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We study the duration and the award scheme of an innovation contest where an organizer elicits solutions to

an innovation-related problem from a group of agents. We use a game-theoretic model where the organizer

decides on the contest duration and the award scheme while each agent decides on her participation, and

determines her effort over the contest duration by considering potential changes in her productivity over time.

The quality of an agent’s solution improves with her effort, but it is also subject to an output uncertainty.

We show that the optimal contest duration increases as the relative impact of the agent uncertainty on her

output increases, and it decreases if the agent productivity increases over time. These results suggest that the

optimal contest duration increases with the novelty or sophistication of solutions that the organizer seeks,

and it decreases when the organizer can offer support tools that can increase the agent productivity over

time. More interestingly, we characterize an optimal award scheme, and show that giving multiple (almost

always) unequal awards is optimal when the organizer’s urgency in obtaining solutions is below a certain

threshold. We also show that this threshold is larger when the agent productivity increases over time. These

results help explain why many contests on crowdsourcing platforms give multiple unequal awards. Finally,

consistent with empirical findings, we show that there is a positive correlation between the optimal contest

duration and the optimal total award.
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1. Introduction

In recent years, crowdsourcing has developed into a legitimate business tool, and online crowd-

sourcing platforms such as InnoCentive and Topcoder have enjoyed a significant growth, generating

$1 billion in revenue with an annual growth rate of 37.1% (?). These platforms create value for

their customers such as Siemens, Pfizer, Unilever, and NASA by regularly organizing innovation

contests. In an innovation contest, an organizer announces a problem along with a set of contest

rules such as duration (i.e., how long the contest runs for) and award scheme (i.e., the set of

awards).1 Each participating agent generates a solution, and submits it to the organizer within

1 While there are other contest rules such as feedback policies, we focus on the organizer’s decisions of the contest
duration and the award scheme.

1
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the announced duration. At the end of the contest, the organizer evaluates all solutions, and gives

award(s) based on the announced award scheme. In this paper, we aim to generate insights into

how an organizer should decide on the contest duration along with the award scheme.

At crowdsourcing platforms such as InnoCentive or Topcoder, we observe that the contest dura-

tion is determined based on contest characteristics. For instance, our analysis of contests (i.e.,

challenges) organized at InnoCentive in 2018 shows that the average duration of reduction-to-

practice (in short, RTP) challenges that seek working prototypes is 81 days, while the average

duration of theoretical challenges that seek theoretical solutions is 48 days. Similarly, at Topcoder,

design challenges that seek innovative solutions (e.g., designing an app) often run longer than devel-

opment challenges that seek low-novelty solutions (e.g., hunting bugs in a software). In addition to

problem-related contest characteristics, the contest duration seems to be related to support tools

provided for agents. For instance, an organizer at Topcoder may offer support tools such as test

cases, deployment guides, and documentation that can boost the agent productivity by reducing

“non-functional decisions,” and such tools can “shrink timelines” (?).

In addition to the examples above, empirical studies and our interviews with practitioners at

crowdsourcing platforms establish the managerial relevance of the contest duration, and they point

to the following intrinsic drivers for it. ? empirically show that a longer contest duration may

hinder agents’ participation but induces participating agents to perform better. Dr. Kelly Higgins

from InnoCentive explains this tradeoff as follows: “we have found that increasing the length of

posting at times has adverse effects ... Solvers [agents] may think that if there is an extraordinary

length of time for a challenge, it must be extremely difficult and therefore bypass the challenge.”

Thus, as the contest duration increases, agents anticipate that they may have to exert more effort,

and hence incur higher cost, so they may choose not to participate in the contest. In addition to

these incentive effects, our interviews have also revealed that although the quality of solutions is

the main concern, “clients [organizers] like to receive their solutions as early as possible.” Thus,

increasing the contest duration leads to discounting in the organizer’s payoff (?). Due to these

opposing drivers, it is not obvious how an organizer should decide on the contest duration given

different contest characteristics. The theoretical contest literature is of little help because it mostly

overlooks the organizer’s decision of the contest duration, and a few studies that consider the

contest duration (?, ?) provide limited insights because they fail to capture all intrinsic drivers.

Our interviews indicate that practitioners factor in the contest duration when determining the

award scheme. Yet, the prior literature on the award scheme overlooks the contest duration, and

often suggests that an organizer should give a single award, i.e., adopt the winner-take-all (hereafter,

WTA) award scheme. However, we observe that about three fourths of challenges organized at

Topcoder have given multiple awards, and Stouras et al. (2017) also report that about two thirds
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of challenges organized at InnoCentive have given multiple awards. A few studies (e.g., ??) show

that giving multiple awards can rarely be optimal when agents possess certain characteristics (e.g.,

risk aversion or specific beliefs about the agent uncertainty), but these studies neither explain why

giving multiple awards is so common in practice nor can they account for why different contests

on the same platform with a similar pool of agents adopt different award schemes. Thus, it is

important to investigate whether the organizer’s decision of the contest duration can account for

these policies in practice.

To address the gaps between theory and practice, we ask the following research questions. (Q1)

How does the optimal contest duration change with contest characteristics? (Q2) What is the

relationship between the contest duration and the award scheme?

As a first step towards answering these important research questions, we use a static game-

theoretic model where the organizer determines the contest duration and the award scheme to

maximize his profit. Then, each agent decides on her participation, and each participating agent

decides on effort levels she will exert over the contest duration to maximize her utility.2 The quality

of an agent’s solution increases with her effort, but it is also subject to an output uncertainty.

Consistent with most challenges at InnoCentive and Topcoder, we assume that agents do not

receive feedback from the organizer.

To capture important contest characteristics and drivers about the contest duration in practice,

our model contains the following key features. First, an agent optimally allocates her (total) effort

over the contest duration based on her per-time productivity. The agent productivity may decrease

over time due to factors such as fatigue (e.g., ?) or may increase over time due to factors such as

deeper understanding of concepts (e.g., ?). For instance, support tools such as test cases, deploy-

ment guides, and documentation at Topcoder can boost the agent productivity by reducing fatigue

due to non-functional decisions and by facilitating deeper understanding of concepts.

Second, each agent endogenously determines whether to participate or not. Thus, the organizer

ensures that a certain number of agents chooses to participate in the contest by determining the

contest rules accordingly. When modeling how the number of agents is determined, we not only

analyze the standard setting in the innovation-contest literature where the number of agents is

given exogenously, but also analyze a more novel setting where the organizer influences the number

of agents (i.e., the number of agents is endogenous) while determining the contest rules. Third,

we assume that (all else being equal) an organizer prefers obtaining solutions earlier rather than

2 Consistent with most papers in the innovation-contest literature (e.g., ??), our model assumes that agents do not
receive any information update throughout the contest, so they can statically determine effort levels they will exert
over the contest duration. Alternatively, one can study a dynamic model where agents dynamically determine their
efforts based on information they receive over time. We provide more detailed discussion of such a dynamic model in
§??, and defer this analysis to future research.
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Table 1 Summary of managerial insights.

Patient organizer Impatient organizer

Low urgency Moderate urgency High urgency

Optimal duration
given award scheme

Increases with the novelty or
sophistication of solutions, and is

shorter when the agent productivity
increases over time.

Decreases with the novelty or
sophistication of solutions, and

is longer when the agent
productivity increases over time.

Optimal distribution
of awards

Giving multiple
awards is optimal.

The winner-take-all award scheme is optimal.

Optimal duration
and total award Both increase with the novelty or sophistication of solutions.

later. We capture this intuitive property by assuming that the organizer’s payoff is discounted at a

rate that depends on how urgently the organizer needs solutions. In addition to these features, our

model helps us tease out the impact of the contest duration because we show that under a fixed

duration, our model is equivalent to the standard modeling framework of the innovation-contest

literature (e.g., ??).

Using our model, we first analyze the optimal contest duration. We show that as the contest

duration increases, each participating agent exerts more (total) effort, and hence generates a higher-

quality solution. However, exerting more effort raises the agent’s cost of effort, and hence reduces

her utility from the contest. Thus, as the contest duration increases, it gets harder for the organizer

to ensure agents’ participation. In addition, as the contest duration increases, the organizer’s payoff

is discounted more. We show that which of these three effects drives the optimal contest dura-

tion depends on how urgently the organizer needs solutions. For the organizer with high urgency

(hereafter, impatient organizer), the tradeoff between increasing agents’ efforts and incurring more

discounting (hereafter, effort-discounting tradeoff) drives the optimal contest duration. However,

for the organizer with low or moderate urgency (hereafter, patient organizer), the tradeoff between

increasing agents’ efforts and ensuring their participation (hereafter, effort-participation tradeoff)

drives the optimal contest duration. Interestingly, our interviews with practitioners at crowdsourc-

ing platforms support our finding because an organizer at a crowdsourcing platform rarely has high

urgency, and practitioners choose the contest duration considering the effort-participation tradeoff.

Because the patient-organizer case seems more consistent with practice, we focus on this case.

After characterizing the optimal contest duration, we analyze how it changes with contest char-

acteristics. We show that the optimal contest duration increases with the novelty or sophistication

of solutions that the organizer seeks. The intuition is as follows. As the novelty or sophistication

increases, the impact of the agent’s effort on her expected award decreases, so the agent reduces her

effort, which reduces her cost of effort, and hence raises her utility. Thus, the organizer increases



Korpeoglu, Körpeoğlu, and Tunç: Optimal Duration of Innovation Contests
5

the contest duration to induce agents to exert more effort while ensuring their participation. Our

finding seems consistent with practice. For example, at Topcoder, design challenges that seek inno-

vative solutions have longer durations than development challenges that seek low-novelty solutions.

Similarly, at InnoCentive, RTP challenges have longer durations than theoretical challenges. We

show that the optimal contest duration also depends on how the agent productivity changes over

time. Although one may expect the organizer to set a longer contest duration when the agent

productivity increases over time, we show that the opposite is true. This is because although an

increase in productivity induces agents to exert more effort, the organizer sets a shorter duration to

ensure their participation. This result suggests that an organizer who provides support tools that

increase the agent productivity over time (e.g., test cases, deployment guides, and documentation

at Topcoder) can set a shorter duration without sacrificing the quality of solutions.3

We next analyze the award scheme under the optimal contest duration. We show, interestingly,

that for an organizer with low urgency, it is always optimal to give multiple awards as the organizer

can induce agents to exert more effort by setting a longer contest duration. We further show that

giving multiple awards is even more desirable when the agent productivity increases over time.

This suggests that giving multiple awards goes hand in hand with offering support tools (e.g., test

cases, deployment guides, and documentation at Topcoder) that increase the agent productivity

over time. As another novel result, we explicitly characterize an optimal award scheme where it is

almost always optimal to give unequal awards. These results help explain why many contests on

platforms give multiple unequal awards because our interviews have revealed that many organizers

on platforms have low urgency in obtaining solutions. Finally, we show that both the optimal contest

duration and the optimal total award increase with the novelty or sophistication of solutions, which

provides a plausible mechanism for an empirically-proven positive correlation between the contest

duration and the total award (??).

Related Literature. Our study is related to the new-product-development (hereafter, NPD)

literature, the innovation-contest literature, and the scant literature on the contest duration. 4

The traditional NPD literature (e.g., ?) focuses on an in-house development process of a new

product where a product developer has full control over development efforts. Yet, with a shift

3 These support tools are unlikely to affect the agent uncertainty because these tools aim to reduce the cost of
development and help with the implementation of solutions. Our insight does not encompass tools that may affect
the agent uncertainty (e.g., by affecting agents’ creativity).

4 As we factor in time as a model component, our study is also broadly related to the race literature (e.g., ?, ?, ?),
which analyzes competition among agents where the first agent whose solution satisfies a certain quality requirement
receives an award. In a race, the quality requirement is fixed, and the race duration is inherently unknown; while in a
contest, the solution quality is variable, and the contest duration is known. In the race literature, to our knowledge,
only ? show a result related to our study, and state that setting a higher quality requirement for a race leads to
a longer race duration, which is consistent with our interim result that the quality of a solution increases with the
contest duration.
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in the landscape of classical research and development, a growing number of organizations have

started to look beyond their boundaries towards outsourcing NPD activities (?). A cost effective

and time saving tool to outsource NPD activities is an innovation contest (e.g., ?). Different from

a product developer, a contest organizer has to incentivize competing agents to participate and

exert costly efforts. Despite this contextual difference, some studies in the NPD literature show

related results to ours. Specifically, ? analyze the optimal composition of parallel and sequential

tests, and identify a tradeoff between the cost and duration of testing because parallel testing is

faster but costlier than sequential testing. This is in-line with our interim finding that the agent’s

cost of effort decreases with the contest duration. ? and ? show that the number of parallel and

sequential tests should increase with uncertainty. We show the opposite in an innovation contest,

specifically, agents’ incentives to exert effort decrease with uncertainty. Indeed, we show that, to

compensate for agents’ reduced incentives to exert effort, a patient organizer should increase the

contest duration. In addition to the subtleties in our results arising from the contextual difference,

we differ from the NPD literature by studying the relationship between the contest duration, a

decision relevant to both innovation-contest and NPD settings, and the award scheme, a decision

specific to an innovation-contest setting.

Our study contributes to the innovation-contest literature. ? pioneer a modeling framework of

the innovation-contest literature, and show that a free-entry open-innovation contest is always

optimal. Building on the modeling framework of ?, ? show that a free-entry open-innovation contest

is optimal only when the agent uncertainty is sufficiently large or the organizer is interested in

many solutions. Building on the same modeling framework, ? analyze when and how a firm should

organize an internal innovation contest; ? compare a joint and a separate contest in the presence

of multiple attributes; ? study the impact of parallel innovation contests; and ? study the optimal

feedback policy. We contribute to the innovation-contest literature by studying the organizer’s

decision of the contest duration and by analyzing the relationship between the contest duration and

the award scheme. Indeed, we show that when the organizer considers a fixed contest duration, our

model becomes equivalent to the standard modeling framework of the innovation-contest literature.

The closest study to our paper is by ?, who analyze the award scheme in an innovation contest

by considering a fixed duration. They show that when the agent uncertainty has a log-concave

density and her participation condition is satisfied, the WTA award scheme is optimal; and show

that giving multiple awards is optimal in rare cases where one of these conditions is violated (e.g.,

when the agent uncertainty follows a log-convex and heavy tailed distribution). Our work differs

from ? in the following key aspects. First, we show that even when the agent uncertainty has a log-

concave density and the agent’s participation condition is satisfied under the WTA award scheme,

giving multiple awards is always optimal for the organizer with low urgency (as in most contests
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on crowdsourcing platforms). Second, we show the novel result that giving multiple awards is more

desirable when the organizer provides support tools that increase the agent productivity over time

(e.g., test cases, deployment guides, and documentation at Topcoder). Third, different from ?, we

show that these results hold when the organizer influences the number of agents who participate in

the contest, i.e., when the number of agents is endogenous. Finally, we complement the results in

this literature including ? by explicitly characterizing an optimal award scheme under the optimal

contest duration.5

The innovation-contest literature also contains studies that use different modeling frameworks

and assume a fixed contest duration. For example, ? study design contests where each agent chooses

from a set of design approaches. ? analyze the role of intermediate awards and feedback in a two-

stage contest where they assume that two agents make continuous memoryless trials where the

success rate of an agent is determined by her per-time effort. Because the tractability of a general

model with both the agent uncertainty and heterogeneity is very limited (cf. ?, ?), several papers in

the innovation-contest literature focus on heterogeneity by abstracting away from uncertainty. For

instance, ? analyze how the agent’s equilibrium effort and the organizer’s profit change with the

number of agents in the contest. ? show that giving multiple equal awards may be optimal when

the organizer aims to increase the number of agents who participate in the contest. As opposed

to their result, we show that when the WTA award scheme is not optimal, the organizer should

almost always give unequal awards. For a detailed review of the contest literature, we refer the

reader to ? and ?.

