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ABSTRACT 

The understanding of the pathophysiology of most neurodegenerative movement 

disorders has been elusive. Such is the case of multiple system atrophy (MSA) and 

primary familial brain calcification (PFBC). In this thesis I used a range of genetic 

techonologies and functional strategies to unravel the genetic basis of MSA and 

PFBC.  

First, I describe the work performed in MSA and related atypical movement 

disorders initially by investigating candidate genes. My key findings were: i) 

begative results when attempting to replicate the association between COQ2 and 

the risk of MSA, by Sanger sequencing the largest pathologically confirmed MSA 

cohort the largest pathologically confirmed MSA cohort; ii) reduced levels of 

Coenzyme Q10 (CoQ10) in the cerebellum of MSA patients with a cerebellar or 

mixed MSA subtypes when compared to normal controls and other 

neurodegenerative movement disorders, when I measured the levels in post-

mortem brain tissue of MSA and other patients and controls by high performance 

liquid chromatography (HPLC); iii) identification of three C9orf72 repeat expansions 

and one intermediate expansion in patients presenting with a corticobasal and 

progressive supranuclear palsy syndrome, and confirmation  of the absence of the 

expansion in pathologically proven MSA, corticobasal degeneration (CBD) and 

progressive supranuclear palsy (PSP); iv) identification of a LRRK2 protective variant 

in MSA by case control analysis of genotyping of LRRK2 candidate variants.  

Second, I detail my work applying next generation sequencing techonologies (i.e. 

whole exome sequencing (WES)) to the study of genetic risk factors in MSA: i) 

Initially I analysed a definite MSA family and ii) later I performed the largest WES 

study so far in sporadic MSA. This study included 450 cases out of which 298 were  
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pathologically confirmed. These data were first investigated for candidate genes 

linked to MSA, other synucleinopathies and related neurodegenerative disorders, 

and later by peforming a case control association study for common and rare 

variants. The results of this work where not able to replicate previous findings that 

linked MSA to COQ2 or SNCA, notwidstanding it revealed interesting candidates 

that require follow up.  

Third, I studied genetically patients with PFBC. My key findings were: i) a pathogenic 

SLC20A2 mutation segregating with the disease in an interesting family, found by 

investigating recently discovered candidate genes I identified by Sanger 

sequencing; ii) I detail how I studied two independent primary brain calcification 

consanguineous families by means of homozygosity mapping and WES. I was able 

to identify a homozygous nonsense mutation segregating with the disease in both 

families in JAM2, a gene encoding the Junction adhesion molecule 2, a tight junction 

protein. This is a novel gene previously unreported as a cause of human disease. 

Through collaborations with other scientists, I showed the absence of the 

expression of the JAM2 protein in a fibroblast cell line of a homozygous patient 

compared to a heterozygous carrier and 2 independent controls. Aditionally we 

studied a knock out JAM-b (ortolog of human JAM2) mouse model and showed gait 

abnormalities and abnormal brain histopathology.  

In conclusion, by applying genetic technologies and related methods, I generated 

important insights into the CoQ10 pathway in MSA, I generated the largest dataset 

of WES in MSA and I discovered a new gene for PFBC. My findings are discussed 

inlight of the recent literature and future directions of research into each subject.  
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1 CHAPTER 1: GENERAL INTRODUCTION 

1.1 INTRODUCTION TO NEUROLOGICAL DISORDERS 

Neurological disorders include all the diseases that affect primarily the nervous system. 

Neuroscience is the branch of science that studies the nervous system. Physicians treating 

neurological conditions rely on neuroscience research to provide the best care for their 

patients. Translational research aims to join together the work of clinicians, researchers and 

other related fields, to improve healthcare and optimise prevention, diagnosis and 

treatment of patients.  

Neurological disorders can affect one or many portions of the nervous system. In this thesis, 

I have worked mostly on multiple system atrophy (MSA) that is a complex movement 

disorder that affects both the central and peripheral nervous system, and presents with 

atypical parkinsonism, cerebellar ataxia and autonomic dysfunction.  

1.2 INTRODUCTION TO GENETICS AND GENOMICS 

According to the world health organization genetics is the study of heredity and genomics 

is defined as the study of genes, their functions, and related techniques. The main 

difference between genomics and genetics is that genetics scrutinizes the functioning and 

composition of the single gene while genomics addresses all genes and their inter-

relationships in order to identify their combined influence on any organism. 

The human genome is composed of around 6 billion base pairs (bp) stored in 23 

chromosome pairs. There are approximately 21000 protein-coding genes contained in the 

human genome. This constitutes around ~1-2% of the genome and the set of human exons 

is called “the exome”. The remaining portions of the genome consist of intronic sequence, 

RNA genes, regulatory sequences, and repetitive DNA in which the function is less 

understood(1).  

The most common type of variation in the DNA are single-nucleotide polymorphisms (SNPs). 

Each human present approximately 3 million of these variants when compared to the 
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reference sequence. These SNPs arise on average every 1000 bps. SNPs where the minor 

allele frequency (MAF) occurs in more than 1% of the population are classified as common 

variants, and in less than 1% are rare variants and between 1% and 5% are considered 

variants of low frequency. Other causes of genomic variation can be the insertion or 

deletion of multiple bp in the range from 1 to 1000 bp. These can cause further alterations 

of the coding DNA sequence by producing a frameshift of the sequence that may result in a 

truncated protein product. Larger (than 1000 bp) are referred to as copy number variants 

(CNV) and can also be common or rare. Inversion and translocation of genomic regions can 

result in structural changes affecting many genes(1).  

Genetic variation can be present in the germline cells or be acquired somatically. Germline 

variation can be inherited or can occur de novo during meiosis or just after fertilization. 

Variation occurring in somatic cells is acquired and can arise randomly or secondary to 

environmental factors.  

1.3 PRECISION MEDICINE 

Precision medicine aims to identify small groups of patients that share certain genetic and 

molecular characteristics to tailor the best diagnostic and therapeutic methods. The 

“omics”, including genomics, transcriptomics, proteomics and metabolomics are 

increasingly becoming a part of the investigations that can potentially be studied in each 

patient. They provide enormous information that can be directly applied to the patient’s 

management. For example, people at risk for surgical procedures (e.g.: RYR1 gene 

mutations and risk of malignant hyperthermia(2)) or cancer patients and their response to 

treatments and monitoring of disease progression(3).  

In Neurology, we are still a step back compared to cancer research. The area of greater 

advances in precision medicine in Neurology are perhaps, the epilepsies, where through the 

understanding of pharmacogenomics, neurologists can guide the best drugs for their 

patients. Moreover, the epilepsies have many useful disease models in which drugs can be 

tested(4). However, it is paramount that large databases are shared and put together to 
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ensure data analysis provides reliable and reproducible results before applying these to the 

patients.  

1.4 GENETICS OF MENDELIAN AND COMPLEX DISEASE 

Neurogenetics is a subspecialty of neurology that aims to understand, diagnose and treat 

neurological conditions that harbour a genetic basis.  

The genetic background of a disorder is classified into “Mendelian” and “non-

Mendelian”(5). The classical Mendelian modes of inheritance are monogenic where the 

presence or absence of a genotype at a single locus are both sufficient and necessary for 

the character to be expressed. These diseases can present different patterns of inheritance: 

Autosomal dominant (AD) if manifested in the heterozygous state, autosomal recessive (AR) 

if manifested in the homozygous or compound heterozygous state, or X-linked if linked to 

the X chromosome or Y-linked to the Y chromosome.  For example, a Mendelian disorder 

that we are going to study later in this thesis is primary familial brain calcification (PFBC) 

that can present with both AD or AR inheritance.  

Non-mendelian types of inheritance include maternal (or mitochondrial) and multifactorial 

inheritance. Mitochondrial inheritance is also called maternal because the mitochondria is 

inherited from the oocyte and therefore from the mother. So, affected fathers do not 

transmit the condition to their offspring. Complex, or multifactorial inheritance describes 

the process by which multiple genes in combination with lifestyle and/or environmental 

factors can cause or increase risk of a trait or disorder. Many neurological disorders such as 

Parkinson’s disease (PD) can present in some cases Mendelian inheritance (e.g. LRRK2 

families) and other multifactorial or complex (i.e. Idiopathic Parkinson’s disease (IPD)(6). 

In this thesis, we will study the genetic basis of monogenic diseases as well as the genetic 

risk factors of complex disorders.  

I have included a table of basic concepts in genetics that will be used throughout this thesis: 

Table 1-1.  
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Table 1-1: Glossary of basic concepts in genetics 

Penetrance The frequency with which a genotype 

manifests itself in a given phenotype.  

Linkage disequilibrium (LD) LD is a statistical association between 

particular alleles at separate but linked 

loci. Genetic loci are in LD if, across the 

population as a whole, they are found 

together on the same haplotype more 

often than expected. In general, two loci in 

linkage disequilibrium will also present 

genetic linkage, but the reverse is not 

necessarily true. 

Haplotype A series of alleles found at linked loci on a 

single chromosome and inherited together 

from a single parent. Also, the term 

"haplotype" can refer to the inheritance of 

a cluster of SNPs that can be analysed to 

understand the pattern of genetic 

variation in a group of individuals.  

Genotype The set of genes of an organism and the 

complete list of alleles present at one or a 

number of loci.  

Phenotype The observable characteristics of a cell or 

organism, including the result of any test 

that is not a direct test of the genotype. 

Heritability The proportion of the causation of a 

character that is due to genetic causes.  
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Genetic phase Refers to the allelic combinations that an 

individual received from its parents. If two 

alleles originated from the same parent 

they are said to be in cis phase. If each 

allele originated from a different parent 

they are in trans phase. Cis-acting 

regulatory factors are on the same DNA 

molecule or chromosome as opposed to 

trans-acting regulatory factors that can 

control their target irrespective of their 

chromosome location.  

Locus heterogeneity Determination of the same disease or 

phenotype by mutations at different loci.  

Pleiotropy The common situation where variation in 

one gene affects several different aspects 

of the phenotype that can be differently 

expressed in different organisms or 

subjects.  

1.5 RECENT ADVANCES IN NEUROGENETICS 

Since the completion of the human genome project was established in the early 2000’s(7), 

the advances in genetics have increased exponentially.  

The current widespread availability of next-generation sequencing (NGS) technologies has 

significantly improved the precision and speed of genetic research and genetic testing for 

diagnostic purposes. NGS include the technologies developed in the post-Sanger era. They 

have mostly been developed with whole-genome sequencing (WGS) in mind, but they have 

a whole range of applications including, but not limited to, whole exome sequencing (WES), 

targeted re-sequencing and RNA sequencing(1). Figure 1-1 presents a timeline of the 

advances in genetic and genomic technologies in the past decades. 



36 
 

 

The ever-increasing number of disorders that now have a clear genetic cause was 

unthinkable a few decades ago.  

The approach to investigating different neurological disorders is guided by the estimated 

genetic risk that at disease may have. Well established genome wide association studies 

(GWAS) focus on common variants, and are based on the “common disease-common 

variant” hypothesis where common variants have a small effect size and would modulate 

risk of developing the disease. Studies usually require large sample sets to achieve powerful 

results in which large number of samples are genotyped for a large number of markers. It is 

important to note that GWAS identify loci and not genes, and the direct link to a gene or a 

pathway is not generally obvious and sometimes resides in intergenic regions. Therefore, 

risk markers identified by a GWAS always needs further biological studies and support(8).  

GWAS have been very successful in unravelling genetic risk in many neurological disorders 

including PD, Alzheimer’s disease and multiple sclerosis (MS)(9).  

Traditional linkage studies and positional cloning of targeted regions were the approach 

when the disease was most likely caused by high risk low frequency alleles(8), such as the 

APP or PS mutations that cause Alzheimer’s disease with a Mendelian mode of inheritance. 

Linkage analysis is used to map genetic loci by use of observations of related individuals to 

detect the chromosomal location of presumably disease associated genes. Two genetic loci 

are linked if they are transmitted together from parent to offspring more often than what 

Figure 1-1: Timeline showing the evolution of DNA sequencing during the Sanger and the post-Sanger eras (modified from(1)). 
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is expected under independent inheritance. Because if they are located close to each other, 

they tend to be inherited together during meiosis they are genetically “linked”. Sometimes, 

when recombination occurs during meiosis it is possible that close genes on the same 

chromosome are not inherited together and this produces genetic variability. However, this 

occurs through the exchange of genetic material among homologous chromosomes and 

happens more often in distantly located genes.  

Genotyping a number of markers and segments that are identical by descent (IBD) can 

provide information on the haplotypes of a sample that can then be used to compare the 

haplotypes of affected patients to unaffected family members. The logarithm of the odds 

(LOD) score is a function of the recombination fraction or chromosomal position measured 

in centimorgans (cM). The higher the LOD score, the greater the evidence for linkage. 

Traditionally, a score of 3 was regarded as significant evidence of linkage associated to the 

disease or trait studied. However, achieving such a number is not always possible for various 

reasons, being the most limiting one the size and information available of the family studied. 

To reach a score of 3 one need at least data from 10 affected family members. Linkage 

analysis can be used for Mendelian (parametric) and complex traits (non-parametric, or 

model-free). 

Linkage was followed by positional cloning of the genes in the linked region. This was very 

laborious in the first decades of linkage studies (1980-2000) and was immensely facilitated 

by the completion of the human genome project. Basically, in the first decades one 

delimited a linked region and had to then clone the genes in that region and probably all or 

most of them where previously unknown. After the completion of the human genome 

project, once the researcher obtains a linked region, they can rely on public databases to 

study the region of interest and identify candidate genes.   

An efficient strategy for mapping human genes that cause recessive traits has been devised 

and uses mapped linkage analysis data, and the DNA of affected children from 

consanguineous marriages. This facilitated the concept of homozygosity mapping (or 

autozygosity mapping) where recessively inherited disease haplotypes are mapped 

according to the disease status of affected and unaffected family members(10,11).  
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Obtaining data for linkage and homozygosity studies was in the first decades performed by 

restriction fragment length polymorphisms (RFLPs)(10) and as methods developed genome 

wide single nucleotide genotyping assays became more cost effective(11). In parallel, initial 

gene discovery by cloning and Sanger sequencing have been replaced by next generation 

sequencing technologies. The later are the technologies used in this thesis(8).  

A good example of gene discovery by linkage analysis and positional cloning before the 

human genome project era are mutations in the APP gene causing Alzheimer’s disease(12). 

Similar technologies (but in this case complemented by analysis of chromosomal 

rearrangements that where affecting the exact gene position) was the case of the discovery 

of the first (and one of the largest) neurological disease gene, causing Duchenne muscular 

dystrophy(13). Nowadays this is usually the result of combining genome wide SNP 

genotyping arrays with exome or genome sequencing(14,15).    

Moderate risk low frequency alleles constitute a bigger challenge. Such is the case of an 

increased risk of PD conferred by GBA variants. This link was detected by traditional 

methods because it was based on the clinical observation of a higher incidence of PD in the 

parents of children affected by Gaucher’s disease(8).  

Rarer variants conferring low risk, or rare structural changes such as CNVs or copy neutral 

variations (loss of heterozygosity) are more difficult to be established with current methods. 

However, thanks to the advances in whole genome sequencing (WGS) that is closer to be a 

cost-effective technology, and the developments of new bioinformatics pipelines able to 

identify these type of changes, it is becoming more and more feasible. See Figure 1-2.  
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Figure 1-2: Schematic representation of the genetic architecture of disease and the applicability of 

current methods to finding risk and causative alleles. Ref: Exome-seq: whole-exome sequencing, 

Genome-Seq: whole-genome sequencing, GWAS: genome-wide association study. Modified from (8). 

Recent advances in genetic technology, targeting the whole genome or the whole exome 

have altered the design of some genetic experiments allowing for hypothesis free projects 

interrogating the whole genome of ethnically matched subjects with reliable quality control 

measures. This is tackling the false positive results that were sometimes detected by 

targeted locus studies that failed to be replicated(9). Table 1-2 gives a list of advantages and 

limitations of NGS technologies.  

Another approach that became widely available with NGS is the study of trios and the 

possibility to identify de novo mutations in the offspring of unaffected parents. This was 

particularly successful in a study of early onset PD cases(16).  

