

juxtacortical	 areas,	 periphery	 of	 the	 brainstem	and	 the	 posterolateral	 cervical	 spinal	 cord	

indicate	MS	rather	than	SVD,	as	do	lesions	that	are	irregular	in	shape	or	appear	as	Dawson	

fingers.		

WMLs	 in	 SVD	 spare	 the	U-fibres,	 affect	 the	 central	 pons,	 and	 are	 associated	with	

lacunae	 and	microbleeds.	 Lacunae	 can	 be	 differentiated	 from	black	 holes	 seen	 in	MS	 (T1	

hypointensities)	by	virtue	of	their	similarity	to	cerebrospinal	fluid	(CSF)	signals.	Widening	of	

Virchow–Robin	spaces	in	the	basal	ganglia	—	known	as	état	criblé		–	is	usually	abnormal	but	

not	seen	in	MS,	and	is	typically	associated	with	extensive	WMLs	owing	to	arteriolosclerotic	

SVD.	

Cerebral	 microbleeds	 detected	 with	 SWI	 (T2*-weighted)	 imaging43	 reflect	

haemosiderin	 deposits	 in	 the	 vessel	walls	 and	 are	 a	marker	 of	 vasculopathy	 that	 is	most	

commonly	 due	 to	 amyloid	 angiopathy	 (in	 which	 the	 microbleeds	 have	 a	 primarily	 lobar	

distribution)	 or	 simple	 arteriolosclerosis	 (in	 which	 they	 are	 primarily	 in	 the	 deep	 grey	

matter)44,45	 (Table	 2).	Microbleeds	 reported	 in	 patients	with	MS	might	 have	 been	 due	 to	

concomitant	 vascular	 disease46,	 as	 they	 were	 not	 observed	 when	 patients	 with	 vascular	

disease	were	excluded47;	 in	general,	 the	presence	of	microbleeds	therefore	 indicates	SVD.	

Cortical	siderosis	is	frequently	seen	with	SWI	in	amyloid	angiopathy48,	but	not	in	MS.		

The	 presence	 of	 a	WML	 central	 vein,	 identified	 as	 a	 hypointensity	 relative	 to	 the	

surrounding	lesion	on	T2*	or	FLAIR*	images	and	known	as	the	central	vein	sign,	is	thought	to	

be	characteristic	of	MS	lesions	(Fig.	2).	Optimized	T2*	protocols	can	detect	central	veins	in	

~80%	of	MS	lesions	at	3T,	but	a	smaller	proportion	of	SVD	lesions	have	central	veins:	a	cut-off	

of	 45%	 is	 highly	 predictive	 in	 distinguishing	 between	 the	 two	 conditions49,50.	 However,	

visualizing	 all	 lesions	 is	 not	 practical	 in	 the	 clinical	 setting,	 and	 this	 cut-off	might	 be	 less	

accurate	in	older	patients	with	MS	and	vascular	comorbidities51.		

Cortical	lesions	detected	with	3T	imaging	protocols	(T1,	T2	and	DIR)	are	well	described	

as	features	of	MS52,53(Figure	2).	However,	cortical	microinfarcts	(diameter	<200	μm)	occur	in	

vascular	disease	and	can	be	seen	with	DIR	at	3T54–56,	but	may	be	difficult	to	differentiate	from	

MS	cortical	lesions	in	older	patients	with	MS	and/or	patients	with	vascular	risk	factors.		
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Specific	 features	of	 vascular	disease	depend	on	 the	underlying	pathogenic	process	

(Tables	2	and	3).	Cortical,	subcortical	and	basal	ganglia	infarcts	with	restricted	diffusivity,	as	

well	as	haemorrhages,	can	be	present	in	many	diseases	that	affect	the	vasculature	(Fig.	3).	

Additional	 features	 suggest	 certain	 diagnoses;	 for	 example,	 large	 diencephalic	

pseudotumoural	lesions	and	cerebral	venous	thrombosis	suggest	neuro-Behçet	syndrome15,	

leptomeningeal	 enhancement	 suggests	 many	 types	 of	 vasculitis,	 dural	 masses	 suggest	

granulomatosis	with	polyangiitis	(formerly	Wegener	granulomatosis)57	,	increased	T1	signal	

intensity	in	the	pulvinar	and/or	enlarged	basilar	artery	diameters58	suggest	Fabry	disease,	and	

anterior	 temporal	 lobe	 pole	 and	 external	 capsular	 WMLs	 suggest	 cerebral	 autosomal	

dominant	arteriopathy	with	subcortical	 infarcts	and	 leukoencephalopathy	(CADASIL)59	 (Fig.	

3).	The	presence	of	multiple	focal	or	long	segments	of	vessel	narrowing	(Fig.	3)	and	concentric	

vessel	wall	contrast	enhancement60	helps	to	distinguish	medium	and	large	cerebral	vasculitis	

from	MS25,57.	 Finally,	 the	 central	 vein	 sign,	 assessed	 with	 SWI,	 was	 less	 common	 among	

patients	with	some	autoimmune	disorders	that	affect	the	small	vessels	 (present	 in	15%	of	

lesions)	when	compared	with	patients	with	MS	(present	in	89%	of	lesions)51.		

	

[H3]	Spinal	cord	lesions	

Spinal	 cord	 MRI	 is	 included	 in	 the	 MS	 diagnostic	 criteria2	 and	 has	 a	 major	 role	 in	 the	

differential	diagnosis,	as	incidental	spinal	cord	lesions	do	not	occur	in	normal	ageing61,62	or	in	

typical	SVD63.	Spinal	cord	infarcts	rarely	cause	diagnostic	difficulties	clinically	or	with	MRI64	

(Table	3),	 though	the	risk	 factors	 for	spinal	 infarcts	seem	to	differ	 from	those	for	cerebral	

infarcts	(spinal	cord	infarction	patients	being	younger,	more	often	women	and	less	affected	

by	hypertension	and	cardiac	disease	that	those	with	cerebral	infarction)65.		

	

[H1]	Migraine	

Migraine	 affects	 ~10–15%	 of	 the	 general	 population66.	 WMLs	 that	 look	 similar	 to	 those	

associated	with	vascular	disease	on	MRI,	some	of	which	have	a	periventricular	location,	are	

associated	with	migraine.	Owing	to	the	young	age	of	presentation,	these	WMLs	are	a	common	

cause	of	MS	misdiagnosis17,	particularly	as	their	appearance	on	MRI	can	fulfil	the	radiological	

criteria	for	MS8,9.	Migraine-associated	WMLs	are	typically	small	and	nonconfluent	in	the	deep	

white	matter	 (sparing	 U-fibres),	 are	more	 stable	 over	 time	 than	MS	 lesions66,	 and	 occur	
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adjacent	to	the	body	of	the	lateral	ventricle	less	frequently	than	in	MS67.	The	central	vein	sign	

might	also	be	useful	 in	differentiating	migraine	from	MS:	the	median	percentage	of	WMLs	

with	the	central	vein	sign	was	lower	in	migraine	(22%)	than	in	MS	(84%),	although	there	was	

some	overlap	(2	out	of	10	migraine	cases	with	80%)68.	Additionally,	a	simplified	algorithm	of	

central	vein	sign	determination	 (	 in	3	white	matter	 lesions	only)	has	 recently	 shown	good	

accuracy	in	differentiating	MS	from	migraine69.				Another	differentiating	feature	of	migraine	

with	aura	is	a	higher	prevalence	of	silent	brain	infarcts,	particularly	in	the	deep	grey	matter	

and	cerebellum70,	than	seen	in	MS.	Finally,	cortical10	and	spinal	cord	lesions71	might	be	helpful	

in	diagnosing	MS,	as	these	lesions	do	not	occur	in	migraine.		