Despite its practical relevance, the contest duration has received little attention from the theoret-

ical contest literature. ? characterize agents’ equilibria for an exogenously given duration without

characterizing the optimal duration. Neglecting the agent uncertainty and participation decision,

? suggests limiting the contest duration based on the effort-discounting tradeoff. We contribute to

this scant literature as follows. First, we identify the effort-participation tradeoff, and show that

this novel tradeoff drives the optimal contest duration for an organizer without high urgency. As

we discuss above, our interviews with practitioners at crowdsourcing platforms have revealed that

an organizer at a crowdsourcing platform rarely has high urgency, so the effort-participation trade-

off is more relevant to practice than the effort-discounting tradeoff. Second, different from these

papers, we provide practically-consistent insights about how the optimal contest duration changes

with the agent productivity over time and the agent uncertainty, and the relationship between the

contest duration and the award scheme.

5 As another related paper, ? study sales contests, and show that when agents are risk averse, giving multiple awards
can be optimal; whereas when agents are risk neutral, the WTA award scheme is optimal. In contrast, we show that
giving multiple awards to risk-neutral agents is optimal when the organizer has low urgency in obtaining solutions.
Also, different from ?, we explicitly characterize an optimal distribution of awards when it is optimal to give multiple
awards.
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2. Model

We consider an innovation contest where a contest organizer (“he”) elicits solutions to an

innovation-related problem from a set of N agents (“she”), and agents develop their solutions

within a contest duration T . Given a population of N agents, N(≤ N) can be interpreted as the

number of agents that the organizer aims to attract to the contest. In our main analysis, we take N

as given following the innovation-contest literature (e.g., ?, ?, ?). However, in §??, we extend our

main results to the case where N is endogenous to the organizer’s profit-maximization problem.

Agents. Each agent i ∈ {1,2, ...,N} generates an output yi that represents the quality of her

solution or solution’s monetary value to the organizer. Agent i’s output yi depends on her effort

throughout the contest duration and an output shock.

First, to improve her output, each agent i exerts effort ηi(t) (≥ 0) at time t over the contest

duration T . For instance, agent i’s per-time effort ηi(t) may represent per-time resources that

agent i allocates to the contest such as the full-time equivalent of labor hours or the amount of

capital. Agent i’s per-time effort ηi(t) leads to a deterministic improvement in her output yi at

the rate of θ(t)ηi(t) where the per-time productivity θ(t) (> 0) represents the marginal impact of

the agent’s per-time effort ηi(t) on her output. Several factors may affect θ(t). On one hand, as

t increases, agents may rush or get exhausted, reducing the per-time productivity θ(t) (e.g., ?).

On the other hand, as an agent spends more time on developing a solution, “activities can be

sequenced in an efficient order. Consequently, unnecessary steps are eliminated, ... [and it] leads to

a deeper understanding of concepts” (?, page 1685). Thus, spending more time on the contest may

lead to an increase in the per-time productivity θ(t) over time. If positive effects dominate, θ(t)

can be increasing; if negative effects dominate, θ(t) can be decreasing; and if positive and negative

effects offset each other, θ(t) can be constant. Throughout the paper, whenever we need to capture

how θ(t) changes over time, we consider the functional form θ(t) = exp(ρt), where the productivity

exponent ρ < 0 captures decreasing productivity, ρ = 0 captures constant productivity, and ρ > 0

captures increasing productivity.

Second, each agent is exposed to an output shock ξ̃i.6 For example, a chemist participating in

an ideation challenge at InnoCentive faces an uncertainty about the value of her solution to the

organizer. For each agent i, the output shock ξ̃i(∈ Ξ) is independent, and follows a cumulative

6 Our interviews with practitioners at InnoCentive and Topcoder reveal that agents receive email notifications right
after a new contest is posted, they almost never receive feedback, and do not see other agents’ submissions. Thus,
increasing the contest duration does not lead to a significant information update, and hence the agent uncertainty
over time can be captured by a single output shock. ? point this out by stating that “[i]n the benchmark case of no
feedback, the firm [i.e., organizer] does not provide any interim performance information to the solvers [i.e., agents].
As a result, each solver’s two-stage effort choice problem reduces to a simultaneous, single-stage utility maximization
problem” (?, page 5). Note that a model that incorporates time does not need to be dynamic. For instance, time is
an important component in the race literature (e.g., ???), yet it is common in this literature to adopt a static model.
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distribution function H and a density function h with E[ξ̃i] = 0 over support Ξ = [s, s], where

s∈R∪{−∞} and s∈R∪{∞}. We assume that h is log-concave (i.e., log(h) is concave), which is

satisfied by most commonly used distributions such as Gumbel (e.g., ?), uniform (e.g., ?), normal,

exponential, and logistic distributions. Let ξ̃N
(j) be a random variable that represents the j-th largest

output shock among {ξ̃1, ξ̃2, ..., ξ̃N} with a cumulative distribution HN
(j) and a density hN

(j)(s) =
N !

(N−j)!(j−1)!
(1−H(s))j−1H(s)N−jh(s). To analyze the relative impact of the agent uncertainty on

her output compared to her effort without imposing a distribution assumption, we use the notion

of a scale transformation. Two distribution functions H and Ĥ differ by a scale transformation if

there exists a parameter α > 0 such that Ĥ(s) = H(s/α) for all s∈Ξ (cf. ?). When ξ̃i is transformed

with the scale parameter α > 1, the transformed output shock ξ̂i = αξ̃i has mean 0 and variance

α2V ar(ξ̃i), so the relative impact of the agent uncertainty increases and the relative impact of

her effort decreases. Throughout the paper, whenever we analyze the relative impact of the agent

uncertainty or her effort, we use the scale parameter α, and whenever we do not, we normalize α

to 1 for ease of illustration.

Given agent i’s per-time effort ηi(t), per-time productivity θ(t), and output shock ξ̃i, agent i’s

output takes the following form:

yi =
∫ T

0

θ(t)ηi(t)dt + ξ̃i. (1)

We assume that agent i’s cost of per-time effort takes the form cηi(t)b, where c > 0 and b > 1.

Assuming convex cost of per-time effort is quite standard in the literature on multi-stage contests

(e.g., ??), the product-development literature (e.g., ??), the race literature (e.g., ?), and the project-

management literature (e.g., ?). For instance, ? study a two-period model where the per-period

cost function is a special case of ours with b = 2. Agent i’s cost over the contest duration T is

ψ(ηi, T ) =
∫ T

0
cηi(t)bdt. Let ei ≡

∫ T

0
θ(t)ηi(t)dt be agent i’s total deterministic improvement of her

output over the contest duration T , and it can represent the total amount of tasks that the agent

performs to improve her solution quality over the contest duration T . Throughout the paper, we

refer to ei as the agent’s effort.

The following lemma characterizes the cost function ψ(ei, T ) of effort ei by considering that

agent i can optimally allocate her effort ei over T . We present all proofs in Appendix.

Lemma 1. For any ei and T , agent i’s optimal per-time effort is eiθ(t)
1

b−1 τ(T )−1, where τ(T ) =
∫ T

0
θ(t)

b
b−1 dt. Thus, for any T , ψ(ei, T ) = ceb

iτ(T )1−b. Moreover, ψ(ei, T ) is increasing and convex

in ei, and decreasing in T .

Lemma ?? shows that the initial model that we present can be simplified to a model where each

agent i can determine her (total) effort ei, and then optimally allocate her effort over the contest

duration T such that she exerts more per-time effort at times of higher per-time productivity. In
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this case, agent i’s decision can be represented by ei, where the agent’s output function is yi = ei + ξ̃i

and her cost of effort can be simplified as ψ(ei, T ) = ceb
iτ(T )1−b. This simplified model has two

desirable properties. First, Lemma ?? shows that ψ(ei, T ) is increasing and convex in effort ei, and

decreasing in the contest duration T . The cost function decreasing in the contest duration captures

an intuitive property in practice that it is easier for an agent to allocate her effort over a longer

period of time (e.g., ??). Second, when T is fixed, our simplified model boils down to the standard

modeling framework of the innovation-contest literature (e.g., ???).

Each agent maximizes her utility, which is a function of the award she receives from the contest

and the cost she incurs. Following the economics and operations literature (e.g., ??), we assume

that the agent discounts her award with an interest rate β. Then, agent i’s utility takes the form

U(ei, T, zi) = exp(−βT )zi − ceb
iτ(T )1−b −F , where zi is the award

agent i receives, and F (> 0) is a fixed cost of participation in the contest.

Organizer. The organizer decides on the contest duration T and a vector of awards

(A(1),A(2), ...,A(N)) that we refer to as the award scheme. To isolate the impact of the award scheme

from the impact of the contest duration, we assume that the organizer sets the present value of

awards. (Using present values is also common in the race literature (e.g., Loury 1979, ?), where

time is an important model component.) If agent i produces the j-th largest output y(j), then she

receives an award zi = exp(βT )A(j). Consistent with practice and the literature (e.g., ?), we assume

A(j) ≥A(j+1) for all j ∈ {1,2, ...,N − 1}. Let A =
∑N

j=1 A(j) be the present value of the total award,

and (γ(1), γ(2), ..., γ(N)) be the distribution of awards such that A(j) = γ(j)A for all j ∈ {1,2, ...,N},

and
∑N

j=1 γ(j) = 1. We refer to the agent with the largest output as the winner, and refer to the

award scheme that gives an award only to the winner (i.e., γ(1) = 1) as the winner-take-all (hereafter,

WTA) award scheme.

The organizer maximizes the present value of his expected profit, which consists of the organizer’s

payoff from the contest minus the total award given to agents. We make the following assumptions

about the organizer’s profit. First, as is common in the innovation-contest literature (e.g., ?),

we assume that the organizer is interested in the quality of the best solution.7 Second, all else

being equal, the organizer prefers obtaining solutions earlier rather than later. We capture this

by assuming that the organizer discounts his payoff with a discount factor δ (≥ 0) (e.g., ?, ?, ?).

Hence, the organizer’s profit Π = exp(−δT )y(1) − exp(−βT ) exp(βT )A = exp(−δT )y(1) −A.8 Note

7 Note that all our results extend to the case where the organizer is interested in multiple solutions. Also, following
the innovation-contest literature (e.g., ?, ?), we assume that an agent can submit a solution of any quality. Thus, an
agent who chooses to participate always submits a solution because the agent’s probability of winning an award is
positive when she submits a solution, whereas this probability is zero when she does not submit a solution.

8 This profit function assumes the same interest rate for the organizer and agents. However, our supplementary
analysis shows that our main results extend to a case where agents’ cash flows are more sensitive than the organizer’s.
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that the discount factor δ is different from the interest rate β because δ is also related to the value

of solutions to the organizer and how urgently the organizer needs these solutions. For instance, if

the organizer incurs a significant opportunity cost for not implementing a solution earlier, δ may

be large.

The sequence of events is as follows. First, the organizer announces the contest duration and

the award scheme. Then, each agent decides on whether to participate in the contest, and each

participating agent decides on her effort, optimally allocates her effort over the contest duration,

and generates a solution. Finally, the organizer collects and evaluates all solutions, and awards the

best solution(s) based on the announced award scheme. Agents learn about the quality of their

solutions only after the organizer evaluates all solutions.

Equilibrium among agents. In our base model, following the innovation-contest literature (e.g.,

??, ?), we focus on a symmetric pure-strategy Nash equilibrium among participating agents.9

However, we show the robustness of our main findings by considering asymmetric pure-strategy

Nash equilibria and mixed-strategy Nash equilibria in §?? and §?? of Online Appendix, respectively.

We utilize the best-response argument to derive the symmetric pure-strategy Nash equilibrium,

where each agent exerts the equilibrium effort e∗. Given that all other agents exert the equilibrium

effort e∗, agent i’s probability of producing the j-th largest output (hence ranking the j-th) when

she exerts effort ei is as follows:

P N
(j)[ei, e

∗] =
∫

s∈Ξ

(N − 1)!
(N − j)!(j − 1)!

H(s + ei − e∗)N−j(1−H(s + ei − e∗))j−1h(s)ds.

Each agent i chooses her effort ei to maximize her expected utility by solving

max
ei∈R+

N∑

j=1

P N
(j)[ei, e

∗]A(j) − ceb
iτ(T )1−b −F . (2)

Evaluating the first-order condition of (??) at ei = e∗ yields
N∑

j=1

IN
(j)A(j) = cb(e∗)b−1τ(T )1−b, (3)

where IN
(j) ≡

∂P N
(j)[ei,e

∗]

∂ei

∣
∣
∣
∣
ei=e∗

, and it can be derived as follows:

IN
(j) =

∫

s∈Ξ

(N − 1)!
(N − j)!(j − 1)!

H(s)N−j−1(1−H(s))j−2 [(N − j)(1−H(s))− (j − 1)H(s)]h(s)2ds. (4)

Let x≡
∑N

j=1 IN
(j)γ(j). Noting that IN

(j) is independent of e∗, the agent’s equilibrium effort

e∗ =

(
Ax

cb

) 1
b−1

τ(T ). (5)

9 Note that we allow for asymmetric participation behavior where N agents participate and N − N agents do not.
Which N agents participate in the contest is immaterial to our analysis because all agents are identical.
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As ei = e∗ in equilibrium, an agent’s probability of ranking the j-th is 1/N . An agent participates

in the contest if her expected utility is non-negative, i.e., 1
N

∑N

j=1 A(j) − c(e∗)bτ(T )1−b −F ≥ 0.

The organizer’s problem. The organizer solves the following profit-maximization problem:

max
T,(A(1),A(2),...,A(N))

exp(−δT )
(
e∗ + E

[
ξ̃N
(1)

])
−

N∑

j=1

A(j) (6)

s.t. e∗ = arg max
ei∈R+

N∑

j=1

P N
(j)[ei, e

∗]A(j) − ceb
iτ(T )1−b −F , (7)

1
N

N∑

j=1

A(j) − c(e∗)bτ(T )1−b −F ≥ 0. (8)

The organizer decides on the contest duration T and the award scheme (A(1),A(2), ...,A(N)) to

maximize his expected profit in (??) subject to the agent’s incentive-compatibility constraint (??)

and the agent’s participation condition (??). We make the following mild assumptions to ensure

that a solution to (??)-(??) exists and it is characterizable. First, we assume that F < A/N because

otherwise, the organizer cannot attract N agents to the contest, so the organizer’s problem (??)-

(??) becomes infeasible. Second, we assume that the organizer’s profit Π is unimodal in T and
∂Π
∂T

∣
∣
T=0

> 0 so that the Kuhn-Tucker conditions can characterize the optimal contest duration.

