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Comparative Protein Interaction Network Analysis Identifies
Shared and Distinct Functions for the Human ROCO
Proteins
James E. Tomkins, Sybille Dihanich, Alexandra Beilina, Raffaele Ferrari, Nicolò Ilacqua,
Mark R. Cookson, Patrick A. Lewis, and Claudia Manzoni*

Signal transduction cascades governed by kinases and GTPases are a critical
component of the command and control of cellular processes, with the precise
outcome partly determined by direct protein–protein interactions (PPIs). Here,
we use the human ROCO proteins as a model for investigating PPI signaling
events—taking advantage of the unique dual kinase/GTPase activities and
scaffolding properties of these multidomain proteins. PPI networks are
reported that encompass the human ROCO proteins, developed using two
complementary approaches. First, using the recently developed weighted PPI
network analysis (WPPINA) pipeline, a confidence-weighted overview of
validated ROCO protein interactors is obtained from peer-reviewed literature.
Second, novel ROCO PPIs are assessed experimentally via protein microarray
screens. The networks derived from these orthologous approaches are
compared to identify common elements within the ROCO protein
interactome; functional enrichment analysis of this common core of the
network identified stress response and cell projection organization as shared
functions within this protein family. Despite the presence of these
commonalities, the results suggest that many unique interactors and
therefore some specialized cellular roles have evolved for different members
of the ROCO proteins. Overall, this multi-approach strategy to increase the
resolution of protein interaction networks represents a prototype for the utility
of PPI data integration in understanding signaling biology.

1. Introduction

The subcellular environment hosts a dynamic network of molec-
ular events that regulates cell homeostasis and coordinates sig-
nal transduction. Defining these regulatory mechanisms and
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understanding how they influence the
physiology of biological processes is im-
portant in determining how subtle al-
terations in protein function may lead
to disease. Since protein–protein inter-
actions (PPIs) are central to these pro-
cesses, and as interacting proteins are
likely to be involved in the same or related
pathway,[1] searching for proteins that
physically interact with each other repre-
sents a means to achieve deeper insight
into the highly interconnected landscape
of cellular functions. The importance of
elucidating protein interactors within cell
signaling events is illustrated in our un-
derstanding of the mTOR complexes,[2]

whereby the assembly of particular pro-
tein interactors differentially initiates a
diverse range of functional pathways.
The human ROCO protein family
(Figure 1) consists of four multidomain
cell signaling proteins, death-associated
protein kinase 1 (DAPK1), leucine-rich
repeat kinase 1 (LRRK1), leucine-rich
repeat kinase 2 (LRRK2), and malig-
nant fibrous histiocytoma amplified
sequence 1 (MASL1 or MFHAS1),
which are characterized by a tandem
ROC (Ras of complex proteins)-COR

(C-terminal of ROC) supra-domain.[3] Although the ROCO pro-
teins are defined by this conserved region, the domain topology
surrounding the ROC-COR unit (which includes numerous pro-
tein interaction motifs) is diverse and dissimilar between ROCO
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Significance Statement

This researchdemonstrates theutility of the extensive collec-
tionof PPI data already in thepublic domain via peer-reviewed
publication to complement novel PPI datasets, in order to iden-
tify similarities anddifferences inPPI and functional profiles of
relatedmultidomainproteins andprioritize interactors to pur-
sue for validation in the laboratory. ThehumanROCOproteins
are an attractive protein family for utilizing this approach since
their primary structure consists of a conserved regionflanked
by adiverse rangeof PPI domainswithin a single open reading
frame.
Our literatureminingpipeline implemented in this analysis,
WPPINA, ensures awide coverageof reportedPPIs frommulti-
ple data repositorieswhichmaximizes theusefulness of novel
data integration, such asproteinmicroarray as is used in this
study. The significanceof this strategy is that novel datasets are
not just stand-alone results and canbe interpreted in combina-
tionwith decadesof research intoPPIs of particular proteins of
interest, by adopting this straightforward approach to support
further investigations.

proteins. Three of the four ROCO proteins (DAPK1, LRRK1, and
LRRK2) also harbor active kinase domains in addition to the GT-
Pase activity of the ROCdomain, an arrangement that is exclusive
to these three proteins, within the human proteome. The com-
bination of multiple enzymatic activities coupled with a range
of PPI domains within the same open reading frame positions
the ROCO proteins as a unique protein family to investigate the
functional commonalities and differences of structurally related
proteins. The presence of several interaction domains within the
primary structure of these proteins may reduce the requirement
for adaptor proteins to complex with ROCO proteins. There-
fore, direct interactors are likely to be functionally relevant ef-
fector proteins and hence the analysis of direct ROCO protein

interactors will provide important functional insight into this
family of proteins. Thus, the humanROCOproteins are an attrac-
tive protein family to utilize as a model for PPI network analysis,
to explore the link between PPI profiles and functional fates. This
approach has been previously used for LRRK2 in isolation,[4,5]