	

[H1]	Neuromyelitis	optica	spectrum	disorders	

The	clinical	phenotype	of	NMOSD	can	overlap	with	that	of	relapsing–remitting	MS,	although	

NMOSD	has	a	predilection	for	the	optic	nerve	and	spinal	cord	—	involvement	of	the	latter	is	

typically	associated	with	a	longitudinally	extensive	transverse	myelitis	(LETM).	Nevertheless,	

a	young	female	with	NMOSD	who	initially	presents	with	unilateral	optic	neuritis	with	poor	

recovery	 and	 a	 few	WMLs	 is	 likely	 to	 be	 diagnosed	 with	 MS.	 The	 discovery	 that	 serum	

antibodies	against	AQP4	water	channels	(which	are	present	on	astrocyte	foot	processes)	are	

present	in	60–90%	of	patients	with	NMOSD	has	advanced	the	diagnostic	criteria72,73.	The	most	

recent	criteria74	use	a	single	term	(NMOSD)	to	describe	all	patients,	but	divide	patients	into	

those	who	have	 anti-AQP4	antibodies	 in	 addition	 to	 clinical	 disease	—	 for	whom	 imaging	

criteria	only	need	to	be	satisfied	in	those	without	attacks	that	involve	the	optic	nerve,	spinal	

cord	or	brainstem	—	and	those	who	do	not	have	anti-AQP4	antibodies,	for	whom	diagnosis	

of	NMOSD	requires	satisfaction	of	stricter	imaging	and	clinical	criteria.	Further	refinement	of	

the	criteria	for	antibody-negative	NMOSD	is	likely,	particularly	because	~20%	of	patients	with	

this	 condition	 are	 serum-positive	 for	 anti-MOG	 antibodies75–79	 and	 not	 all	 such	 anti-MOG	

patients	fit	into	the	current	boundaries	that	define	NMOSD80.		

In	addition	to	the	association	with	NMOSD,	anti-MOG	antibodies	are	present	in	more	

than	half	of	children	with	ADEM75,78,81,82		and,	in	a	study	published	in	2017,	was	detected	in	

all	14	children	with	multiphasic	disseminated	encephalomyelitis83.	Although	MOG-antibody	
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associated	disease	can	be	confused	with	MS	(for	example,	in	children)84–86,	the	general	

consensus	is	that	it	represents	a	distinct	disease87,	which	can	be	monophasic	or	relapsing14.		

	

[H2]	Imaging	features	similar	to	MS		

The	old	doctrine	that	most	patients	with	NMOSD	will	have	normal	brain	MRI	scans	has	now	

been	proven	incorrect.	Between	43%	and	70%88	of	patients	have	brain	lesions	at	onset,	13%	

of	patients	with	NMOSD	fulfil	the	Barkhof	criteria	for	MS	at	disease	onset12,	and	up	to	42%	

might	do	so	later	in	the	disease88,	although	this	proportion	seems	to	be	lower	among	anti-

AQP4	antibody	positive	cohorts11,13	 (Table	1).Nevertheless,	periventricular	WMLs11,	corpus	

callosum	lesions88,	brainstem	lesions	and	short	spinal	cord	lesions	(in	14%	of	initial	transverse	

myelitis	episodes89)	can	occur	in	anti-AQP4-antibody	associated	disease.		

Antibody-negative	NMOSD	represents	a	heterogeneous	group	of	disorders,	and	the	

overlap	 of	 clinical	 and	 imaging	 features	 in	 MS	 and	 NMOSD	 leads	 to	 considerable	

inconsistencies	in	the	diagnosis	and	management	of	patients90.	Identification	of	specific	MS	

and	NMOSD	imaging	features	will	play	an	important	diagnostic	role	in	this	group	of	patients.		

	

[H2]	Differentiation	from	MS		

[H3]	Brain	and	optic	nerve	lesions		

Lesions	 that	 are	 considered	 typical	 of	 NMOSD,	 despite	 the	 fact	 that	 they	 are	 found	 in	 a	

minority	of	anti-AQP4	antibody	positive	patients91,	are	distinct	from	those	seen	in	MS,	and	

are	located	in	areas	of	high	AQP4	expression	in	the	brain.	These	areas	include	periependymal	

areas	that	line	the	lateral,	third	and	fourth	ventricles,	including	diencephalic	structures	such	

as	the	thalamus,	hypothalamus	(Fig.	4),	posterior	pituitary,	pineal	gland	and	the	brainstem,	

typically	the	area	postrema11,91,92.	Cloud-like,	poorly	marginated	(Fig.	4)	and	so-called	pencil-

thin	ependymal	enhancement	can	be	seen	 in	NMOSD,	and	distinguish	 this	 condition	 from	

MS93–95.	Anti-MOG	antibody	associated	disease	can	present	with	typical	ADEM85	or	NMOSD-

like96	 brain	 features.	 Adults	 and	 children	 with	 anti-MOG	 antibody	 associated	 disease	

frequently	having	three	or	fewer	brain	lesions,	which	are	characterized	by	a	fluffy,	cloud-like	

appearance	and	can	involve	the	brainstem	—	often	the	pons	and/or	areas	adjacent	to	the	

fourth	ventricle	—	and,	typically,	the	cerebellar	peduncles14,87,97	(Fig.	4).		
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In	NMOSD	callosal	lesions,	in	contrast	to	MS	(which	are	perpendicular	to	the	ventricle	

wall),	 are	 often	 located	 immediately	 adjacent	 to	 the	 lateral	 ventricles,	 following	 the	

ependymal	lining,	and	can	exhibit	a	characteristic	‘arch	bridge	pattern’98.		Radial	and	spindle-

shaped	WMLs,	 lesions	 that	 involve	 corticospinal	 tracts,	 and	—	 in	 rare	 cases	—	meningeal	

enhancement	can	occur	in	NMOSD95,99,	but	not	in	MS.		

A	previous	analysis	of	brain	lesions	showed	that	MS	can	be	distinguished	from	anti-

AQP4	antibody	and	anti-MOG	antibody	positive	NMOSD	by	use	of	defined	criteria:	“at	least	

one	lesion	adjacent	to	the	body	of	the	lateral	ventricle	and	in	the	inferior	temporal	lobe;	or	

the	 presence	 of	 a	 subcortical	 U-fibre	 lesion;	 or	 a	 Dawson’s	 finger	 type	 lesion”11,13.	

Additionally,	clinically	silent	lesion	activity	—	defined	as	an	annual	increase	in	T2	lesion	load	

—	occurs	in	MS,	but	does	not	usually	occur	outside	of	relapses	in	NMOSD100.		

Cortical	lesions	occur	in	MS101	but	are	typically	absent	in	NMOSD102,	in	keeping	with	

the	pathological	 findings103.	 Similarly,	diffuse	brain	atrophy	and	diffuse	cortical	 thinning	 is	

observed	in	MS,	whereas	patients	with	NMOSD	exhibit	a	lower	degree	of	brain	atrophy104,	

and	 cortical	 thinning	 in	 these	patients	 is	mild	 and	 limited	 to	motor,	 sensory	 and	occipital	

cortices102.	Whether	deep	grey	matter	abnormalities,	such	as	volume	loss	and	abnormalities	

in	 grey	 matter	 MTR	 and	 DTI,	 exist	 and	 help	 to	 differentiate	 MS	 from	 NMOSD	 is	 less	

clear100,102,105–109.	 However,	 the	 thalamic	 atrophy	 seen	 in	 MS	 does	 not	 usually	 occur	 in	

NMOSD92,	and	changes	in	thalamic	subregional	fractional	anisotropy	can	distinguish	NMOSD	

from	MS	with	a	sensitivity	of	61%	and	a	specificity	of	92%105.		

In	 MS,	 the	 presence	 of	 widespread	 abnormalities	 in	 normal-appearing	 tissues	 is	

commonly	 accepted.	 In	NMO,	 such	 changes	 seem	 to	 be	 limited	 to	 tracks	 that	 connect	 to	

lesions,	such	as	the	optic	nerve	and	spinal	cord	pathways100.	Abnormal	white	matter	brain	

changes	visible	with	DTI	in	NMOSD	seem	to	be	limited	to	the	splenium	of	the	corpus	callosum	

and	 the	posterior	 corona	 radiata	—	 the	 latter	was	 related	 to	 visual	 impairment100	 and	 to	

damage	 of	 the	 optic	 radiations110	 and	 corticospinal	 tracts111.	 Widespread	 white	 matter	

changes	(beyond	the	optic	radiations	and	the	corticospinal	tracts)	in	NMOSD	were	reported	

in	one	study,	but	the	patients	had	not	been	tested	for	antibodies,	and	nonspecific	MS-like	

brain	lesions	were	not	excluded	in	some	patients112.		