Third generation sequencing refers to a different approach of NGS that avoids the need of 

DNA amplification and sequences the DNA molecules in real time (sometimes called next 
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NGS)(1). An example of third generation sequencing is the oxford nanopore. In this thesis, 

we used second generation sequencing and we are therefore going to describe this method 

and always refer to NGS (instead of second-generation sequencing).     

Table 1-2: Advantages and disadvantages of NGS technologies. 

 Advantages Limitations 

Next generation 

sequencing 

Cost effective Does not detect repeat expansions 

regions accurately 

Rapid turnaround time 

(compared to Sanger 

sequencing) 

Cannot detect accurately large 

CNVs 

Require smaller amounts of 

DNA (than Sanger and in 

particular for WGS) 

Can present false positives 

(especially in repetitive regions) 

and false negatives 

Can study a group of genes 

simultaneously (e.g.: for linked 

regions, or specific pathways of 

interest) 

Cannot establish genetic phase 

Can be used for different 

approaches according to the 

study hypothesis.  

 

 

1.6 THE GENETIC BASIS OF NEUROLOGICAL DISEASE  

In the same way that our own genetic architecture determines who we are, our eye colour 

or height, genetic risk factors affect the risk of neurological disorders as well as the way 

diseases manifests in each person.   

Many neurological disorders have a clear genetic cause. Such is the case of Charcot Marie 

Tooth type 1A (CMT 1A), spinocerebellar ataxia type 1 (SCA1) or Huntington’s disease (HD) 

that are all inherited in an autosomal dominant manner. Other neurological disorders like 



41 
 

MS or stroke have known genetic risk factors that are probably acting in combination with 

the environment. An increased risk in family members of MS patients is well established but 

in most of the cases it is not inherited in a Mendelian fashion(17). Other disorders, such as 

amyotrophic lateral sclerosis (ALS), can present monogenic familiar forms and also 

polygenic complex forms.   

Interestingly, although pure Mendelian forms of disease in neurology are rare, the discovery 

of the faulty genes causing them has constituted the basis of most of our understanding of 

the pathobiological pathways involved in neuroscience. Further, this information can be 

then applied to other sporadic diseases(9).  

Genetic changes can affect the presence of the disease and/or its phenotype. Such is the 

case in disorders where anticipation is present in subsequent generations (for example, 

myotonic dystrophy type 1 through a maternal line of inheritance, HD through a paternal 

line).  

With the advances in genetic technologies it is now possible to study many disorders where 

this was previously unpractical, unsuccessful or too expensive.  

1.7 THESIS AIMS AND OUTLINE 

Genes and the way genes interact play a central role in the pathogenesis of neurological 

disorders. Genetic changes can cause, increase risk, protect, predict course, guide 

treatment and act as biomarkers.   

The scientific knowledge is exponentially boosted after unravelling genetic causes or risk 

factors for the disease. Understanding the pathophysiology of disease is key for providing 

medical care. Initially, it will probably be limited to genetic counselling and family planning, 

but later can lead to potential treatments or preventative measures.   

The aim of this thesis is to apply modern genetic technologies in the understanding of two 

rare neglected neurological disorders, namely MSA and PFBC.   

I have provided a statement of contribution at each results chapter and stated when work 

has been performed in collaboration with other colleagues or researchers.  



42 
 

 

 

  



43 
 

2 CHAPTER 2: INTRODUCTION TO MSA AND 

RELATED MOVEMENT DISORDERS 

2.1 PARKINSON’S DISEASE AND ATYPICAL PARKINSONISM 

Movement disorders are a group of neurological diseases that cause abnormal hyperkinetic 

and hypokinetic movements. Hyperkinetic movement disorders are tremor, tics, chorea, 

myoclonus and dystonia. Hypokinetic movement disorders comprise akinesia (slowness and 

fatigue of movement) and rigidity. The akinetic–rigid syndromes are defined by paucity and 

slowness of movement accompanied by muscle stiffness and resistance to passive 

movement. The akinetic–rigid syndrome is typical of idiopathic Parkinson's disease (IPD), so 

is often described as the syndrome of parkinsonism.  

The most common form of parkinsonism is Parkinson’s disease (PD) that presents a lifetime 

risk of developing the disease of 1.5%. The incidence increases with age from 17.4 per 

100,000 in the fifth decade to 93.1 per 100,000 in people over 70 years of age.  The median 

age of onset is 60 years although a 10% of patients present younger than 45 years of age. 

Death occurs usually within 15 years of disease onset.   

PD is characterized by bradykinesia associated with at least one other motor sign: rigidity, 

tremor or gait disturbance. The course is progressive, presents unilaterally with 

asymmetrical signs, and a number of non-motor symptoms accompanying or preceding the 

motor onset (e.g. hyposmia, constipation, genito-urinary symptoms, REM-behavioural sleep 

disorders). These plus a good and sustained response to levodopa support a diagnosis of PD 

according to the consensus criteria(18). Dementia in PD presents later in the disease and 

when present before or during the fisrt year of symptoms a differential diagnosis of 

dementia with Lewis bodies should be considered.  

 The neuropathological hallmark is a region-specific selective loss of dopaminergic, 

neuromelanin-containing neurons from the pars compacta of the substantia nigra 

associated to intraneuronal α-synuclein immunoreactive inclusions: the Lewy bodies(19). 
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The cause of PD is unknown but up to 10% of patients have a family history and there are 

significant genetic risk factors that contribute to the disease. Both high risk monogenic 

forms (SNCA, LRRK2, Parkin, PINK1, VPS35 among others), intermediate risk (for example 

GBA) as well a long list of low risk variants have been reported as associated with PD(20).  

The main differential diagnosis after suspected parkinsonism are the atypical parkinsonian 

syndromes: MSA, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), 

and dementia with Lewy bodies (DLB). Secondary causes of parkinsonism (such as drug 

induced, metabolic, infectious, traumatic, vascular, tumoral or toxic) should always be 

excluded. And finally, there are other rarer primary degenerative causes of parkinsonism to 

be considered: Alzheimer’s disease, Huntington’s disease, frontotemporal dementia, basal 

ganglia calcification (Fahr’s disease), spinocerebellar ataxia (SCAs) among others.  

Table 2-1: Table presenting some clinical clues to differentiate parkinsonian disorders. 

Clinical finding Differential to consider 

Cerebellar ataxia MSA, SCAs 

Early or marked dysautonomia MSA 

Supranuclear gaze palsy, slow saccades PSP, CBD 

Early falls  PSP, MSA 

Early dementia Alzheimer's disease, DLB 

Asymmetric apraxia CBD 

No sustained levodopa response, despite 

adequate trial 

All of the above 

 

Atypical parkinsonian disorders are less common than PD with a prevalence for MSA and 

PSP between 2-5 per 100,000. DLB is the second most common type of dementia (after 

Alzheimer’s disease) and accounts for 5% of cases of dementia in older populations(21), and 

in a recent study had an incidence of 3.5 per 100,000(22). PSP is characterized by 

symmetrical parkinsonism, cognitive changes, supranuclear palsy of vertical gaze, early falls, 

dysarthria, and dysphagia. The corticobasal syndrome (CBS) consists of a constellation of 

extrapyramidal and frontoparietal cortical features and constitutes the classic clinical 
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presentation of CBD, but many CBS cases turn out to have alternate neuropathology(23).  

DLB patients exhibit a similar pattern of cognitive impairment to that seen in PD but with 

an onset in the early disease stages, either before the motor symptoms or within the first 

year. There is both pathological and genetic overlap between DLB and Alzheimer’s disease. 

Pathologically, DLB brains present Lewy bodies as well as neurofibrillary tangles and amyloid 

plaques characteristic of Alzheimer’s disease. Genetically, mutations in five PD genes have 

been linked to the DLB phenotype, including genetic variation in GBA, LRRK2, MAPT, SCARB2 

and SNCA. Also, the APOE ε4 allele is a significant risk factor for DLB, and familial Alzheimer 

dementia cases due to APP, PSEN1 and PSEN2 mutations occasionally present with mixed 

Alzheimer and Lewy body pathology. Remarkably, a recent study of 111 pathologically 

conformed DLB patients found a ~25% of cases carrying a pathogenic mutation or risk 

variant in APP, GBA or PSEN1(24). The main clinical clues in the diagnosis are presented in 

Table 2-1. 

Likewise PD, the primary atypical parkinsonian disorders are linked to the accumulation of 

misfolded proteins in the brain and neuronal degeneration. The proteins are α-synuclein 

and tau (Table 2-2). The different isoforms of the protein tau are 3 repeat tau and 4 repeat 

tau. Both PSP and CBD have 4 repeat tau and FTD accumulates 3 and 4 repeat tau(25). In 

addition to the genes mentioned in the previous paragraph, the known genetic risk factor 

for PSP is the H1 haplotype in MAPT, and there are newly proposed links with EIF2AK3, STX6, 

and MOBP(26). The H1/H1 MAPT haplotype is associated with both PSP and CBD(26–28) 

and likewise, MAPT variants such as p.N410H(29) and p.A152T, have been linked to 

pathologically confirmed CBD and PSP(27,30).  

Table 2-2: Protein accumulation in atypical parkinsonian disorders. 

α-synucleinopathies Tauopathies 

PD (Lewy bodies, neuronal) PSP  

DLB (Lewy bodies, neuronal) CBD 

MSA (Glial cytoplasmic inclusions) FTD parkinsonism linked to chromosome 17 

Ref: PD: Parkinson’s disease; DLB: dementia with Lewy bodies; MSA: multiple system atrophy; PSP: progressive 
supranuclear palsy; CBD: corticobasal degeneration; FTD: fronto temporal dementia.  
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In this thesis I will focus primarily in MSA and primary basal ganglia calcification and 

therefore these disorders will be described in detail in the following sections.  

2.2 MULTIPLE SYSTEM ATROPHY 

2.2.1 History, definition and epidemiology of MSA 

The term Multiple System Atrophy (MSA) was first introduced by Graham and Oppenheimer 

in 1969(31)  joining together three diseases that were until then considered distinct entities: 

olivopontocerebellar atrophy(32), Shy-Drager syndrome(33) and striatonigral 

degeneration(34). In 1989, the clinical phenotype of MSA was unified and the first clinical 

diagnostic criteria proposed(35). In the same year, Papp and Lantos permanently 

consolidated these three disorders after discovering glial argyrophilic cytoplasmic inclusions 

(GCIs) as the pathological hallmark of the disease(36). In 1999 the main component of GCIs 

was identified as misfolded, hyperphosphorylated, fibrillar α-synuclein(37). These findings 

have classified MSA as an α-synucleinopathy, neuropathologically linked to other 

synucleinopathies: idiopathic Parkinson’s disease (IPD), dementia with Lewy Bodies 

(DLB)(38–40) and primary autonomic failure (PAF)(41).  

MSA is a sporadic progressive neurodegenerative disease and a distinct clinicopathological 

entity. Clinically, MSA is characterized by a variable combination of autonomic dysfunction, 

parkinsonism, cerebellar ataxia and pyramidal signs, and may change its clinical emphasis 

as it evolves(35). Patients can be designated MSA-P or MSA-C according to the initial 

predominant parkinsonian or cerebellar feature(42). Often MSA-mixed is used when 

cerebellar and parkinsonian signs equally occur at presentation. Pathologically, MSA 

consists of positive α-synuclein GCIs in the basal ganglia, cerebellum, pons, inferior olivary 

nuclei and spinal cord accompanied by neurodegeneration and gliosis(38).  

2.2.2 Epidemiology 

Although MSA is a rare disease it may account for up to 10% of cases with primary 

parkinsonism(18,43) and up to 34% of MSA cases may remain misdiagnosed until 

autopsy(43). MSA has an estimated prevalence of 3-4 per 100,000 individuals of 50-99 years 

of age(44). MSA mostly affects both sexes equally and the two types of MSA, MSA-P and 
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MSA-C, show a different distribution within populations. European and North American 

MSA presents in a 60-68% as MSA-P and 13-32% as MSA-C(45,46). The remaining 27% in 

North America was classified as a mixed-type(46). Studies in Japan have reported 

frequencies for MSA-P of 33% and 16% and MSA-C 67% and 84% in two retrospective 

series(47,48). Surprisingly, in a large Korean retrospective series, the predominant variant 

of MSA was similar to that of western populations(49).  

Although some environmental exposures have been reported in connection to MSA, there 

is no clear environmental cause for MSA, and there is a largely accepted concept that most 

likely the aetiology of the disorder will lie within a spectrum of environmental and genetic 

contributing factors (44).    

2.2.3 Spectrum of clinical phenotype  

The core features of MSA are parkinsonism, cerebellar ataxia, autonomic dysfunction and 

pyramidal signs.   

Parkinsonism is defined by the presence of bradykinesia and rigidity, accompanied by 

postural instability and tremor(43). MSA patients often present with an akinetic-rigid 

syndrome. Postural instability occurs earlier and progresses more rapidly than in PD(50).  

Although levodopa response is a red flag for the clinical diagnosis of MSA, some degree of 

efficacy with levodopa treatment has been reported in 28-65% of MSA cases(43,51–56). A 

51% symptom improvement due to levodopa was found in clinical MSA cases by the German 

Competence Network on PD(56) and a trial of this treatment is warranted in MSA-P 

patients.  

Many patients with MSA present dystonia. The most common sign of dystonia is antecollis 

that is present in up to 12% of definite MSA cases(43,51,57); other features seen in MSA 

are torticollis, focal limb dystonia, axial dystonia and orofacial dystonia(51,58).  

Progressive gait ataxia is the most common cerebellar feature of MSA.  It is often 

accompanied by cerebellar dysarthria and oculomotor dysfunction; limb ataxia is less 

prominent(50).  
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Early oculomotor abnormalities in MSA may include square wave jerks, nystagmus with a 

jerky pursuit and dysmetric saccades. Other eye signs are nystagmus and limitation of up 

and down-gaze(18,50,59). Excessive square-wave jerks, mild hypometria of saccades, 

impaired vestibulo-ocular reflex, spontaneous or positional downbeat nystagmus are 

diagnostic clues of MSA but slow saccades or moderate to severe gaze restriction suggest a 

diagnosis of PSP(60).  

Dysarthria is present in most cases of MSA and can present as an hypophonic, monotonous 

parkinsonian speech or a cerebellar quivering, high-pitched, strained, slurred and scanning 

dysarthria or a combination of both(43,59). 

Pyramidal signs are a feature in MSA. An extensor plantar response can be seen in up to 

41% of MSA cases and hyperreflexia in 46%(45,59).  

Dysphagia is frequent in MSA, and accounts for high morbidity(43,61).   

Non-motor symptoms (urinary problems, erectile dysfunction (ED), syncope, REM sleep 

behaviour disorder, stridor, faecal incontinence, constipation and sudomotor disturbances) 

occurring before any motor disorder, are present in 31% of MSA cases(62). Gastrointestinal 

symptoms, pain, urinary symptoms, orthostatic hypotension (OH), sleep disturbances, 

fatigue, attention and memory impairment, and psychiatric disorders were present in more 

than half of MSA cases in an observational multicentre study in Italy(63).  

Symptomatic dysautonomia was present in 99% of patients in the final analysis of the 

European MSA Registry and autonomic dysfunction was the most frequent feature of 

MSA(64). Autonomic failure typically comprises urogenital dysfunction and OH(65). MSA 

usually begins with bladder dysfunction in females, and with ED in males(66). Although early 

ED is nearly universal in men with MSA, ED is an unspecific sign(67). The most common 

gastrointestinal symptom seen in MSA is constipation and can be severe. In addition, 

anhidrosis is a frequent finding(68).  

Nearly all patients with MSA have some form of sleep disruption. Sleep apnoea and 

laryngeal stridor are some of the breathing problems that affect MSA patients. Stridor 

occurs in a large proportion of MSA patients(69). Obstructive sleep apnoea can also cause 
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sudden death(59,62). REM sleep behaviour disorder represents the most common clinical 

and polysomnographic finding in MSA(69). Other sleep disorders in MSA are sleep apnoea, 

excessive daytime sleepiness, insomnia and restless leg syndrome(45,70).  

Cognitive impairment has been largely considered unrelated to MSA and the diagnostic 

criteria regard dementia as a non-supportive feature(50). However, a prospective cohort of 

372 patients with MSA showed a 20% impairment in the Mattis Dementia Rating Scale and 

32% on the Frontal Assessment Battery(71). Furthermore, MSA-P patients seem to show 

more severe and widespread cognitive dysfunctions than MSA-C patients(72). Depression 

and anxiety are present in MSA in approximately 40% of cases(45,73).   