Note that when the per-time productivity takes the form θ(t) = exp(ρt), Π is always unimodal in

T and ∂Π
∂T

∣
∣
T=0

> 0 if the discount factor δ <
(

Ax
cb

) 1
b−1 /E

[
ξ̃N
(1)

]
.

3. Optimal Contest Duration

In this section, we analyze the optimal contest duration T ∗ by taking the award scheme

(A(1),A(2), ...,A(N)) as given. The following lemma characterizes the optimal contest duration T ∗.

Lemma 2. Let T and T̂ solve the following equations, respectively:

∫ T

0

θ(t)
b

b−1 dt =
A−NF

cN

(
Ax

cb

) −b
b−1

and (9)

θ(T̂ )
b

b−1 − δ

∫ T̂

0

θ(t)
b

b−1 dt = δE
[
ξ̃N
(1)

](Ax

cb

) −1
b−1

. (10)

When the organizer’s profit Π is non-monotonic in the contest duration T , there exists δ1 such that

T ∗ = T for any δ < δ1,10 and T ∗ = T̂ for any δ ≥ δ1. When Π is monotonic in T , T ∗ = T .

10 A solution to (??) should exist under T = T so that the organizer is able to set the contest duration at T . In §?? of
Online Appendix, we provide sufficient conditions (e.g., the fixed cost of participation F is sufficiently large) for e∗

in (??) to be the unique solution of (??) under T = T . Note that a necessary condition for a solution to (??) to exist
under T = T is that A(N) ≤ F . Although the exact value of the optimal contest duration T ∗ depends on our focus on
symmetric pure-strategy Nash equilibria, we show in §??, and §?? of Online Appendix that the intrinsic drivers of
T ∗ are the same under asymmetric Nash equilibria and mixed-strategy Nash equilibria.
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0 25

(a) Patient organizer (δ = 5%).

0 25

(b) Impatient organizer (δ = 10%).

Figure 1 The organizer’s profit Π as a function of the contest duration T , where T ∗ is the optimal contest

duration and T and T̂ are as in Lemma ??. Setting: ξ̃i ∼ Gumbel with mean 0 and scale parameter 1;

θ(t) = exp(ρt), ρ = 0.01, b = 2, c = 1, F = 0.25, N = 2, and (A(1),A(2)) = (1,0).

The intuition of Lemma ?? is as follows. Increasing the contest duration T has the following three

effects on the organizer’s profit-maximization problem (??)-(??). First, it increases the agent’s

equilibrium effort e∗, and hence improves the agent’s solution quality. Second, because of the

increase in e∗, the agent’s cost of effort increases, her utility decreases, and hence the agent’s

participation condition (??) becomes tighter. Third, increasing T leads to more discounting of the

organizer’s payoff. When the organizer’s profit is non-monotonic with respect to T (i.e., when the

agent productivity does not increase very fast), which of these three effects drives the optimal

contest duration T ∗ depends on the discount factor δ. Throughout the paper, we refer to an

organizer with δ < δ1 as a “patient organizer,” and refer to an organizer with δ ≥ δ1 as an “impatient

organizer.” For a patient organizer, the impact of discounting is small, so the tradeoff between

increasing the equilibrium effort e∗ and satisfying the participation condition (??) (hereafter, effort-

participation tradeoff) drives the optimal contest duration T ∗. Thus, the organizer sets T such that

the agent’s participation condition is binding, i.e., T ∗ = T . Hence, interestingly, even for a patient

organizer (i.e., an organizer who does not worry about discounting much), it is optimal to limit the

contest duration to guarantee agents’ participation; see Figure ??. For an impatient organizer, the

impact of discounting is large, so the tradeoff between increasing the agent’s equilibrium effort e∗

and incurring more discounting (hereafter, effort-discounting tradeoff) drives the optimal contest

duration T ∗. Thus, the organizer sets T such that the impact of effort and the impact of discounting

are balanced, i.e., T ∗ = T̂ (≤ T ); see Figure ??.

Lemma ?? also shows that when the organizer’s profit always increases with the contest duration

T , the organizer always sets T according to the effort-participation tradeoff, i.e., T ∗ = T . This

happens when the agent productivity increases very fast. Throughout the paper, we focus our

discussion on the case where the organizer’s profit is non-monotonic so that we can also generate

insights for the case of an impatient organizer, but all our results and their intuitions for the patient

organizer apply to the case where the organizer’s profit is monotonic. Note that as we discuss in
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§??, our interviews with practitioners have revealed that most organizers on platforms seem to be

patient, so the case of a patient organizer is more relevant to practice. Thus, we focus on a patient

organizer in §??, and we supplement our analysis by considering an impatient organizer in §??.

3.1. Analysis of Patient Organizer

The following theorem analyzes how the optimal contest duration T ∗ for a patient organizer changes

with the relative impact of the agent uncertainty on her output compared to her effort. We measure

this impact with a scale parameter α. Also, under the per-time productivity θ(t) = exp(ρt), we

analyze the impact of the productivity exponent ρ on T ∗.

Theorem 1. (a) The optimal contest duration T ∗ is increasing in any scale parameter α such that

δ < δ1. (b) Suppose that the per-time productivity θ(t) = exp(ρt). Then, T ∗ is decreasing in any

productivity exponent ρ such that δ < δ1.

As discussed in §??, the effort-participation tradeoff drives the optimal contest duration T ∗ for

a patient organizer, so we explain the intuition of Theorem ??(a) by focusing on the effort-

participation tradeoff. As demonstrated in (??), the agent balances the marginal benefit of her

effort (i.e., Ax) with the marginal cost of her effort
(
i.e., cb(e∗)b−1τ(T )1−b

)
. When the relative

impact of the agent uncertainty measured by α increases, the marginal benefit of the agent’s effort

decreases, so she reduces her equilibrium effort e∗. Because e∗ decreases, the agent’s cost of effort

decreases, and hence her utility increases. This increase in the agent’s utility allows the organizer

to increase the contest duration T without violating the agent’s participation condition, so T ∗

increases with α.

Theorem ??(a) has an important managerial implication. As the scale parameter α increases,

the agent uncertainty becomes relatively more impactful and the agent’s effort becomes relatively

less impactful. The relative impact of the agent uncertainty can be associated with the novelty

of solutions that the organizer seeks (e.g., ?). The relative impact of the agent’s effort can be

associated with the sophistication of solutions that the organizer seeks because as the organizer

seeks more sophisticated solutions, the agent’s unit effort has relatively less impact on her solution.

Therefore, Theorem ??(a) suggests that the optimal contest duration increases with the novelty

or sophistication of solutions that a patient organizer seeks. This result seems consistent with

practice. For example, at Topcoder, development challenges that seek low-novelty solutions (e.g.,

hunting bugs in software) have shorter contest durations than design challenges that seek innova-

tive solutions (e.g., designing an app). Similarly, at InnoCentive, theoretical challenges that seek

theoretical solutions have shorter contest durations than RTP challenges that seek working pro-

totypes. Not only is our result consistent with practice but also the drivers of our result seem
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consistent with practice. Specifically, our interviews with practitioners at InnoCentive and Top-

coder have revealed that most organizers at crowdsourcing platforms seem to be patient, so our

results suggest that the optimal contest duration should be determined by the effort-participation

tradeoff. Indeed, our interviews corroborate our model prediction, and indicate that practitioners

use the effort-participation tradeoff while determining the optimal contest duration.

Theorem ??(b) shows that for a patient organizer, the optimal contest duration T ∗ decreases

with the productivity exponent ρ. We discuss the intuition focusing on increasing productivity

(i.e., ρ > 0), but the same intuition applies to decreasing productivity (i.e., ρ < 0). As the produc-

tivity exponent ρ increases, the agent productivity increases faster over time, so one may think

that the organizer should increase the contest duration T to benefit from the increased productiv-

ity. However, Theorem ??(b) shows, somewhat counterintuitively, that the opposite is true. The

intuition is as follows. As the productivity exponent ρ(> 0) increases, the marginal benefit of the

agent’s per-time effort increases faster with T , and hence the agent increases her equilibrium effort

e∗ faster. Thus, the agent’s cost of effort increases faster, and hence the agent’s utility decreases

faster. Hence, the agent’s participation condition (??) binds under a smaller T , and hence the

organizer sets a shorter contest duration to guarantee agents’ participation.11 Our result indicates

that the organizer may benefit from designing a contest with a shorter duration when the agent

productivity increases over time. For instance, an organizer running an app development challenge

at Topcoder can provide support tools such as test cases, deployment guides, and documentation

that can boost the agent productivity by reducing nonfunctional decisions (?). Our result shows

that the organizer offering such support tools may set a shorter contest duration. Our prediction

seems consistent with practice. For example, Topcoder promotes these support tools by stating

that they can “shrink timelines,” i.e., reduce contest durations (see ?, page 1).

3.2. Analysis of Impatient Organizer

In practice, an organizer may be impatient when his profit is significantly affected by how soon

he obtains solutions. For example, Perpetual Motion, a startup that runs a logo-design contest at

99designs may require the logo quickly in order to launch its business (?). The following proposi-

tion analyzes how the optimal contest duration T ∗ changes with the relative impact of the agent

uncertainty measured by a scale parameter α. Under the per-time productivity θ(t) = exp(ρt), it

also analyzes the impact of the productivity exponent ρ on T ∗.

Proposition 1. (a) The optimal contest duration T ∗ is decreasing in any scale parameter α such

that δ > δ1. (b) Suppose that the per-time productivity θ(t) = exp(ρt). Then, T ∗ is increasing in the

productivity exponent ρ such that δ > δ1.

11 Although Theorem ??(b) shows that T ∗ decreases with ρ, the organizer’s profit Π intuitively increases with ρ.
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Proposition ??(a) shows that the optimal contest duration T ∗ decreases with the relative impact

of the agent uncertainty measured by α. The intuition is as follows. As we discuss after Lemma

??, the impatient organizer chooses T by balancing the marginal benefit of T that arises from a

larger effort e∗ with the marginal cost of T that arises from more discounting. As α increases, the

marginal impact of the agent’s effort on her expected award decreases, leading to a smaller effort

e∗ and a smaller impact of increasing T on e∗ (i.e., smaller ∂e∗

∂T
). The former effect reduces the

marginal cost of increasing T , whereas the latter effect reduces the marginal benefit of increasing

T . Proposition ??(a) shows that the marginal benefit decreases more than the marginal cost, and

hence the organizer reduces T with α. A managerial insight from Proposition ??(a) is that the

optimal contest duration decreases with the novelty or sophistication of solutions that an impatient

organizer seeks. This is primarily because the impatient organizer has so much urgency, and hence

the impact of discounting is so large that the organizer sacrifices the solution quality for receiving

solutions quickly. For example, a startup that urgently needs a logo to launch its business may

prefer a satisfactory logo design quickly rather than waiting for the best-quality logo design.

Proposition ??(b) shows, somewhat intuitively, that the optimal contest duration T ∗ for the

impatient organizer increases with the productivity exponent ρ. We discuss the intuition for increas-

ing productivity (i.e., ρ > 0), but the same intuition applies to decreasing productivity (i.e., ρ < 0).

As ρ(> 0) increases, the marginal benefit of the agent’s per-time effort increases faster with the con-

test duration T , and hence the agent increases her equilibrium effort e∗ faster. Thus, the marginal

benefit of T increases, leading to a longer T ∗.

4. Contest Duration and Award Scheme

This section proceeds as follows. In §??, we consider the organizer’s decisions of the contest duration

T and the distribution of awards (γ(1),γ(2),...,γ(N)) by taking the total award A as given. In §??,

we consider the organizer’s decisions of T and A by taking (γ(1),γ(2),...,γ(N)) as given.

4.1. Contest Duration and Distribution of Awards

The following theorem analyzes when it is optimal for the organizer to adopt the WTA award

scheme. As a preparation for the theorem, we let δWTA
1 be the threshold on the discount factor δ

below which T ∗ = T under the WTA award scheme (see Lemma ?? for the definition of δ1).

Theorem 2. (a) There exists δ0(≤ δWTA
1 ) such that if δ > δ0, the WTA award scheme is optimal;

and there exists δ0(≤ δ0) such that if δ < δ0, giving multiple awards is optimal. Also, there exists

M ≥ 0 such that if θ′(T )

θ(T )
≤M for any (γ(1),γ(2),...,γ(N)), δ0 = δ0 = δ0. (b) Suppose that the per-time

productivity θ(t) = exp(ρt). Then, δ0 is increasing in the productivity exponent ρ.
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Theorem ??(a) first shows that when the discount factor δ is above a threshold δ0, the WTA award

scheme is optimal. The intuition is as follows. For a fixed contest duration T , the equilibrium effort

e∗ is maximized under the WTA award scheme because the marginal impact of the agent’s effort on

her probability of becoming the winner is larger than that on her probability of attaining any other

rank. When the organizer has high urgency in obtaining solutions (i.e., δ ≥ δWTA
1 ≥ δ0), the agent’s

participation condition (??) does not bind, and hence the effort-discounting tradeoff drives T ∗. In

this case, since the WTA award scheme maximizes e∗ for any T , the WTA award scheme maximizes

the organizer’s profit under T ∗. When the organizer has moderate urgency (i.e., δ ∈ (δ0, δ
WTA
1 )),

(??) binds under the WTA award scheme. Because the WTA award scheme elicits a larger e∗ for

any fixed T , to satisfy (??), the organizer sets a shorter T under the WTA award scheme than

T under other award schemes that make (??) binding. Thus, such an award scheme may yield a

larger e∗ at the expense of more discounting. When δ > δ0, the negative effect of more discounting

outweighs the positive effect of a larger e∗, and hence the WTA award scheme is optimal. However,

more interestingly, when the organizer has low urgency (i.e., δ < δ0), the positive effect of a larger e∗

outweighs the negative effect of more discounting, so giving multiple awards is optimal. Although

Theorem ??(a) presents two thresholds, δ0 and δ0, unless the agent productivity increases very fast

over time (i.e., unless θ′(T )/θ(T ) is very large), these thresholds take a common value δ0, above

which the WTA award scheme is optimal and below which giving multiple awards is optimal.

Theorem ??(a) has important implications for the contest theory and practice. By assuming a

fixed contest duration, ? prove that the WTA award scheme is optimal when the agent’s partici-

pation condition is satisfied and the density function h is log-concave as in our model. (Note that

under a fixed T , our model becomes a special case of their model.) By factoring in the organizer’s

decision of T , our paper complements their analysis on two fronts. First, we show that their result

extends to the case when the organizer has moderate or high urgency in obtaining solutions. Sec-

ond, and more interestingly, when the organizer has low urgency in obtaining solutions, the WTA

award scheme is no longer optimal even if the conditions specified by ? are satisfied. Thus, our

result helps explain why many contests on crowdsourcing platforms give multiple awards because

as we discuss in §??, many organizers on crowdsourcing platforms have low urgency in obtaining

solutions.

Theorem ??(b) shows that when the productivity exponent ρ increases, we have a larger threshold

δ0 under which giving multiple awards is optimal. The intuition is as follows. As discussed above,

compared to the WTA award scheme, giving multiple awards may elicit a larger e∗ under T ∗ at

the expense of more discounting due to a longer T ∗. Yet, as ρ increases, T ∗ decreases (see Theorem

??(b)), and hence the negative effect of more discounting due to giving multiple awards decreases.