A	study	of	 the	central	vein	sign	 in	NMOSD	and	MS	showed	that	this	 feature	 is	 less	

common	 in	anti-AQP4	antibody	associated	NMOSD	(present	 in	32%	of	 lesions)	 than	 in	MS	
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(80%	of	lesions)113.	A	cut-off	of	54%	was	suggested	as	a	way	to	reliably	distinguish	between	

the	two	disorders113.		

Astrocyte	damage	occurs	in	NMOSD,	whereas	astrocytic	activation	and	gliosis	typically	

occur	in	MS,	so	myo-inositol	values	measured	with	MRS	–	a	marker	of	astrocytic	damage	-		

could	 be	 useful	 for	 distinguishing	 between	 the	 conditions.	 Indeed,	 3T	MRS	 of	 spinal	 cord	

lesions	revealed	significantly	lower	myo-inositol		values	in	patients	who	were	positive	for	anti-

AQP4	antibodies	than	in	patients	with	MS	and	healthy	controls.	The	findings	also	indicated	a	

trend	towards	higher	levels	in	patients	with	MS114.	Of	interest,	levels	of	N-acetylaspartate	—	

a	marker	of	neuronal	integrity	—	in	lesions	were	significantly	lower	in	patients	with	MS,	than	

in	 healthy	 controls	whereas	 only	 a	 nonsignificant	 trend	 towards	 a	 reduction	was	 seen	 in	

patients	who	were	positive	for	anti-AQP4	antibodies115.		

In	 contrast	 to	MS,	 anti-AQP4	antibody	associated	optic	neuritis	 is	often	associated	

with	a	long	optic	nerve	lesion	that		tends	to	be	more	posterior	and	can	extend	into	the	optic	

chiasm.	Bilateral	optic	neuritis	is	characteristic	of	anti-MOG	antibody	associated	disease	and	

tends	to	involve	the	anterior	visual	pathway	with	associated	optic	nerve	head	swelling116,117.	

	

[H3]	Spinal	cord	lesions	

LETM,	 a	 contiguous	 spinal	 cord	 lesion	 spanning	 three	 or	 more	 vertebral	 segments,	 is	 a	

characteristic	 feature	 of	 anti-AQ4	 antibody	 associated	 transverse	 myelitis	 attacks.	 This	

feature	is	not	specific,	and	is	often	seen	in	monophasic	idiopathic	transverse	myelitis,	in	anti-

MOG	antibody	associated	disease	(in	which	conus	 involvement	 is	typical)77,96,	and	in	other	

inflammatory	and	noninflammatory	spinal	cord	disorders,	but	it	rarely	occurs	in	MS75,118.	Also	

in	contrast	to	MS,	central,	symmetrical	T1-hypointense	spinal	cord	lesions	that	particularly	

involve	central	grey	matter	and	often	appear	oedematous	in	the	acute	stages,	are	typical	of	

NMOSD91.	 ‘Bright	 spotty’	 T2	 cord	 lesions	 also	 occur	 more	 commonly	 in	 NMOSD	 than	 in	

MS119,120.	In	the	chronic	stages	of	NMOSD,	pronounced	and	extensive	cord	atrophy	with	or	

without	 T2	 hyperintensity121	 and	 occasionally	with	 syrinx-like	 cavities122,	 can	 occur.	 LETM	

lesions	that	extend	into	the	brainstem	are	more	typical	of	NMOSD	than	of	other	causes	of	

LETM123.	

The	timing	of	spinal	cord	MRI	in	relation	to	the	onset	of	symptoms	is	important	for	

identification	 of	 LETM.	 Early	 imaging	might	miss	 a	 long	 lesion	 in	 evolution,	 whereas	 late	

imaging	might	show	a	shortening	or	entirely	resolved	lesion89,121.	Thus	because	the	early	scan	
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performed	 for	 diagnostic	 reasons	 may	 not	 demonstrate	 the	 full	 extent	 of	 inflammation,	

further	imaging	may	be	indicated	while	the	patients	continues	to	deteriorate.	Asymptomatic	

spinal	cord	lesions	are	less	common	in	NMOSD	than	in	MS,	but	gadolinium	enhancement	is	

present	 in	the	majority	of,	but	not	all,	acute	NMOSD	transverse	myelitis	attacks123,124.	The	

presence	of	ring-enhancing	spinal	cord	lesions	seems	to	be	useful	for	distinguishing	NMOSD	

from	other	causes	of	LETM,	but	not	for	distinguishing	NMOSD	from	MS125.	

Besides	lesions,	cervical	cord	atrophy	and	MTR	abnormalities	are	absent	or	much	less	

prominent	 in	 patients	 with	 anti-AQP4	 antibody	 associated	 disease	 than	 in	 patients	 with	

MS100,104.	 

[H1]	Other	MS	imaging	mimics	

The	 differential	 diagnosis	 for	 MS	 includes	 a	 long	 list	 of	 conditions,	 including	 other	 CNS	

inflammatory	diseases,	infections,	neoplasms,	and	toxic,	metabolic	and	hereditary	disorders,	

all	 of	 which	 can	 present	 with	 WMLs	 —	 these	 conditions	 have	 been	 reviewed	 in	 detail	

elsewhere3,5,6,18,57,126–128,59,129.	Exclusion	of	all	MS	mimics	is	not	trivial	3,	and	a	diagnosis	of	MS	

should	be	re-evaluated	in	the	presence	of	an	atypical	clinical	presentation	or	family	history,	

childhood	or	juvenile	onset	of	symptoms,	onset	with	a	slow	isolated	progressive	paraplegia,	

dystonia,	epilepsy	or	psychiatric	disorders,	peripheral	nerve	and	extra-CNS	involvement5,59,130	

together	with	specific	MRI	features	and	other	paraclinical	results	(such	as	findings	of	serum	

and	 CSF	 analysis).	 Nevertheless,	 recognizing	 features	 that	 suggest	 alternative,	 often	 rare,	

diagnoses	can	be	challenging,	even	for	MS	specialists.	Whereas	systematic	identification	of	

typical	MS	MRI	features	is	incorporated	into	current	MS		diagnostic	criteria,	the	approach	to	

exclusion	 of	 alternative	 diagnoses	 is	 not	 standardized.	 In	 the	 following	 sections,	 we	

summarize	key	MRI	features	that	suggest	uncommon	diseases	associated	with	white	matter	

lesions.		

	
[H2]	Brain	lesions	

[H3]	Distribution		

When	considering	brain	MRI	features,	it	is	important	to	sequentially	check	each	brain	area,	

most	importantly	the	white	matter,	white	matter–grey	matter	junction,	the	grey	matter	and	

the	brainstem.	
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Multiple	WMLs	that	have	poorly	defined	margins	and	are	all	the	same	age,	usually	not	

adjacent	to	the	ventricles,	 indicate	monophasic	disorders	such	as	ADEM131.	This	pattern	 is	

distinct	 from	MS,	 for	which	 lesions	must	 be	 of	 different	 ages	 (disseminated	 in	 time)	 and	

chronic	and	are	typically	adjacent	to	the	ventricles.  

Bilateral,	confluent	and	symmetrical	WMLs	that	spare	the	U-fibres	(which	MS	lesions	

do	 not)	 are	 characteristic	 of	 the	 inherited	 leukodystrophies	 (Fig.	5).	 WML	 distribution	

patterns	 and	 associated	 features	 can	 narrow	 the	 diagnostic	 options	 to	 identify	 specific	

leukodystrophies59,129.		

The	observed	pattern	of	corpus	callosum	involvement	can	suggest	specific	diagnoses.	

Central	 ‘snowball’	 lesions	are	typical	of	Susac	syndrome	(Fig.	5)132.	Extensive,	symmetrical,	

poorly	defined,	bridge-like	lesions	indicate	CNS	lymphoma	and	glioblastoma133.	Predominant	

involvement	of	the	central	layers	of	the	corpus	callosum		suggests	severe	malnutrition	and	

alcoholism134.		