Mild hyposmia was found in clinical MSA cases(74–77), but a retrospective analysis of 4 

definite MSA cases showed normal olfaction in all of them(78). This can be helpful 

information when differentiating MSA from IPD.  

2.2.4 Pathology 

Pathologically, depending on the anatomic brain regions of predominant neuronal loss, 

MSA is classified into two variants: olivopontocerebellar atrophy (OPCA) and striatonigral 

degeneration (SND) that correspond to the clinical subtypes of MSA-C and MSA-P 

respectively. Macroscopically, the overall weight of an MSA brain is usually not altered. 

Atrophy of the cerebellum, middle cerebellar peduncle and pontine base are seen in OPCA 

cases and atrophy and dark discolouration of the putamen, more pronounced posteriorly 

are seen in SND cases(79). Histopathologically, neuronal loss, gliosis, myelin pallor and 

axonal degeneration are consistent findings in MSA. Neuronal loss is more severe in the 

substantia nigra, dorsolateral zone of the caudal putamen, locus coeruleus, vermis, 

cerebellar hemisphere, inferior olivary nucleus, intermediolateral cell column and Onuf’s 

nucleus(51,80). In addition, neuronal loss is also present in the motor and supplementary 

motor cortex of MSA brains(81,82). White matter tracts associated with striatonigral and 

olivopontocerebellar regions, such as the external capsule, striato-pallidal fibres, transverse 

pontine fibres and cerebellar white matter have a significant reduction in myelin 

staining(36,79). Moreover, reactive astrocytes(83) and activated microglia are common and 

important histological findings(79,80).  
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The neuropathological hallmark of MSA is the presence of α-synuclein immunoreactive GCIs 

which occur in oligodendrocytes(79). They are a highly complex proteinaceous 

aggregates(79,84) and their main component consists of misfolded, fibrillar, 

hyperphosphorylated α-synuclein(39,40). The frequency of α-synuclein GCIs correlates 

significantly with the severity of neuronal loss and disease duration(80). In contrast to Lewy 

bodies, GCIs are rarely if ever observed in normal individuals lacking the clinical 

manifestations of a movement disorder(85). An example of a section of the brain showing 

GCIs is presented in Figure 2-1.  

A pathological variant of MSA, minimal change MSA, has been described in two cases with 

unusual age of onset (under 40 years) that pathologically presented with widespread GCIs 

and neuronal loss restricted to the substantia nigra and locus coeruleus(86). This is an 

important finding that shows that the accumulation of α-synuclein in GCIs are an early event 

in MSA pathogenesis.  

 

Figure 2-1: Immunohistochemistry for α-synuclein presenting many glial cytoplasmic inclusions in the 
pontine base (a) as well as neuronal threadlike processes (b). Inset in (b) shows a neuronal cytoplasmic 
inclusion in the inferior olivary nucleus. Modified from (87). Magnification 400X.   

2.2.5 Pathophysiology 

α -synuclein aggregates seem to play a fundamental role in MSA pathogenesis. However, 

the origin of the α-synuclein deposited in GCIs is not yet understood(65). α -synuclein 

expression is absent in oligodendrocytes of normal brains(39,88), and although an 

overexpression of α-synuclein in this cells has been proposed as a possible hypothesis(89), 

α-synuclein mRNA is not expressed in oligodendrocytes of MSA brains or normal 

controls(90), suggesting an ectopic accumulation. One hypothesis postulates that 

oligodendrocytes might be unable to degrade α-synuclein or that the accumulation of α-

synuclein may overcome their ability to degrade it(65).   
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Early myelin alterations in MSA brains have been demonstrated by the presence of altered 

myelin basic protein and p25α (tubulin polymerization promoting protein TPPP)(65,91). 

P25α colocalizes with α-synuclein positive GCIs and is abnormally accumulated in 

oligodendrocytes(65,92–95). P25α is redistributed from myelin to the cell soma preceding 

α-synuclein aggregations, and this is accompanied by an increase in cell body size, 

suggesting that p25α might play a role in early events during the formation of GCIs(91,95). 

Most of these findings have strengthened the hypothesis that MSA is a primary 

oligodendrogliopathy with GCI accumulation causing oligodendroglia-myelin 

degeneration(91).  

In mouse models, microgliosis is a severe and consistent feature(96) and microglial 

activation seems to play an important role in MSA pathogenesis. Moreover, microglial 

numbers and activation were suppressed with minocycline in a mouse model(97).  

However, there are also accumulations of fibrillar α-synuclein in neurons and these seem 

to be relevant to the disease process(98–100). Based on these findings and in similarities 

with other synucleinopathies, two coexisting degenerative processes in MSA have been 

proposed: GCI-linked oligodendriogliopathy with secondary neurodegeneration and 

neuronal α-synucleinopathy associated with development of aggregates(100).  

Nevertheless, considering  minimal change MSA, where GCIs are widespread and neuronal 

loss is confined to striatonigral or olivopontocerebellar systems, and given that neuronal 

inclusions show no correlation with GCI distribution, a primary event in glial cells seems to 

be more likely(65,91). 

2.2.6 Genetics 

Even though only a handful of patients have ever reported a family history of MSA, there 

are definite MSA families reported in the literature with different possible modes of 

inheritance (AD, AR). The family with likely dominant inheritance is a German family 

described in detail in chapter 5. The recessive family is of Japanese origin and described in 

chapter 4. And there is a British family with MSA in first cousins that can be interpreted as 

dominant with reduced penetrance(101–104).  
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Moreover, familial aggregation with a history of parkinsonism in first degree relatives has 

been found in MSA in a French study(105). Given the prevalence of MSA, the chance of an 

MSA patient of having a first degree relative with MSA, is approximately 6 × 10−5. Therefore, 

although MSA mainly presents as a sporadic disorder, I hypothesize that there are genetic 

risk factors that contribute to the disease. Additionally, the other synucleinopathies (namely 

PD and DLB) that share the accumulation of alpha-synuclein in the brain have both been 

linked to numerous genetic risk factors.  

Most of the genetic studies so far have been candidate gene/locus approaches targeting 

mostly genes linked to other synucleinopathies or cerebellar ataxias. A comprehensive list 

presenting these studies in shown in Table 2-3: 

Table 2-3: Table presenting genetic studies in MSA. They are almost all candidate gene/locus approach 
except for the MSA GWAS and the COQ2 study. Table modified from (106).  

Positive findings Negative findings 

Ataxia genes 

SCA3(107) SCA1–3, 6–8, 12,17 (108–111)   

SCA1 (112)   

SCA8 (113) FMR1 (114,115)   

Parkinson's disease genes 

SNCA (116–118) SNCA (119–124) SNCAIP (120) 

MAPT  (124–126) MAPT (117,120) CYP1A, GMST1, NAT2, DAT1 (127) 

GBA (128) GBA (129–132) CYP2D6 (133,134) 

 LRRK2 (135–138) PARK2, PINK1(139) 

Genes associated with oxidative stress and inflammation 

SLC1A4, SQSTM1, EIF4EBPI (140) CHOP, ATF3, ATF4, CEBPB, CARS (140)   

 IL1A (141) IL-1RA, IL-6, IL-10, TGF-β1, TNF  (142)   

 IL1B, TNF (142) IGF1, HLA (108)   

 IL8/ICAM-1 (143)     

 ACT-A/A (144)     

Other genes 

ADH1C (145) ADH7 (146) mtDNA (147) 

SHC2 (148) SHC2 (149)   APOE (120) 

C9orf72 (150) DM2 (151) PGRN (152) 

Potentially interesting in GWAS: 
FBXO47, ELOVL7, EDN1, MAPT  
(124) BDNF (153)  

COQ2 (154–157) COQ2 (124,158–163) UCHL-1 (164)  

 PRNP (165) CNTF,  hiGIRK  (108) 

  PRNP (166) DBH (167) 
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The largest study that was ever performed in MSA, a GWAS that included 918 patients and 

3,864 controls of European ancestry, failed to identify any significant associations after 

Bonferroni correction for multiple testing(168).  

In this section I will first present the most important genes that have been linked to MSA 

and I will then comment on the MSA GWAS.  

2.2.6.1 SNCA 

The SNCA gene has been subject to extensive research due to the deposition of α-synuclein 

in the brain and peripheral nervous system of several neurodegenerative disorders 

including MSA, PD, DLB and PAF. The function of α-synuclein is not completely understood, 

but a role on neurotransmission has been proposed(89). Although the pathophysiology of 

MSA is still largely under investigation, the exact mechanism by which α-synuclein 

accumulates in the brain and its links to neuronal degeneration is still subject of extensive 

research. Notwithstanding, SNCA remains an interesting candidate gene in MSA studies.  

Genomic multiplications of SNCA have been observed to cause parkinsonism, dementia and 

autonomic dysfunction with inclusions in the brain, consistent with the MSA 

phenotype(169,170). However, no pathogenic mutation has been found in MSA, and direct 

sequencing of the exons of the SNCA gene in eleven pathologically confirmed MSA cases did 

not reveal coding variants(171). Although this hypothesis is supported by increased levels 

of the α-synuclein protein in MSA blood plasma, two other studies show no differential 

SNCA mRNA expression pattern in brain samples of patients with MSA(172–175).  

A recessive association of a SNP (rs111931074) in the 3’ untranslated region (UTR) of the 

SNCA gene which increases the risk for MSA by ~6-fold in a subset of pathologically 

confirmed cases(Figure 2-2)(117) has been reported. This association was independently 

confirmed in a second pathological MSA series when these data was merged with the 

original study by Scholz et al (Figure 2-3)(118). A third study has also suggested that variants 

across the SNCA locus increase the disease risk(Figure 2-4)(116). However, this association 

could not be replicated in a Korean cohort of MSA cases (Figure 2-5) or in the largest 

genome-wide study on MSA that was recently published(168).  
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Figure 2-2: SNCA associated SNPs from Scholz and colleagues (modified from (168)) 

 

 

Figure 2-3: Combined data from Scholz and colleagues (176) and Ross and colleagues (modified from 
(118)) for pathologically confirmed MSA samples for the SNP rs111931074. 

 

 

Figure 2-4: SNCA SNP analysis from Al-Chalabi and colleagues showing a SNP in LD with rs11931074 
associated with increased risk of MSA (modified from (116)) 
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Figure 2-5: No association of rs111931074 in the SNCA gene in the Korean population. From (modified 
from (123)) 

 

Furthermore, point mutations in SNCA have been reported in AD families exhibiting some 

features of MSA and presenting pathological criteria of MSA and PD(177,178). 

2.2.6.2 COQ2 

Coenzyme Q10 (CoQ10), is a lipophilic molecule located in the inner mitochondrial 

membrane and functions as an electron transporter from complexes I and II to III in the 

respiratory chain(179). In its reduced form (ubiquinol) it also has an antioxidant role.  

Moreover, CoQ10 also transports electrons in extramitochondrial systems and participates 

in the regulation of mitochondrial permeability pores(179). CoQ10’s deficiency is suspected 

when the activities of complexes I+III and or II+III are deficient in the presence of normal 

activities of individual complexes(180).  CoQ10 is a member of a homologous family of 

ubiquinones that comprise a benzoquinone ring and a polyprenyl “tail” that acts as an 

anchor attaching the coenzyme to lipid membranes. The numerical subscript used in 

coenzyme Q nomenclature refers to the number of isoprenyl units in the tail of the 

molecule. The predominant coenzyme Q in humans is CoQ10(179). The ring is derived from 

tyrosine or phenylalanine and the mevalonate pathway generates the decaprenyl tail. The 

intermediates 4-hidroxibenzoate and decaprenyl diphosphate are then condensed by 4-

hydroxibenzoate: polyprenyl transferase, an enzyme encoded by COQ2. After that it is 

thought that there are eight subsequent steps that modify the 6-carbon ring and its side 

chains to form the functional CoQ10 molecule as shown in Figure 2-6(179,181).   
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Figure 2-6: Biosynthetic pathway of CoQ10 (modified from (103)).  

 

COQ2 encodes an enzyme called 4-hydroxibenzoate: polyprenyl transferase that condenses 

4-hidroxybenzoate and decaprenyl diphosphate. This has been highlighted in red in Figure 

2-6 that presents the pathway that synthetises CoQ10.  Mutations in COQ2 have been 

reported to cause primary coenzyme Q10 deficiency. Mutations described so far include: 

homozygous Y297C(182), N401fsX4(183), S146N(184), and compound heterozygotes 

R197H+N228S(184). Phenotypes include cases with isolated nephropathy and infantile 

multisystem disorder(180).   
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2.2.6.2.1 COQ2 and MSA 

An international collaboration led by Tsuji et al. from Japan recently published a paper that 

links COQ2 with MSA(185).  The study began studying MSA families of Japanese origin. 

There were 6 families (Figure 2-7). Family 1 and family 8 have definite MSA. Families 2,3,4 

and 12 have probable MSA. Family 1 consists of 2 affected siblings born to a consanguineous 

marriage strongly suggestive of autosomal recessive inheritance. The affected cases in 

family 1 also presented retinitis pigmentosa. The rest of the families have 2 siblings affected 

and they are also interpreted as recessive in the paper. Intriguingly, although it is well 

established that MSA-C subtype is the most frequent in the Japanese population (in contrast 

to European populations) these families comprise mostly MSA-P patients.  

They first performed whole-genome linkage analysis using Affymetrix SNP 6.0 arrays. They 

analysed the data doing parametric linkage analysis of the six pedigrees and they could not 

find any linkage locus with recessive inheritance. They later analysed these data with both 

parametric analysis allowing for heterogeneity and with non-parametric linkage analysis 

and they noted a positive LOD score in individual pedigrees in an overlapping region in 

families 1,2,4, and 12, with family 1 having the highest LOD score of 1.93. The linkage region 

in family 1 spanning 80 Mb includes the following regions: in chromosome 4 (72.795Mb to 

89.616Mb), chromosome 5 (149.50Mb to 168.32Mb), chromosome 6 (85.499Mb to 

87.382Mb), chromosome 7 (62.754Mb to 64.907Mb), chromosome 9 (99.781Mb to 

115.484Mb), and chromosome 13 (75.849Mb to 98.253Mb). 

They performed whole genome sequencing in the proband of family 1 and they filtered for 

SNPs and indels in the linkage regions, present in exons or splice sites. And finally, they 

focused on novel variants not present in dbSNP130. They found 4 missense variants: 

p.K707R in SHROOM3, p.M78V and p.V393A in COQ2, and p.R231G in SCEL.  

They screened for the four novel variants in 180 Japanese controls and they did not observe 

the variant p.M78V in COQ2 but they did find the other 3 variants. This is the reason why 

they considered this variant as a candidate of susceptibility to familial MSA and they 

investigated this gene in all the families.  
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When investigating COQ2 in all the Japanese MSA families, they detected homozygous 

missense p.M78V-p.V343A variants in the 2 affected cases of family 1 (and the unaffected 

sibling tested was a non-carrier) and compound heterozygous variants in both affected 

siblings of family 12: p.R337X + p.V393A.  The mother was heterozygous for p.V393A, one 

unaffected sibling did not carry the variant and the other unaffected sibling that was tested 

(participant II-2) was heterozygous for p.R337X.  

They also sequenced other genes in CoQ10 pathway including: PDSS1, PDSS2, COQ3, COQ4, 

COQ5, COQ6, COQ7, ADCK3, COQ9, COQ10A, and COQ10B. They did not find any variants 

that segregate with disease in these genes.  

They have later extended their study to sporadic MSA and controls and detected variants 

listed in sporadic MSA. They performed an association study of the frequency of the variant 

p.V393A in sporadic MSA versus controls. When comparing 363 MSA patients with 2383 

controls they found an odds ratio of 2.23 (p = 6.0x10-5). 

With these genetic data they decided to do functional work. They performed a yeast 

complementation assay and detected decreased growth rates in COQ2 mutants. They later 

investigated COQ2 activity in lymphoblastoid cell lines and found a significant decreased 

activity in COQ2 homozygotes and compound heterozygotes. Lastly, they looked at the 

CoQ10 levels in brain tissue of 3 MSA cases and 3 controls and they observed a decreased 

level in MSA (Figure 2-8).   

