Mechanistic insights of Li⁺ diffusion within doped LiFePO₄ from Muon Spectroscopy

Ian D. Johnson, Thomas E. Ashton, Ekaterina Blagovidova, Glen J. Smales, Mechthild Lübke, Peter J. Baker, Serena A. Corr and Jawwad A. Darr*

Supporting Information

Synthesis

Lithium iron phosphate samples with an amorphous carbon coating were synthesized using a pilot-scale continuous hydrothermal flow synthesis (CHFS) reactor incorporating a confined jet mixer (CJM), where schematics of both are shown in Figure S1a and Figure S1b respectively. Two aqueous precursor solutions were prepared. The first solution consisted of FeSO₄·7H₂O (99+%, Alfa Aesar, Heysham, UK), VOSO₄·5H₂O (17-23% V, Acros Organics, Loughborough, UK), C₄H₄NNbO₉·5H₂O (99.99%, Sigma-Aldrich Ltd., Dorset, UK), 0.375 M H₃PO₄ (85-88% wt%, Sigma Aldrich, Steinheim, Germany) and fructose (99%, Alfa Aesar, Heysham, UK) in deionized (D.I.) water. The first solution was varied as described in Table S1, where the sum of [Fe], [V] and [Nb] was 0.25 M and the concentration of fructose was 0.65 - 0.75 M. The second solution contained 0.8625 M LiOH·H₂O (99+%, Fischer Scientific, Loughborough, UK) in D.I. water. Each solution was pumped (200 mL min⁻¹ flow rate each) into a T-piece mixer (0.25" internal diameter). The combined mixture of solutions 1 and 2 (400 mL min⁻¹) was pumped into the side arms of the CJM, where it rapidly combined with 400 mL min⁻¹ (referred to 24.1 MPa and 20 °C) of supercritical water at 450 °C and 24.1 MPa (Figure S1b). The nanoparticles of LiFePO₄/C (either pure, doped with V or doped with Nb) rapidly formed in the mixture at a temperature of ca. 335 °C. The mixture flowed through the outlet pipe with an approximate residence time of 6.5 s and was then cooled to below 60°C through a pipe-in-pipe countercurrent heat exchanger. The cooled slurry flowed through a backpressure regulator (BPR, Swagelok KHB series) which maintained the system pressure at 24.1 MPa, after which it was collected in a plastic container open to the atmosphere. The slurry was allowed to settle out and the supernatant (containing unreacted precursors and by-products) siphoned off. The concentrated slurry was further concentrated using a centrifuge (4500 r.p.m, 10 minutes), and repeatedly redispersed in D.I. water to clean the product. The cleaned slurry was placed in a freeze-drier (Virtis Genesis 35XL) and slowly heated from -60 °C to 25 °C, over 24 h under vacuum of < 13.3 Pa. The freeze-dried powder was subsequently heat-treated from ambient temperature up to 700 °C and held for 3 hours, with a heating rate of 5 °C min⁻¹ under a flow of argon. The V-doped LiFePO₄ sample was extremely granular, and required gentle milling using a Retsch planetary ball mill PM-200 using a 1:1 w/w ratio of LFP and Nmethyl pyrrolidone (NMP) with 4 mm zirconia balls at 400 rpm for 30 minutes to reduce the size of fused agglomerates.

Figure S1 - a) a schematic of the Continuous Hydrothermal Flow Synthesis (CHFS) process; b) a schematic of the Confined Jet Mixer (CJM).

Table S1. The metal and fructose precursor concentrations used to produce samples δLFP
δ LFNP(1.0) and δ LFVP(5), and the proportion of carbon in the heat-treated samples.

Sample Name	FeSO4·7H2O / mM	VOSO4·5H2O / mM	C4H4NNbO9·5H2O / mM	Fructose / M	Carbon coating/ wt%
δLFP	250	0	0	0.75	9.1
$\delta LFNP(1.0)$	247.5	0	2.5	0.65	2.9
$\delta LFVP(5)$	237.5	12.5	0	0.65	8.3

Materials Characterisation

High-quality XRD patterns of the samples were obtained on a STOE StadiP diffractometer in a 0.3 mm borosilicate glass capillary using Mo-K α radiation ($\lambda = 0.71$ Å) over the 2 θ range 5 – 60° with a step size of 0.5° and step time of 87 or 100 s. The wt% of carbon in the samples was determined using CHN analysis.

Energy-dispersive spectroscopy (EDS) was conducted using a Jeol JEM-1010 fitted with an Oxford Instruments XMaxN 80-T Silicon Drift Detector (SDD)) and processed using AZtec® software.

Chemical analysis for Li, Fe, V and P was performed by ICP-AES using dilute solutions of the samples dissolved in 1% HNO₃ (aq.) (Department of Earth Sciences, University College London).

Figure S2. X-Ray diffraction of the δ LFNP(1.0) sample showing a good match to LiFePO₄ (PDF Card No. 01-070-6684). The impurity peak at 13.8° 2 θ is highlighted, and the suggested impurity phase Fe₂P₂O₇ included as a reference (PDF Card No. 01-076-1762).

Figure S3. Experimental and calculated diffraction patterns for sample δ LFP using Rietveld analysis. R_{wp} = 4.48, $\chi^2 = 1.34$.

Figure S4. Experimental and calculated diffraction patterns for sample δ LFNP(1.0) using Rietveld analysis. R_{wp} = 3.79, $\chi^2 = 2.20$.

Figure S5. Experimental and calculated diffraction patterns for sample δ LFVP(5) using Rietveld analysis. R_{wp} = 3.84, χ^2 = 2.17.

Figure S6. The EDS spectrum of Δ LFNP(1.5) from reference 25, with an approximate atomic ratio of Nb:Fe 1.2:98.8.

Figure S7. The EDS spectrum of Δ LFNP(2.0) from reference 25, with an approximate atomic ratio of Nb:Fe 1.8:98.2.

Table S2. The ratio of elements found by ICP-AES analysis in the doped and undoped LiFePO₄ samples, normalised to phosphorous. Nb did not produce a stable signal in the plasma, and could not be quantified.

Sample	Li/P	Fe/P	V/P	P/P
δLFP	1.05	1.04	0.00	1.00
$\delta LFNP(1.0)$	1.013	1.013	0.00	1.00
$\delta LFVP(5)$	0.97	0.96	0.05	1.00