The	white	matter–cortex	junction	should	be	carefully	checked.	Juxtacortical	lesions	(in	

U-fibres	that	abut	the	cortical	ribbon)	are	typical	of	MS,	but	lesions	that	spread	through	the	

white	matter—grey	matter	junction	into	the	superficial	layers	of	the	cortex	are	uncommon	in	

MS.	Such	lesions	are	seen	in	ADEM131,	infarcts	(when	lesions	are	typically	wedge-shaped	and	

point	to	the	WM)	(Fig.	3),	GABA-A	autoantibody	disease	(in	which	lesions	usually	have	a	fluffy	

appearance)135,	 progressive	 multifocal	 leukoencephalopathy	 (in	 which	 lesions	 have	 a	

predilection	for	the	frontal	lobes	and	have	sharp	grey	matter	borders	and	ill-defined	white	

matter	borders;	Fig.	5)136–141,	and	mitochondrial	encephalomyopathy,	lactic	acidosis	stroke-

like	 episodes	 syndrome	 (MELAS,	 in	 which	 lesions	 overlap	 between	 different	 vascular	

territories)142.	 PML	 lesions	 can	 be	 unifocal	 (particularly	 in	 the	 presymptomatic	 phase)	 or	

multifocal,	and	tend	to	be	confluent	at	late	stages	of	the	disease.	Lesions	become	increasingly	

hypointense	over	time	on	T1-weighted	images	(Fig.	5),	and	T2-weighted	imaging	can	reveal	a	

microcyst	or	granular	pattern143.		

Cortical	lesions	can	be	seen	in	some	systemic	autoimmune	disorders,	such	as	systemic	

lupus	 erythematosus144,	 and	 some	 inherited	 leukodystrophies,	 such	 as	 adult	 onset	

leukodystrophy145,	although	not	all146.	However,	the	value	of	detecting	cortical	lesions	with	

DIR	in	differentiating	MS	from	other	acquired	and	inherited	disorders	that	affect	the	white	

matter	is	unknown.	
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Symmetrically	 distributed	 deep	 grey	 matter	 (thalamus	 and	 basal	 ganglia)	 lesions	

suggest	 ADEM131,147,	 inherited	 metabolic	 and	 mitochondrial	 disorders142,	 extrapontine	

myelinolysis148,	infection,	and	lymphoma149.	MRI	signal	abnormalities		in	specific	thalamic	or	

hypothalamic	 areas	 can	 also	 indicate	 alternative	 diagnoses;	 for	 example,	 changes	 in	 the	

lateral	 geniculate	 body	 indicate	 X-linked	 adrenoleukodystrophy150,	 changes	 in	 the	

mammillary	 bodies	 indicate	 thiamine	deficiency151,	 and	 changes	 in	 the	hypothalamus	 and	

pituitary	gland	indicate	sarcoidosis152.		

When	diffuse,	ill-defined	brainstem	involvement	is	predominant,	CNS	infections	(such	

as	listeriosis	(Fig.	5)	and	Whipple	disease),	vasculitis	and	neoplasms	should	be	considered153.	

A	bias	towards	involvement	of	specific	brainstem	regions	can	also	suggest	specific	diagnoses.	

In	 central	 pontine	 myelinolysis,	 which	 is	 associated	 with	 nutritional	 or	 electrolyte	

abnormalities,	 the	 lesions	 can	 (as	 in	 MS)	 be	 T2-bright,	 hypointense	 on	 T1-weighted	

sequences,	and	occasionally	cause	enhancement	in	the	border	regions,	but	their	restricted	

lesion	location,	sparing	of	the	ventrolateral	pons,	tegmentum	and	corticospinal	tracts,	gives	

a	characteristic	‘trident-shaped’	or	‘bat-winged’	appearance148.	Midbrain	changes,	such	as	the	

humming	 bird	 sign,	 have	 also	 been	 reported	 in	 globoid	 cell	 leukodystrophy	 and	

periaqueductal	grey	matter	changes	have	been	described	in	Leigh	disease59,129.	Brainstem	pial	

FLAIR	 hyperintensity	 and	 tadpole	 atrophy	 (atrophy	 of	 the	 medulla	 and	 spinal	 cord	 with	

relative	 sparing	 of	 the	 pons)	 is	 seen	 in	 type	 II	 (late-onset)	 Alexander	 disease154.	 Finally,	

cerebellar	dentate	nucleus	hyperintensities	are	typical	of	cerebrotendinous	xanthomatosis155	

(Fig.	5).	

	

[H3]	Features	and	enhancement	patterns	
	
Tumefactive	lesions	are	uncommon	in	MS.	An	open	ring	enhancement	that	points	towards	

the	grey	matter	is	seen	more	frequently	in	demyelination	than	with	tumours,	but	this	feature	

is	not	specific156.	Lesion	expansion	over	time	and	persistent	oedema	should	alert	physicians	

to	 other	 possible	 diagnoses,	 such	 as	 neoplasms.	 Cerebral	 lymphoma	 characteristically	

presents	with	lesions	that	cause	vivid,	homogeneous	enhancement,	which	might	be	present	

simultaneously	 in	all	 lesions,	 can	persist,	 and	 can	be	associated	with	 restricted	diffusivity.	

Furthermore,	areas	that	are	enhanced	on	MRI	appear	hypodense	on	unenhanced	CT	images	

for	 93%	 of	 demyelinating	 lesions	 but	 only	 for	 4%	 of	 tumours,	 suggesting	 that	 comparing	
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results	of	the	two	imaging	tests	 is	useful	 in	distinguishing	between	diagnoses157.	CT	of	the	

brain	 can	 also	 reveal	 calcifications	 that	 are	 characteristic	 of	 specific	 infections	 (such	 as	

toxoplasmosis)	and	metabolic	disorders3,158.	

Punctate	 and	 curvilinear	 enhancing	 lesions	 in	 the	 pons	 are	 typical	 of	 chronic	

lymphocytic	 inflammation	 with	 pontine	 perivascular	 enhancement	 responsive	 to	 steroids	

(CLIPPERS)159.	Punctate	enhancing	 lesions	visible	on	T2-weighted	or	T1-weighted	contrast-

enhanced	images	have	also	been	observed	in	patients	with	early	natalizumab	PML138.	Linear	

contrast	enhancement,	particularly	 that	which	 follows	 specific	 tracts,	 can	 feature	 in	 some	

inherited	leukodystrophies,	such	as	X-linked	adrenoleukodystrophy59.		

Cavitations	are	not	common	in	MS	but	can	be	observed	in	inherited	leukodystrophies	

(such	 as	 vanishing	 white	 matter	 disease,	 in	 which	 cavitations	 typically	 have	 an	 anterior	

location150)	and	in	mitochondrial	disorders,	in	which	they	are	in	the	cerebral	and	cerebellar	

white	matter59,142.	Spectroscopy	can	help	to	differentiate	MS	from	mitochondrial	diseases:	a	

characteristic	lactate	peak	is	present	in	mitochondrial	disease	but	not	in	MS142.		

Leptomeningeal	enhancement	seen	with	MRI	is	a	red	flag	that	indicates	CNS	infection	

(for	example,	Lyme	disease,	Brucellosis),	sarcoidosis,	vasculitis	or	Susac	syndrome	as	possible	

alternative	diagnoses160,161.	Cranial	nerve	enhancement	(Fig.	5)	—	except	for	the	optic	nerve	

and	initial	portion	of	the	trigeminal	nerves162	—	and	spinal	root	enhancement	are	not	seen	in	

MS	but	do	occur	in	CNS	infection	and	sarcoidosis163.	Post-contrast	T2-weighted	FLAIR	MRI	can	

detect	small	foci	of	leptomeningeal	inflammation	in	MS,	which	might	prove	to	be	useful	in	

distinguishing	MS	from	noninflammatory	white	matter	conditions164.		