Finally, they performed an association study with the variants that were functionally 

impaired in sporadic MSA cases versus controls. They merged their data in Japanese MSA 

and Caucasian cases and they found a significant association of rare functionally impaired 

variants with increased risk of MSA. The odds ratio was 11.97 with a p value of 0.004.  

The authors concluded that homozygous or compound heterozygous COQ2 mutations are 

a cause of familial MSA, and COQ2 variants (in particular p.V393A) constitute a susceptibility 

factor of sporadic MSA.  
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Figure 2-7: Japanese MSA families (Reproduced with permission from (185), Copyright Massachusetts 
Medical Society.  

Ref: MSA-P: multiple system atrophy with predominant parkinsonism; MSA-C: multiple system atrophy with 
predominant cerebellar signs; PD: Parkinson’s disease. 
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Figure 2-8: A: Yeast complementation assay;  B: COQ2 activity in lymploblastoid cell lines; C: Levels of 
CoQ10 in brain tissue. Reproduced with permission from (185) Copyright Massachusetts Medical 
Society.  

Ref: OD: optic density.  

2.2.6.3 MSA GWAS 

After a large collaborative effort, the largest study that was ever performed in MSA was 

published recently. After quality control, this GWAS included 918 patients and 3,864 

controls of European ancestry. Unfortunately, it  failed to identify any significant 

associations after correction for multiple testing(168). However, a number of genes in loci 

with the lowest p-values that did not reach the stringent Bonferroni threshold were 

proposed are candidates: FBXO47, ELOVL7, EDN1, and MAPT.  MAPT remains an interesting 

candidate  because association with this gene has been previously reported(125,126) and 

also tau has been found in MSA inclusions(186).  This finding supports the notion that a 

genetic overlap with PD/parkinsonism exists and may promote the study of other PD-

related genes in MSA. 
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2.2.6.4 Other associations 

A recent multinational study found an increased risk of MSA with GBA variants but this 

result awaits replication(128).  

SHC2 CNVs have been proposed in a study that began studying a couple of discordant MSA 

identical twins and later found striking CNVs in 10 out of 31 clinically diagnosed MSA 

cases(148). This association however, failed to replicate in a study investigating clinically 

well characterised MSA cases(149).  

2.2.7 Investigations 

When a clinical diagnosis of MSA is suspected and other mimics such as a tumour and 

paraneoplastic phenomenon have been excluded, imaging, autonomic function tests and 

uroneurology are important to help support a diagnosis of MSA(187). Bladder function 

assessment often detects early abnormalities consistent with neurogenic dysfunction. 

Urodynamic tests frequently indicate detrusor hyperreflexia and abnormal urethral 

sphincter function followed later in disease progression by increased residual urine volume 

as detected by ultrasound.  Cardiovascular autonomic dysfunction in MSA can be 

investigated by either a standing blood pressure test, or by tilt-table testing(38). Imaging of 

cardiac innervation with single photon emission computed tomography (SPECT) and 

[123I]metaiodobenzylguanidine (MIBG) and with positron emission tomography (PET) and 

[18F]fluorodopa have shown preserved sympathetic postganglionic neurons in MSA, in 

contrast to PD(50,188). However, some denervation has been reported in MSA(189) and 

more recently severe cardiac denervation was reported in MSA using PET and 

[11C]hydroxyepinephrine(190).  

Magnetic resonance imaging (MRI) demonstration of putaminal, pontine, and middle 

cerebellar peduncle atrophy is helpful(191). Posterior putaminal hypointensity, 

hyperintense lateral putaminal rim, hot cross bun sign, and middle cerebellar peduncle 

hyperintensity on T2-weighted images can also be useful in MSA(50). Unfortunately, 

although the hot cross bun sign and the slit-like void signal are features of MSA, they are 

non-specific findings). Striatal or brainstem hypometabolism demonstrated by functional 

imaging with PET [18F] fluorodeoxyglucose can also aid diagnosis(50,192). Finally, the 
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consensus criteria have defined neuroimaging pointers that can aid to MSA diagnosis in 

possible cases(50).  

2.2.8 Diagnosis and prognosis 

Definite diagnosis of MSA requires pathology. However, great efforts have been made to 

approach an accurate diagnosis in living patients. Clinical diagnostic criteria were first 

proposed by Quinn in 1989(35) and divided MSA into three categories: possible, probable 

and definite.  In 1998 and 2008, the first and second consensus criteria were published and 

the subdivision of MSA-P and MSA-C was introduced(50,193). Definite cases have 

pathologically confirmed CNS α-synuclein positive GCIs with neurodegenerative changes in 

striatonigral or olivopontocerebellar structures. Probable MSA have progressive adult-

onset autonomic abnormalities, poorly levodopa-responsive parkinsonism or cerebellar 

ataxia; whereas possible cases have progressive adult onset disease including parkinsonism 

or cerebellar ataxia and at least one feature suggesting autonomic dysfunction plus one 

other feature that may be a clinical or a neuroimaging abnormality. In addition, the 

consensus conference pointed out supporting and non-supporting features useful to 

differentiate MSA cases from other diseases(50).  

2.2.8.1 Differential diagnosis 

The most common diagnostic pitfall for MSA-P patients is to be confused with PD. This can 

account for up to 55% of misdiagnosed MSA-P. PSP  and CBD are the next differentials to be 

considered(194). Moreover, cases of DLB can present with prominent autonomic features 

and could also be confused with MSA-P(195). When approaching an MSA-C case one should 

always consider the dominantly inherited spinocerebellar ataxias 1,2,3,6, and 7, even in the 

absence of a family history(50). About 24% of cases with late onset cerebellar ataxia will 

turn out to have confirmed MSA(196).  

Likewise, fragile X tremor ataxia syndrome needs to be ruled out(194). Furthermore, in 

patients with an aggressive clinical course of cerebellar syndrome, even in the absence of 

malaise, a paraneoplastic disorder should be investigated(50). Finally, cerebrovascular 

diseases and primary progressive multiple sclerosis may mimic MSA and can be ruled out 

with imaging(194). Although less likely, cases of ALS can also be misdiagnosed as MSA(71). 
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Patients that present initially with autonomic symptoms are often considered to have PAF. 

Important research in these disorders have recently pointed to specific clinical features that 

can help identify patients that are more likely to phenoconvert from PAF to MSA(197).  

2.2.8.2 Prognosis 

MSA-P has a much faster disease progression when compared to PD(46), and the unified 

MSA rating-scale (UMSARS) shows an annual decline in these patients(198). Reported 

median survival times are from 6.2 to 10 years (range 0.5-24) (47,49,59,199,200) and mean 

disease duration from 3.2 to 7.9 years (range 1-17)(56,64,201–204). Early autonomic failure, 

older age at onset(33,43,121), a shorter interval from disease onset to reaching the first 

clinical milestone, and not being admitted to residential care have been reported as factors 

predicting shorter disease duration in a study that included 83 definite MSA cases(64). In 

addition, a study on 230 Japanese patients found that evolution from initial symptoms to 

MSA within 3 years strongly predicted a shorter survival(47). Early development of 

autonomic failure in a study that analysed 49 patients with definite MSA showed to be a 

factor for shorter survival(205). Stridor onset can also play a role in predicting poor 

prognosis in MSA(206).  

The most common causes of death are, sudden death (cardiopulmonary arrest), urinary 

infections, infectious pneumonia, aspiration pneumonia and wasting syndrome(207–209).   

2.2.9 Treatment 

In the European MSA study group (EMSA-SG) final analysis of the European MSA registry, 

which enrolled 437 MSA patients, the management of MSA was inconsistent and different 

between centres. Only 36% of patients with dysautonomia and 82% with parkinsonism 

received pharmacological treatment(45).  

2.2.9.1 Non-Medical treatment 

Physiotherapy is very important in helping patients with balance and maintaining mobility, 

preventing contractures and improving functional abilities. Speech therapy is essential for 

communication purposes and improving swallowing. Occupational therapy has shown 
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amelioration of motor impairment and quality of life(210–212). Patients may also require 

psychological input. 

2.2.9.2 Medical and surgical treatment 

Motor impairment, autonomic dysfunction and depression are associated with a poor 

health-related quality of life in MSA; hence therapeutic management should target these 

features(210–213). Moreover, breathing problems could be a cause of sudden death in MSA 

patients and therefore they should be given appropriate consideration(209). Deep brain 

stimulation (DBS) is currently not recommended for MSA, it can have significant 

complications and if any benefit is seen, it is usually time-limited(38,210,214).  

Table 2-4 presents the usual symptomatic treatment of MSA patients. Ideally all patients 

should have access to expert advice in a multidisciplinary setting.  

 

Table 2-4 Table presenting symtomatic treatment of MSA. (Modified from (87)).  

Non-medical treatment: 

Should be offered to all MSA patients.  

• Clinical nurse specialist advice 

• Physiotherapy 

• Occupational therapy 

• Speech and language therapy 

• Psychotherapy 

Medical treatment:   

In the absense of efficacious neuroprotective or preventive treatment, MSA’s management is mainly symptomatic and 

based on experts experience.  

Movement disorders  Parkinsonism • First choice: Levodopa (up to 1000 mg/day, if tollerated 
and neccesary) with domperidone to prevent nausea and 
vomiting. It should be noted that levodopa can cause 
worsening of orthostatic hypotension (OH), 
hypersexuality, delirium and diskinesias.  

• Second choice: Dopamine agonists (iPD titration schemes 
with extreme caution) 

• Third choice: Amantadine (100 mg tid) previous check of 
QTc on ECG. 

 Dystonia • Botulinum toxin injection in oro-facial (caution in 
antecollis because if risk of severe dysphagia) and in limb-
dystonia. 

Cerebellar ataxia  • No drug therapy available. 
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Autonomic symptoms  Orthostatic 
hypotension 

• 1st choice: nonpharmachological strategies: elastic support 
stockings or tights, high-salt diet, frequent small meals, 
head-up tilt of the bed at night, ingestion of water. 

• If needed: add midodrine (2.5-30 mg tid) or 
fludrocortisone (0.1-0.3 mg) starting at night  

• If needed:  Droxidopa (100 mg tid)  

 Urinary failure-
postvoid residue 
<100ml 

• Antocholinergics for detrusor hyperactivity [Trospium 
chloride (20 mg bid or 15 mg tid) , Oxybutinin (2.5-5 mg 
bid to tid), Tolterodine (2 mg bid)]. Special attention 
should be placed on central side effects with 
anticholinergic drugs.  

• Alpha-adrenergic antagonists for urethra hypertony 
(prazosin or tamsulosin). Be careful with exacerbation of 
OH.  

• Alternative treatment can be intra-detrusor or urethral 
sphincter botulinum toxin injection. 

 Urinary failure-
postvoid residue 
>100 ml  

• All patients should try clean intermitent self 
catheterization (CISC) 

• In the advanced stages of MSA urethral or suprapubic 
permanent catheterization may become necessary 

• A last option for MSA patients who do not tolerate CISC is 
urinary surgery  

 Erectile 
dysfunction 

• First choice: Sildenafil (50-100 mg) (165). Be careful with 
worsening of OH. Alprostadil in case of severe OH. 

 Constipation • High fluid and fibre intake, laxatives. 

Other treatments  Breathing 
problems 

• CPAP, BiPAP (for prominent stridor and sleep apnoea) 

• Tracheostomy (in case of life-threatening and/or daytime 
stridor or abnormal vocal cord mobility on laryngoscopy)  

 Swallowing and 
nutritional 
problems 

• Dietician advice 

• PEG when neccesary 
 

 Drooling • Botulinum toxin to the salivary glands for sialorrhea. 

 Depression • Serotonine reuptake inhibitors.  

• Psycotherapy 

 REM sleep 
behaviour 
disorder 

• Clonazepam 

• Melatonin 

 

2.2.9.3 Neuroprotection 

In the last decade, thanks to the creation of International MSA networks (EMSA-SG(215) , 

the Japanese MSA consortium, the NAMSA-SG(216) and the Chinese MSA study group) a 

number of clinical trials could be performed(217–221), NCT01146548, NCT00750867, 

NCT01287221, NCT00977665. Moreover, the implementation UMSARS also facilitates the 

unification of outcome measures. Unfortunately, there are still no clear neuroprotective 
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strategies that can be translated into clinical improvement, but novel therapies are under 

study.   

2.2.10 Future and experimental developments 

Only a handful of trials have been performed in MSA with ≥100 patients and this is in part 

due to the difficulties in recruiting patients with such a rare disease. By far the largest trial 

peformed in MSA was the NIPPS study including 398 MSA patients. Unfortunately, the 

results from the drug treatment (Riluzole versus placebo) were negative. However, this 

study served as a proof of concept of the feasibility of this approach and also, was successful 

in obtaining natural history data in atypical parkinsonism, the validation of clinical and 

imaging rating scales and the generation of a biobank (with DNA used to replicate the 

association of variants in SNCA with MSA). 

The trials that enrolled 100 or more MSA patients are presented in Table 2-5.  

Table 2-5 Clinical trials in MSA enrolling 100 MSA patients or more. 

Drug Study Trial number 
Patients 
enrolled Type of study 

Outcome 
measures Result 

Riluzole NIPPS NCT00211224 

398 (MSA-C 
and MSA-P) 

Multicenter, randomized, 
double-blind, 
placebocontrolled 

Three-years 
survival, rate of 
motor decline Ineffective(218) 

Rasagiline 

Clinical Trial to 
Assess Efficacy, 
Safety, and 
Tolerability of 
Rasagiline in 
Patients 
With MSA-P 

NCT00977665 174 (MSA-P) 

Multicenter, randomized, 
double-blind, 
placebocontrolled 

Safety and 
tolerability; 12-
months change: 
UMSARS-total, 
putaminal 
diffusivity Ineffective(222) 

Rifampicin 

Study of 
Rifampicin 
in MSA NCT01287221 

100 (MSA-C 
and MSA-P) 

Multicenter, randomized, 
double-blind, 
placebocontrolled 

12-months 
change: UMSARS I 
and II and 
COMPASS Ineffective(223) 

 

2.2.10.1 Anti-inflammatory approaches 

As MSA pathophysiology accounts for important inflammatory processes, and a strong dose 

risk relation between increased aspirin intake and decreased risk of MSA(224) has been 

reported, a clinical trial with minocycline was performed but unfortunately brought 

negative results(220). However, preliminary results on myeloperoxidase inhibition in a 
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transgenic mouse model showed that this inhibition could reduce motor impairment and 

be protective against neurodegeneration(225) and a recent study showed failure of 

neuroprotection despite microglial suppression in a model of advanced MSA(226) A phase 

2 trial investigating safety and tolerability with a myeloperoxidase inhibitor in MSA patients 

has been completed although the results have not been published yet (NCT02388295).  

2.2.10.2 Neurotransplantation 

Evidence in double toxin-double lesion mouse models of MSA has raised the possibility of 

restoring levodopa responsiveness in MSA-P by striatal allografting(227,228). However, the 

role of host α-synuclein pathology on grafts and of pro-inflammatory responses on host 

striatum and its effects on functional outcomes and graft survival is not completely 

elucidated(229).   

2.2.10.3 Mesenchymal autologous stem cell therapy 

An open and unblinded study, that consecutively injected intra-arterial and intravenous 

autologous mesenchymal stem cells in 29 MSA patients, showed feasibility and safety over 

a 12 month follow up period. The authors report a delayed progression of neurological 

deficits with achievement of functional improvement measured by UMSARC and PET-

scan(172). However, the design of the study, the possibility of confounding effects, the lack 

of preclinical experimental evidence on underlying mechanisms of action are to take these 

results with caution(230). A double-blind placebo-controlled, randomized clinical trial with 

autologous mesenchymal stem cells was later performed with promising results but 

significant safety concerns, in particular for ischemic lesions in the brain(231). Further 

studies with mesenchymal cells are ongoing.  