the DAPK1 interactome has been reviewed,[6] and the compari-
son between LRRK1 and LRRK2 has been attempted.[7] However,
the collective PPI network analysis of the entire human ROCO
protein family is a novel contribution.
Despite their sequence similarity (Figure 1), the humanROCO

proteins appear to be associated with different cellular processes.
DAPK1 is linked to cell death pathways[8–10] and is also involved
in inflammation.[11] LRRK1 has been associated with numerous
distinct cellular mechanisms, which include EGFR trafficking,[12]

mitotic spindle orientation,[13] and humoral immunity.[14] LRRK2
has been implicated in a diverse range of cellular processes, in-
cluding macroautophagy, cytoskeletal dynamics, and mitochon-
drial function.[15] Finally MASL1, the least studied of the hu-
man ROCO proteins, has functional connections to macrophage
polarization[16,17] and erythropoiesis.[18] These proteins also have
disease relevance: DAPK1, LRRK1, and MASL1 in cancers,[19–21]

while mutations in LRRK2 are a common genetic contributor to
familial Parkinson’s Disease (PD)[22] and LRRK2 has been asso-
ciated with numerous other human diseases.[23] However, signif-
icant gaps in our understanding of ROCO protein biology per-
sist, which have implications for drug development in human
disease.[19,24] In addition, fundamental questions relating to why
such similar proteins are differentially involved in health and dis-
ease, and how the complex enzymatic functions of these proteins
fit with the biochemical regulation of cellular signaling pathways,
remain to be addressed.
Since key components underlying the functional divergence

evident between the ROCO proteins will reside in their prox-
imal interactomes,[7,23] we set out to investigate these in-
teractomes using two orthologous approaches to determine
PPI networks across the human ROCO protein family. We
first used an in-house data mining approach which enabled

Figure 1. Domain topology of the human ROCO proteins and ROC-COR supra-domain sequence similarity. A) Multidomain structure of the hu-
man ROCO proteins which are characterized by a conserved tandem ROC-COR domain. Abbreviations: Ank, ankyrin repeats; Arm, armadillo repeats;
Ca2+/CaM reg, calcium/calmodulin regulatory domain; COR, C-terminal of ROC; DAPK1, death-associated protein kinase 1; LRR, leucine-rich repeats;
LRRK1, leucine-rich repeat kinase 1; LRRK2, leucine-rich repeat kinase 2; MASL1, malignant fibrous histiocytoma amplified sequence 1; ROC, Ras of
complex proteins. B) Peptide sequence identity and C) similarity of the ROC-COR supra-domain across ROCO proteins. ROC-COR region defined as
residues 612–1225 (DAPK1), 574–1143 (LRRK1), 1271–1790 (LRRK2) and 345–972 (MASL1). Please note that the presence of a WD40 domain in LRRK1
is still a matter of scientific debate.[50,52]
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identification of PPIs reported in the published literature, to
generate a weighted protein–protein interaction network anal-
ysis (WPPINA).[25] Second, to complement WPPINA, we used
protein microarray screens to construct an experimental net-
work, enabling hypothesis-free discovery of novel protein interac-
tors. We compared these two ROCO protein networks to validate
interactors across the approaches and prioritize interactors for
further investigation. Functional insight into these networks was
obtained by utilizing gene ontology (GO) functional annotations.
These results highlight a subset of interactors common to mul-
tiple ROCO proteins, but also numerous interactors specific to
particular ROCO proteins, supporting the hypothesis that these
proteins have evolved largely independent cellular functions.
Furthermore, we demonstrate that the use of WPPINA to

query a high-throughput-derived PPI dataset (such as data ob-
tained by protein microarray screens) represents a novel, rapid,
and effective tool to prioritize protein interactors for further ex-
perimental validation based on the functional knowledge that is
readily available in the published literature.

2. Experimental Section

2.1. Literature-Derived Network Data Download

Protein–protein interaction data was obtained by querying
the PSICQUIC online interface[26] (available at http://
www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml)
for DAPK1, LRRK1, LRRK2, and MASL1, independently. Data
was downloaded on January 12, 2017, in a MITAB 2.5 format,
from six primary database sources: IntAct,[27] BioGRID,[28]

InnateDB, Innate-DB-All, InnateDB-IMEx,[29] and MINT[30] to
ensure a wide capture of reported PPIs.

2.2. Construction of the Literature-Derived Network

The literature-derived ROCO PPI network was constructed as
previously described.[25] In brief, datasets from primary PPI
databases were processed to obtain format and protein identifier
(ID) consistency, utilizing a dictionary dataset of all human pro-
teins (developed from a UniProt search of human proteins ob-
tained on January 13, 2017). Data from the six datasets were then
merged into a single file and repeated equivalent interaction data
entries (i.e., interactions derived from the same publication and
annotated in multiple databases) were removed.
A series of filtering steps were applied. First, non-protein

interactors, such as chemical and miRNA, and protein ID
terms corresponding to non-reviewed automatic annotations,
which include UniProt TrEMBL IDs, were removed. In ad-
dition, transcript-specific information was removed. Next,
non-human interactors, which included seed orthologs, were dis-
carded. Filtered datasets were then subjected to method detec-
tion reassignment, which grouped similar detection methods
based on the EBI Molecular Interactions Ontology, available at
http://www.ebi.ac.uk/ols/ontologies/mi (File 1, Supporting In-
formation).