Thus, the organizer can benefit from giving multiple awards under a larger δ. An interesting
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Figure 2 An optimal distribution of awards (γ∗
(1), γ

∗
(2), ..., γ

∗
(N)) as a function of the discount factor δ. The setting

is the same as Figure ??.

managerial insight is that giving multiple awards is more desirable for an organizer that can provide

support tools such as test cases, deployment guides, and documentation to increase the agent

productivity over time. Thus, giving multiple awards goes hand in hand with offering such support

tools.

As Theorem ?? shows, the WTA award scheme is not optimal when the organizer has low

urgency. We next study an optimal distribution of awards and how it changes with the organizer’s

urgency. To ensure that there is a single threshold δ0, we assume that θ′(T )

θ(T )
≤ M , where M is

as in Theorem ??. This assumption is satisfied in most settings including the constant per-time

productivity assumed by the contest literature (e.g., ??).

Proposition 2. Suppose that θ′(T )

θ(T )
≤ M for any (γ(1),γ(2),...,γ(N)), where M(≥ 0) is defined as

in Theorem ??. There exist an optimal distribution of awards (γ∗
(1), γ

∗
(2), ..., γ

∗
(N)) and thresholds

(δ0,1, δ0,2, ..., δ0,N) such that 0 ≤ δ0,N < δ0,N−1 < ... < δ0,1 = δ0; and for any j ∈ {2,3, ...,N}, when

δ ∈ (δ0,j, δ0,j−1), γ∗
(k) is increasing in δ for all k ∈ {1,2, ..., j−1}, γ∗

(j) is decreasing in δ, and γ∗
(k) = 0

for all k ∈ {j +1, ...,N}.

Proposition ?? characterizes an optimal award scheme where the organizer gradually shifts awards

from lower-ranked agents towards higher-ranked agents as the discount factor δ increases. For

example, when the number of agents N = 2, as δ increases, the optimal share of the winner award

γ∗
(1) increases, and the optimal share of the runner-up award γ∗

(2) decreases; see Figure ??(a). For

N = 3, as δ increases, both γ∗
(1) and γ∗

(2) increase as long as the optimal share of the third award γ∗
(3)

is positive; and when γ∗
(3) = 0, γ∗

(1) increases and γ∗
(2) decreases; see Figure ??(b). Thus, Proposition

?? shows that the more urgency an organizer has, the fewer awards he should give, and the larger

share he should allocate to the winner. The intuition is similar to that of Theorem 2. The organizer

can increase e∗ by increasing the contest duration T and the number of awards. Yet, increasing

T comes at the expense of more discounting. As δ increases, the negative effect of discounting

increases, so the number of awards as well as the optimal contest duration T ∗ decreases.12

12 We characterize an intuitive and easy to implement optimal award scheme. Although there may be other optimal
award schemes that do not change with δ in the same manner as in Proposition ??, all optimal award schemes have
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Proposition ?? has important implications for the contest theory and practice. Although the

prior literature shows that multiple awards can be optimal in rare cases by assuming a fixed contest

duration, these studies either do not explicitly characterize an optimal award scheme (e.g., ?)

or show that giving multiple equal awards is always optimal (e.g., ?). However, Proposition ??

characterizes an optimal award scheme where giving equal awards is almost never optimal when

considering the organizer’s simultaneous decisions on the contest duration and the award scheme.

Our finding is indeed consistent with practice. For instance, among 52 challenges organized at

Topcoder in 2019, 45 challenges give multiple awards, and only two of them give equal awards.

Thus, our results help explain not only why contests with multiple awards are common in practice,

but also why these contests give unequal awards.

4.2. Contest Duration and Total Award

This section analyzes how the optimal contest duration T ∗ and the optimal total award A∗ change

with the scale parameter α and the productivity exponent ρ. For analytical tractability, we assume

that the discount factor δ = 0 (i.e., the organizer is patient as in §??), but the main result of this

section (Proposition ??(a)) can also be shown for any δ when the fixed cost of participation F = 0

and the per-time productivity θ(t) = θ.

Proposition 3. (a) The optimal contest duration T ∗ and the optimal total award A∗ are increasing

in the scale parameter α. (b) When θ(t) = exp(ρt), T ∗ is decreasing in the productivity exponent ρ

and A∗ does not change with ρ.

Proposition ??(a) shows that the optimal contest duration and the optimal total award increase

with the scale parameter α. Thus, regarding the optimal contest duration, Proposition ??(a) yields

the same result and has the same intuition as Theorem ??(a). A direct corollary of Proposition

??(a) is that under the WTA award scheme, as the scale parameter α increases, the optimal contest

duration and the optimal winner award both increase, so they are positively correlated. Empirical

studies by ? and and ? corroborate this positive correlation by using data from Taskcn.com and

zhubajie.com (two largest crowdsourcing platforms in China). Although these papers do not suggest

a mechanism for this correlation, Proposition ??(a) suggests that a plausible mechanism may

be how the contest duration and the winner award change with the novelty or sophistication of

solutions that the organizer seeks (see §?? for the discussion about how larger α implies larger

novelty or sophistication of solutions).

the same intuition. As δ increases, the organizer benefits from reducing discounting, and achieves this by shifting his
award scheme towards the WTA award scheme (hence increasing

∑N
j=1 IN

(j)γ
∗
(j)) and reducing the contest duration.

Our supplementary analysis shows that any optimal award scheme features unequal awards for most δ values.
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Proposition ??(b) shows that the optimal contest duration decreases with the productivity expo-

nent ρ, and hence Proposition ??(b) yields the same result and has the same intuition as Theorem

??(b). Proposition ??(b) further shows that the optimal total award does not change with the

productivity exponent ρ. This is because as ρ changes, the organizer changes T ∗ such that the

marginal benefit and the marginal cost of additional total award on the organizer’s profit stay the

same. Thus, the optimal total award A∗ does not change with ρ.

5. Endogenous Number of Participating Agents

In our main model, as is common in the innovation-contest literature (e.g., ?, ?, ?), we consider

the case where the organizer ensures that N agents participate in the contest, where N is taken

exogenously. In this section, we consider the case where the number of participating agents (here-

after, participants) is endogenous to the organizer’s profit-maximization problem (cf. ??). Given a

population of N(≥ 2) agents, let N(≤N) be the number of participants. When N is endogenous,

the organizer’s profit-maximization problem becomes:

max
T,N∈{2,3,...,N},(A(1),A(2),...,A(N))

exp(−δT )
(
e∗ + E

[
ξ̃N
(1)

])
−

N∑

j=1

A(j) s.t. (??), (??).

The number of participants N is not a free decision of the organizer because it is subject to the

agent’s participation condition (??). Instead, the organizer can endogenously affect N by setting

the contest duration T and the award scheme (A(1),A(2), ...,A(N)) accordingly. For instance, the

organizer may induce more agents to participate by setting a shorter T or setting larger award(s).

We first extend Theorem ?? to the case where the organizer decides on the optimal contest

duration T ∗ and the optimal number of participants N∗ to maximize his profit. Note that as in our

main analysis, which N∗ agents participate in the contest is immaterial to our analysis because all

agents are identical. To study the problem of a patient organizer (as in Theorem ??) while retaining

analytical tractability, we assume that the discount factor δ = 0 (i.e., the organizer is patient as in

§??). Although we cannot analytically characterize N∗ when δ > 0, our numerical analysis shows

that Theorem ?? extends to the case where the organizer decides on T ∗ and N∗ under δ > 0.13

Proposition 4. Suppose that δ = 0. (a) T ∗ is increasing in the scale parameter α. (b) Suppose

further that θ(t) = exp(ρt). Then, T ∗ is decreasing in the productivity exponent ρ.

Proposition ??(a) shows that for a patient organizer, the optimal contest duration T ∗ increases

with the scale parameter α, and Proposition ??(b) shows that the optimal contest duration T ∗

13 We take θ(t) = exp(ρt), and randomly generate 10,000 instances where δ < δ1. We observe that in all instances,
T ∗ increases with α and decreases with ρ. In each instance, we randomly select A from Uniform(0,10), F from
Uniform(0,0.5A), ρ from Uniform(-0.01,0.01), α from Uniform(0,2), b from Uniform(2,10), and δ from Uniform(0,0.1);
and assume c = 1, N = 100, γ(1) = 1, and ξ̃i follows Gumbel distribution with mean 0 and scale parameter 1.
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decreases with the productivity exponent ρ. Intuitions of Proposition ??(a) and ??(b) are the same

as intuitions of Theorem ??(a) and ??(b), respectively, because N∗ does not depend on α or ρ.

Specifically, the organizer determines N∗ by balancing the contribution of the equilibrium effort

e∗ on the organizer’s profit Π with the contribution of the expected value of the maximum output

shock E
[
ξ̃N∗

(1)

]
on Π. Interestingly, both of these terms change at the same rate as α, and do not

depend on ρ (see Π in (??) of Online Appendix). Thus, N∗ does not depend on α or ρ.

We next extend our results about the award scheme.

Proposition 5. (a) Let δ0[N ] and δ0[N ] be the thresholds in Theorem ?? when N agents partici-

pate in the contest. Then, there exists δ
∗

0 ≡maxN∈{2,3,...,N} δ0[N ] such that if δ > δ
∗

0, the WTA award

scheme is optimal; and there exists δ∗
0 ≡ minN∈{2,3,...,N} δ0[N ] such that if δ < δ∗0, giving multiple

awards is optimal. (b) Suppose that θ(t) = exp(ρt). Then, δ∗
0 is increasing in ρ. (c) Giving multiple

unequal awards is optimal for any δ ∈ (δ0,N , δ∗
0), where δ0,N (≥ 0) is defined as in Proposition ??

and δ0,N is independent of the number of participants N .

Proposition ??(a) shows that when the organizer has sufficiently high urgency (i.e., δ > δ
∗

0), the

WTA award scheme maximizes the organizer’s profit under the optimal number of participants

N∗. The intuition is similar to that of Theorem ??(a). The organizer can increase e∗ by simulta-

neously increasing T and giving multiple awards. Yet, increasing T comes at the expense of more

discounting, so giving multiple awards is optimal when the discount factor is sufficiently small.

Proposition ??(b) extends Theorem ??(b) and has the same intuition. Finally, Proposition ??(c)

shows that the main message of Proposition ?? is also preserved. Specifically, when it is optimal

to give multiple awards, these awards should almost always be unequal.

6. Discussion and Conclusion

In this paper, we have analyzed the duration and award scheme of an innovation contest inter-

mediated by a crowdsourcing platform. Although practitioners consider the contest duration as a

first-order decision, this decision has received only cursory attention from the theoretical contest

literature. We take the first step toward filling this gap between the theory and practice.

We develop a normative model of an innovation contest, where an organizer determines the con-

test duration and the award scheme and each participating agent generates a solution by exerting

effort. The quality of an agent’s solution improves with her effort but is also subject to an output

uncertainty. To capture intrinsic drivers in practice that we discuss in §??, our model contains

the following key features. First, an agent optimally allocates her (total) effort over the contest

duration according to her per-time productivity, which may decrease over time due to factors such

as fatigue (e.g., ?) or may increase over time due to factors such as deeper understanding of con-

cepts (e.g., ?). Second, each agent endogenously determines whether to participate or not. Thus,
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the organizer ensures that a certain (exogenous or endogenous) number of agents participate by

setting the contest rules accordingly. Third, (all else being equal) an organizer prefers obtaining

solutions earlier rather than later, and hence the organizer’s payoff is discounted at a rate that

depends on his urgency. In addition to these features, our model helps us tease out the impact of

the contest duration because we show that under a fixed duration, our model is equivalent to the

standard modeling framework of the innovation-contest literature.

Our analysis yields the following novel insights. First, we show that the drivers for the optimal

contest duration depends on how urgently the organizer needs solutions. Thus, although the contest

literature (?) posits that the contest duration should be determined by the effort-discounting

tradeoff, we identify the effort-participation tradeoff, and show that this novel tradeoff drives the

optimal contest duration unless an organizer has high urgency. Our interviews with practitioners

at crowdsourcing platforms indicate that an organizer rarely has high urgency, so we focus on the

organizer without high urgency, and show that the optimal contest duration increases with the

novelty or sophistication of solutions that the organizer seeks. This result seems consistent with the

commonly adopted policy at crowdsourcing platforms. Perhaps more interestingly, our interviews

with practitioners indicate that the underlying driver in practitioners’ decision making seems to

be the effort-participation tradeoff as our model predicts. Furthermore, we analyze how the change

in the agent productivity over time affects the optimal contest duration. Although one may expect

the organizer to set a longer contest duration when the agent productivity increases over time, we

show that the opposite is true. This is because although a longer contest duration increases the

agent productivity and may help the organizer receive better solutions from agents, it also hinders

agents’ participation. This result suggests that an organizer who can provide support tools that

increase the agent productivity over time (e.g., test cases, deployment guides, and documentation

at Topcoder) should set a shorter contest duration.

Focusing on the contest duration and the distribution of awards, we first show that the organizer

should give multiple awards when he has low urgency in obtaining solutions, as in many contests

on crowdsourcing platforms. This result helps explain why many contests on these platforms give

multiple awards. Although a few papers in the innovation-contest literature show that giving mul-

tiple awards can be optimal under rare cases discussed in §??, they either do not characterize an

optimal award scheme (e.g., ?, ?) or show that the organizer should give multiple equal awards

when the WTA award scheme is not optimal (e.g., ?). In contrast, we characterize an optimal

award scheme where it is almost always optimal for the organizer to give unequal awards – a result

consistent with practice. We further show that giving multiple awards is more desirable for an

organizer who can provide support tools (e.g., test cases, deployment guides, and documentation
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at Topcoder) to increase the agent productivity over time. Thus, giving multiple awards goes hand

in hand with offering such support tools.

Finally, focusing on the contest duration and the total award, we show that the optimal contest

duration and the optimal total award increase with the novelty or sophistication of solutions that

the organizer seeks. This result provides a plausible theory for recent empirical findings. Specifically,

the positive correlation between the optimal contest duration and the optimal total award can be

due to an increase in the novelty or sophistication of solutions that the organizer seeks.

Our study is the first step towards understanding the impact of the organizer’s decision of the

contest duration, and naturally has some limitations. Specifically, although we use a static model,

one can imagine alternative settings where a dynamic model can be more appropriate. We use a

static model because it captures the first-order effects and primary tradeoffs in contests on crowd-

sourcing platforms such as InnoCentive and Topcoder. Also, we show that under a fixed contest

duration, our model becomes equivalent to the standard modeling framework of the innovation-

contest literature (which is also static), and this equivalence allows us to tease out the impact

of the organizer’s decision of the contest duration. However, a dynamic model may be useful to

analyze alternative settings where the organizer provides feedback. An interesting research avenue

is to study the relationship between the contest duration and feedback policies by employing a

dynamic model. By analyzing a dynamic model, one can also study the impact of the contest dura-

tion on agents’ participation and effort decisions over time.14 Furthermore, while we use a simple

approach to capture the impact of a deeper understanding of concepts and fatigue on the per-time

productivity, a more comprehensive dynamic model may be necessary to analyze the case where

the per-time productivity of an agent at any point in time depends on her effort or her output

uncertainty up to that point, and the analysis of such a dynamic model can be an interesting

future research direction. Finally, instead of focusing on the case where the organizer runs only

one contest, it can be interesting to examine the relationship between the contest duration and the

scheduling of contests when the organizer runs multiple contests.