Other clinical trials have been completed and reviewed in (89). Novel treatment strategies 

targeting α-synuclein synthesis, degradation and accumulation are being studied and 

tested, some in animal models and others in clinical trials. A comprehensive review has been 

recently published(232).  
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2.3 PRIMARY FAMILIAL BRAIN CALCIFICATION 

2.3.1 History, classification and epidemiology 

Primary familial brain calcification (PFBC) is a neurodegenerative disorder with the common 

characteristic of calcium deposits in the basal ganglia and other brain regions that were 

originally described by neuropathology. Nowadays, this disorder can be detected in 

neuroimaging studies. The clinical presentation is heterogeneous, usually occurs in 

adulthood and mostly during the third to fifth decade of life. The manifestations can include 

but are not restricted to movement disorders, seizures, migraine and neuropsychiatric 

symptoms. The condition is inherited and most families exhibit an AD pattern although 

some unusual recessive families have been reported(233). The clinical picture and severity 

is often variable between and within families. Penetrance can be incomplete and varies 

depending on whether the affected status is considered by the presence of isolated brain 

calcification or in addition to clinical symptoms(234).  

Brain calcification was originally reported by Delacour in 1850(235). In 1930, Fahr presented 

a well described case and hence the naming of the disease “Fahr’s disease”(236). However, 

it was later challenged by the suspicion that this description corresponded to a secondary 

cause of brain calcification (actually not affecting the basal ganglia) rather that what Fahr’s 

disease is commonly attributed to nowadays, which consists of primary calcification of the 

basal ganglia and other regions of the brain(237). Many names have been proposed for this 

entity and more recently, other nomenclatures are used. Among these we can find 

“Idiopathic basal ganglia calcification”, “primary familial brain calcification”, and “familial 

basal ganglia calcification”. For the purposes of this thesis and to simplify this issue to the 

reader we will refer this disease as “Primary familial brain calcification (PFBC)”(234). 

“Primary” because we do not include secondary causes of brain calcification, “familial” 

because it is presumed genetic and often inherited and, “brain calcification” because the 

calcification is not usually confined to the basal ganglia and other areas of the CNS are 

usually affected.  
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Neuroimaging studies can detect incidental calcifications on the basal ganglia and other 

brain regions with a frequency of 1% to 20%(238). Most of these are asymptomatic, and 

maybe related to normal ageing processes. However, in many cases there are affected 

family members that are not accounted for, who may still be asymptomatic or exhibit 

unrecognized signs and symptoms. A recent systematic review found that between 24%-

54% of cases with reported mutations remained asymptomatic(239).    

2.3.2  Molecular genetics 

Linkage studies have associated PFBC with three loci: 2q37 (LOD score: 2 and 2.44)(240), 

14q (LOD score: 3.37 and 4.95)(241) and 8p21.1-q11.23 (LOD score >3)(242).  

More recently four genes have been linked to this disease and have explained the cause of 

the condition in ~60% of familial patients(243). The genes are listed in Table 2-6.  

The first gene to be described was SLC20A2 (OMIM 158378), located in the previously linked 

8p21.1–8q11.23 region and was discovered by next generation sequencing. Mutations in 

five families of different ethnic origins (3 Chinese, 1 Brazilian and 3 Spanish) were 

unravelled. SLC20A2 encodes for a type III sodium-dependent inorganic phosphate 

transporter (PiT-2) and their work showed that mutations in this gene cause impaired 

phosphate uptake in Xenopus oocytes(244).  

The second gene published was PDGFRB (OMIM 173410) located in 5q32 and encodes for 

the platelet derived-growth factor receptor-ß. It was first identified in a large French family 

as well as a sporadic case by exome sequencing(245).  

The third gene PDGFB was discovered in six human families exhibiting brain calcification 

and also showed that mice carrying hypomorphic Pdgfb alleles develop brain calcifications 

with increased age(246).      

The fourth gene linked to PFBC, is XPR1. Mutations were found in an American family of 

Swedish ancestry and detected 5 other variants, although 2 of these are likely rare 

polymorphisms(247).  
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Overall there are 2 apparent pathogenic mechanisms for this disease. On one side, it is 

related to phosphate homeostasis and links SLC20A2 and XPR1. Inhibition of phosphate 

uptake by mutations in SLC20A2 may lead to deposition of calcium in the vascular 

extracellular matrix, and inhibition of phosphate export associated with XPR1 mutations is 

expected to increase intracellular phosphate concentration and provoke calcium phosphate 

precipitation(247).  

On the other side, loss of function of PDGFRB and PDGBF could lead to the impairment of 

the pericytes function and blood brain barrier (BBB) integrity, causing vascular and 

perivascular calcium accumulation by BBB dysregulation(248).  

However, this disease presents with locus heterogeneity. The family reported to present 

significant linkage to a locus in chromosome 14q(241)  was later discovered to harbour an 

SLC20A2 mutation instead. So finally, the cause of the condition in this family is in 

chromosome 8. This is possibly due to inaccuracies assessing affected status or calcification 

on CT scan, presence of phenocopies, incomplete penetrance or sample identification 

errors. It gives a good example on how these studies can sometimes become very difficult 

and, if the data is not clearly convincing, a re-assessment from the beginning can help(249).  

In summary, the mutations found in these four genes account for more than 60%(243) of 

cases of PFBC. The most common genetic cause of PFBC is SLC20A2 which accounts for up 

to 55% in some series, followed by PDGFB 10-31% and PDGFRB 5-11%(239,249,250). 

 

Table 2-6: List of genes linked to PFBC.  

Gene Locus Protein Protein function Mutations Inheritance 

Year of 

discovery 

SLC20A2 8p11.21 

Type III sodium-dependent 

inorganic phosphate 

transporter 2 Phosphate transporter 75 AD 2012 
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PDGFRB 5q32 

Platelet-derived growth 

factor receptor-beta 

Maintaining integrity of the 

BBB 13 AD 2013 

PDGFB 22q13.1 

Platelet-derived growth 

factor subunit B 

Pericyte homeostasis, BBB 

regulation 43 AD 2013 

XPR1 1q25.3 

Xenotropic and polytropic 

retrovirus receptor 1 Phosphate homeostasis 6 AD 2015 

Ref: BBB = blood-brain barrier; AD: autosomal dominant.  

2.3.3 Clinical aspects 

The clinical presentation frequently includes psychiatric signs. The disease onset can affect 

the type of presentation, given that the earlier the disease onset is the more likely 

psychiatric and cognitive features develop; and if the onset is later in life, patients most 

likely present with movement disorders.  

The SLC20A2 carriers usually exhibit more severe calcifications and PDGFRB the less severe, 

with carriers of PDGFB mutations being in the intermediate region.  The best predictor of 

brain calcification is the combination of age (older being higher), sex (male being higher) 

and gene. And the calcification score is correlated with the symptomatic status. Importantly 

a study showed that the range on ages is very widespread and is distributed from early 

infancy until late adulthood(250).  

A recent meta-analysis of genotype-phenotype correlation in PFBC related genetic 

mutations showed that although there is significant overlap in terms of clinical and 

radiological features, there are features significantly associated with specific mutations. 

With regards to significant distinctive neurological features, parkinsonism is more common 

with SLC20A2 mutations and headache with PDGFB. Depression was more often reported 

in PDGFRB, and cognitive impairment and parkinsonism tended to occur with late onset of 

disease (>45 years) while younger onset cases more commonly had hyperkinetic movement 

disorders such as chorea and dystonia(239).  
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Usually a CT scan is enough to detect brain calcification. Other investigations should be 

performed to rule out secondary causes of brain calcification before it can be classified as 

primary brain calcification.  

2.3.4 Treatment 

There is currently no disease modifying treatment for this disease and medical treatment is 

mostly symptomatic and in specific cases can target parkinsonism, epilepsy, depression and 

headaches according to the clinical presentation of each patient.  
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3 CHAPTER 3: MATERIALS AND METHODS 

3.1 ETHICS APPROVAL  

Ethics was approved by the University College London Hospitals (UCLH) ethics committee 

(06/N076 movement disorders, 04/N034 cerebellar ataxias). Written informed consent was 

obtained from all participants or legal representatives where applicable.  

All tissue stored in the Queen Square brain bank (QSBB) and in the Department of Molecular 

Neuroscience is under a license from the Human Tissue Authority and has been donated for 

research according to protocols approved by the NRES Committee London-Central. 

3.2 SAMPLE COLLECTION 

Sample collection varied significantly in different subprojects of this thesis and will be 

addressed in each chapter in detail.  

Overall, samples came from different sources in the UK and overseas, and were of different 

types: human DNA, peripheral blood, skin biopsies and/or brain tissue as well as tissue from 

mice. In all occasions, I have followed standard protocols for preserving samples at the best 

quality possible. All samples have been stored either in the diagnostic laboratory of the 

National Hospital for Neurology and Neurosurgery (NHNN) or at the research laboratory of 

the Department of Molecular Neuroscience, UCL Institute of Neurology.  

DNA from peripheral blood from patients seen at the NHNN was obtained from the 

neurogenetics laboratory. Collaborators are all mentioned in the relevant results chapters.  

Brain samples were collected from collaborating brain banks (largely from Queen Square 

Brain Bank, but also from others in the UK and abroad). I produced the material tissue 

agreements where appropriate. This information will be provided in detail on the chapter 

on MSA.  

Skin biopsies for growing fibroblasts in the PFBC family were obtained by Professor Henry 

Houlden and myself.  
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Mice used in chapter 6.2 were obtained from a French collaborator, Prof Michel Aurrand-

Lions. Details of this collaboration as well as other members of the lab that had an active 

participation in this project are detailed in the PFBC chapter.  

3.3 GENETIC STUDIES 

3.3.1 Genetic nomenclature 

Standard nomenclature from the Human Genome Variation Society 

(http://varnomen.hgvs.org/) was used to name all variants described in this thesis. The first 

time a variant is named, all the information of the base change, the amino acid change and 

the corresponding transcript are mentioned. After that, variants are named with the amino 

acid change or the SNP rs number when the variant is present in the dbSNP database 

(https://www.ncbi.nlm.nih.gov/projects/SNP/).  

3.3.2 DNA extractions 

3.3.2.1 Peripheral blood 

Genomic DNA (gDNA) extraction from EDTA blood containing tubes was performed using 5-

10 ml of fresh or frozen whole blood samples using Flexigene kit (Qiagen) according to 

manufacturer’s instructions. In some cases, I performed this extraction and in others it was 

done by the diagnostic team of the neurogenetics laboratory at the NHNN.  For more cost-

effective extractions, DNA from some samples was extracted by a service provided by the 

LGC Genomics laboratory in Germany, using the S PLUS XL kit (LGC Genomics) according to 

the manufacturer’s protocol.   

3.3.2.2 Brain 

DNA from brain tissue from some samples was extracted by myself using the DNeasy Blood 

& Tissue Kits (Qiagen), following the manufacturer’s instructions. Other samples were 

extracted by a service provided by the LGC Genomics laboratory in Germany using the 

sbeadex® tissue kit (LGC Genomics) according to the manufacturers protocol. This was 

because it was more cost-effective to send them there.  

http://varnomen.hgvs.org/
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3.3.3 DNA concentration and purity 

The concentration and quality of DNA for all samples was measured using a NanoDrop ND-

1000 spectrophotometer following the manufacturer’s instructions (NanoDrop 

Technologies). Concentration was assessed at 260 nm. Purity was estimated by the 260/280 

and 260/230 absorbance ratios, and the spectrums of the ratios between 1.8-2.0 and 1.8-

2.2 respectively were considered of good quality. The concentration of the DNA samples 

was adjusted to appropriate values, according to the technique to be used afterwards, by 

diluting the samples with autoclaved distilled H2O (dH2O). 

For the purposes of next generation sequencing (NGS) library preparation, the 

measurement of DNA concentration required a higher precision than the one provided by 

the nanodrop. The Qubit® 2.0 Fluorometer from Thermo Fisher Scientific detects the 

amount of fluorescent dye bound to DNA, therefore providing a direct measurement of 

double stranded DNA quantity. The reagents used by the Qubit do not bind to degraded 

DNA or other molecules such as proteins, and are more accurate than the NanoDrop. DNA 

concentration of samples for NGS was measured with the Qubit and diluted with dH2O until 

reaching the required concentration for the library preparation used in each case. This 

usually required a few rounds of measurement/dilution.  

3.3.4 Primer design, PCR and Sanger sequencing 

Sanger sequencing was first developed in 1977 by Frederick Sanger and became the main 

method for sequencing DNA until the development of next generation sequencing only a 

few years ago. Sanger sequencing, based on the chain-terminator method, still remains the 

gold standard method for mutation confirmation. This method has been extensively used 

in this thesis, and is based on DNA polymerase randomly inhibited by a small amount of 

modified dideoxynucleotides (ddNTPs) which are mixed with normal deoxyribonucleotides 

(dNTPs). This produces newly synthesize DNA fragments of different lengths with different 

terminators, which enables one subsequently determine its sequence by capillary 

electrophoresis.  
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3.3.4.1 Primer design 

Practically, in order to perform Sanger sequencing one first needs to design oligonucleotide 

primers to target the desired region of the genome. I first download the target region 

including exons and flanking introns of the longest transcript from 

http://www.ensembl.org/index.html, and then used the online software: 

http://primer3.ut.ee/. This software allows researchers to design specific primers for a 

region under specific conditions but for 1 region at a time. Optimum primer size is usually 

around 20 BP, with optimal melting temperatures set for between 55°C and 65°C, the 

primer GC content is set at around 50 % (30-70), and low self-complementarity is preferable 

(to avoid a large amount of primer dimers). I then blasted them on 

https://genome.ucsc.edu/cgi-bin/hgPcr to ensure they were specific for the target region, 

and do not bind unspecific sites, and finally on online databases to ensure there are no 

common SNPs within the primer sequence. Primer sequences used in this thesis can be 

found in the Appendix.  

3.3.4.2 Polymerase chain reaction (PCR) 

The regions targeted are then amplified by polymerase chain reaction (PCR). I used a 

combination of Roche PCR MasterMix (Roche) (that contains DNA polymerase, 

deoxynucleotides, magnesium and buffer), forward and reverse primers, dH2O and DNA of 

the desired samples or controls as appropriate. An example of volumes used per single 

reaction is presented in Table 3-1.  

 

Table 3-1: Example of PCR mix recipe. 

 Reagents 

volume (uL) per 

reaction 

Roche Fast start Master mix 10 

dH20 5 

Forward_primer (5uM) 2 

http://www.ensembl.org/index.html
http://primer3.ut.ee/
https://genome.ucsc.edu/cgi-bin/hgPcr
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Reverse_primer(5uM) 2 

DNA (~25-50ng/uL) 1 

Total 20 

 

PCR reaction mixes were then loaded onto an Eppendorf Mastercycler thermal cycler. 

Different cycling programs can be used, usually by means of touchdown temperature 

according to the optimal annealing temperature of the primers. They usually contained a 

first cycle of denaturation of the double-stranded DNA, then annealing of the primers, and 

a final elongation step adding each deoxynucleotide (dGTP, dCTP, dATP and dTTP). An 

example is shown on Table 3-2.  

 

Table 3-2: An example of a PCR 65 touchdown 55 cycling programme. 

Step Temperature Time Number of cycles 

Denaturation 94°C 10 minutes X1 

Denaturation 94°C 30 seconds 

X8 Annealing 65°C 30 seconds 

Elongation 72°C 45 seconds 

Denaturation 94°C 30 seconds 

X16 Annealing 65°C (-0.7°C per cycle) 30 seconds 

Elongation 72°C 45 seconds 

Denaturation 94°C 30 seconds 

X16 Annealing 55°C 30 seconds 

Elongation 72°C 45 seconds 

Elongation 72°C 5 minutes X1 
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Hold 4°C   

 

In regions of the genome with a high content of GC bonds or “GC rich regions” other 

reagents were used for the purpose of braking those three hydrogen bonds: dimethyl 

sulfoxide (DSMO) and/or Betaine solution (Sigma, UK). 

3.3.4.3 Agarose gel electrophoresis 

PCR products are then visualized by electrophoresis on 2% agarose gels with added 

GelRed Nucleic Acid Gel Stain (Biotium, US). A porous gel in which DNA fragments can move 

is produced combining agarose powder (Sigma, UK) with TBE buffer and GelRed. When an 

electrical current is applied across the gel, the negatively charged DNA will travel at a rate 

relative to its size. Contamination screening was also performed by visualization of the same 

reaction containing dH2O instead of DNA in the same gel for all reactions. A 1 kb DNA ladder 

(Qiagen) was used to judge the size of the amplified fragments and ensuring they matched 

the target region. The PCR products were loaded onto the gel with a loading buffer and the 

electrophoresis was run at 120V for 30 minutes. Visualization of the bands was done under 

an Ultraviolet (UV) transilluminator, and digital photographs were taken using the Syngene 

GeneGenius image acquisition system and GeneSnap software (Synoptics). 