A confidence value was assigned to each interaction based on
three parameters: method score (MS), the number of different
methods used to detect a specific interaction (one method
scored a value of 1, multiple methods scored a value of 2);
publication score (PS), the number of publications that report a
specific interaction (one publication scored a value of 1, multiple
publications scored a value of 2); and CRAPome score (CS), the
likelihood that the interaction is an affinity purification mass
spectrometry (APMS) contaminant. The CS utilizes the
CRAPome[31] (version 1.1), a known contaminant repository for
APMS experiments, which contained 411 datasets at the time of
scoring (January 18, 2017). Each interactor that was detected by
APMS was queried against the CRAPome and if the protein was
a positive hit in >50% of the CRAPome datasets and had only
been detected by APMS, the protein was scored a value of −1; if
the protein was a positive hit in >50% of the CRAPome datasets
but had also been detected by another non-APMSmethod or was
a positive hit in 30–50% of the CRAPome dataset and had only
been detected by APMS, the protein was scored a value of −0.5;
and if the protein was a positive hit for <50% of the CRAPome
datasets and had also been detected by another non-APMS
method or was a positive hit in <30% of the CRAPome datasets,
the protein was scored a value of 0.
The sumof the three scoring parameters then formed the basis

of a confidence scale and only interactions that scored <2 were
retained for constructing the network. This <2 score threshold
ensures that nodes of the network represent interactors that have
been independently replicated, by method and/or publication.

2.3. Protein Production and Purification

HEK293T cells were transfected with 3xFLAG tagged DAPK1,
LRRK1, LRRK2,MASL1, or GFP plasmids using PEI reagent, col-
lected 24 h after transfection and cells were lysed in the buffer:
20mMTris (pH 7.5), 150mMNaCl, 1mMEDTA, 1%Triton, 10%
Glycerol, protease inhibitor cocktail (Roche), and 1x Halt phos-
phatase inhibitor cocktail (Thermo Scientific). Lysates were pre-
cleared by centrifugation at 20 000 × g for 10 min and incubated
for 1 h at 4 °C with EZview Red Protein G beads (Sigma) to re-
move proteins non-specifically binding to agarose. After preclear
with protein G beads, lysates were incubated for 1 h at 4 °C with
EZview Red Anti-FLAG M2 Agarose (Sigma) that is suitable for
the immunoprecipitation of FLAG fusion proteins. Beads were
washed six times with the wash buffer: 20 mM Tris (pH 7.5),
400 mM NaCl, 1% Triton and proteins were eluted in 25 mM
Tris (pH 7.5), 150 mM NaCl, and 100 μg mL−1 3xFLAG pep-
tide (Sigma). Protein yields and purity were estimated by staining
gels with Coomassie brilliant blue staining (Thermo Scientific,
Figure 1, Supporting Information).

2.4. Protein Microarrays

3xFLAG tagged, full-length DAPK1, LRRK1, LRRK2, MASL1,
and GFP control proteins were purified as previously
described.[32] Six micrograms of each purified 3xFLAG tagged
protein were used to probe protein microarrays (Protoarray,
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version 4.1; Invitrogen) according to the manufacturer’s instruc-
tions with the modification that after 3xFLAG tagged protein
probing, arrays were probed with monoclonal ANTI-FLAG
BioM2−Biotin, Clone M2 (Sigma-Aldrich) antibody, followed
by probing with Alexa Fluor 647 streptavidin (Invitrogen).[33]

Arrays were imaged using an Axon GenePix 4000B fluores-
cence scanner and images were analyzed using GenePix Pro
software. ProtoArray Prospector software was used to analyze
the microarray data acquired from GenePix Pro and identify the
significant hits. Binding strength was estimated as Z-scores,
that is, numbers of standard deviations above background
fluorescence on the array. Each protein on the array was spotted
in duplicate, hence reported values were averaged for both spots.
Signals considered as potential interactions were determining
using a Z-score threshold of Z > 3. ROCO protein positive hit
interactors were determined by filtering against GFP (negative
control) interactions to identify proteins that bound DAPK1,
LRRK1, LRRK2, or MASL1 but not GFP.