	

[H2]	Spinal	cord	lesions	

An	 LETM	 with	 gadolinium	 enhancement	 and	 cord	 swelling	 owing	 to	 oedema	 is	 another	

important	red	flag,	that	indicates	an	alternative	diagnoses	such	as	NMOSD,	ADEM,	sarcoidosis	

(Fig.	5)	and	infections	must	be	considered64,152.	Spinal	cord	sarcoidosis	predominantly	affects	

the	 thoracic	 segments;	 central	 canal	 enhancement	 alone	 or	 in	 combination	 with	 dorsal	

subpial	enhancement,	resembling	a	trident	(Fig.	5k),	has	been	reported165.		Spondylosis	might	

be	confounded	with	MS.	Transverse	pancake-like	gadolinium	enhancement	that	is	associated	

with	and	just	caudal	to	the	site	of	maximal	stenosis	and	is	at	the	rostrocaudal	midpoint	of	a	

spinal	 cord	 spindle-shaped	 T2	 hyperintensity	 suggests	 that	 spondylosis	 is	 the	 cause	 of	
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myelopathy166.	 Spinal	 cord	 lesion	enlargement,	 nodules,	 haemorrhage	 and	 cavitations	 are	

atypical	in	MS,	but	can	feature	in	neoplasms,	sarcoidosis	and	infections167.	

Vitamin	 B12	 deficiency	 and	 copper-deficiency-associated	 myelopathy	 cause	

demyelination	of	long	fibre	tracts	(spinal	dorsal	and	lateral	columns,	and	brain	pyramidal	and	

spinocerebellar	 tracts).	 These	 conditions	 result	 in	 T2	 hyperintensities	 that	 are	 usually	

symmetrical	 in	 axial	 sections,	 so	 good-quality	 axial	 imaging	 is	 needed	 for	 an	 accurate	

diagnosis168–170.		

	

[H2]	Single	lesion	or	absence	of	lesions	

In	 a	 patient	 with	 a	 clinical	 course	 that	 indicates	 primary	 progressive	 MS,	 a	 single	

demyelinating	 lesion	 in	 the	spinal	cord,	brainstem	or	cerebral	white	matter	could	 indicate	

progressive	solitary	sclerosis171.	In	the	presence	of	single	lesions,	particularly	if	increasing	in	

size	 over	 time,	 brain	 tumours	 and	 infection	 should	 be	 considered/excluded3.	 Similarly,	 a	

normal	brain	and	spinal	cord	MRI	 is	rare	 in	patients	with	MS,	so	 if	a	patient	presents	with	

clinical	 symptoms	 of	 MS	 but	 no	 detectable	 lesions,	 alternative	 diagnoses	 should	 be	

considered.	 Such	diagnoses	 include	hereditary	 spastic	 paraparesis,	 and	metabolic	 disease,	

such	as	vitamin	B12	or	copper	deficiency.		

	

[H1]	Summary	of	imaging	differentiators		

In	 summary,	 specific	 MRI	 features	 can	 help	 to	 make	 alternative	 diagnoses	 when	 MS	 is	

suspected128	(Tables	2	and	3).	Macrobleeds	or	microbleeds,	infarcts,	WMLs	that	spare	the	U-

fibres	and	siderosis	suggest	cerebrovascular	disease.	Extensive	spinal	cord	lesions	are	useful	

in	distinguishing	NMOSD	from	MS,	and	the	presence	of	meningeal	enhancement,	increasing	

lesion	 size	 over	 time,	 calcifications,	 complete	 ring	 enhancement	 and	 strictly	 symmetrical	

WMLs	suggest	diagnosis	other	than	MS.	These	features	should	be	systematically	excluded,	

and	 we	 suggest	 the	 simple	mnemonic	 ‘iMIMICS’	 to	 represent	 the	 imaging	 red	 flags.	 The	

mnemonic	 stands	 for:	 patterns	 of	 meningeal	 (M)	 enhancement;	 indistinct	 (I)	 border	 or	

increasing	(I)	lesion	size;	the	presence	of	macrobleeds	(M)	or	microbleeds	(M);	the	presence	

of	cortical	or	lacunar	infarcts	(I);	the	presence	of	cavities	(C)	complete	(C)	ring	enhancement	

or	calcifications	(C);	and	symmetrical	(S)	lesions,	lesions	that	spare	(S)	the	U-fibres,	siderosis,	

and	spinal	(S)	cord	extensive	lesions	(Table	4).	However,	in	a	population	for	whom	the	prior	
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likelihood	of	MS	is	high,	the	clinical	picture	is	much	more	sensitive	and	specific	for	refuting	

the	diagnosis	of	MS	than	is	the	presence	of	MRI	red	flags172. 

	

[H1]	Conclusions		

In	this	Review,	we	suggest	a	diagnostic	algorithm	(Fig.	1)	that	 incorporates	the	current	MS	

diagnostic	 criteria,	 features	 that	have	been	 identified	as	useful	 in	differentiating	MS	 from	

NMOSD,	 and	 imaging	 features	 that	 suggest	 other	 alternative	 diagnoses.	 Although	 this	

algorithm	is	 intended	to	promote	homogenization	of	a	differential	diagnostic	approach,	 its	

ability	to	improve	the	specificity	of	MRI	still	needs	to	be	tested.	
Several	 challenges	 remain.	 First,	 MS	 commonly	 coexists	 with	 disorders	 (such	 as	

migraine	and	cerebrovascular	disease)	 that	can	have	a	similar	appearance	on	MRI,	and	 its	

interaction	with	and	separation	from	these	disorders	warrants	further	studies.	Such	studies	

can	 be	 done	 only	 with	 cohorts	 of	 MS	 patients	 for	 whom	 comorbidity	 data	 are	 clearly	

documented,	and	cohorts	of	appropriate	controls.	Therefore,	the	ability	of	the	current	MS	

diagnostic	criteria	to	differentiate	between	MS	and	other	conditions	in	patients	without	CIS	

requires	 validation.	 Direct	 comparison	 between	 disorders	 was	 a	 useful	 approach	 in	

determining	 imaging	 features	 that	 differentiate	 between	 MS,	 NMOSD	 with	 brain	

involvement11	and	migraine67,	but	comparative	studies	are	lacking	in	many	other	neurological	

diseases	 that	mimic	MS.	 Third,	 differentiating	MS	 from	mimics	 relies	on	good	 clinical	 and	

neuroradiological	expertise,	along	with	the	ability	to	perform	high-quality	and	state-of-the-

art	 MRI	 protocols	 —	 such	 expertise	 are	 often	 not	 available	 outside	 specialized	 research	

centres.	 The	use	of	pulse	 sequences,	 such	as	 SWI	and	DIR,	which	are	usually	not	done	 in	

routine	 clinical	 scans,	 enabled	 identification	 of	 the	 central	 vein	 sign	 and	 cortical	 lesions,	

promising	MRI	measures	that	could	have	a	role	in	the	diagnostic	criteria	of	MS10,51	and	might	

help	to	identify	features	of	other	disorders,	such	as	microbleeds	in	SVD.	Finally,	owing	to	the	

rarity	of	some	MS	mimics,	the	evidence	for	differentiating	features	of	these	conditions	comes	

from	case	reports	and	series	and	thus	the	reliability	of	these	discriminators	is	unknown.	Direct	

comparative	studies	with	larger	number	of	cases	would	clarify	their	accuracy.					

Despite	 these	 challenges,	 most	 typical	 MS	 patients	 are	 diagnosed	 accurately	 and	

speedily,	 particularly	 in	 areas	 of	 the	 world	 in	 which	MS	 is	 common.	 Nevertheless,	 many	

people	 with	 unconventional	 clinical	 features	 might	 still	 have	 MS.	 Incorporating	 the	

differentiating	imaging	features	described	in	this	Review	into	the	diagnostic	process	should	
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improve	diagnostic	accuracy.	Importantly,	the	neurologist	should	also	maintain	an	open	mind	

when	following	up	patients	who	have	been	diagnosed	with	MS	but	who	have	atypical	clinical	

or	imaging	features.		
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Key	points	

- MRI	 plays	 a	 crucial	 role	 in	 the	 diagnosis	 of	 multiple	 sclerosis	 (MS)	 by	

revealing	 the	 dissemination	 in	 space	 and	 time	 of	white	matter	 lesions	

(WMLs),	as	well	as	helping	to	rule	out	alternative	diagnoses		

- WMLs	with	a	similar	distribution	to	that	seen	 in	MS	can	occur	 in	many	

disorders,	 from	 common	age-related	 vascular	 disease	 and	migraine,	 to	

neuromyelitis	optica	spectrum	disorders	and	rarer	conditions		

- The	 distribution	 of	WMLs	 can	 help	 to	 differentiate	MS	 from	 antibody-

mediated	CNS	disorders	

- The	proportion	of	lesions	with	the	central	vein	sign	and	the	presence	of	

cortical	lesions	can	be	useful	in	differentiating	MS	from	some	of	its	mimics	

- Meningeal	enhancement,	 indistinct	 (ill-defined),	 increasing	 lesions	over	

time,	macro	and	microbleeds,	infarcts,	cavities,	symmetrical	lesions	that	

spare	 the	 U-fibres,	 siderosis	 and	 extensive	 spinal	 cord	 lesions	 suggest	

diagnoses	other	than	MS.		