3.3.4.4 PCR purification 

After confirming that the PCR had amplified the desired region in the agarose gel, PCR 

products were purified with a user prepared Exo-Sap enzyme mix and protocol. Briefly, a 

combination of alkaline phosphatase (Fast-AP, Thermofisher scientific) and an Exonuclease-

I (Thermofisher scientific) with distilled water plus the PCR products were ran on the 

thermal cycler for 30 minutes at 37°C followed by 15 minutes at 80°C.  

3.3.4.5 BigDye sequencing reaction 

Once the PCR is purified, we prepared the sequencing reactions using the BigDye® 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) with the following protocol: ABI 

sequencing buffer, dH20 water, primer (in this case either forward or reverse), ABI Big Dye 

terminator, and the purified PCR product. This recipe is shown on Table 3-3.  
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Table 3-3: Sequencing reaction recipe. 

Reagents volume (uL) per reaction 

ABI sequencing Buffer  2 

dH2O 3.5 

Primer (F or R) (5uM) 1 

ABI BigDye  0.5 

Purified PCR product 3 

Total  10 

 

The sequencing reaction is then loaded into the PCR cycler and the following program is 

run: 1 cycle of denaturation at 94°C for 1 minute, followed by 25 cycles of: denaturation a 

94°C for 30 seconds, annealing at 50°C for 15 seconds, and elongation at 60°C  for 4 minutes.  

3.3.4.6 Sequencing reaction purification 

Sequencing products were purified with user-prepared Sephadex® plates. For each plate of 

96 reactions, 2.9 g Sephadex® G-100 (Sigma) was dissolved in 40 ml distilled water and 

allowed to hydrate for 30 minutes at room temperature. The solution was mixed well and 

350 uL added to each well of a Corning® glass filter plate (Corning® Filtrex™ 0.66 mm glass 

fibre filter, Sigma). This plate was centrifuged at 710g for 3 minutes. The entire volume (10 

uL) of each sequencing reaction was pipetted onto the centre of a Sephadex® column and 

the plate placed onto a final 96-well collection plate before being centrifuged a second time 

at 910g for 5 minutes. A heat seal was placed over the purified sequencing products and 

the plate was loaded onto the 3730XL DNA Sequencer (Applied Biosystems). The purified 

sequencing reactions were read by capillary electrophoresis using the protocol 3730BDTv3-

KB-DeNovo_v5.2 

3.3.4.7 Sequencing data analysis 

Sequence data was analysed using Sequencer 5.1 DNA Sequence Assembly Software and 

compared to the reference genome retrieved from Ensembl (http://www.ensembl.org) or 

http://www.ensembl.org/
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NCBI (https://www.ncbi.nlm.nih.gov). The sequences were checked for single nucleotide 

changes and insertions and deletions in coding and flanking regions of the target gene. 

Sequence variation was checked to see if it was previously reported and at which frequency 

utilizing online databases including ensembl, the exome variant server 

(http://evs.gs.washington.edu/EVS), dbSNP (http://www.ncbi.nlm.nih.gov/SNP/), the 

1000genomes project (http://browser.1000genomes.org/index.html), and the Exome 

Aggregation Consortium (http://exac.broadinstitute.org/). Rare and suspiciously 

pathogenic variants were then always confirmed on an independent sequencing reaction 

with fresh DNA obtained from the original tube.  

An example of the output of Sanger sequencing is presented in Figure 3-1.   

 

Figure 3-1: Sanger sequencing result of a section of the gene SLC20A2 exhibiting reference sequence 

in 2 samples. 

3.3.5 Fragment analysis 

Fragment analysis was used to determine the presence of the expansion in the 

hexanucleotide repeat of GGGGCC in C9orf72 with a qualitative assessment. Figure 3-2 

presents the protocol and workflow.  

We first performed a repeat-primed-PCR reaction. The repeat was amplified with a PCR 

reaction performed in the presence of 1M betaine, extensor long PCR master-mix (Thermo 

Scientific), using a previously optimized cycling program(251) and three primer sequences 

(forward, reverse and anchor)  as previously published(252) (primer sequences also 

available on the appendix). The forward primer was fluorescently labelled. In cases where 

https://www.ncbi.nlm.nih.gov/
http://evs.gs.washington.edu/EVS
http://www.ncbi.nlm.nih.gov/SNP/
http://browser.1000genomes.org/index.html
http://exac.broadinstitute.org/
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we detected an expanded allele and cases where we couldn’t detect both normal alleles we 

further characterized the expansion with a sizing PCR reaction. The sizing PCR was carried 

out in a mixture containing extensor long PCR master-mix (Thermo Scientific), 1M betaine 

solution, 5% dimethylsulfoxide, and 7-deaza-2-deoxy GTP, Q solution and the forward and 

reverse primers.  

PCR products were then mixed with Liz 500 size standard (Applied Biosystems) and HiDi 

formamide (Applied Biosystems), denatured at 95 °C for 3 minutes, and then put 

immediately on ice for 5 minutes. This mixture was then analysed by fragment length 

analysis on an automated ABI3730 DNA-analyser and allele identification and scoring was 

accomplished using GeneMapper v3.7 software (Applied Biosystems). Figure 3-3Figure 3-3 

presents a negative example of this technique.  

 

Figure 3-2: C9orf72 repeat expansion screening protocol and workflow. 
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Figure 3-3: Example of a patient negative for the C9orf72 repeat expansion. Top graph: repeat primed 

PCR (RP-PCR). Bottom graph : sizing PCR; both showing the two different alleles both presenting less 

than 10 repeats. 

 

3.3.6 Homozygosity mapping 

Genome wide genotyping data was generated using the HumanCytoSNP-12v2-1_H 

(Illumina), which contains probes for over 200,000 markers distributed across the genome.  

Ten μl of DNA at a concentration of ~75 ng/μl were prepared by myself. After that samples 

were processed, hybridized and scanned in accordance with the manufacturer’s 

instructions at UCL Genomics. Data analysis was performed by myself.  

A project was created in genome studio software 2010.3 (Illumina) for clustering, 

normalization and obtaining genotype calls using default parameters. Input data were .idat 

files, and output data from genome studio was a final .txt report file containing data for all 

samples processed at 293,870 markers. These files were then modified to meet the 

requirements of the online Homozygosity Mapper software 

(http://www.homozygositymapper.org/sample_files.html) as shown in Table 3-4, and data 

were analysed with this online tool specifying affected and unaffected family members (10).  

http://www.homozygositymapper.org/sample_files.html
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Table 3-4: Table showing output data from Genome studio software (Illumina) and how this needs to 
be adapted for homozygosity mapper. 

Final report from genome studio 

   

SNP Name Sample ID Allele1 - AB Allele2 - AB 

  

rs1000002 1 A B 

  

rs1000003 1 A A 

  

      

Data formatted for homozygosity mapper 

DBSNP 1 2 3 4 5 

rs1000002 AB BB AB BB BB 

rs1000003 AA AA AB AA AA 

 

Regions of homozygosity are highlighted by this software according to their homozygosity 

scores. Homozygosity mapper calculates the length of the homozygous block (in SNPs) at 

each marker for each sample. The values of the cases are then added to get the 

homozygosity score for a marker. The maximum length for each block is set by the software 

to default limits according to the SNP array used. This is to reduce the effect of very long 

blocks in one or few samples. In our case, our sample presented with genetic homogeneity 

because it was one single family. Regions are excluded when the same homozygous 
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haplotype is found in any controls(253). An example of the output from the tutorial in 

homozygosity mapper is shown in Figure 3-4.  

Figure 3-4: Homozygosity mapping example showing significant homozygosity in chromosome 7 (with 

permission from tutorial in http://www.homozygositymapper.org/documentation.html). 

 

3.3.7 Next generation sequencing (NGS) 

Next generation sequencing (NGS) technologies have allowed for massive parallelization of 

sequencing reactions allowing the sequencing of many millions of target molecules in 

parallel and for a substantial reduction in cost (compared to Sanger sequencing). In NGS, 

the DNA molecules are immobilized on a solid surface and are sequenced in situ. NGS 

platforms use the clonal amplification of template DNA to generate “clusters” of identical 

DNA molecules followed by sequencing through a stepwise incorporation of fluorescently 

labelled nucleotides or oligonucleotides. Through this thesis we used NGS and this is 

described next.  

Through massive parallel-targeted sequencing NGS can effectively generate data of a target 

region, a human exome or even a genome in a matter of days. In the case of an exome, the 

coding portion of genomic DNA is selected from a pool of DNA fragments by hybridization 

with labelled probes that are complementary to the target.  
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The exome accounts for ~1-2% of the human genome and includes the coding sequence. It 

consists of >21,000 genes and ~180,000 exons that correspond to ~35-50 million base pairs. 

After data analysis we usually obtain >20,000 called variants per sample in Caucasian 

individuals. Since 2010(254), WES is proving to be a cost-effective technology in the 

successful discovery of causative genes in both recessive(255) and dominant(256) 

Mendelian diseases.  

More recently, it has also been utilized to investigate the missing heritability in complex 

diseases and in families that are not large enough for traditional linkage studies. WES is also 

a novel tool useful for the study of rare variants associated with moderate risk of sporadic 

disease(257,258).  

NGS can be performed in different platforms and with different chemistries and can target 

different parts of the human genome. Different capture technologies will select different 

targets. These can be all the exons of a genome (i.e. “the whole exome=WES”), the whole 

genome (WGS) or a targeted group of genes or loci of interest. Targeted NGS capture can 

be either custom-made or provided as a standard commercial kit. WES capture technologies 

target the exome and different kits will also include splice sites, some intronic regions, UTRs 

and non-coding RNAs. A simplified workflow of NGS is presented in Figure 3-5.  
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Figure 3-5: Simplified workflow of WES and WGS. Sample preparation is similar. Genomic DNA is 

fragmented and adaptors are added which allow each fragment to be hybridized to the flow cell for 

sequencing. WES then hybridizes the fragments to probes that are complementary to the targeted 

regions (i.e. the exome). These are captured and the remaining DNA is washed away. The following 

steps of sequencing are the same for WES and WGS. Modified from (9). 

 

3.3.7.1 Whole exome sequencing (WES) 

As explained earlier in this thesis, WES consists of the parallel sequencing of the exome or 

protein coding section of the genome. Through this thesis we have used different capture 
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methods, and I will describe them in this chapter. All kits used enable the automated 

preparation of dozens of reactions at the same time and are suitable for large scale projects.  

3.3.7.1.1 TruSeq 

The TruSeq technology (Illumina) was used for a large portion of our samples that were 

processed for WES, and all steps will be described below. 
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Figure 3-6: Tru Seq Enrichment workflow composed by two successive rounds of enrichment (Courtesy 
of Illumina, Inc.reproduced from www.illumina.com). 
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3.3.7.1.1.1 Library preparation 

Library preparation is the preparation of genomic DNA that is to be sequenced. The 

TruSeq enrichment kit contains master-mixed reagents, optimized index adapter design, a 

gel-free protocol, and a flexible workflow for preparing multiplexed samples that are pooled 

prior to sequencing. The workflow is presented in Figure 3-6.  

3.3.7.1.1.1.1 DNA fragmentation and wash 

After DNA normalization with the Qubit (as described above in section 3.3.3) each 

sample was sheared in covaris tubes/wells on a covaris sonicator. This will generate 

fragmented double stranded DNA. Then the samples are transferred to a midi plate and 

incubated with sample purification beads (SPB) on a magnetic stand and purified with 

ethanol.   

3.3.7.1.1.1.2 Repair ends and select library size 

This process converts the overhangs resulting from fragmentation into blunt ends using 

ERP3 (End Repair Mix). The 3' to 5' exonuclease activity of this mix removes the 3' overhangs 

and the 5' to 3' polymerase activity fills in the 5' overhangs. Following end repair, the library 

size is selected using SPB (Sample Purification Beads). 

3.3.7.1.1.1.3 Adenylate 3ʹ Ends 

A single 'A' nucleotide is added to the 3' ends of the blunt fragments to prevent them from 

ligating to each other during the adapter ligation reaction. A corresponding single 'T' 

nucleotide on the 3' end of the adapter provides a complementary overhang for ligating the 

adapter to the fragment. This strategy ensures a low rate of chimera (concatenated 

template) formation. For this purpose, each sample is combined with A-tailing mix and a 

buffer.  

3.3.7.1.1.1.4 Ligate adapters 

This process ligates multiple indexing adapters to the ends of the DNA fragments, which 

prepares them for hybridization onto a flow cell. Each sample will then be mixed with 

unique adapter indexes, ligation mix, and buffer so that samples can be then pooled 

together. After incubation with the adapters, a stop ligation buffer stops the reaction. The 
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index adapter plate is presented in Figure 3-7. The number of samples that are pooled 

together before sequencing will be dependent on the desired coverage. The more samples 

the lower coverage. For most of the libraries prepared for this work the number of pooled 

libraries was usually 12.  

 

Figure 3-7: Index plates used for NGS indexing that allows sample pooling. A) Index A from 1 to 12. B) 
Index B from 1 to 12. C) Ninety-six well plate to combine each library with a unique combination of 
indexes A and B.  In this plate one can index 96 samples at a time. The numbers of samples that will be 
pooled together before sequencing will depend on the desired coverage. (Courtesy of Illumina, Inc., 
reproduced from Illumina.com). 

 

3.3.7.1.1.1.5 Enrichment 

This step uses PCR to amplify DNA fragments that have been ligated with adapters on each 

end of each molecule. PCR is performed with PPC (PCR Primer Cocktail) that anneals to the 

ends of the adapters.  

It is important to note that both adapters need to be ligated. This is because fragments with 

no adapters cannot hybridize to surface-bound primers in the flow cell and fragments with 

an adapter on 1 end can hybridize to surface bound primers, but cannot form clusters. 

The PCR reaction is loaded onto the thermal cycler and PCR products are purified with SPB.  

3.3.7.1.1.1.6 Validate Libraries 

Library quantification can be performed with the Qubit. Library quality control is then 

performed on the Bioanalyzer 2100 (Agilent technologies). The bioanalyzer will assess the 
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size and concentration of the libraries. An example is shown on Figure 3-8. The bioanalyzer 

can also be used in the previous steps of the library preparation if desired.  

 

Figure 3-8: Example 300 bp Insert Library Distribution (pre-enrichment) on a High Sensitivity DNA chip 
of the bioanalyzer. 

 

3.3.7.1.1.1.7 Pooling and first hybridization 

This step combines DNA libraries containing unique indexes into a single pool, and then 

binds targeted regions of the DNA with capture probes (exons and flanking regions in WES). 

Pooling the libraries requires specific amounts of each library according to the number of 

samples to make a single pool of 40 uL of 12 libraries. This step might require that some 

samples are precipitated and concentrated to ensure equal amounts of DNA in each library.  

Then the library pool is combined with the CEX (Coding Exome Oligos) and a capture buffer, 

and loaded onto a thermal cycler.   

3.3.7.1.1.1.8 Capture Hybridized Probes 

This step uses SMB (Streptavidin Magnetic Beads) to capture probes hybridized to the 

targeted regions of interest. Two heated washes remove nonspecific binding from the 

beads. The exons enriched library is then eluted from the beads and prepared for a second 

round of hybridization. 
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3.3.7.1.1.1.9 Second hybridization and second capture 

The second hybridization binds targeted regions of the enriched DNA with capture probes 

a second time and ensures high specificity of the captured regions. The second capture uses 

SMB (Streptavidin Magnetic Beads) to capture probes hybridized to the targeted regions of 

interest. Two heated washes remove nonspecific binding from the beads. The enriched 

library is then eluted from the beads and prepared for sequencing. 

3.3.7.1.1.1.10 Clean Up Captured Library and amplification 

This step uses SPB (Sample Purification Beads) to purify the captured library before PCR 

amplification. The amplification is then performed with an 8-cycle PCR program to amplify 

the enriched library adding an enrichment amplification mix and a PCR primer cocktail.  

The PCR is followed by purification with SPB of the enriched library.  

3.3.7.1.1.1.11 Validate enriched libraries 

Sample quantification and quality control are performed again on the Qubit and the 

bioanalyzer. The distribution of DNA fragments expected here is within a size range from 

~200 bp to ~400 bp. 