2.5. Functional Annotation

To gather insight into the cellular processes that are influenced
by the proteins within the networks, functional enrichment anal-
ysis was performed. This analysis is based on gene ontology
(GO) annotations and determines enrichment of biological pro-
cess (BP) annotations within a query protein list (ROCO pro-
tein interactors in this case), by a comparison against anno-
tations for the entire human genome. Functional enrichment
analysis was undertaken using g:Profiler g:GOSt (available at
http://biit.cs.ut.ee/gprofiler/index.cgi), on June 23, 2017. Statis-
tical significance was determined using Fisher’s one-tailed test
with a g:Profiler g:SCS algorithm to correct for multiple test-
ing; p < 0.05 was set as the significance threshold and out-
put data was not subjected to hierarchical filtering. Results were
confirmed by replication of the functional enrichment analy-
sis using WebGestalt[34] (http://webgestalt.org/option.php) and
Panther[35] (http://www.pantherdb.org/) on November 22, 2017
(File 10, Supporting Information); the statistical testing underly-
ing the enrichment analysis for these alternative portals is differ-
ent, thus replication by this means provides reinforcement of the
result obtained using g:Profiler.
All algorithms used for data processing were developed in

R version 3.2.2. Networks were generated and visualized using
Cytoscape[36] version 3.3.0 and graphs were produced in Graph-
Pad Prism 7.0.

3. Results

We here present an insight into the protein interaction network
of the ROCO protein family. The four human ROCO proteins,
DAPK1, LRRK1, LRRK2, andMASL1 were used as seed proteins.
The term “interactome” refers to the group of proteins that di-
rectly bind to a particular seed protein.

3.1. Construction of the Literature-Derived Network

The literature-derived PPI network (Figure 2A) was constructed
by collecting the reported PPIs of ROCO proteins, utilizing

our recently developed pipeline (WPPINA),[25] which collates
data from several databases within the IMEx consortium.[37]

Data were quality checked and a confidence threshold was
applied to retain only interactions that have been replicated by
a minimum of two experimental methods and/or reported in
at least two peer-reviewed publications. Therefore, this network
provides a confidence-weighted visual overview of state-
of-the-art PPI knowledge centered on the human ROCO
proteins.
The network topology indicated a strong bias toward the

LRRK2 interactome with 113 interactors, compared to the 38,
14, and 4 interactors for DAPK1, LRRK1, and MASL1, respec-
tively (Figure 2B). This differential recovery of PPIs is likely
driven by literature bias toward proteins with known human dis-
ease associations. For example, LRRK2 is the focus of many in-
vestigations within PD research,[38] whereas MASL1 is relatively
understudied.[21] Interestingly, this trend differs when consider-
ing the interactomes prior to applying the confidence threshold
(i.e., when retaining all reported interactors regardless of repli-
cation; Figure 2B). Of the 57 DAPK1 interactors reported within
the literature, 38 were retained when the confidence threshold
was applied. This relatively high (66.7%) retention of interactors
indicates that themajority of interactors that have been identified
for DAPK1 have been replicated. Four of the seven (57.1%) re-
ported MASL1 interactors were also replicated observations and
hence were retained for constructing the network. In contrast,
only 16.5% of LRRK1 interactors and 23.5% of LRRK2 interac-
tors were retained after confidence thresholding, showing lim-
iting replication of the interactors identified. These results sug-
gested that the expanse of PPI data for more widely studied pro-
teins does not directly reflect increased confidence or robustness
of the related interactome.
Considering only the confidence thresholded network, our re-

sults indicated common interactors between ROCO proteins:
three interactors common to both DAPK1 and LRRK2 (FADD,
MYO1B, and MYO1D), and two interactors common to both
LRRK1 and LRRK2 (BAG5 and HSPA8; Figure 2A). Func-
tional insight into these common interactors is summarized in
Table 1, Supporting Information. In addition, from this analy-
sis it was shown that DAPK1, LRRK1, and LRRK2 can exist as
homo- and hetero-dimers, conformations that may be critical for
the functions of these proteins.[39,40] In contrast, the MASL1 in-
teractome was fully detached from the other ROCO protein in-
teractomes within this network, indicating a lack of common in-
teractors between MASL1 and the other ROCO proteins on the
basis of the existing literature.

3.2. Generating the Experimental Network

To address the biases in literature coverage for the human ROCO
proteins, we performed protein microarray experiments as a
hypothesis-free approach for identifying potential ROCO protein
interaction partners. This approach formed the basis of the ex-
perimental network (Figure 3A). We limited false-positive hits in
each interactome by setting a Z-score threshold to distinguish
positive hits from background signals and by filtering ROCOpro-
tein hits against GFP hits as a negative control for non-specific
binding.
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Figure 2. Literature-derived ROCO protein interaction network. A) Network visualization of the ROCO protein interaction partners following data pro-
cessing via the WPPINA pipeline. B) Quantification of the interactors retained following confidence score thresholding.