Appendix

Proof of Lemma ??. For any ei ≡
∫ T

0
θ(t)ηi(t)dt and T , agent i can optimally allocate her effort

over the contest duration by solving the following cost-minimization problem:

min
ηi

∫ T

0

cηi(t)bdt, s.t. ei −
∫ T

0

θ(t)ηi(t)dt = 0. (11)

14 It is worth noting that any dynamic model leads to an asymmetry among agents, so it requires the analysis of a
model with both agent heterogeneity and output uncertainty. It is well-established in the innovation-contest literature
that such a model has a very limited tractability (e.g., ??, ?), and hence it requires many restrictive assumptions
(e.g., the presence of only two agents and a specific distribution for the agent uncertainty) that our model does not
make.
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Let μe be the Lagrange multiplier of the constraint in (??). Then, the equilibrium per-time effort

η∗
i (t) and the optimal Lagrange multiplier μ∗

e(≥ 0) satisfy the Kuhn-Tucker conditions, which

are cbη∗
i (t)

b−1 − μ∗
eθ(t) = 0 and μ∗

e

(
ei −

∫ T

0
θ(t)η∗

i (t)dt
)

= 0. Thus, η∗
i (t) =

(
μ∗

eθ(t)

cb

) 1
b−1

and μ∗
e =

cb
(

ei
τ(T )

) 1
b−1

, and hence η∗
i (t) = eiθ(t)

1
b−1 τ(T )−1 and agent i’s cost ψ(ei, T ) = ceb

iτ(T )1−b. Therefore,

since b > 1, ∂ψ(ei,T )

∂ei
= cbeb−1

i τ(T )1−b > 0 and ∂2ψ(ei,T )

∂e2
i

= cb(b − 1)eb−2
i τ(T )1−b > 0. Also, ∂ψ(ei,T )

∂T
=

ceb
i(1− b)τ(T )−bτ ′(T ) < 0 since b > 1 and τ ′(T ) = θ(T )

b
b−1 > 0.

Proof of Lemma ??. From (??), e∗ =
(

xA
cb

) 1
b−1 τ(T ). Substituting e∗ into (??)-(??) yields

max
T

exp(−δT )

((
xA

cb

) 1
b−1

τ(T )+ E
[
ξ̃N
(1)

]
)

−A, s.t. −
A

N
+ c

(
xA

cb

) b
b−1

τ(T )+ F ≤ 0. (12)

Suppose that Π is non-monotonic. Let μ be the Lagrange multiplier of the constraint in (??). T ∗

and the optimal Lagrange multiplier μ∗(≥ 0) satisfy the following Kuhn-Tucker conditions:

exp(−δT ∗)

[(
xA

cb

) 1
b−1

(−δτ (T ∗)+ τ ′(T ∗))− δE
[
ξ̃N
(1)

]
]

−μ∗c

(
xA

cb

) b
b−1

τ ′(T ∗) = 0, (13)

μ∗

(

−
A

N
+ c

(
xA

cb

) b
b−1

τ(T )+ F

)

= 0. (14)

Suppose that μ∗ > 0. From (??), the optimal contest duration

T ∗ = T = τ−1

(
A−NF

cN

(
xA

cb

) −b
b−1

)

. (15)

Using this equation to simplify (??) yields

μ∗ = exp(−δT ∗)

[(
−δb(A−NF )

NxA
+

(
xA

cb

) 1
b−1

τ ′(T ∗)

)

− δE
[
ξ̃N
(1)

]
]

c−1

(
xA

cb

) −b
b−1

(τ ′(T ∗))−1.

μ∗ > 0, so T ∗ satisfies (??) if δ < δ1 ≡
τ ′

(

τ−1

(
A−NF

cN (xA
cb )

−b
b−1

))

(Ax
cb )

1
b−1

b(A−NF )
NxA +E

[
ξ̃N
(1)

] . Note that δ1 > 0 since τ ′(T ) =

θ(T )
b

b−1 > 0 for any T , E
[
ξ̃N
(1)

]
> 0, F < A/N , and x > 0 by Lemma ?? of Online Appendix.

Suppose that μ∗ = 0. exp(−δT ∗) > 0, so from (??), the optimal contest duration T ∗ = T̂ satisfies

τ ′(T̂ )− δτ (T̂ ) = δE
[
ξ̃N
(1)

](xA

cb

) −1
b−1

. (16)

T ∗ = T̂ should satisfy (??). Plugging τ(T ∗) = τ ′(T∗)

δ
−E

[
ξ̃N
(1)

] (
xA
cb

) −1
b−1 into (??) gives δ ≥ δ1. Thus,

T ∗ = T̂ if δ ≥ δ1. Let −→γ ≡ (γ(1), γ(2), ..., γ(N)) and

Φ(−→γ )≡
τ ′

(

τ−1

(
A−NF

cN

(
xA
cb

) −b
b−1

))
(

Ax
cb

) 1
b−1

b(A−NF )

NxA
+ E

[
ξ̃N
(1)

] − δ. (17)
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Then, for any distribution of awards −→γ , if Φ(−→γ ) > 0, then T ∗ is characterized by (??); and if

Φ(−→γ ) ≤ 0, then T ∗ is characterized by (??) when Π is non-monotonic in T . Also, when Π is

monotonic in T , T ∗ is always characterized by (??) because ∂Π
∂T

> 0.

Proof of Theorem ??. (a) Given a scale parameter α(> 0), we have

E
[
ξ̂N
(1)

]
= E

[
αξ̃N

(1)

]
= αE

[
ξ̃N
(1)

]
, (18)

N∑

j=1

ÎN
(j)γ(j) =

1
α

N∑

j=1

IN
(j)γ(j) =

x

α
. (19)

Suppose that δ < δ1 under a given −→γ and for some α. Then, Φ(−→γ ) > 0 from (??). By the continuity

of Φ, in a sufficiently small neighborhood of α, we still have Φ(−→γ ) > 0. Thus, from (??), under the

scale parameter α, T ∗[α] = τ−1

(
A−NF

cN

(
xA
cb

) −b
b−1 α

b
b−1

)

. Then, since τ ′(T ∗[α]) = θ(T ∗[α])
b

b−1 > 0, for

any δ < δ1,
∂T∗[α]

∂α
=

A−NF
cN (xA

cb )
−b
b−1 b

b−1 α
1

b−1

τ ′(T∗[α])
> 0.

(b) Suppose that θ(t) = exp(ρt) and δ < δ1 under a given −→γ for some ρ. Then, the optimal

contest duration T ∗ = T = b−1
bρ

log

(
bρ

b−1
A−NF

cN

(
xA
cb

) −b
b−1 +1

)

and ∂T∗

∂ρ
= b−1

bρ2

[
1− exp

(
−bρT∗

b−1

)
− bρT∗

b−1

]
.

By L’Hopital’s rule, limρ→0
∂T∗

∂ρ
< 0. Let P = bρ

b−1
. Then, for any ρ 6= 0, ∂T∗

∂ρ
< 0 if and only if

bρT ∗

b− 1
+ exp

(
−bρT ∗

b− 1

)

= PT ∗ +exp (−PT ∗) > 1. (20)

For any ρ > 0 (i.e., P > 0), ∂(PT∗+exp(−PT∗))

∂P
= T ∗ − T ∗ exp(−PT ∗) > 0. Also, when ρ = 0 (i.e.,

P = 0), we have 0 + exp(0) = 1. Thus, for any ρ > 0 (i.e., P > 0), (??) is satisfied, so ∂T∗

∂ρ
< 0.

Finally, for any ρ < 0 (i.e., P < 0), ∂(PT∗+exp(−PT∗))

∂P
= T ∗−T ∗ exp(−PT ∗) < 0. Since 0+exp(0) = 1,

for any ρ < 0 (i.e., P < 0), (??) is satisfied, so ∂T∗

∂ρ
< 0. Thus, T ∗ is decreasing in ρ.

Proof of Proposition ??. (a) Suppose that for some α, δ > δ1 under a given distribution of

awards −→γ . Then, Φ(−→γ ) < 0 from (??). By the continuity of Φ, in a sufficiently small neighborhood of

α, we still have Φ(−→γ ) < 0. From (??), E
[
ξ̂N
(1)

]
= αE

[
ξ̃N
(1)

]
; and from (??),

∑N

j=1 ÎN
(j)γ(j) = x

α
. Then,

from (??), T ∗ under α is characterized by θ(T ∗[α])
b

b−1 − δ
∫ T∗[α]

0
θ(t)

b
b−1 dt = δαE

[
ξ̃N
(1)

] (
xA
αcb

) −1
b−1 .

Let Ω = θ(T ∗[α])
b

b−1 − δ
∫ T∗[α]

0
θ(t)

b
b−1 dt− δE

[
ξ̃N
(1)

] (
xA
αcb

) −1
b−1 = 0. Then, for any δ > δ1,

∂T ∗[α]
∂α

=−
∂Ω
∂α
∂Ω

∂T∗[α]

=
δ b

b−1
α

1
b−1 E

[
ξ̃N
(1)

] (
xA
cb

) −1
b−1

b
b−1

θ(T ∗[α])
1

b−1 θ′(T ∗[α])− δθ(T ∗[α])
b

b−1

< 0

if and only if θ′(T∗[α])

θ(T∗[α])
< δ(b−1)

b
. Note that this condition is satisfied when Π is non-monotonic in T

and unimodal as Lemma ?? in Online Appendix shows. Thus, T ∗ = T̂ decreases with α.
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(b) Suppose that θ(t) = exp(ρt) and δ > δ1 under a given −→γ for some ρ. Let P = bρ
b−1

. Then, ∂T∗

∂ρ
> 0

if and only if ∂T∗

∂P
> 0. From (??), T ∗ = T̂ can be calculated as

θ(T ∗)
b

b−1 − δ

∫ T∗

0

θ(t)
b

b−1 dt =
δ

P
+exp (PT ∗)

[

1−
δ

P

]

= δE
[
ξ̃N
(1)

](xA

cb

) −1
b−1

.

Using implicit function theorem, ∂T∗

∂P
=

δ
[P−δ](1−exp(PT∗))−PT∗ exp(PT∗)

P2 exp(PT∗)
. limP→0

∂T∗

∂P
> 0 by

L’Hopital’s rule. Note that ρ < δ(b−1)

b
, i.e., P − δ < 0, when Π is non-monotonic in T and unimodal

as Lemma ?? in Online Appendix shows. Thus, ∂T∗

∂P
> 0 if and only if

δ (1− exp (PT ∗))−PT ∗ exp (PT ∗) (P − δ) < 0. (21)

Suppose that ρ < 0 (i.e., P < 0). From (??), since δE
[
ξ̃N
(1)

] (
xA
cb

) −1
b−1 > 0, δ

P
+exp (PT ∗)

[
1− δ

P

]
> 0,

which means exp (PT ∗) (P − δ) <−δ when P < 0. Thus, we have

δ (1− exp (PT ∗))−PT ∗ exp (PT ∗) (P − δ) < δ (1− exp (PT ∗)) + δPT ∗ = δ (1− exp (PT ∗) + PT ∗) .

Because 1 − exp (0) + 0 = 0 and
∂(1−exp(PT∗)+PT∗)

∂P
= −T ∗ exp (PT ∗) + T ∗ > 0 when P < 0,

δ (1− exp (PT ∗) + PT ∗) < 0 when P < 0. Thus, when ρ < 0 (i.e., P < 0), the condition in (??) is sat-

isfied, and hence ∂T∗

∂ρ
> 0. Next, suppose that ρ > 0 (i.e., P > 0). From (??), δ

P
+exp (PT ∗)

[
1− δ

P

]
>

0, which means exp (PT ∗) (P − δ) >−δ when P > 0. Thus, we have

δ (1− exp (PT ∗))−PT ∗ exp (PT ∗) (P − δ) < δ (1− exp (PT ∗)) + δPT ∗ = δ (1− exp (PT ∗) + PT ∗) .

Because 1 − exp (0) + 0 = 0 and
∂(1−exp(PT∗)+PT∗)

∂P
= −T ∗ exp (PT ∗) + T ∗ < 0 when P > 0,

δ (1− exp (PT ∗) + PT ∗) < 0 when P < 0. Thus, when ρ > 0 (i.e., P > 0), the condition in (??) is

satisfied, and hence ∂T∗

∂ρ
> 0. Thus, T ∗ = T̂ increases with ρ.

Proof of Theorem ??. (a) Let Φ(−→γ ) be defined as in (??). We have two cases.

Case 1: Suppose that Φ(1,0,0, ...,0)≤ 0 (i.e., δ ≥ δWTA
1 ) and Π is non-monotonic in T under the

WTA award scheme. Then, by Lemma ?? of Online Appendix, Π is non-monotonic in T for any
−→γ , and hence for any −→γ such that Φ ≤ 0, T ∗ = T̂ , which satisfies (??). By Lemma ??, the WTA

award scheme yields a larger Π than any −→γ such that Φ ≤ 0. Also, for any −→γ such that Φ > 0,

T ∗ = T as in (??); and for any −→γ , Π under T is always less than and equal to Π under T̂ . Also,

since the WTA award scheme yields a larger Π than any −→γ under T̂ , it yields a larger Π than any
−→γ such that T ∗ = T . Thus, the WTA award scheme is optimal.

Case 2: Suppose that Φ(1,0,0, ...,0) ≤ 0 (i.e., δ ≥ δWTA
1 ) and Π is monotonic under the WTA

award scheme or suppose that Φ(1,0,0, ...,0) > 0 (i.e., δ < δWTA
1 ). Let −→γm ≡ (γm

(1), γ
m
(2), ..., γ

m
(N)). Any

−→γ1 6= (1,0,0, ...,0) such that Φ(−→γ1) < 0 and Π is non-monotonic cannot be optimal because by the

continuity of Φ and the continuity of ∂Π
∂T

, we can find −→γ2 such that Φ(−→γ2) < 0, Π is non-monotonic,

and
∑N

j=1 IN
(j)γ

2
(j) >

∑N

j=1 IN
(j)γ

1
(j); and −→γ2 yields a larger Π by Lemma ?? of Online Appendix. Thus,
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without loss of optimality, we restrict attention to −→γ such that Φ(−→γ ) < 0 and Π is monotonic or

any −→γ such that Φ(−→γ )≥ 0. Then, T ∗ = T = τ−1

(
A−NF

cN

(
xA
cb

) −b
b−1

)

from (??), and Π under T ∗ is

Π = exp

(

−δτ−1

(
A−NF

cN

(
xA

cb

) −b
b−1

))(
b(A−NF )

ANx
+ E

[
ξ̃N
(1)

])

−A. (22)

As −→γ = (γ(1), γ(2), ..., γ(N)) affects Π only through x, the first derivative of Π with respect to x

∂Π
∂x

= exp

(

−δτ−1

(
A−NF

cN

(
xA

cb

) −b
b−1

))
b(A−NF )

ANx2
×

[

δ(τ−1)′
(

A−NF

cN

(
xA

cb

) −b
b−1

)
b

(b− 1)

(
xA

cb

) −1
b−1
(

b(A−NF )
ANx

+ E
[
ξ̃N
(1)

])

− 1

]

. (23)

Let

Δ(x)≡
b− 1

b

τ ′

(

τ−1

(
A−NF

cN

(
xA
cb

) −b
b−1

))
(

xA
cb

) 1
b−1

b(A−NF )

ANx
+ E

[
ξ̃N
(1)

] , (24)

and δ̂0 ≡ maxx Δ(x). Then, for any δ > δ̂0, ∂Π
∂x

> 0 for any x. Also, let δ0 ≡ Δ(IN
(1)). Then, for

any δ < δ0,
∂Π
∂x

∣
∣
x=IN

(1)

< 0. Note that δ̂0 > 0 and δ0 > 0 because τ ′(T ) = θ(T )
b

b−1 > 0 for any T ,

E
[
ξ̃N
(1)

]
> 0, F < A/N , and x > 0 by Lemma ?? of Online Appendix.