3.3.7.1.1.1.12 Clustering 

After amplification, the pooled library is ready for clustering. Clustering is performed in the 

cluster station that is an oligo-derivatized surface of a flow-cell. This step comprises single 

molecule amplification and starts with an adapter library. The flow-cell is an 8-channel 

sealed glass microfabricated device that allows bridge amplification of fragments on its 

surface, and uses DNA polymerase to produce multiple DNA copies of each fragment, also 

called clusters. Libraries may be run individually or in combination with others. Each cluster 

contains approximately one million copies of the original fragment which will be sufficient 

for detection during sequencing. This is shown on Figure 3-9.  
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Figure 3-9: Automatic cluster generation. Courtesy of Illumina, Inc., reproduced from 
https://www.illumina.com/documents/products/datasheets/datasheet_cbot.pdf 

3.3.7.1.1.2 Sequencing 

Sequencing performed on the Illumina Hi Seq platform is a process of massive parallel 

sequencing by synthesis where all four nucleotides are added simultaneously to the flow-

cell channels, along with DNA polymerase, for incorporation into the oligo-primed cluster 

fragments. The DNA is linearized by cleaving one adapter and denatured to obtain single 

strands. Sequencing primers and four reversible terminators are added. The nucleotides 

carry a fluorescent label, and the 3’-OH group is chemically blocked so that each addition is 

a unique event. An imaging step follows each base incorporation step, during which each 

flow cell lane is imaged in three 100-tile segments by the instrument optics at a cluster 

density per tile of 30,000. After each imaging step, the 3’ blocking group is chemically 

removed to prepare each strand of DNA for the next incorporation of a nucleotide by the 

DNA polymerase. This series of steps continues for a specific number of cycles, as 

determined by user-defined instrument settings, which permits discrete read lengths of 25-

100 bases (for example, 75 cycles will create seventy-five base pair sequencing reads. Most 

exons will be covered by 75-100 read lengths). The same sequencing process is performed 

from both DNA strand ends to create paired-end reads. This is particularly useful for 

accurate mapping and detection of structural variation. A figure explaining this process is 

exhibited on Figure 3-10. Data demultiplexing is the next step after sequencing in order to 

obtain files for alignment and analysis (Figure 3-11).  
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Figure 3-10: Sequencing by synthesis. Courtesy of Illumina, Inc., reproduced from Illumina.com. 

 

 

Figure 3-11: Sequencing workflow and demultiplexing. Courtesy of Illumina, Inc., reproduced from 
Illumina.com. 

 

3.3.7.1.2 Nextera rapid capture 

The Illumina Nextera rapid capture kit was introduced after the TruSeq kit, and was used 

for WES library preparation of more recent samples. In comparison with TruSeq, it was 

significantly improved in terms of the amount of DNA required and time required to prepare 

the libraries. They were both massively reduced. The workflow is shown in Figure 3-12 and 

I will describe these methods shortly because there are similarities to the Tru Seq protocol 

that do not need to be repeated.  
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Nextera Rapid Capture Enrichment library preparation uses an enzymatic DNA 

fragmentation step and thus can be more sensitive to DNA input compared to mechanical 

fragmentation methods (as in TruSeq). The ultimate success of enrichment strongly 

depends on using an accurately quantified amount of input DNA. Therefore, accurate 

quantification of the gDNA is essential and usually requires at least 2 or 3 measurements 

and dilutions with the Qubit.  

 

Figure 3-12: Nextera rapid capture workflow. Courtesy of Illumina, Inc., reproduced from 
https://www.illumina.com/documents/products/datasheets/datasheet_nextera_rapid_capture_exo
me.pdf 

 

After normalisation of the DNA, the next step is the tagmentation of the gDNA. This step 

uses the Nextera transposome to tagment gDNA, which is a process that fragments DNA 

and then tags the DNA with adapter sequences in a single step. This is followed by clean up 

with sample purification beads on a magnetic stand.  
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The tagmentation is followed by a first PCR amplification with index primers and a nextera 

library amplification mix added to each sample. This is loaded onto a thermal cycler and 

later purified with SPB.  

Sample quality is checked on the Bioanalyzer and fragments should be 150-1000 bp in size 

at this stage.  

Library amplification is followed by the first hybridization where the DNA library binds to 

the biotinylated oligos (baits). Before hybridization samples are pooled into libraries of 12 

samples at a volume of 40 uL. Sample amount needs to be precise and even (i.e. 500 ng per 

sample).  

Post hybridization capture of the gDNA-bait hybrids is performed with SPB in a midi plate 

on a magnetic stand to remove nonspecific bindings. The library is then eluted from the 

beads.  

This process is followed by a second cycle of hybridization, capture and purification.  

The second PCR amplification (in this case of the enriched library) is performed afterwards 

in the presence of the amplification mix and a primer cocktail. The reaction is loaded onto 

the thermal cycler and then purified with SPB.  

Libraries are now ready for clustering and sequencing as described in the previous section.  

3.3.7.2 Bioinformatic processing of NGS data 

The analyses begin with data demultiplexing with CASAVA tool provided by Illumina. Paired-

end sequencing reads in the form of FASTQ files are then aligned to the human genome 

reference (hg19) using Novoalign (Novocraft technologies). A BAM file is generated using 

SAMtools (http://samtools.sourceforge.net/). The removal of duplicate reads and the 

generation of statistics are performed with picard tools (http://picard.sourceforge.net). 

Local realignment if indels and variant calling was performed with the Genome Analysis 

Toolkit (GATK) https://software.broadinstitute.org/gatk/.   

 Variant annotation was performed with ANNOVAR 

(http://www.openbioinformatics.org/annovar/). ANNOVAR is fully customizable and allows 

http://samtools.sourceforge.net/
http://picard.sourceforge.net/
https://software.broadinstitute.org/gatk/
http://www.openbioinformatics.org/annovar/
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for annotation of the location of each variant (exonic, splice site, intronic, etc.), 

determination of its functional effect (non-synonymous change, stopgain, stoploss, 

frameshift, etc), adding population frequency from different databases (1000 genomes, 

Exac, EVS, dbSNP, etc), in silico predictions (Polyphen, mutation taster, CADD scores, etc), 

adding OMIM numbers, among other possibilities.    

Other useful online software packages used through this thesis are the GATK 

(http://www.broadinstitute.org/gatk/), VCFtools (http://vcftools.sourceforge.net/), PLINK 

(http://pngu.mgh.harvard.edu/~purcell/plink/), RV test (http://zhanxw.github.io/rvtests/) 

and LASER ancestry server (https://laser.sph.umich.edu/index.html).  

The types of files we obtain from NGS data are: 

1. Fastq: Human readable sequences with associated Phred scores. This is 

the native sequence or “raw data”. Fastq are usually paired-end. This 

means we get 2 files per sample (a forward and a reverse). The Phred 

score gives an estimate of the correctness of the corresponding base call.  

2. SAM: Human readable mapped sequences, phred scores and coordinates 

to the reference sequence.   

3. BAM: Binary version of SAM (compressed version of SAM). This file can be 

visualized with the Integrative Genomics Viewer 

(http://software.broadinstitute.org/software/igv/) or the genome 

browser (http://goldenhelix.com/products/GenomeBrowse/).  

4. VCF: Variant calling format. The VCF format is a tab delimited format for 

storing variant calls and individual genotypes. It can store both SNPs and 

indels. 

5. Text files: After annotation with ANNOVAR the output can be retrieved in 

an CSV file that can be filtered with a text editor or also loaded onto Excel. 

Depending of the aim of each chapter and the number of samples to be 

analysed this was done in different ways along this thesis.  

The specific bioinformatics analysis pipeline for each project will be commented upon in 

each results chapter. Moreover, relevant scripts are attached in the Appendix.   

http://www.broadinstitute.org/gatk/
http://vcftools.sourceforge.net/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://zhanxw.github.io/rvtests/
https://laser.sph.umich.edu/index.html
http://software.broadinstitute.org/software/igv/
http://goldenhelix.com/products/GenomeBrowse/
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3.3.8 Variant prioritization, mutation confirmation and analyses of complex 

disease 

NGS technologies generates huge amounts of data. It is essential to understand how to 

analyse these data. Genetic sequencing is a field that is moving faster than functional 

studies and therefore, knowing with certainty the difference between a polymorphism and 

a mutation is many times very challenging.  

For example, a whole exome today produces over 60,000 variants. Being able to find the 

biologically relevant ones for a specific patient is like finding the needle in the haystack. All 

variants suspected to be disease causing have been visualised with the IGV viewer or the 

genome browser and then Sanger sequenced as this technique is still the gold standard for 

mutation confirmation.  

The approach to variant or gene prioritization is based in some principles: 

3.3.8.1 Quality of the variant 

Quality scores (based on Phred scores), segmental duplication scores (refers to homology 

greater or equal than 96% and means that these regions are likely to contain many false 

positive calls), and depth (number of reads at a specific location) information are provided 

by the analysis pipeline. They will help in understanding if a variant is true or is a false 

positive. NGS data is usually more reliable for single nucleotide changes than for indels. 

However, it is becoming more and more reliable with small indels.   

Furthermore, we have an in-house collection of human exomes in the department and we 

also filter variants against this database. If a variant appears novel or rare in online 

databases but is common in our data from other disorders or controls it is more likely to be 

an artefact of our pipeline rather than a disease-related change.  

Depending on the strategy of the specific project the filtering according to quality scores 

was different. For example, looking into families and small genes, I usually keep all the data 

in there as all variants selected will then be visually inspected and if considered potentially 

pathogenic Sanger sequenced. A different scenario is when performing association studies. 

The data needs to be curated for well called variants present in cases as well as controls.  



99 
 

3.3.8.2 Known genes and pathways 

Usually, when analysing NGS data, the first step consists in investigating genes that are 

known to cause the phenotype of interest or similar disorders to those that patients have. 

Additionally, genes that have a role in the pathway of known genes for the disease are also 

prioritized. I usually do this before filtering for other principles to ensure I am not missing 

any known mutations. For example, this is what I did in a family with PFBC in Chapter 6.  

3.3.8.3 Coding versus non-coding 

The human exome accounts for only around 1-2% of the human genome. It is estimated 

that 85% of disease-causing mutations lie within the exome. This is the rationale behind 

performing WES experiments as a cost-effective technology. With 1% of the data we can 

get 85% of the relevant variation.   

We therefore used exome capture methods in NGS and this gave us output of data 

containing exons, splice-sites, UTRs, non-coding RNA sequences and intergenic regions. 

From these data, while filtering for novel causes of disease, I focused the analysis on the 

exones and the splice-sites. The number of variants usually obtained after this step is 

approximately 21,000-22,000 or above.  

3.3.8.4 Frequency in the population 

The population frequency of variants is a good way of prioritising variants. The frequency 

accepted for recessive and dominant disorders is different. For instance, the acceptable 

frequency of recessive variants will be higher than for dominant disorders. This is because 

a variant present in the general population at a higher frequency than a rare disorder that 

is supposed to be inherited in a dominant fashion is unlikely to be playing an important role 

because if that was the case, the disease should be more frequent. In recessive disorders, 

one can accept a slightly higher frequency because there will be unaffected carriers in the 

population.  

Filtering by population frequency is performed by obtaining data from large databases. In 

the beginning of this theses this was done mostly with data from the 1000 genomes project, 

the exome variant server and the cg69 database. Nowadays, we are also using the Exac 
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database. The Exac database contains data on 60,706 unrelated individuals. This changed a 

little our approach to variant frequency, because a few years ago, variants for rare disorders 

were likely to be novel, whereas today, a variant can be found in this database, but at a very 

low frequency. An interpretation of the variant frequency in the population in relation to 

the frequency of the disease and the suspected mode of inheritance is required.   

dbSNP is also a useful tool linked to ClinVar that is helpful for variants with clinical 

information submitted by genetic laboratories and also with data from published papers.  

3.3.8.5 Mode of Inheritance 

In families where a recessive inheritance is suspected we usually look for homozygous or 

compound heterozygous variants, whereas in dominant disorders we would target 

heterozygous variants. In X linked we would be looking for variants in the X chromosome in 

males with absence of male-to-male transmission in the pedigree. It is important not to 

confuse dominant families with incomplete penetrance with recessive disorders. And in my 

experience, to ensure the analysis is thorough, I use different strategies for each family.  

3.3.8.6 In silico predictions and conservation scores 

In silico predictions are obtained with prediction software. These software use different 

strategies to predict the pathogenicity of a variant. They use physical and comparative 

considerations. They base their analysis in information such as if the variant is causing a 

truncating protein, if the amino acid change is to an amino acid with a different structure 

(such as proline) or hydrophilic for hydrophobic or vice versa, if the change is located in a 

relevant domain of the protein, if it changes the phosphorylation status of a protein, and/or 

the conservation among species. Polyphen (http://genetics.bwh.harvard.edu/pph2/) and 

SIFT (http://sift.jcvi.org/) can query non-synonymous changes and Mutation taster 

(http://www.mutationtaster.org/) also works for small insertions and deletions. Each one 

has a different strategy and scoring available on their websites. These software, as I said, 

have different uses and applications and are all three of them focused on coding variation. 

Two new algorithms have been developed that integrate previous software with known 

variation in coding and non-coding regions. These are the Combined annotation-dependent 

depletion (CADD, http://cadd.gs.washington.edu/info) and the deleterious annotation of 

http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://www.mutationtaster.org/
http://cadd.gs.washington.edu/info
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genetic variants using neural networks (DANN, https://omictools.com/deleterious-

annotation-of-genetic-variants-using-neural-networks-tool) scoring.  

Mutation prediction software have an estimated accuracy of up to 80% (but usually lower) 

for missense variants(259) and can sometimes over or underestimate the biological 

relevance of specific changes. Such is the case of the p.Ala53Thr mutation in the SNCA gene 

that is predicted to be benign but has a known pathogenic role in human disease(260,261). 

The main reason for this wrong “benign” prediction is due to software reliability on 

conservation and the fact that other amino acid substitutions can be compensating for 

these changes in orthologous species(260). Also, in some cases, a gain of function at a poorly 

conserved residue can cause disease. Given that is not the loss of the wild type that is 

causing the disease, if this residue is not conserved, the change will be categorised as 

tolerated when it might not be.  

In silico predictions are not always correct. Moreover, they sometimes present conflicting 

results and some of them will categorise a variant as pathogenic while others will call it 

benign or tolerated. In general, when all predictions are similar, this can be somewhat 

reassuring, however, predictions should always be considered with caution and used for 

what they are: predictions, never confused with functional data. 

3.3.8.7 Target regions 

Regions of the genome that present significant linkage (as calculated by their LOD scores) 

in families can be a good target for variant investigation and filtering through WES. Linkage 

data analysed according to the pattern of inheritance can provide information on shared 

regions in affected family members compared with the unaffected relatives.  

Another method for defining target regions in recessive families is homozygosity mapping, 

and for example, in the Chapter 6.2 we have used a genome-wide SNP array and obtained 

homozygosity mapping data in a family with PFBC. Once the homozygous regions were 

delimited, we filtered the exome data to find the variants in those regions.  

3.3.8.8 Complex disease 

Complex disease analysis of NGS data is more challenging than studying families.  

https://omictools.com/deleterious-annotation-of-genetic-variants-using-neural-networks-tool
https://omictools.com/deleterious-annotation-of-genetic-variants-using-neural-networks-tool
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The principles described previously in this chapter are used but under a different approach. 

The investigation is performed by analysing a large number of cases sharing a disease 

phenotype and comparing them with a large number of controls.   

Two approaches are currently used for this purpose: by single variant association of 

common variants and by looking for association of rare variants or burden tests. This 

strategy was used in Chapter 5.2.3 to understand the genetic risk underlying MSA, and the 

methods are discussed in the next section. 

3.3.9 Bioinformatic steps for analysis of NGS for association studies 

Initial steps of data demultiplexing, alignment of sequence reads to generate BAM files from 

FASTQ files, removal of duplicates and realignment of indels were performed as described 

in the section 3.3.7.2. Scrips are presented in the Appendix.  

3.3.9.1 Power calculation 

The power calculation was performed using an online software called Genetic association 

study Power Calculator available at: 

http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html  

3.3.9.2 Generating a Joint VCF file 

In the initial steps of data analysis described above, each BAM file was re-analysed with 

Haplotype Caller for calling SNPs and indels by local re-assembly of haplotypes. This step 

would improve the quality of the variant calling. The output is a genomic VCF (gVCF).  