In contrast to the literature-derived network, this network dis-
played a more even distribution of interactors around each seed
protein (Figure 3B). Specifically, we identified 87 (DAPK1), 51
(LRRK1), 78 (LRRK2), and 87 (MASL1) positive hits for each
seed protein, respectively (File 2, Supporting Information). Of
note, numerous kinases have been identified as potential MASL1
interactors (Table 1), six of which, CLK1, LIMK1, MAP3K4,
NEK11, ROR1, and STK25, appear to be specific interacting part-
ners of MASL1.
A remarkable finding from mapping this protein microar-

ray data was that 23.5% of the entire network consisted of
common node connections between two or more seed pro-
teins. Furthermore, 8.4% of the nodes in the network were
common to three or more seed proteins and five nodes
(2.2% of the network) were common to all four seed proteins
(Figure 3A,C). This suggested that the overlap between seed pro-
tein interactomes might in fact be greater than previously re-
ported. However, it is important to note that further validation

of these interactors is required to increase confidence in their
veracity.

3.3. Identification of ROCO Protein Common Interactors

A particular advantage of applying two orthologous network anal-
ysis approaches is to compare and combine the networks to
minimize the burden of approach-specific limitations and max-
imize the capacity of available data. To achieve this, we merged
the literature-derived network and the microarray data with the
aim of validating via the literature some of the experimentally
obtained, but not replicated, hits. Many nodes were common
to both networks (Figure 4; referred to as the common core
network). These common nodes can be categorized into three
groups: i) interactors of the same seed protein that are cross-
supported by both networks (e.g., ARFGAP1, CHGB, and GAK
which are common to LRRK2 in both networks); ii) interactors
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Figure 3. Experimental ROCO protein interaction network. A) ROCO protein interaction network analysis using protein microarray screens. B) Quantifi-
cation of positive interactors identified by protein microarray for each ROCO protein. Three hundred and three interactions identified across 226 nodes.
C) Extent of common nodes within the experimental network. Number of interactors and percentage of entire experimental network reported.

common to both literature-derived data and the experimental net-
work but within different seed protein interactomes (Figure 4),
and iii) interactors that are common to both literature-derived
and experimental datasets associated with the same seed pro-
tein, but only if the confidence threshold is removed from the
literature-derived data (Table 2, Supporting Information). In-
teractors from iii) do not exceed the confidence threshold in
place within the WPPINA pipeline to support replication of

interactors, however with integration of the protein microar-
ray data these interactors would exceed this threshold due to
acquiring independent replication from the protein microarray
experiments.
Considering the overlap between the literature-derived and

the experimental networks, 14 common interactors were iden-
tified (Figure 4B). When the non-thresholded literature-derived
data and the protein microarray network were examined, 48
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Table 1.MASL1-interacting kinases. Kinases that were identified as interactors of MASL1 in the protein microarray screen, with functional associations.
Of note, cell cycle–related functions appear to be a common functional theme.

Kinase interactor Additional seed
interaction

Functional enrichment
contribution

Further functional detail

Abbreviated name Full protein name

AURKB Aurora kinase B LRRK2 - � Interacts with CLK1,[53] another MASL1-interacting kinase
identified in this protein microarray screen

� Phosphorylated AURKB localizes to kinetochores in
prometaphase cells[54]

� Functional role in mitotic cell division, specifically as a catalytic
unit of the chromosomal passenger complex (CPC)[54]

� Dysregulation associated with tumorogenesis[55]

CLK1a) CDC2-like kinase 1 - - � Associates and phosphorylates AURKB,[53] another
MASL1-interacting kinase identified within this protein microarray
screen

� Dual specificity kinase that localizes to the nucleus[56]
� Involved in alternative splicing and neuronal differentiation[56–58]
� Potential drug target for Influenza and Alzheimer’s disease

(AD)[59,60]

GAK Cyclin-G-associated kinase LRRK1 and
LRRK2

Development, transport,
intracellular
organization, protein
metabolism

� Androgen receptor-interacting transcriptional coactivator[61]
� Localizes to the trans-Golgi network[62]
� Involved in clathrin-mediated membrane trafficking and

metaphase mitotic progression[63]
� Disease links to cancer and Parkinson’s disease (PD)[61,64,65]

LIMK1a) LIM domain kinase 1 - - � Regulates microtubule dynamics, specifically mitotic spindle
structure and positioning

� Acts downstream of several Rho-family GTPase signal
transduction pathways[66]

MAP3K4a) Mitogen-activated protein
kinase kinase kinase 4

- - � Mediator in stress-activated p38/MAPK and JNK signaling
pathways[67]

� Involved in tumur suppression and epithelial-mesenchymal
transition[68]

� Loss of MAP3K4 is associated with defective neural tube
development[69]

NEK1 NIMA-related kinase 1 LRRK1 Cell Cycle, Intracellular
Organization, Protein
Metabolism,
Response to Stimulus

� Associated with axial spondylometaphyseal dysplasia[70]
� Involved in DNA damage response and cell cycle control;

suggested role in post-mitotic cilia assembly
� Mutations in NEK1 are associated with ciliopathy and polycystic

kidney disease (PKD)[71]

NEK11a) NIMA-related kinase 11 - - � Involved in DNA damage and genotoxic stress responses
� Highly expressed throughout S phase of the cell cycle to the G2-M

transition
� Activated by phosphorylation by ATM and ATR kinases[71]

(Continued)

interactors were common to both datasets (Figure 4 and File 3,
Supporting Information).
To further investigate the likelihood that the common core

network reports true interactions, we added an additional score
considering tissue-specific gene expression. Using expression
data derived from GTEx[41] and a gene expression threshold of

three reads per kilobase of transcript per million mapped reads
(RPKM), co-expression analysis identified distinct tissues where
specific interactor mRNA were expressed together with specific
seed protein mRNA (Table 3, Supporting Information).
Concerning pairwise interactions betweenROCOproteins and

interactors from the common core network (48 interactors and a
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Table 1. Continued.