Suppose that δ > δ̂0, but the WTA award scheme is not optimal. Then, under an optimal dis-

tribution of awards (γ∗
(1),γ

∗
(2),...,γ

∗
(N)), there exists l(> 1) such that γ∗

(l) > 0 and γ∗
(j) ≥ γ∗

(j+1) for

all j ∈ {1,2, ...,N − 1}. Let k = max{l|γ∗
(l) > 0}. Consider a perturbation where the k-th award

is shifted to the winner award by keeping other awards the same, i.e., γ̂(k) = γ∗
(k) − γ∗

(k) = 0 and

γ̂(1) = γ∗
(1) +γ∗

(k). After the perturbation, we still have γ̂(j) ≥ γ̂(j+1) for all j ∈ {1,2, ...,N −1}, and x

increases as IN
(1)(γ

∗
(1) +γ∗

(k))+
∑k−1

j=2 IN
(j)γ

∗
(j) >

∑k

j=1 IN
(j)γ

∗
(j) by Lemma ?? of Online Appendix. Thus,

the organizer’s profit Π increases after the perturbation since ∂Π
∂x

> 0 when δ > δ̂0. This contradicts

the optimality of (γ∗
(1), γ

∗
(2), ..., γ

∗
(N)), so the WTA award scheme is optimal when δ > δ̂0.

Suppose that δ < δ0, but the WTA award scheme is optimal. Consider a perturbation where

γ̂(1) = 1− ε, γ̂(2) = ε, and ε(> 0) is small. As Φ(1,0,0, ...,0) > 0 and Φ is continuous, we can find a

sufficiently small ε such that Φ(γ̂(1), γ̂(2),0,0, ...,0) > 0. After the perturbation, the change in Π is

ΠΔ = exp





−δτ−1







A−NF

cN





(
IN
(1)(1− ε)+ IN

(2)ε
)

A

cb





−b
b−1















 b(A−NF )

AN
(
IN
(1)(1− ε)+ IN

(2)ε
) + E

[
ξ̃N
(1)

]




− exp



−δτ−1



A−NF

cN

(
IN
(1)A

cb

) −b
b−1









(
b(A−NF )

ANIN
(1)

+ E
[
ξ̃N
(1)

]
)

.

Since IN
(2) − IN

(1) < 0 by Lemma ?? of Online Appendix, limε→0
ΠΔ

ε
> 0 when δ < δ0. Thus, the

perturbation improves Π under T ∗, which contradicts the optimality of the WTA award scheme.
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Combining cases 1 and 2, let δ0 ≡min{δ̂0, δ
WTA
1 } when Π is non-monotonic in T under the WTA

award scheme, and let δ0 ≡ δ̂0 when Π is monotonic in T under the WTA award scheme. If δ > δ0,

the WTA award scheme is optimal; and if δ < δ0, giving multiple awards is optimal. Also, noting

that the WTA award scheme maximizes x by Lemma ??, Δ(x) in (??) is increasing in x, and hence

δ̂0 = maxx Δ(x) = Δ(IN
(1)) = δ0 when

∂τ ′

(

τ−1

(
A−NF

cN

(
xA
cb

) −b
b−1

))

∂x
=

NF −A

cNx

(
xA

cb

) −b
b−1 θ′

(
T
)

θ
(
T
) (25)

is sufficiently large because (xA
cb )

1
b−1

b(A−NF )
ANx +E

[
ξ̃N
(1)

] is increasing in x. Thus, there exists M ≥ 0 such that

if θ′(T )

θ(T )
≤M for any x, δ0 = b−1

b
δ1 = δ0, and hence δ0 = δ0 = δ0.

(b) Suppose that θ(t) = exp(ρt). Then, ∂δ0
∂ρ

= b−1
b

b(A−NF )

ANIN
(1)

+




IN
(1)

A

cb





1
b−1

b(A−NF )

ANIN
(1)

+E
[
ξ̃N
(1)

] > 0, so the result follows.

Proof of Proposition ??. We construct an optimal distribution of awards (γ∗
(1), γ

∗
(2), ..., γ

∗
(N)) that

satisfies the conditions in the proposition. Suppose that θ′(T )

θ(T )
≤M for any −→γ = (γ(1), γ(2), ..., γ(N)),

where M(≥ 0) is defined as in Theorem ??. In this case, as discussed in the proof of Theorem 2,

Δ(x) in (??) is increasing in x, and hence δ0 = δ0 = δ0. For any A, the organizer chooses T ∗ and

x∗ ≡
∑L

j=1 IN
(j)γ

∗
(j) by solving his profit-maximization problem in (??)-(??).

Let x(1/K) ≡
∑K

j=1 IN
(j)/K for any K ∈ {1,2, ...,N}, let δ0,K ≡ Δ(x(1/K)) for any K ∈

{1,2, ...,N − 1}, and let δ0,N ≡max{0,Δ(x(1/N))}. Because x(1/K) is decreasing in K by Lemma

?? of Online Appendix and Δ(x) is increasing in x, we have δ0,K < δ0,K−1 for any K ∈ {2,3, ...,N}.

Note that δ0,1 = δ0 = Δ(IN
(1)). From (??), e∗ =

(
xA
cb

) 1
b−1 τ(T ), where τ(T ) is increasing in T , so

Π = exp(−δT )
((

xA
cb

) 1
b−1 τ(T )+ E

[
ξ̃N
(1)

])
−A. From Theorem ??, when δ ≤ δ1, T ∗ = T for any −→γ ,

and hence under (γ∗
(1), γ

∗
(2), ..., γ

∗
(N)), we also have T ∗ = T . Also, from (??) and (??), when δ > δ0,N =

Δ(0), ∂Π
∂x

∣
∣
T=T ,x=0

> 0, and hence x∗ is interior under T = T . Thus, the Kuhn-Tucker conditions

are necessary for optimality. Let μ be the Lagrange multiplier of (??). Then, the Kuhn-Tucker

conditions are given by (??)-(??) evaluated at x = x∗ and by Aτ(T )

(b−1)

(
x∗A
cb

) 1
b−1
[

exp(−δT∗)

x∗A
−μ∗

]
= 0.

Thus, we have μ∗ = exp(−δT∗)

x∗A
> 0, so T ∗ = T = τ−1

(
A−NF

cN

(
xA
cb

) −b
b−1

)

from (??). Plugging μ∗ and

T ∗ into (??) yields −δ
(

b(A−NF )

NAx∗ + E
[
ξ̃N
(1)

])
+ b−1

b

(
x∗A
cb

) 1
b−1

τ ′

(

τ−1

(
A−NF

cN

(
x∗A
cb

) −b
b−1

))

= 0, i.e.,

−δ +Δ(x∗) = 0 from (??). When δ = δ0,N , −δ0,N +Δ(0) = 0, so (γ∗
(1), γ

∗
(2), ..., γ

∗
(N)) = ( 1

N
, 1

N
, ..., 1

N
).

Suppose δ ∈ (δ0,N , δ0). Consider a perturbation where δ is increased by a sufficiently small εδ.

Then, x∗ increases by εx∗ = Δ−1(δ + εδ) − Δ−1(δ). Thus, any perturbation of γ∗
(j) that increases

x∗ by εx∗ leads to an optimal distribution of awards under δ + εδ. Consider the perturbation

where γ∗
(N) changes by ε(N) = εx∗

− 1
N−1

∑N−1
j=1 IN

(j)
+IN

(N)

and γ∗
(j) changes by ε(j) = −ε(N)/(N − 1) for j ∈
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{1,2, ...,N −1}. This perturbation increases x∗ by εx∗ . Note that − 1
L−1

∑L−1

j=1 IN
(j) + IN

(L) < 0 for any

L ∈ {2, ...,N} since IN
(j) ≥ IN

(j+1) for any j ∈ {1,2, ...,N − 1} by Lemma ??. Thus, this perturbation

reduces γ∗
(N) while increasing γ∗

(j) for all j ∈ {1,2, ...,N − 1}. When δ increases up to δ0,N−1, since

−δ0,N−1 +Δ(x(1/(N −1))) = 0, γ∗
(j) = 1

N−1
for all j ∈ {1,2, ...,N −1} and γ∗

(N) = 0. As δ increases up

to δ0, we can repeat the same process by setting ε(L) = εx∗

− 1
L−1

∑L−1
j=1 IN

(j)
+IN

(L)

and ε(j) =−ε(L)/(L− 1)

for j ∈ {1,2, ...,L− 1} when there are L non-zero awards. Therefore, for any K ∈ {2,3, ...,N − 1},

when δ ∈ (δ0,K , δ0,K−1), γ∗
(j) = 0 for all j ∈ {K + 1,K + 2, ...,N}, γ∗

(j) is increasing in δ for all

j ∈ {1,2, ...,K − 1}, and γ∗
(K) is decreasing in δ. As a side note, when M = 0, θ′(T )

θ(T )
≤ 0, and hence

from (??), Δ(0)≤ 0. Thus, δ0,N = max{0,Δ(0)}= 0.

Proof of Proposition ??. Suppose that δ = 0. Then, Π =
(

xA
cb

) 1
b−1 τ(T )+E

[
ξ̃N
(1)

]
−A. Thus, the

Kuhn-Tucker conditions (where μ(≥ 0) is the Lagrange multiplier of (??)) are as follows:
(

xA∗

cb

) 1
b−1

τ ′(T ∗)−μ∗c

(
xA∗

cb

) b
b−1

τ ′(T ∗) = 0. (26)

1
A∗(b− 1)

(
xA∗

cb

) 1
b−1

τ(T ∗)− 1−μ∗

[

−
1
N

+
b

A∗(b− 1)
c

(
xA∗

cb

) b
b−1

τ(T ∗)

]

= 0. (27)

μ

[

−
A∗

N
+ c

(
xA∗

cb

) b
b−1

τ(T ∗)+ F

]

= 0. (28)

From (??), μ∗ = b
xA∗ > 0, and hence from (??), τ(T ∗) = A∗−NF

Nc

(
xA∗

cb

) −b
b−1

. Plugging μ∗ and τ(T ∗)

into (??) yields A∗ =
√

bF
x

, and hence T ∗ = τ−1

(√
bF
x −NF

Nc

(
1
c

√
xF
b

) −b
b−1

)

. Note that limT→∞ Π =∞,

but T ∗ is bounded by the participation condition (??). Thus, under T ∗, Π = b(A−NF )

ANx
+E

[
ξ̃N
(1)

]
−A,

and hence limA→∞ Π =−∞. Therefore, Kuhn-Tucker conditions above are necessary for optimality.

(a) Under the scale parameter α, T ∗ = τ−1

(√
αbF

x −NF

Nc

(
1
c

√
xF
αb

) −b
b−1

)

and A∗ =
√

αbF
x

. Since τ−1

is increasing and the terms inside τ−1 are increasing in α, ∂T∗

∂α
> 0. Also, ∂A∗

∂α
= 1

2

√
bF
αx

> 0.

(b) Suppose that θ(t) = exp(ρt). A∗ is independent of ρ, so Theorem ??(b) directly follows.

Proof of Proposition ??. Suppose that δ = 0. (a) Π =
(

xA
cb

) 1
b−1 τ(T ) + E

[
ξ̃N
(1)

]
− A. Since

∂τ(T )

∂T
> 0, we have ∂Π

∂T
> 0 for any N , and hence T ∗ = T as in Lemma ??. Under T ∗ = T , the

organizer’s profit

Π =
b(A−NF )

ANx
+ E

[
ξ̃N
(1)

]
−A. (29)

Thus, the organizer decides on N∗ to maximize Π in (??). Let Π[α] be the organizer’s profit under α.

Then, N∗ that maximizes Π[α] = αb(A−NF )

ANx
+αE

[
ξ̃N
(1)

]
−A maximizes Π[α]+A

α
, which is independent

of α. Thus, N∗ does not depend on α, and hence by Theorem ??, T ∗ increases with α.
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(b) Suppose that θ(t) = exp(ρt). Then, Π in (??) does not depend on ρ. Thus, N∗ does not depend

on ρ, and hence by Theorem ??, T ∗ decreases with ρ.

Proof of Proposition ??. (a) Let δ
∗

0 = maxN∈{2,3,...,N} δ0[N ], where δ0[N ] is the threshold defined

in Theorem ??(a) when there are N participants. Let −→γ1 ≡ (γ1
(1), γ

1
(2), ..., γ

1
(N)), where γ1

(1) < 1;

N∗,−→γ1 and N∗,WTA be the optimal number of participants under −→γ1 and the WTA award scheme,

respectively. When δ > δ
∗

0, δ ≥ δ0|N=N∗,−→γ1 , so Π under the WTA award scheme is larger than Π

under −→γ1 by Theorem ??. Since Π under the WTA award scheme and N∗,WTA is larger than Π

under the WTA award scheme and N∗,−→γ1 , Π under the WTA award scheme and N∗,WTA is larger

than Π under −→γ1 and N∗,−→γ1 . Thus, for any δ > δ
∗

0, the WTA award scheme is optimal when the

organizer sets N∗ and T ∗. Next, let δ∗
0 = minN∈{2,...,N} δ0[N ], where δ0[N ] is the threshold defined

in Theorem ??(a) under N participants. When N = N∗,WTA, for any δ < δ∗
0 ≤ δ0[N

∗,WTA], there

exists −→γ1 with γ1
(1) < 1 such that Π under the WTA award scheme is smaller than Π under −→γ1. Since

Π under −→γ1 and N∗,−→γ1 is larger than Π under −→γ1 and N∗,WTA, it is also larger than Π under the

WTA award scheme and N∗,WTA. Thus, for any δ < δ∗
0, giving multiple awards is optimal under

N∗ and T ∗.

(b) Suppose θ(t) = exp(ρt). By Theorem ??(b), δ0[N ] is increasing in ρ, so is δ∗
0.