- We	 suggest	 the	 mnemonic	 iMIMICs	 to	 remember	 the	 atypical	 MRI	

features	that	point	to	a	diagnosis	other	than	MS.	

	

Glossary	

Lacunae	-	small	(3-15	mm	diameter)	round	or	ovoid	subcortical	infarcts	in	the	territory	of	one	
perforating	arteriole	with	MRI	signal	similar	to	CSF	
	
Perivascular	spaces	-	spaces	that	follow	the	course	of	a	vessel	as	it	goes	through	grey	or	white	
matter.	The	spaces	have	signal	intensity	similar	to	CSF	on	all	sequences.	They	appear	linear	
when	 imaged	 parallel	 to	 the	 course	 of	 the	 vessel,	 and	 round	 or	 ovoid,	 with	 a	 diameter	
generally	smaller	than	3	mm,	when	imaged	perpendicular	to	the	course	of	the	vessel.	
	
Dawson	fingers	-	elongated	MS	plaques	through	the	corpus	callosum	and	perpendicular	to	
the	lateral	ventricles	
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U-fibres	-	short	association	fibres,	represent	connections	between	adjacent	gyri	of	the	brain,	
located	within	the	cortex	or	immediately	deep	to	it	in	the	very	outer	parts	of	the	subcortical	
white	matter	
	

Table	1	|	Studies	
showing	fulfilment	of	
MS	diagnostic	criteria	
for	DIS	by	other	
neurological	disorders.	
Disorder	

No.	of	
patients	

%	patients	that	meet	
criteria		

Reference	

Barkhof	
criteria	

McDonald	
2010	criteria	

Migraine	 44	 NA	 9	 8	
168	 7.1	 34.5	 7	
32	 NA	 34	 9	

Anti-AQ4	antibody	
associated	NMOSD	

31	 12.9	 NA	 12	
26	 15.9	 NA	 10	
67	 13	 NA	 11	

Anti-MOG	antibody	
associated	NMOSD	

21	 14.3	 NA	 12	
26	 26.9	 NA	 13	

Neuro-Behçet	disease	 84	 13.1	 NA	 14	
Primary	CNS	vasculitis	 24	 50	 NA	 15	
Secondary	vasculitis	 25	 58	 NA	 15	
SLE	or	Sjogren	syndrome	 16	 17	 NA	 15	
Data	are	from	a	limited	number	of	studies	in	which	the	MS	imaging	criteria	were	explored	in	
other	 conditions.	 The	 findings	 support	 the	 view	 that	 these	 criteria	 should	 not	 be	 used	 in	
isolation.	AQP4,	aquaporin	4;	DIS,	dissemination	in	space;	MOG,	myelin	oligodendrocyte;	NA,	
not	 available;	 NMOSD,	 neuromyelitis	 optica	 spectrum	 disorder;	 SLE,	 systemic	 lupus	
erythematosus.	
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Table	2	|	Differentiation	of	cerebral	small	vessel	disease	from	MS	with	MRI		
Small	vessel	disease	type		 Differentiating	features	
Arteriosclerotic	or	related	to	age	and	vascular	risk	
factors	

Lesions	(microbleeds,	lacunae)	in	perforating	arteries	
territory	(basal	ganglia,	brainstem)	
Symmetrical,	poorly	demarcated	deep	WMLs	that	spare	
U-fibres	
Central	pontine	diffuse	white	matter	changes	and	
infarcts	
Spared	spinal	cord		

Cerebral	amyloid	angiopathy	(sporadic	and	
hereditary)	

Lobar	microbleeds	and	macrobleeds,	convexity	
subarachnoid	haemorrhages	and/or	cortical	siderosis	

Inherited	or	
genetica 

CADASIL	 WMLs	in	the	external	capsule	and	temporal	poles,	
lacunae	in	the	basal	ganglia	and	central	pons		

COL4A1	mutations	 Arterial	dilatation	and/or	aneurysms,	porencephaly,	
microbleeds	

Fabry	disease	 Vertebrobasilar	arterial	dolicoectasia,	pulvinar	T1	
hyperintensity,	infarcts	

Inflammatory	or	
immune-
mediated	

Systemic	vasculitis	with	cerebral	
involvement	(for	example,	ANCA	
positive	vasculitis)		
Infectious	vasculitis	
Vasculitis	associated	with	
connective	tissue	disorders	

Meningeal	enhancement	
Lacunae,	microbleeds,	territorial	infarcts,	
pseudotumoural	lesions	in	the	basal	ganglia	and/or	
brainstem	
Longitudinal	extensive	transverse	myelitis	

Other	(for	example,	post-radiation	angiopathy)	 Diffuse	WMLs,	sometimes	with	cavitation	owing	to	
coagulative	necrosis;	distal	artery	thinning	detectable	
with	angiography	

Vascular	disease	incorporates	many	different	disorders,	so	identifying	features	that	point	to	the	
specific	small	vessel	diseases	and	differentiate	from	MS	is	helpful.	aOnly	some	examples	given:	for	
more	information,	see	Pantoni	et	al.25.	ANCA,	anti-neutrophil	cytoplasmic	antibody;	CADASIL,	
cerebral	autosomal	dominant	arteriopathy	with	subcortical	ischaemic	strokes	and	
leukoencephalopathy;	WML,	white	matter	lesion.	
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Table	3	|	MRI	observations	that	differentiate	between	multiple	sclerosis	and	the	indicated	disorders		
	

MRI	observations	[		 Possible	disorders		

Brain	
Lesion	location	 Central	and	diencephalic	(thalamus,	basal	ganglia,	

hypothalamus)	
NMOSD,	other	autoantibody-mediated	diseases	(for	example,	
anti-MA2	antibody	encephalopathy173),	ADEM,	Susac	syndrome,	
neurosarcoidosis,	infection	(for	example,	Whipple	disease),	
metabolic	disorders	(for	example,	hyponatraemia,	thiamine	
deficiency),	mitochondrial	disorders	

Adjacent	to	third	and	fourth	ventricles	or	aqueduct,	area	
postrema	

NMOSD	

Involving	or	following	corticospinal	tracts	 NMOSD,	HTLV,	globoid	cell	leukodystrophy	

Lack	of	temporal	and	lateral	ventricle	lesions,	lack	of	Dawson	
fingers	or	lack	of	S-shaped	U-fibre	lesion		

NMOSD,	migraine,	inherited	leukodystrophies	

Posterior	limb	of	internal	capsule	(“string	of	beads”)	 Susac	syndrome	
Lateral	geniculate	body	or	optic	radiations	 Adrenoleukodystrophy	
Central	pons	 SVD,	metabolic	(for	example,	hyponatraemia)	
Brainstem	pial	FLAIR	hyperintensity,	tadpole	atrophy	(atrophy	
of	the	medulla	and	spinal	cord	with	relative	sparing	of	the	
pons)	

Type	II	(late	onset)	Alexander	disease154	

Crescent-shaped	lesions	involving	the	middle	cerebellar	
peduncles	and	adjacent	pontine	white	matter	