Kinase interactor Additional seed
interaction

Functional enrichment
contribution

Further functional detail

Abbreviated name Full protein name

ROR1a) Receptor tyrosine kinase-like
orphan receptor 1

- - � Pseudokinase
� Non-canonical Wnt transmembrane receptor[72]
� Highly upregulated in chronic lymphocytic leukemia (CLL)[73] and

other blood cancers[74]

STK25a) Serine/threonine kinase 25 - - � Associates with Golgi apparatus
� Dominant negative STK25 causes dispersal of the Golgi apparatus

and inhibits cell migration[75]
� Involved in glucose homeostasis[76]
� Regulates lipid release from lipid droplets and induces

NAFLD/NASH pathogenesis[77]

a) kinases specific to MASL1

total of 115 pairwise interactions; Table 3, Supporting Informa-
tion), only 1 protein out of 48 interactors, DUX3, was not found
in the GTEx database used for co-expression analysis. On aver-
age, co-expression within nine tissues was evident, whilst in ten
cases co-expression was found in 12 tissues (out of 13 analyzed,
Table 3, Supporting Information). Although most tissues in-
cluded at least one co-expressed interaction pair, one tissue
(skeletal muscle) did not show any co-expressed interaction pairs
due to an absence of significant ROCO protein expression in this
tissue. The highest proportion of co-expressed interaction pairs
was seen in the reproductive apparatus (96% of co-expressed in-
teraction pairs), followed by two tissues: brain and intestine (92%
and 90% of co-expressed interaction pairs, respectively; Table 3,
Supporting Information).

3.4. Functional Insight Into the Common Core Network

The literature-derived and common core networks were sub-
jected to functional enrichment analysis based on gene ontol-
ogy (GO) functional annotations. Particularly, we used biological
process (BP) terms to gather functional insight into these net-
works. The significantly enriched BP terms were grouped into
functional blocks defined by more specific semantic classes (us-
ing a curated dictionary list to match GO terms with a custom
grouped ontology) based on semantic similarity (Files 4 and 8,
Supporting Information). This enabled an overview of signifi-
cantly enriched functions (see Figure 2, Supporting Information
for a summary of functions associated with the ROCO literature-
derived and common core networks, and Files 4–9, Supporting
Information for a breakdown of each functional block, including
semantic class– and GO term–specificity).
Within the common core network, which consists of 48 com-

mon interactors plus the seed protein nodes (Figure 4), a to-
tal of 26 GO BP terms were significantly enriched, represent-
ing a specific subset of the whole 516 functionally diverse terms
significantly enriched within the literature-derived network
(Figure 2, Supporting Information and File 4, Supporting

Information). The predominantly enriched terms within this re-
fined analysis indicated “response to stimulus” and “intracellular
organization” functional blocks supported by “stress” and “cell
projections” semantic classes, respectively (Table 2). Functional
associations for specific ROCO proteins were also explored by
functional enrichment analysis of the individual interactomes
within the literature-derived network identifying “cell death” and
“development” as distinct functional themes for DAPK1 and
LRRK1, respectively, and “intracellular organization” and “trans-
port” for LRRK2 (Table 2).

4. Discussion

The human ROCO proteins are defined by a ROC-COR supra-
domain which contains highly conserved motifs and substantial
sequence similarity (Figure 1), a tandem domain organization
that can be evolutionary traced from prokaryotic organisms.[42]

This domain homology is paralleled by flanking domain dissim-
ilarity, driving a twofold interest into the proximal interactors
of these proteins and their potential effects on subcellular func-
tions: first from a fundamental biology perspective in relation to
the complex domain organization of these proteins, and second
from a drug discovery perspective due to the involvement of these
proteins in human diseases.
In the current study, we used a combination of bioinformatic

literature-based analysis (WPPINA) and an experimentally de-
rived protein microarray dataset, to expand our insight into the
ROCO protein interactomes, specifically into common and dis-
tinct interactors, and functional pathways regulated by this fam-
ily of proteins.
Although literature-derived PPI networks are incomplete by

definition as they are affected by ascertainment bias[43] and de-
pend solely on existing experimental findings (i.e., many interac-
tors may exist that are yet to be discovered and/or relatively newly
discovered protein interactors will be neglected in comparison
to the more studied ones), the WPPINA analysis reported here
represents a comprehensive literature review of reported ROCO
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Figure 4. Common nodes across literature-derived and experimental
ROCO PPI data. A) The network is specifically depicted to highlight inter-
actors that are common to both non-thresholded literature-derived data
and protein microarray data. Dotted edges indicate interactions deriving
from protein microarray experiments; dashed edges indicate interactions
described in literature; dotted and dashed edges are interactions repli-
cated between the two datasets. Seeds are represented with a circular
node. Common interactors are represented with a double circular node if
they are common to two seeds, square node if they are common to three
seeds, and triangular node if they are common to all four seeds. B) Com-
mon nodes across the literature-derived and experimental networks when
considering literature-derived data after thresholding.