(c) When δ < δ0[N
∗], T ∗ = T under N∗ for any x, and hence Π is as in (??). Thus, we have

∂Π
∂x

∣
∣
∣
∣
N=N∗

=
∂Π
∂x

∣
∣
∣
∣
N=N∗

+
∂Π
∂N

∣
∣
∣
∣
N=N∗

∂N

∂x

∣
∣
∣
∣
N=N∗

= exp

(

−δτ−1

(
A−N∗F

cN∗

(
xA

cb

) −b
b−1

))
b(A−N∗F )

AN∗x2
×

[

δ(τ−1)′
(

A−N∗F

cN∗

(
xA

cb

) −b
b−1

)
b

(b− 1)

(
xA

cb

) −1
b−1
(

b(A−N∗F )
AN∗x

+ E
[
ξ̃N∗

(1)

])

− 1

]

.

Let Δ∗(x) be Δ(x) in (??) under N∗. Then, ∂Π
∂x

∣
∣
N=N∗ > 0 if δ > Δ∗(x). We have minN Δ(x) ≤

Δ∗(x) ≤ maxN Δ(x), limx→0 Δ(x) = limx→0
b−1

b

θ′(T)
θ(T) , and limx→0 T = ∞ for any N . Thus,

limx→0 minN Δ(x) = limx→0 maxN Δ(x) = Δ(0), which is defined in Proposition ??. Thus, by

the Squeeze Theorem, limx→0 Δ∗(x) = Δ(0). Noting that δ0,N = max{0,Δ(0)}, when δ > δ0,N ,
∂Π
∂x

∣
∣
N=N∗,x=0

> 0, and hence giving multiple unequal awards is optimal.
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Online Appendix

EC.1. Asymmetric Pure-Strategy Nash Equilibrium

In this section, we discuss the robustness of our results when considering asymmetric pure-strategy

Nash equilibria. In the following lemma, we show that when N = 2, any pure-strategy Nash equi-

librium is symmetric, and hence all our results under symmetric Nash equilibria follow.

Lemma EC.A1. Let e∗i be agent i∈ {1,2}’s equilibrium effort. Then, e∗1 = e∗2.

Proof. We first suppose that e∗1 > 0 and e∗2 > 0. Then, given that agent 2 exerts her equilibrium

effort e∗2, agent 1’s utility when exerting effort e1 is

U(e1, T ) = A(1− γ(1))+ A(2γ(1) − 1)
∫

s∈Ξ

H(e1 − e∗2 + s)h(s)ds− c(e1)bτ(T )1−b −F .

Evaluating the first derivative of U1(e1, T ) with respect to e1 at e1 = e∗1 yields

∂U(e1, T )
∂e1

∣
∣
∣
∣
e1=e∗1

= A(2γ(1) − 1)
∫

s∈Ξ

h(e∗1 − e∗2 + s)h(s)ds− cb(e∗1)
b−1τ(T )1−b = 0. (EC.1)

Similarly, noting that P (e2 + ξ̃2 > e1 + ξ̃1) = 1−P (e1 + ξ̃1 > e2 + ξ̃2), given that agent 1 exerts her

equilibrium effort e∗1, agent 2’s utility when exerting e2 can be written as

U(e2, T ) = A(1− γ(1))+ A(2γ(1) − 1)

[

1−
∫

s∈Ξ

H(e∗1 − e2 + s)h(s)ds

]

− c(e2)bτ(T )1−b −F .

Evaluating the first derivative of U2(e2, T ) with respect to e2 at e2 = e∗2 gives

∂U2(e2, T )
∂e2

∣
∣
∣
∣
e2=e∗2

= −A(2γ(1) − 1)
∫

s∈Ξ

h(e∗1 − e∗2 + s)h(s)ds− cb(e∗2)
b−1τ(T )1−b = 0. (EC.2)

From (??) and (??), agent 1’s and agent 2’s equilibrium efforts are

e∗1 = e∗2 =

(
A(2γ(1) − 1)

∫
s∈Ξ

h(e∗1 − e∗2 + s)h(s)ds

cb

) 1
b−1

τ(T ).

Thus, there does not exist an asymmetric pure-strategy Nash equilibrium where e∗1 > 0 and e∗2 > 0.

We next suppose that e∗1 > 0 and e∗2 = 0. Then, ∂U2(e2,T )

∂e2

∣
∣
e2=0

= −A(2γ(1) − 1)
∫

s∈Ξ
h(e∗1 +

s)h(s)ds≤ 0. Thus, γ(1) = 0.5 because
∫

s∈Ξ
h(e∗1 +s)h(s)ds > 0. However, when e∗2 = 0 and γ(1) = 0.5,

∂U1(e1,T )

∂e1

∣
∣
∣
∣
e1=e∗1

= −cb(e∗1)
b−1τ(T )1−b 6= 0 for e∗1 > 0. Thus, by symmetry, there does not exist an

asymmetric pure-strategy Nash equilibrium such that e∗1 > 0 and e∗2 = 0 or e∗2 > 0 and e∗1 = 0.

We next discuss the case where N > 2. Specifically, we are interested in whether an asymmetric

equilibrium emerges when there is no symmetric one (i.e., T > T ) and how this asymmetric pure-

strategy Nash equilibrium changes with T . For ease of illustration, we focus on the WTA award
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scheme. Let e∗i be agent i’s equilibrium effort. Given that all other agents j ∈ {1,2, ...,N} \ i exert

their equilibrium effort e∗j , agent i determines her effort ei to maximize her expected utility

U(ei, T ) = A

∫

s∈Ξ

∏

j∈{1,2,...,N}\i

H(ei − e∗j + s)h(s)ds− ceb
iτ(T )1−b −F.

Let I(e∗i |e
∗
j 6=i)≡

∫
s∈Ξ

∑
j∈{1,2,...,N}\i h(e∗i − e∗j + s)h(s)

∏
k∈{1,2,...,N}\{i,j} H(e∗i − e∗k + s)ds. Evaluating

the first-derivative of Ui(ei, T ) with respect to ei at ei = e∗i yields

AI(e∗i |e
∗
j 6=i)− cb(e∗i )

b−1τ(T )1−b = 0 for all i∈ {1,2, ...,N}. (EC.3)

In the following lemma, we show that for a sufficiently large T , the agent’s participation condition

is violated. Thus, consistent with our finding in §??, T ∗ is bounded even when δ = 0.

Lemma EC.A2. There exists T a such that when the contest duration T > T a, an agent’s partici-

pation condition is violated under a solution to (??).

Proof. Let P (e∗i |e
∗
j 6=i)≡

∫
s∈Ξ

∏
j∈{1,2,...,N}\i H(e∗i − e∗j + s)h(s)ds. In equilibrium, all agents choose

to participate in the contest if and only if the following participation condition is satisfied:

AP (e∗i |e
∗
j 6=i)− c

(
AI(e∗i |e

∗
j 6=i)

cb

) b
b−1

τ(T )−F ≥ 0 for all i∈ {1,2, ...,N}. (EC.4)

Since AP (e∗i |e
∗
j 6=i) ≤ A, as T approaches ∞, agent i’s participation condition is violated unless

I(e∗i |e
∗
j 6=i) approaches 0 because τ(T ) approaches ∞. Suppose that limT→∞ I(e∗i |e

∗
j 6=i) = 0. Then,

there should exist ek such that k 6= i and ek approaches ∞ as T approaches ∞. As ek approaches

∞ and agent k’s expected award is bounded by A, her participation condition is violated. So, for

any solution to (??), the agent’s participation condition is violated for a sufficiently large T .

An important implication of Lemma ?? is that even if an asymmetric pure-strategy Nash equilib-

rium emerges when T > T , the agent’s participation still becomes an issue as T increases. Thus,

we next study whether a patient organizer has an incentive to increase the contest duration T

up to T a where the agent’s participation condition binds, consistent with the effort-participation

tradeoff in §??. As it is analytically intractable to analyze the impact of T on the organizer’s

profit Π under an asymmetric pure-strategy Nash equilibrium, we conduct an extensive numerical

analysis. We take θ(t) = θ, and randomly generate 10,000 instances. In each instance, we ran-

domly select parameters according to our numerical analysis setting in footnote ?? (in addition,

we select N from Uniform(2,10) and θ from Uniform(0,5)). To focus on the case where there is

no symmetric pure-strategy Nash equilibrium, we randomly generate T from Uniform(T ,1.05T );

and to focus on the case of a patient organizer, we assume that the discount factor δ = 0. In each

random instance, we solve (??) numerically. Because the symmetric equilibrium effort in (??) is

a solution to (??), to prevent the numerical solver from getting stuck in this symmetric solution,

we randomize the initial solutions that we feed to the solver. In 672 instances, we obtain a “valid”
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asymmetric solution where the sum of squared deviations of agents’ first-order conditions from

zero
(
i.e.,

∑N

i=1

(
AI(e∗i |e

∗
j 6=i)− cb(e∗i )

b−1τ(T )1−b
)2 )

is less than 10−15. (In 250 of these instances,

all agents’ utilities are non-negative, so there exists an asymmetric solution that satisfies (??) and

the participation condition (??).) To check if Π increases with T at each of these 672 instances, we

incrementally increase T to 1.0001T , 1.001T , 1.01T , and 1.1T , and check if Π increases. We observe

that in all of these 672 instances, Π increases with T . Thus, we conclude that under an asymmet-

ric pure-strategy Nash equilibrium, the organizer’s profit Π increases with the contest duration T

when the organizer is patient, and hence by Lemma ??, the agent’s participation condition drives

the optimal contest duration.

EC.2. Mixed-Strategy Nash Equilibrium

In this section, we consider the case where agents play mixed strategies. For ease of illustration

and following the contest literature (e.g., ????), we assume that N = 2. Each agent i ∈ {1,2}

participates in the contest with probability pi ∈ [0,1], and exerts effort ei if both agents participate,

and exerts zero effort otherwise. We derive the equilibrium using the best-response argument in a

two-stage game. In the second stage, if both agents participate, each agent exerts e∗ as in (??).

In the first stage, given that the other agent participates in the contest with the equilibrium

probability of participation p∗ and both agents exert e∗, agent i decides on pi (∈ [0,1]) to maximize

her expected utility

Ui(pi) = pip
∗

[
A

2
− c(e∗)bτ(T )1−b −F

]

+ pi(1− p∗)[A(1) −F ]. (EC.5)

The second component in (??) (i.e., pi(1− p∗)[A(1) −F ]) is always non-negative, so whenever the

first component (i.e., pip
∗
[

A
2
− c(e∗)bτ(T )1−b −F

]
) is also non-negative, the best-response of the

agent is to set p∗ = 1. Thus, the agent plays a non-pure strategy (i.e., p∗ < 1) only if she gets

negative utility when both agents participate. The following lemma formally shows this result.

Lemma EC.A3. For any A(1),A(2), and T such that
A(1)+A(2)

2
− c(e∗)bτ(T )1−b −F ≥ 0, p∗ = 1.

Proof. Suppose that
A(1)+A(2)

2
− c(e∗)bτ(T )1−b − F ≥ 0. When agent i chooses to participate in

the contest, she gets a nonnegative utility. However, when the agent does not participate, she gets

zero utility. Therefore, she cannot improve her utility by reducing pi, and hence p∗ = 1.

Given e∗ and p∗, the organizer’s profit Π = exp(−δT )(p∗)2
(
e∗ + E

[
ξ̃2
(1)

])
− (p∗)2(A(1) + A(2)) −

2p∗(1− p∗)A(1). The following corollary extends Lemma ??.

Corollary EC.1. (a) When Π is non-monotonic, T ∗ = T̂ for any δ ≥ δ1, and each agent’s equi-

librium probability of participation p∗ = 1. (b) There exists δ′
1(≤ δ1) such that for any δ < δ′

1, T ∗ > T

and p∗ < 1.
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'

(a) T ∗.

'

1

0.86

(b) p∗. (c) Π∗.

Figure EC.1 (a) T ∗ under γ(1) = 1, (b) p∗ under γ(1) = 1, (c) Π∗ under γ(1) = 1 and (γ(1), γ(2)) = (0.95,0.05)

when agents play mixed strategies. The setting is the same as Figure ??.

Proof. (a) When Π is non-monotonic, by Lemma ??, T ∗ = T̂ for any δ ≥ δ1, and hence T ∗ = T̂

as in (??) and A
2
− c(e∗)bτ(T ∗)1−b −F ≥ 0. Thus, by Lemma ??, p∗ = 1.

(b) Suppose that δ < δ1 or Π is monotonic. For agent i ∈ {1,2}, given pj = p∗
j for j 6= i, taking

the first derivative of Ui(pi) with respect to pi and evaluating it at pi = p∗
i yields ∂Ui(pi)

∂pi

∣
∣
∣
∣
pi=p∗i

=

p∗
j

[
A
2
− c
(

xA
cb

) b
b−1 τ(T )−F

]
+ (1 − p∗

j )[A(1) − F ] = 0. Thus, agent 1’s and agent 2’s equilibrium

probabilities of participation are

p∗
1 = p∗

2 = p∗ ≡
A(1) −F

A(1) −A/2+ c
(

xA
cb

) b
b−1 τ(T )

. (EC.6)

When T ∗ = T as in (??), p∗ = 1 from (??), and since p∗ decreases with T , p∗ < 1 if only if T ∗ > T .

Since limT→∞ p∗ = 0, limT→∞ Π = 0. Thus, T ∗(> T ) is interior, and hence ∂Π
∂T

∣
∣
T=T∗ = 0 is necessary

for optimality. The first derivative of the organizer’s profit Π with respect to T is

∂Π
∂T

= exp(−δT )

[(

2p∗∂p∗

∂T
− δ(p∗)2

)(
e∗ + E

[
ξ̃N
(1)

])
+(p∗)2 ∂e∗

∂T

]

+
∂p∗

∂T

[
A(1)(2p∗ − 2)− 2p∗A(2)

]
.

Under T in (??), p∗ = 1. Thus, a sufficient condition for p∗ < 1 is that ∂Π
∂T

∣
∣
T=T

> 0. We have

∂Π
∂T

∣
∣
∣
∣
T=T

= exp(−δT )

[(

2
∂p∗

∂T

∣
∣
∣
∣
T=T

− δ

)(
e∗ + E

[
ξ̃N
(1)

])
+

∂e∗

∂T

∣
∣
∣
∣
T=T

]

− 2
∂p∗

∂T

∣
∣
∣
∣
T=T

A(2) > 0

if
(
2 ∂p∗

∂T

∣
∣
∣
T=T

− δ
)(

e∗ + E
[
ξ̃N
(1)

])
+ ∂e∗

∂T

∣
∣
∣
T=T

≥ 0, i.e., δ ≤
2 ∂p∗

∂T

∣
∣
∣
T=T

(e∗+E[ξ̃N
(1)])+ ∂e∗

∂T

∣
∣
∣
T=T

e∗+E
[
ξ̃N
(1)

] since

∂p∗

∂T

∣
∣
∣
T=T

< 0. Thus, for any δ < δ′
1,

∂Π
∂T

∣
∣
T∗=T

> 0, and hence T ∗ > T and p∗ < 1.

T being larger than T has the following opposing effects on Π. It improves Π by increasing e∗, but it

reduces Π by decreasing p∗ and discounting the organizer’s payoff more. When δ = 0, the organizer

still limits T to balance the positive effect of a larger e∗ and the negative effect of a smaller p∗.