Progressive	multifocal	leukoencephalopathy	

Dentate	nucleus	(T2	hyperintensities)	 Cerebrotendinous	xanthomatosis	
Bilateral	occipital	white	matter		 PRES,	X-linked	[adrenoleukodystrophy,	globoid	cell	

leukodystrophy	
Lesion	
characteristics	

Cerebrospinal	fluid-like	signal	intensity	 Dilated	Virchow–Robin	spaces	
Indistinct	margins	 NMOSD,	ADEM,	other	antibody-mediated	encephalopathies	(for	

example,	anti	GABA-A)		
Symmetrical	lesions	 NMOSD,	ADEM,	migraine,	inherited	leukodystrophies	
Punctate	(<5	mm	diameter),	rarely	confluent	lesions	 Migraine,	SLE	
Oedematous	and	marbled	callosal	lesion,	with	or	without	
extension	into	cerebral	hemispheres	or	the	‘arch	bridge	sign’	
the	name	given	to	the	lesion	described	

NMOSD,	lymphoma	

Central	‘snowball’-shaped	callosal	lesion	 Susac	syndrome	
Callosal	thinning	 Adult-onset	autosomal	dominant	leukodystrophy,	vanishing	

white	matter	disease,	Susac	syndrome	
Extensive,	confluent,	tumefactive	hemispheric	white	matter	
lesions	

NMOSD,	cerebral	vasculitis,	neuro-Behçet	disease,	infection,	
cancer		

Unusual	enhancing	patterns	—	poorly	marginated,	patchy,	
cloud-like,	rare	meningeal	or	linear	of	ependymal	lateral	
ventricles	

NMOSD,	neurosarcoidosis,	cancer	

Associated	with	silent	infarcts	and/or	microbleeds	 Migraine,	dilated	Virchow–Robin	spaces,	cerebral	vasculitis,	
Susac	syndrome,	CADASIL,	COL4A1,	Fabry	disease,	fat	embolism		

Associated	with	convexity	haemorrhage	 Reversible	vasoconstriction	syndrome	in	association	with	PRES,	
cerebral	amyloid	angiopathy	

Associated	with	cranial	nerve	and	leptomeningeal	contrast	
enhancement	

Cerebral	vasculitis,	Susac	syndrome,	neurosarcoidosis,	infection	
(for	example,	neuroborreliosis)	

Associated	with	dural	masses	 Neurosarcoidosis,	cerebral	vasculitis	(for	example,	GPA)		

Lesion	activity	 None	between	relapses,	or	rare	new	lesions	 NMOSD,	ADEM,	migraine	
Absence	of	contrast	enhancement	 Migraine,	dilated	Virchow–Robin	spaces	
Punctate	and	curvilinear	enhancement	lesions	in	the	pons	 CLIPPERS	
Linear	perivascular	radial	gadolinium	enhancement,	extending	
outward	from	the	ventricles	and	in	the	cerebellum		

Glial	fibrillary	acidic	protein	antibody	disease164		

Optic	nerve	
Lesion	
characteristics	[		

Long	lesion,	bilateral		 NMOSD	
Posterior,	chiasmatic		 Anti-AQP4	antibody	associated	optic	neuritis	
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Not	all	possible	differential	diagnoses	of	multiple	sclerosis	are	included,	but	only	those	that	have	been	reported	to	mimic	
multiple	sclerosis.	ADEM,	acute	disseminated	encephalopathy;	AQP4,	aquaporin-4;	CADASIL,	cerebral	autosomal	dominant	
arteriopathy	with	subcortical	infarcts	and	leukoencephalopathy;	CLIPPERS,	chronic	lymphocytic	inflammation	with	pontine	
perivascular	enhancement	responsive	to	steroids;	COL4A1,	collagen	type	IV	alpha	1	mutations;	GPA,	granulomatosis	with	
polyangiitis;	HIV,	human	immunodeficiency	virus;	HTLV,	human	T	cell	lymphotropic	virus	type	1;	ITM,	idiopathic	transverse	
myelitis;	MOG,	myelin	oligodendrocyte;	MS,	multiple	sclerosis;	NMOSD,	neuromyelitis	spectrum	disorder;	PRES,	posterior	
reversible	encephalopathy	syndrome;	SLE,	systemic	lupus	erythematosus;	SVD,	small	vessel	disease.		
	 	

Long	lesion,	anterior		 Anti-MOG	antibody	associated	optic	neuritis	
Spinal	cord	
Lesion	location	 Conus	involvement	 Anti-MOG	antibody-associated	transverse	myelitis	

Thoracic	involvement	 NMOSD,	HTLV-1	myelopathy,	arteriovenous	fistulae	
Centrally	symmetrically	placed	with	grey	and	white	matter	
involvement		

NMOSD	

Posterior	columns	or	spinothalamic	tracts		 Metabolic	(for	example,	vitamin	B12,	Cu2+	deficiency),	infection	
(for	example,	HIV,	Treponema	pallidum),	adrenoleukodystrophy,	
DARS-associated	encephalopathy174		

Lesion	
characteristics	

T1	hypointensity		 NMOSD	

Bright	spotty	lesions	 NMOSD	

Patchy	nodular	or	central	canal	contrast	enhancement,	trident	
sign	

Neurosarcoidosis	

Pencil-like,	‘snake-like’	or	‘owl’s	eye’	T2	hyperintensities	of	the	
anterior	horns	of	the	grey	matter	on	axial	images,	associated	
with	T2	hyperintensities	of	the	dorsal	part	of	the	vertebrae	in	
the	affected	region	

Spinal	cord	infarction	

T2	increased	peri-medullary	flow	voids,	vascular		 Dural	arteriovenous	fistulae	

Pancake-like	gadolinium	enhancement	or	spindle-shaped	
lesion	

Spondylotic	myelopathy	

Nerve	root	and	leptomeningeal	contrast	enhancement		 Neurosarcoidosis,	infection		

Lesion	that	affects	≥3	vertebral	segments		 NMOSD,	ITM,	ADEM,	SLE,	Sjogren	syndrome,	neuro-Behçet	
disease,	neurosarcoidosis,	spinal	cord	infarction,	dural	
arteriovenous	fistulae,	paraneoplastic,	spondylotic	myelopathy,	
glial	fibrillary	acidic	protein	antibody	disease164		

No	lesions	 Migraine,	dilated	Virchow–Robin	spaces,	SVD		
Magnetic	resonance	angiography,	non-conventional	or	quantitative	imaging	
Imaging	
characteristics	

Multiple	arterial	stenosis	and	post-stenotic	dilatations	and/or	
vessel	wall	contrast	enhancement	

Cerebral	vasculitis,	infection	(for	example,	varicella	zoster	virus)	

Lack	of	diffuse	non-lesion	tissue	damage		 Anti-AQP4	antibody	associated	disease,	neuroborreliosis	

Absence	of	thalamic	atrophy	 NMOSD	
Absent	cortical	lesions	 NMOSD,	migraine	
Absence	or	minority	of	central	vein	sign	 Susac	syndrome,	migraine,	NMOSD,	ADEM	
Reduced	myo-inositol	or	creatinine	in	lesions		 Anti-AQP4	antibody	associated	transverse	myelitis	
Reduction	of	N-acetyl	aspartate	 Adrenoleukodystrophy	
Lactate	peak	 Mitochondrial	disorders	



	 38	

Table	4	|	Imaging	features	indicated	by	the	iMIMICs	mnemonic	and	the	MRI	sequences	
required	to	identify	each	feature		
Letter	 Meaning	 Minimum	essential	MRI	sequences	

M	 Meningeal	enhancement	 2D	axial	or	3D	contrast-enhanced	T1-weighted	

I	 Indistinct	lesions	
Increasing	lesions	

Saggital	2D	or	3D	T2-FLAIR	[		

M	 Macrobleeds	
Microbleeds	

2D	axial	T2*-weighted	gradient	echo	

I	 Infarcts	 2D	axial,	3D	T1-weighted	and	DWI	

C	 Cavities	
Complete	ring	enhancement	

2D	axial	or	3D	contrast-enhanced	T1-weighted	

S	 Symmetrical	lesions	
Sparing	of	U-fibres	

2D	axial	or	coronal	or	3D	FLAIR	

Siderosis	 2D	axial	T2*-weighted	gradient	echo	or	FLAIR	

Spinal	cord	extensive	lesions	 Sagittal	dual-echo	(proton-density	and	T2-weighted)	and/or	
fast	spin-echo,	contrast-enhanced	T1-weighetd	spin-echo,	
axial	2D	and/or	3D	T2	and	contrast-enhanced	T1-weighted	
fast	spin-echo	