PPIs[25] and ensures an extensive and weighted coverage of pri-
mary literature sources comparatively to currently used literature
mining and prediction network mapping tools.
In the case of the ROCO proteins, the literature-derived PPI

network incorporates a potential bias toward the LRRK2 interac-
tome, due to extensive investigation into LRRK2 in relation to
PD.[44,45] This is evidenced by the nearly twofold increase in the
number of LRRK2 interactors (from 62 to 113) compared to a pre-
vious analysis performed in 2014 using an earlier version of the
same data processing pipeline.[4] Conversely, the distribution of
nodes amongst the other ROCO proteins highlights the compar-
ative neglect of research into characterizing the DAPK1, LRRK1,
and MASL1 interactomes.[21] However, it is worth considering
that all interactions reported through WPPINA are experimen-
tally proven, replicated, and cleared from type-I error.

The domain topology and primary structures of the ROCO
proteins are dissimilar outside of the ROC-COR region
(Figure 1), hence common interactors may provide hints to-
ward ROC-COR-specific interactions. The common interactors
identified within the literature-derived network include: FADD,
MYO1B, and MYO1D (between DAPK1 and LRRK2), and BAG5
and HSPA8 (between LRRK1 and LRRK2). Functional insight
into these common interactors is provided in Table 1, Support-
ing Information. Of note, two common interactors (MYO1B
and MYO1D) are unconventional myosin proteins involved in
vesicle trafficking, a critical function for many cellular processes
and ultimately cell survival. Interestingly, Rab proteins have a
regulatory role in myosin motor function, which combined with
evidence of Rab proteins as LRRK2 substrates[46] and myosins
as LRRK2 interactors, supports a key role for LRRK2 in the
regulation of intracellular vesicle transport.[47] This WPPINA
approach allows for the straightforward identification of these
mutual connections which could easily be overlooked when
reviewing literature using alternative strategies. By removing the
confidence threshold within the WPPINA pipeline, we increased
the number of interactors reported within the literature-derived
ROCO PPI network; however, the additional interactors have to
be considered carefully since there is no evidence of replication
within the peer-reviewed literature.
The experimental network, which is based on protein mi-

croarray data, provides novel insight into the ROCO protein in-
teractomes. This network is not biased toward a specific seed
protein since all are equally evaluated utilizing a hypothesis-free
approach and is complete in relation to the extensive range of pro-
teins immobilized on the microarray (9480 proteins). However,
the experimental network is not as robust as the literature-derived
network due to technical biases (i.e., intrinsic limitations to this
experimental procedure, including the choice of baits for the
microarray; alterations of physiological protein conformations
[non-physiological environment, absence of lipidic membranes,
tagged preys]; variations of posttranslational modifications as evi-
dence suggests that the phosphorylation state of LRRK2 impacts
the protein interaction profile of the protein).[48] Consequently,
interactions reported in the experimental network require repli-
cation by alternative interaction detection methods to overcome
the technical biases and ensuring validity of the protein microar-
ray positive hits.
Nevertheless, this high-throughput approach allows for the

identification of potential novel interactors, expanding the cur-
rent landscape of the ROCO protein interaction network, partic-
ularly for the less studied ROCO proteins. For example, many
potential MASL1 interactors have been identified, which include
numerous kinases (Table 1).MASL1 (unlike the other ROCOpro-
teins) lacks an intrinsic kinase domain (Figure 1), therefore it can
be hypothesized that its GTPase activity within the ROC domain
may influence an extrinsic kinase domain.[39,49,50] The novel po-
tential MASL1-interacting kinases identified in this screen may
be downstream effectors of the switch-like GTPase activity of
MASL1 and thus part of a reciprocal regulatory relationship.
To address the intrinsic biases of these two approaches, we in-

tegrated the literature-derived and experimentally derived data.
The advantage of this strategy is that the microarray data will
dilute the ascertainment bias of the literature-derived network,
while the literature-derived network will supply the reproducibil-
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Table 2.Most significantly enriched terms from functional enrichment analysis of each dataset.