Thus, the effort-participation tradeoff we identify in §?? persists when agents play mixed strategies,

and this tradeoff drives T ∗ for the patient organizer. Supplementary to Corollary ??, Figures ??(a)

and ??(b) illustrate that for δ ∈ [δ′
1, δ1], T ∗ = T and p∗ = 1 because negative effects of a smaller p∗

and more discounting outweigh the positive effect of a larger e∗.

We next discuss the robustness of Theorem ??. When T ∗ = T and p∗ = 1, Theorem ?? directly

applies. The following corollary extends Theorem ??(a) to the case where T ∗ > T and p∗ < 1.
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To analyze a patient organizer while retaining analytical tractability, we assume that δ = 0 and

θ(t) = θ as in the innovation-contest literature (e.g., ??).

Corollary EC.2. There exists α such that T ∗ is increasing in α > α.

Proof. Suppose that δ = 0 and θ(t) = θ. By Corollary ??, p∗ < 1, and under the scale parameter

α, the optimal contest duration T ∗[α] that solves ∂Π
∂T

∣
∣
T=T∗[α]

= 0 is

T ∗[α] =

(
α(A(1)−F )θb

xA
+2A(1)

)(
A(1) −A/2

)
− 4
(
A(1) −F

)
A(1) − 2

(
A(1) −F

)(
αE
[
ξ̃N
(1)

]
−A

)

α
−1
b−1 2

(
A(1) −F

)
θ
(

xA
cb

) 1
b−1 −

(
α

−1
b−1

(A(1)−F )θb

xA
+2A(1)α

−b
b−1

)
c
(

xA
cb

) b
b−1

.

The first derivative of T ∗[α] with respect to α is

∂T ∗[α]

∂α
=

(
(A(1)−F )θb

xA

)(
A(1) −A/2

)
− 2

(
A(1) −F

)
E
[
ξ̃N
(1)

]

α
−1
b−1 2

(
A(1) −F

)
θ
(

xA
cb

) 1
b−1 −

(
α(A(1)−F )θb

xA
+ 2A(1)

)
cα

−b
b−1

(
xA
cb

) b
b−1

+
1

(b− 1)

(
(A(1)−F )θb

xA

)(
A(1) −A/2

)
− 2

(
A(1) −F

)
E
[
ξ̃N
(1)

]

α
−1
b−1 2

(
A(1) −F

)
θ
(

xA
cb

) 1
b−1 −

(
α(A(1)−F )θb

xA
+ 2A(1)

)
cα

−b
b−1

(
xA
cb

) b
b−1

+

(
(A(1)−F )θb

xA

)(
A(1) −A/2

)
− 2

(
A(1) −F

)
E
[
ξ̃N
(1)

]

(
α

−1
b−1 2

(
A(1) −F

)
θ
(

xA
cb

) 1
b−1 −

(
α(A(1)−F )θb

xA
+ 2A(1)

)
cα

−b
b−1

(
xA
cb

) b
b−1

)2

[

−
(
2A(1)α

−b
b−1

)
c

(
xA

cb

) b
b−1

]

.

limα→∞
∂T∗[α]

∂α
> 0, so by continuity, there exists α such that T ∗ is increasing in any α > α.

We next discuss how our results about the award scheme extend to the case where agents play

mixed strategies. From Corollary ??(a) and Figure ??(b), we can also deduce that when δ > δ′
1,

p∗ = 1, and hence Theorem ??(a) directly apply. To analyze the case where p∗ < 1, we conduct an

extensive numerical analysis. We show that for a sufficiently small δ, the WTA award scheme is

not optimal.15 For instance, Figure ??(c) illustrates that up to some threshold on δ, Π∗ is larger

under the award scheme (0.95A,0.05A) than Π∗ under the WTA award scheme. The intuition

is similar to Theorem ??(a). Specifically, offering multiple awards increases p∗, and hence allows

the organizer to set a longer T to elicit a larger expected effort from agents. Opposed to this

positive effect, a longer T also leads to more discounting. When δ is small, the former positive effect

dominates the latter negative effect, so offering multiple awards is optimal, as in Theorem ??(a).

Also, from Figures ??(b) and ??(c), we can deduce that as δ decreases, it first becomes optimal

to give multiple awards, and then as δ keeps decreasing, it becomes optimal to set T ∗ > T such

that agents play non-pure strategies. Thus, δ0, below which giving multiple awards is optimal, does

not change when agents can play mixed strategies, and hence even giving multiple awards is more

likely to be optimal as ρ increases, as in Theorem ??(b). Finally, in our numerical analysis, we

also observe that when giving multiple awards is optimal, giving unequal awards is almost always

better than giving equal awards, as in Proposition ??.

15 We take θ(t) = exp(ρt), and randomly generate 10,000 instances where p∗ < 1. In each instance, we select parameters
according to our numerical analysis setting in footnote ?? (and we select δ from Uniform(0,0.0001)). We observe that
in all instances, Π is larger under the award scheme (0.95A,0.05A) than Π under the WTA award scheme.
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EC.3. Existence of Pure-Strategy Nash Equilibrium

In this section, we provide sufficient conditions for e∗ in (??) to be a pure-strategy Nash equilibrium

under T . We first show sufficient conditions for an interim property in the following lemma, and

then use this property in the main result of this section.

Lemma EC.A4. Suppose that ∂2Ui(ei,T )

∂e2
i

∣
∣
∣
ei=e

< 0 for some e and b > 2. For any ei > e, when F is

sufficiently large or when α is sufficiently small, we have ∂2Ui(ei,T )

∂e2
i

< 0.

Proof. Under the scale parameter α, given that all other agents exert equilibrium efforts e∗, from

(??) and T in (??), the second derivative of agent i’s utility Ui(ei, T ) with respect to ei is

∂2Ui(ei, T )
∂e2

i

=
N∑

j=1

∂2P N
(j)[ei, e

∗]

∂e2
i

(
A(j)

α2

)

− cb(b− 1)eb−2
i

(
A−NF

cN

)1−b(
xA

αcb

)b

.

Suppose that ∂2Ui(ei,T )

∂e2
i

< 0 for some ei = e, but there exists ê > e such that ∂2Ui(ei,T )

∂e2
i

≥ 0 for ei = ê.

Then, ∂2Ui(ei,T )

∂e2
i

∣
∣
ei=ê

> ∂2Ui(ei,T )

∂e2
i

∣
∣
ei=e

, i.e.,

N∑

j=1

[
∂2P N

(j)[ei, e
∗]

∂(ei)2

∣
∣
∣
∣
ei=ê

−
∂2P N

(j)[ei, e
∗]

∂(ei)2

∣
∣
∣
∣
ei=e

]
A(j)

α2
> b(b− 1)

[
(ê)b−2 − (e)b−2

](A−NF

N

)1−b(
xA

αb

)b

. (EC.7)

Suppose that b > 2. Since ê > e, the right-hand side of (??) approaches ∞ as F approaches A/N .

Thus, when F is sufficiently large, (??) cannot be satisfied. Also, as α approaches 0, the right-hand

side of (??) approaches ∞ faster than the left-hand side of (??) (when the left-hand side of (??) is

positive). Thus, regardless of the sign of the left-hand side of (??), when α is sufficiently small, (??)

cannot be satisfied. Therefore, for any ei > e, when F is sufficiently large or when α is sufficiently

small, we have ∂2Ui(ei,T )

∂e2
i

< 0.

The following lemma shows that when the property in Lemma ?? holds for any e, e∗ in (??) is

a pure-strategy Nash equilibrium under T .

Lemma EC.A5. Suppose that for all e such that ∂2Ui(ei,T )

∂e2
i

∣
∣
∣
ei=e

< 0, we have ∂2Ui(ei,T )

∂e2
i

< 0 when

ei > e. Then, Ui(ei, T ) is pseudo concave. Thus, e∗ in (??) is a pure-strategy Nash equilibrium

under T .

Proof. Suppose that for all e such that ∂2Ui(ei,T )

∂e2
i

∣
∣
∣
ei=e

< 0, we have ∂2Ui(ei,T )

∂e2
i

< 0 when ei > e. First,

we have ∂Ui(ei,T )

∂ei

∣
∣
∣
ei=0

=
∑N

j=1

∂P N
(j)[ei,e

∗]

∂ei
A(j)

∣
∣
∣
∣
ei=0

> 0 and limei→∞ Ui(ei, T ) = −∞, so there should

exist some ei such that ∂Ui(ei,T )

∂ei
< 0 and ∂2Ui(ei,T )

∂e2
i

< 0. So, there exists a threshold e0(≥ 0) such that

for any ei < e0,
∂2Ui(ei,T )

∂e2
i

≥ 0; and for any ei > e0,
∂2Ui(ei,T )

∂e2
i

< 0. So, we should have ∂Ui(ei,T )

∂ei
> 0

for any ei < e0, and there should exist another threshold e00(> e0) such that for any ei < e00,
∂Ui(ei,T )

∂ei
> 0; and for any ei > e00,

∂Ui(ei,T )

∂ei
< 0. Thus, Ui(ei, T ) is unimodal with mode e00, and has

a unique critical (maximum) point, so it is pseudo concave. Therefore, the first-order condition
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of the agent’s utility-maximization problem in (??) is sufficient for optimality. Since e∗ in (??)

satisfies this first-order condition, e∗ is the solution to the agent’s utility-maximization problem in

(??). As e∗ under T also satisfies (??), e∗ is a pure-strategy Nash equilibrium under T .

EC.4. Additional Results

Lemma EC.A6. IN
(j) ≥ IN

(j+1) for any j ∈ {1,2, ...,N −1}. Furthermore,
∑N

j=1 IN
(j)γ(j) ≥ 0 under any

distribution of awards (γ(1), γ(2), ..., γ(N)) such that γ(1) ≥ γ(2) ≥ ...≥ γ(N).

Proof. Let W N
(j)(s) = (N−1)!

(N−j)!(j−1)!
H(s)N−j(1−H(s))j−1. From (??), integration by parts yields

IN
(j) = θ

∫

s∈Ξ

(
W N

(j)

)′
(s)h(s)ds = θ lim

s→s
W N

(j)(s)h(s)−
∫

s∈Ξ

W N
(j)(s)h

′(s)ds.

hN
(j)(s) = N !

(N−j)!(j−1)!
(1− H(s))j−1H(s)N−jh(s), so W N

(j)(s) =
hN
(j)(s)

Nh(s)
. Letting wj ≡ lims→s

hN
(j)(s)

N
, we

have IN
(j) − IN

(j+1) = (wj −wj+1)+ 1
N

∫
s∈Ξ

[
hN

(j+1)(s)−hN
(j)(s)

]
h′(s)

h(s)
ds, ∀j ∈ {1,2, ...,N − 1}.

Noting that w1 ≥ 0 and wj = 0 for any j ∈ {2,3, ...,N}, integration by parts yields

IN
(j) − IN

(j+1) ≥
1
N

(

lim
s→s

[
HN

(j+1)(s)−HN
(j)(s)

] h′(s)
h(s)

−
∫

s∈Ξ

[
HN

(j+1)(s)−HN
(j)(s)

]
(

h′(s)
h(s)

)′

ds

)

,

for all j ∈ {1,2, ...,N − 1}. Because h is log-concave, lims→s

[
HN

(j+1)(s)−HN
(j)(s)

]
h′(s)

h(s)
= 0 and

(
h′(s)

h(s)

)′

≤ 0. Also, HN
(j+1)(s) − HN

(j)(s) ≥ 0 since ξ̃N
(j) first-order stochastically dominates ξ̃N

(j+1) for

any j ∈ {1,2, ...,N − 1}. Thus, IN
(j) − IN

(j+1) ≥ 0 for any j ∈ {1,2, ...,N − 1}. Let k = max{j|IN
(j) ≥ 0}.

Because IN
(j) − IN

(j+1) ≥ 0 for any j ∈ {1,2, ...,N − 1}, we have

N∑

j=1

IN
(j)γ(j) ≥

k∑

j=1

IN
(j)γ(k) +

N∑

j=k+1

IN
(j)γ(k) = γ(k)

N∑

j=1

IN
(j) = γ(k)

N∑

j=1

∂P N
(j)[ei, e

∗]

∂ei

∣
∣
∣
∣
ei=e∗

= 0.

Lemma EC.A7. When Π is non-monotonic in T and unimodal, θ′(T̂ )

θ(T̂ )
< δ(b−1)

b
.

Proof. When Π is non-monotonic in T and unimodal, Π is unimodal with mode T ∗ = T̂ by Lemma

??, and hence ∂Π
∂T

< 0 when T > T̂ . This is possible only when ∂2Π
∂T 2

∣
∣
∣
T=T̂

< 0 since ∂Π
∂T

∣
∣
T=T̂

= 0. Thus,

we should have ∂2Π
∂T2

∣
∣
∣
T=T̂

< 0. The second derivative of Π with respect to T is

∂2Π
∂T 2

= exp(−δT )

(

−δ

[(
xA

cb

) 1
b−1

(−δτ (T )+ τ ′(T ))− δE
[
ξ̃N
(1)

]
]

+

[(
xA

cb

) 1
b−1

(−δτ ′(T )+ τ ′′(T ))

])

,

and hence ∂2Π
∂T 2

∣
∣
∣
T=T̂

= exp(−δT )
(

xA
cb

) 1
b−1 (−δτ ′(T )+ τ ′′(T )). Thus, ∂2Π

∂T 2

∣
∣
∣
T=T̂

< 0 if and only if

−δτ ′(T )+ τ ′′(T ) < 0, i.e., θ′(T̂ )

θ(T̂ )
< δ(b−1)

b
. When θ(t) = exp(ρt), this condition becomes ρ < δ(b−1)

b
.

Lemma EC.A8. Let −→γm = (γm
(1), γ

m
(2), ..., γ

m
(N)), and −→γ1 and −→γ2 be such that

∑N

j=1 IN
(j)γ

1
(j) <

∑N

j=1 IN
(j)γ

2
(j), Φ ≤ 0 under −→γ1 and −→γ2, and Π is non-monotonic in T under −→γ2. Then, Π is also

non-monotonic in T under −→γ1, and Π under T ∗ is smaller under −→γ1 than that under −→γ2.
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Proof. Since Π is non-monotonic in T under −→γ2, there exists some T = Ṫ such that ∂Π
∂T

∣
∣
T=Ṫ

=

exp(−δṪ )
[(

xA
cb

) 1
b−1

(
−δτ (Ṫ )+ τ ′(Ṫ )

)
− δE

[
ξ̃N
(1)

]]
< 0. Because x under −→γ1 is smaller than x

under −→γ2, ∂Π
∂T

∣
∣
T=Ṫ

< 0 under −→γ1, and hence, Π is also non-monotonic in T under −→γ1 . Thus,

given −→γ1 or −→γ2, T ∗ = T̂ . Noting that ∂Π
∂T

∣
∣
T=T̂

= 0, ∂Π
∂x

∣
∣
T=T̂

= ∂Π
∂x

∣
∣
T=T̂

+ ∂Π
∂T

∣
∣
T=T̂

∂T
∂x

∣
∣
T=T̂

=

exp(−δT̂ )

(
(

A
cb

) 1
b−1 τ(T̂ )x

2−b
b−1

b−1

)

> 0. Then, since x under −→γ1 is smaller than x under −→γ2 , Π under

T ∗ = T̂ is smaller given −→γ1 than Π given −→γ2.