DWI,	diffusion-weighted	imaging;	FLAIR,	fluid	attenuation	inversion	recovery.		
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Figure	1	|	Use	of	the	iMIMICs	mnemonic	in	the	differential	diagnosis	of	multiple	sclerosis	
using	MRI If	 the	 criteria	 for	 dissemination	 in	 space	 (DIS)	 are	not	met	 because	 lesions	 are	
present	 in	only	one	of	the	required	locations	(alone	or	with	other	 lesions	 in	nondiagnostic	
locations)4,	 other	 diagnoses	 should	 be	 considered	 according	 to	 the	 imaging	 features	
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observed.	Dissemination	of	lesions	in	time	or	the	presence	of	oligoclonal	bands	is	required	to	
make	the	diagnosis	in	the	absence	of	a	better	explanation.	Even	when	the	DIS	criteria	are	met,	
other	diagnoses	can	be	considered.	Having	no	brain	or	spinal	cord	lesions	is	rare	and	should	
be	seen	as	a	special	case	(dashed	lines)	 in	which	complementary	tests	other	than	MRI	are	
needed	 to	 support	 the	 diagnosis.	 ADEM,	 acute	 disseminated	 encephalopathy;	 NMOSD,	
neuromyelitis	spectrum	disorder;	PML,	progressive	multifocal	leukoencephalopathy.		

	

Figure	2	|	Typical	imaging	features	of	multiple	sclerosis	with	conventional	MRI	and	possible	
differentiating	features	with	non-conventional	MRI.	a	|	So-called	Dawson	fingers	(arrow),	
visible	as	ovoid	periventricular	hyperintense	lesions	perpendicular	to	the	body	of	the	lateral	
ventricle	and/or	to	the	callosal	junction,	shown	in	an	axial	FLAIR	image.	b	|	Dawson	fingers	
(box)	showing	in	a	sagittal	FLAIR	image.	c	|	an	S-shaped	juxtacortical	lesion	(box)	in	an	axial	
FLAIR	image.	d	|	Cortical	lesions	(boxes)	shown	in	an	axial	Double	Inversion	Recovery	(DIR)	
image.	e	|	The	central	vein	sign,	a	hypointensity	relative	to	a	surrounding	hyperintense	lesion	
visible	on	susceptibility-weighted	imaging	(an	axial	T2*	image).		f	|	Eccentric	short	spinal	cord	
lesions	that	are	typical	of	MS,	shown	in	an	axial	T2-weighted	image		
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Figure	3	|	Age-related	white	matter	lesions	and	cerebrovascular	disease	lesions.	a	|	Axial	
FLAIR	brain	MRI	showing		periventricular	pencil-thin	lining	hyperintensities	and	bilateral,	
symmetrical	caps	lining	the	frontal	horns	of	the	lateral	ventricles	(arrow),	features	that	are	
commonly	seen	in	normal	ageing.	b	|	Microbleeds	associated	with	small	vessel	disease	
(SVD),	depicted	in	an	axial	gradient-echo	T2*-weighted	image	as	rounded	hypointensities	in	
the	basal	ganglia	(arrows)	and	the	cortex.	c	|	An	axial	FLAIR	image	showing	periventricular	
white	matter	hyperintensities	that	spare	the	U-fibres	and	lacunar	infarcts	in	the	deep	white	
matter	and	grey	matter	(arrow),	associated	with	SVD.	d	|	Temporal	pole	white	matter	
hyperintensities	(arrows)	associated	with	cerebral	autosomal	dominant	arteriopathy	with	
subcortical	infarcts	and	leukoencephalopathy	(CADASIL),	shown	in	an	axial	FLAIR	image.	e	|	
Hyperintense	white	matter	lesions	in	multiple	vascular	territories,	which	are	typically	
associated	with	cerebral	vasculitis.	F	|	Wedge-shaped	cortical	infarcts	(arrow)	that	are	
usually	associated	with	the	white	matter	lesions	in	cerebral	vasculitis,	shown	in	diffusion-
weighted	images.	g	|	Bilateral	middle	cerebral	artery	segmental	stenosis	(arrows)	depicted	
in	a	magnetic	resonance	angiogram.	
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Figure	4	|	Neuromyelitis	optica	spectrum	disorder	brain	lesions	a	|	Coronal	fluid	attenuation	
inversion	 recovery	 (FLAIR)	 image	 from	 a	 patient	 who	 was	 positive	 for	 anti-aquaporin-4	
antibodies.	Bilateral	 diencephalic	hyperintense	 lesions	 are	 visible	 (box).	 b	 |	Coronal	 FLAIR	
images	from	patients	who	were	anti-myelin	oligodendrocyte	glycoprotein	antibodies.	Fluffy,	
poorly	demarcated	lesions	with	bilateral	involvement	of	the	middle	cerebellar	peduncles	are	
shown	on	the	left	(box),	and	bilateral	cloud-like	lesions	in	the	deep	white	matter	are	shown	
on	 the	 right	 (arrows).

	
	Figure	5	|	Imaging	features	of	other	multiple	sclerosis	mimics.	a	|	Axial	fluid	attenuation	
inversion	 recovery	 (FLAIR)	 image	 showing	 features	 of	 the	 inherited	 leukodystrophies.	
Bilateral,	confluent	and	symmetrical	white	matter	lesions	that	spare	the	U-fibres	(unlike	in	
multiple	sclerosis)	are	typical,	and	the	predominantly	posterior	distribution	shown	is	typical	
of	 X-linked	 adrenoleukodystrophy	 (arrows).	 b	 |	 Images	 of	 the	 typical	 features	 of	 Susac	
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syndrome:	intracallosal	snowball-shaped	T2-FLAIR	hyperintense	lesions	(top),	and	lesions	in	
the	posterior	limb	of	the	internal	capsule,	appearing	as	as	a	‘string	of	beads’	in	an	axial	FLAIR	
image	 (arrows).	 c	 |	 Bilateral	 T2-FLAIR	 hyperintensities	 (arrow)	 in	 the	 dentate	 nucleus,	 a	
feature	 of	 cerebrotendinous	 xanthomatosis.	 d	 |	 Imaging	 features	 of	 listeriosis.	 Diffuse,	
indistinct	 brainstem	 lesions	 with	 pons	 and	 left	 middle	 cerebellar	 peduncle	 (arrow)	
involvement	 is	 visible	 in	 an	 axial	 FLAIR	 image	 (top),	 and	 extensive	 left	 trigeminal	 nerve	
contrast	enhancement	(arrow)	is	seen	with	T1	post-contrast	axial	MRI	(bottom).	e	|	Imaging	
features	 of	 progressive	 multifocal	 leukoencephalopathy	 (PML).	 T2-FLAIR	 imaging	 reveals	
hyperintense	 lesions	 that	 typically	 involve	 the	 grey	 matter–white	 matter	 transition,	 with	
sharp	lesional	borders	in	the	grey	matter	and	ill-defined	borders	in	the	white	matter.	Such	
lesions	 appear	 as	 hyperintensities	 (arrow)	 with	 axial	 FLAIR	 imaging	 (top)	 and	 as	
hypointensities	(arrow)	with	T1-weighted	imaging	(middle).	Crescent-shaped	lesions	involving	
the	middle	cerebellar	peduncles	and	adjacent	pontine	white	matter	(box)	also	occur	in	PML,	
visible	with	axial	FLAIR	imaging	(bottom).	f	|	Imaging	features	of	sarcoidosis.	Longitudinally	
extensive	spinal	cord	lesions	(box)	can	be	seen	in	a	sagittal	T2-weighted	cervicothoracic	spinal	
cord	 scan	 (top).	 Central	 canal	 enhancement	 alone	 or	 in	 combination	 with	 dorsal	 subpial	
enhancement	—	known	as	the	trident	sign	(arrow)	owing	to	its	resemblance	to	a	trident	—	is	
also	a	feature	of	spinal	cord	sarcoidosis,	illustrated	in	a	thoracic	cord	axial	post-contrast	T1-
weighted	image	(bottom).		
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