Datasets p-value GO term Semantic class

Literature-
derived

4.6E-36 Cellular component organization
or biogenesis

Intracellular organization

Network 2.44E-30 Intracellular transport Transport—intracellular

4.31E-30 Cellular component organization Intracellular organization

DAPK1 0.000000385 Cell death Cell death

0.000000439 Apoptotic process Cell death—apoptosis

0.00000136 Programmed cell death Cell death

LRRK1 0.0000349 Neuron projection development Development—neuronal—axon

0.0000382 Cell development Development

0.0000911 Neurogenesis Development—neuronal

LRRK2 2.75E-29 Cellular component organization
or biogenesis

Intracellular organization

4.36E-29 Intracellular transport Transport—intracellular

1.61E-26 Establishment of localization in
cell

Protein metabolism—localization

Common
core

0.00000192 Regulation of cellular response to
stress

Response to stimulus—stress

Network 0.0000539 Plasma membrane bounded cell
projection organization

Intracellular organization—cell
projections

0.0000752 Cell projection organization Intracellular organization—cell
projections

ity element and aid prioritization of positive hits from the
microarray experiments. By overlaying this data, numerous in-
teractors common to both datasets became evident, including
interactors from the same seed origin, reinforcing confidence
in the protein microarray data, and interactors that were repli-
cated between the two approaches but in association with dif-
ferent seeds of origin (Figure 4), opening new avenues for fu-
ture functional investigation. These common nodes across both
approaches were used to construct the common core network
(Figure 4), which illustrates the potential overlap in ROCO pro-
tein interaction profiles.
The probability of proteins interacting within the cellular

environment is subject to a number of important variables,
including both temporal and spatial patterns of expression.
Therefore, we subjected the interactors of the common core net-
work to tissue-specific gene expression profiling using data from
GTEx (Table 3, Supporting Information). Although this repre-
sents a crude type of analysis (i.e., temporal expression and in-
tracellular localization are not taken into account), it provided
another way to assess the probability of the interactions reported
in the common core network based on co-existence of protein
transcripts in human tissues. Particularly, we gathered that the
highest frequency of co-expressed interaction pairs was in the re-
productive apparatus, followed by brain and intestine, whilst only
skeletal muscle did not show any co-expression. Additionally,
ten proteins (ABL1, CALM1, CBLB, CDC42EP3, GAK, MRGBP,
RPAP3, SNX9, STUB1, and TUBB4B) were co-expressed with
ROCO proteins in 12 out of the 13 tissues analyzed. This insight
into tissue-specific co-expression supports the likelihood of the
majority of pairwise interactions that have been reported in the
literature and that have been assessed in a functional context.

To obtain functional insight into the ROCO protein interaction
network, we performed functional enrichment analysis for the
literature-derived and common core networks, independently.
The analysis of the former evidenced a diverse range of cellular
functions (Figure 2A, Supporting Information), which support
the concept of the ROCO proteins as hubs for a multitude of
signaling cascades and hence challenging targets for therapeutic
development.[4] The analysis of the latter suggested a limited
range of associated functional blocks: cell death, intracellular
organization (particularly cell projections), protein metabolism,
and response to stimulus (particularly stress response;
Table 2 and Figure 2B, Supporting Information). In addi-
tion, functional enrichment analysis of individual ROCO protein
interactomes indicated distinct functional themes for each seed
protein (Table 2). In combination, these enrichment analyzes
provide an overview of cellular functions associated with the
ROCO proteins, suggesting potential convergent and divergent
roles of these proteins within the cell, thus guiding future
detailed assessments of ROCO protein function.
These analyzes provide a valuable foundation for understand-

ing the ROCO protein interaction network. We here integrated
peer-reviewed literature, microarray, and co-expression datasets
to isolate common and distinct interactors of the ROCO pro-
teins. We constructed a ROCO protein common core network
highlighting the extent of commonality in the interaction pro-
files of these proteins. Using functional analysis approaches, we
showed that, the ROCO proteins share a structurally conserved
unit, which may be responsible for shared interactions (such as
those with BAG2, CBLB, CDC42EP3, STUB1, and VGLL4) and as
consequence, may influence the involvement of the ROCO pro-
teins in common pathways identified (such as stress response
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and cell projection organization). However, despite this domain
conservation, the ROCO proteins seem to have evolved largely
divergent interactomes and associated functions within the cell
(Table 2). This supports previous research into the functions of
LRRK1 and LRRK2.[7] The diversification of interactomes and bi-
ological functions of the ROCO proteins may reflect an evolu-
tionary pressure toward phylogenetic differentiation of a single
ancestral ROCO gene[51] and may justify why the human ROCO
proteins are differently associated with disease.
In summary, we utilized a confidence-weighted data process-

ing pipeline (WPPINA) to prioritize high-throughput experimen-
tal results. Importantly, this approach provides the flexibility
to incorporate data from a wide range of sources, and in the
future could be further complemented by findings from yeast
two-hybrid and stable isotope labelling with amino acids in
cell culture (SILAC) screens, for example. Together, this analy-
sis highlights the value of a multi-layered approach, combining
bioinformatics with novel experimental data to better inform and
accelerate laboratory investigations.
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