The gVCF files are then merged with the CombineGVCFs script (based on GATK) to obtain a 

joint VCF file containing all the data together.  

3.3.9.3 Genotype quality control (QC) 

After that, the VCF file is filtered according to quality with the Filter_VCF.sh script. The 

standards used in our lab filter out genotypes with a depth<8, genotype quality (GQ)<20, 

GQ_Mean<35, variant quality score recalibration score (VQSR) >99. For association analysis, 

the quality of the genotypes needs to be very strict to avoid spurious associations and 

samples processed with different chemistries are analysed in batches(262).   

http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
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• Depth is defined as the number of reads in a specific position.  

• Genotype quality (GQ) is a quality score of each genotype that is generated by 

GATK and consists of a Phred scaled value representing that a called genotype is 

true. The GQ represents the Phred-scaled confidence that the genotype 

assignment is correct and it is derived from the genotype Phred scaled likelihood.  

• GQ_Mean is the average GQ at a specific location in a batch of samples.  

• Although the name is a little misleading, the variant quality score recalibration 

(VQSR) is not a recalibration score. Instead it stands for a new well calibrated 

quality score. The VQSR method, uses machine learning algorithms to learn from 

each dataset what is the annotation profile of good variants vs. bad variants, and 

does so in a way that integrates information from multiple dimensions. Each 

variant will then get a VQSLOD which is the log odds ratio of being a true variant 

versus being false under the trained Gaussian mixture model of the program. The 

threshold of 99.0 used here is said to represent a 99% sensitivity for a true variant.  

The output of this analysis is a filtered concatenated VCF file of all cases and controls which 

only contains ID and genotypes.  

3.3.9.4 Variant and sample quality control 

In order to obtain a reliable dataset and avoid systematic bias, we need to perform further 

variant and sample quality QC steps(263).  

This is performed in different steps to curate the data. The output aims to obtain reliable 

NGS data for association analysis.   

3.3.9.4.1 Per-marker QC or Variant QC 

Variant QC consists of two main steps: 

1) Identification of SNPs with an excessive missing genotype. Variants with a high 

missing genotype call rate in the whole dataset. The missingness per variant is 

calculated by PLINK across the dataset provided. Different thresholds can be 

applied by the researcher and we excluded calls with a call rate of at least 90%.  
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2) Identification of SNPs demonstrating a significant deviation from Hardy-Weinberg 

equilibrium (HWE) in controls. HWE states that allele and genotype frequencies in 

a population will remain constant from generation to generation in the absence of 

other evolutionary influences. A significant deviation from HWE can indicate a 

genotyping error or an association with disease. Therefore, HWE is calculated by 

PLINK only on controls to remove variants where HWE p values are <0.001.  

3.3.9.4.2 Sample QC  

Sample QC consists of the following steps:  

• Identification of individuals with outlying missing genotypes. Samples that still had 

a high proportion of missing genotypes after removing bad SNPs during variant QC 

are also removed. A sample with a high missingness may denote bad quality in the 

DNA or the library.  

• Identification of individuals with discordant sex information: Sex check. In this step, 

we provide with the sample gender we have recorded and PLINK will compare this 

to the actual genotype sex and give a score. If there is a mismatch between the 

ascertained sex and the genotype sex we have to exclude those samples. Checking 

sex in PLINK is performed by analysing the proportion of homozygosity of the X 

chromosome. The output gives us F values. An F estimate smaller than 0.2 yield 

female calls, and values larger than 0.8 yield male calls. We were a little less 

stringent because PLINK is designed for array data as opposed to sequencing data 

and we also tried the parameters 0.3 and 0.7 as limits.  

• Identification of individuals with outlying heterozygosity rates. The heterozygosity 

is the proportion of heterozygous genotypes for a given individual. This aims to 

identify individuals with an excessive or reduced proportion of heterozygote 

genotypes, which may be indicative of DNA sample contamination or inbreeding, 

respectively. This rate is calculated in PLINK for the dataset. Standard limits 

proposed can be -0.2 to 0.2 but this needs to be guided by the actual visualization 

of the data. 
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• Identity by state (IBS): To identify duplicate and related individuals, IBS is 

calculated for each pair of individuals based on the average proportion of alleles 

shared in common at genotyped SNPs (excluding the sex chromosomes). The 

method works best when only independent SNPs are included in the analysis. To 

achieve this, regions of extended linkage disequilibrium (LD) (such as the HLA) are 

entirely removed from the dataset and remaining regions are typically pruned so 

that no pair of SNPs within a given window is correlated. Duplicates will have a IBS 

value=1.  

• Identification of related individuals. A basic feature of standard population-based 

case-control association studies is that all the samples are unrelated (i.e. the 

maximum relatedness between any pair of individuals is less than a second-degree 

relative). To calculate the identity by descent (IBD) the degree of shared ancestry 

between individuals is estimated in PLINK. For the purpose of this analysis pruning 

of SNPs in LD needs to be performed beforehand (as described in the IBS section 

above). The IBD results can be interpreted as: IBD =1 for monozygotic twins or 

sample duplicates, IBD=0.5 for first degree relatives, IBD=0.25 for second-degree 

relatives and IBD=0.125 for third-degree relatives. Again, visualization of the data 

is very important.  

• Identification of individuals of divergent ancestry. Population stratification can be 

a confounding factor, in which genotypic differences between cases and controls 

are generated because of different population origins rather than any effect on 

disease risk. The most common method for identifying (and subsequently 

removing) individuals with large-scale differences in ancestry is principal 

components analysis (PCA). In different Results chapter we investigated samples 

ancestry with PCA with the software eigenstrat(264). These data are visually 

inspected and compared with the results of the other QC steps. Most of the failing 

samples fail in more than 1 step and in those cases the sequencing quality is not 

optimal.   

file:///C:/Users/luschot/Desktop/viva/eigenstrat
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3.3.9.5 Single locus association study 

After exclusion of all samples in the QC steps, duplicates, related samples, bad SNPs and 

bad sample removal, and having a European cohort we are ready to start testing for 

association.  

For single locus association analysis, only common variation was selected for investigation 

(i.e. MAF >0.05).  

First, we generated a log quantile-quantile (QQ) plot that compares the observed 

distribution of p-values for all the SNPs on the y axis with their expected values on the x axis 

under the null hypothesis of no association. By illustrating that the majority of the results 

follow the null distribution and that only a handful deviate from the null, the QQ plot gives 

confidence in the quality of the data and the robustness of the analysis. A deviation on the 

bottom of the y=x line can suggest the presence of excessive false positive associations due 

to a systematic bias. For example, due to population stratification. A sharp deviation from 

the y=x line on the smallest p-values (top right corner) shows potentially true associations.  

Second, we performed an association analysis for single variants. This was done following 

PLINK commands. Scripts are available in the Appendix.  This test was a standard chi square 

test including common variants (MAF >0.05). Subsequently, we adjusted for multiple testing 

with standard Bonferroni correction. The adjusted p-value, after correction for multiple 

testing, below 0.05 was considered significant.  

A Manhattan plot is a scatterplot where genomic coordinates are displayed along the x-axis, 

with the negative logarithm of the association p-value for each SNP displayed on the y-axis, 

meaning that each dot on the Manhattan plot indicates a SNP. The strongest associations 

have the smallest p-values (e.g., 10−15) therefore their negative logarithms will be the 

greatest (e.g., 15). The name Manhattan plot derives from the similarity of this plot to the 

Manhattan skyline, with chromosomes (in the x-axis) being like skyscrapers.  

Both the QQ plot and the Manhattan plot were plotted using R commands. Scripts are 

presented in the appendix.  



107 
 

3.3.9.6 Rare variant testing 

The largest MSA GWAS lacked power to achieve significant results(265). As MSA is a rare 

disorder, it will be very difficult to increase substantially the number of samples (especially 

pathologically confirmed ones) for this approach.  With the advent of NGS, some different 

strategies have emerged and rare variants have been identified as susceptibility factors in 

complex diseases (257).  

A new approach that has been developed with the advent of NGS is variant aggregation 

according to different strategies. For example, variants can be aggregated by locus, by gene, 

by function or in silico predictions(266).  

Rvtests, which stands for Rare Variant tests, is a flexible software package for genetic 

association studies. It includes a variety of association tests (e.g. single variant score test, 

burden test, variable threshold test, sequence kernel association test (SKAT) test, fast linear 

mixed model score test). It takes VCF format as genotype input file, also takes PLINK format 

phenotype file, and a covariate file(267). This package has been used to perform rare variant 

testing in chapter 5. Scripts are available in the Appendix.  

A burden test is a powerful test to test for association of rare variants in a genomic or exomic 

region that are causal of the phenotype, and the effects of all variants are in the same 

direction (i.e. all lead to increased risk of the disease or all are protective). A burden test 

collapses rare variants in a genetic region into a single burden variable and then regresses 

the phenotype on the burden variable to test for the cumulative effects of rare variants in 

the region.  

A SKAT test is a variance-component test, which is more powerful when a large fraction of 

the variants in a region are non-causal or the effects of the associated variants are in 

different directions. A SKAT aggregates the associations between variants and the 

phenotype through a kernel matrix and can allow for SNP-SNP interactions. It is especially 

powerful when a genetic region has both protective and deleterious variants or even many 

non-causal variants. More recently, a SKAT test for the combined effect of rare and common 

variants has been proposed. The proposed test is also computationally efficient and would 
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evaluate the cumulative effect of rare and common variants over disease susceptibility. This 

would potentially increase the power of a given sequencing study substantially. This test 

has been proposed as a powerful method for complex diseases such as MSA. An optimal 

unified SKAT test (SKAT-O) is a proposed computationally efficient method that maintains 

power in both scenarios. SKAT-O automatically behaves like the burden test when the 

burden test is more powerful and behaves like the SKAT when the SKAT is more powerful. 

This test can be applied to sequencing association studies(268). 

3.4 MOLECULAR BIOLOGY AND FUNCTIONAL STUDIES 

3.4.1 Southern blot 

Southern blot is a method used to detect specific DNA sequences in DNA samples by 

hybridization that was first described by Edwin Southern(269) and hence the origin of its 

name. A sample population of purified DNA is digested with one or more restriction 

endonucleases generating fragments that are several hundred to thousands of BP in length. 

The restriction fragments are separated according to size by agarose gel electrophoresis, 

denatured and transferred to a filter nitrocellulose or nylon membrane. Labelled probes are 

hybridized to the membrane-bound target DNA, and the positions of the labelled 

heteroduplexes are revealed by autoradiography(6).  

This method was used in this thesis for confirmation of the C9orf72 expansion and sizing. 

Further details of this experiment are described in chapter 4.4.2.  

3.4.2 Coenzyme Q 10 measurement 

The levels of coenzyme Q10 were measured in flash frozen brain tissue samples.  

Flash-frozen brain tissue sections were prepared including similar amounts of grey and 

white matter. The tissue was homogenized with a buffer that contained sucrose, EDTA and 

Tris (tris[hydroxymethyl]aminomethane). The PH was 7.4 and the buffer was isotonic with 

the brain cells. Forty uL of the homogenates were mixed with an internal standard (IS). The 

IS used was di-propoxy-CoQ10 which is a synthetic non-physiological ubiquinone. The IS was 

added to the brain homogenates which were then vortex mixed, frozen in liquid nitrogen, 
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and thawed twice to ensure maximal release of cellular CoQ10. A solvent of hexane:ethanol 

(70:30 % (v/v)) was added to the sample, vortex mixed for 1 minute, and then centrifuged 

(5 min x 14,000 g, 25oC). Following centrifugation, the upper organic layer containing 

lipophilic compounds including CoQ10 was removed and evaporated to dryness. The sample 

was reconstituted in ethanol and measured by high-performance liquid chromatography 

(HPLC) which was linked to a UV detector set at 275 nm (nanometers). Ubiquinones, 

including CoQ10 have a characteristic absorbance at 275 nm and the HPLC machine is 

calibrated with a quantified CoQ10 and IS prior to analysing the biological samples. This 

method was described previously in (187).  A picture of a CoQ10 measurement with the IS 

is shown in Figure 3-13.  

 

Figure 3-13: Coenzyme Q10 measurement by HPLC (courtesy image provided by Dr Iain Hargreaves). 
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3.4.3 Functional characterisation of a candidate gene identified in families 

with PFBC 

In this section we investigated the role of a mutation in the JAM2 gene identified in 2 

independent families with PFBC. We first performed a western blot in fibroblast cell lines 

and we later studied the neurological phenotype of a knock-out mouse model. The relevant 

collaborators that contributed to this work have been detailed in each result chapter.  

3.4.4 Fibroblast cell lines 

Fibroblasts were generated from skin biopsies. Three mm punch skin biopsies were 

obtained from skin overlying the triceps. They were cut into small (1mm) pieces, and 

cultured in Modified Dulbecco’s Eagle Medium (DMEM, Sigma) containing 10 % foetal 

bovine serum (FBS) and antibiotics in 10 cm2 plates at 7°C. After 2-3 weeks in culture, 

fibroblasts grew from the skin biopsy pieces onto the tissue culture dish. When the dishes 

were confluent, they were split using 2 mL of 0.05% 1x Trypsin-EDTA (Life Technologies) per 

plate and maintained in DMEM/FBS without antibiotics at 37°C in an incubator with 5 % of 

CO2. The plate was then placed in the incubator at 37 °C for 5 minutes to ensure sufficient 

detachment. Subsequently, cells were gently scrapped from the plate with a cell scraper 

and transferred to a new sterile Eppendorf tube. After spinning down the pellet by 

centrifugation at 4000 rpm for 1 minute, the cell suspension was transferred to another 

new sterile Eppendorf tube, and used straightaway or stored at -80 °C.  

3.4.5 Western blot 

Cell lysates were prepared by washing cells with cold phosphate buffered saline (PBS), 

followed by lysis buffer addition (50 mM Tris, 0.1 mM EGTA, 1mM EDTA, 0.27 M sucrose, 1 

% Triton X-100, Protease Inhibitor Cocktail (Roche) Phosphatase Inhibitor Cocktail (Sigma)). 

Cell lysates were then collected and clarified (removing nucleus and unbroken cells) by 

centrifugation at 12,500 rpm for 10 minutes at 4°C. Proteins were separated on Novex 

precasted Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) Bis-Tris 4-

12% gels (Invitrogen), using MES running buffer (Invitrogen). Proteins were then transferred 

to Polyvinylidene difluoride (PVDF) membranes (Millipore), blocked with 5 % milk and 

blotted with JAM2 (abcam ab156586) and actin (sigma A2228 loading control) antibodies. 



111 
 

Animal studiesThe mouse strain used this thesis is Jam2tm1.2Rha . Jam-b (ortholog of human 

JAM2) knockout (KO) and wild type mice were obtained from Professor Michel Aurrand-

Lions, a collaborator in the Centre de Recherche en Cancérologie de Marseille, France. Mice 

were housed in the Institute of Neurology University College London animal facility and 

were maintained on a 12-hour light dark cycle at a constant temperature and humidity. All 

animal experiments were carried out according to the UK Animal Act 1986 and approved by 

the UCL Animal Care Committee. We received 16 mice. Nine Jam-b KO, 2 male Jam-b KO 

and 9 female wild type.  

3.4.5.1 Generation of Jam-B deficient mice 

This colony was developed some time ago and was previously described in the 

literature(270). Briefly, a jam-b gene fragment containing exon 5 was flanked by loxP 

recognition sites for Cre recombinase. Within the loxP-flanked region, a murine jam-b cDNA 

fragment (codons 165-298, PEY…SFII*) followed by the bovine growth hormone 

polyadenylation signal (pA) was fused to a BspE1 site in exon 5. The construct also contained 

a neomycin resistance cassette surrounded by frt sites enabling Flp recombinase-mediated 

removal, as well as long (9 kb, 5′) and short (1.65 kb, 3′) arms for homologous 

recombination. Electroporated and G418-selected embryonic stem cell clones were 

analysed by Southern blot hybridization and polymerase chain reaction (PCR). For PCR 

screening, a primer pair, derived from exon 4 and the intronic jam-b sequence flanking the 

5’ loxP site, amplified a 345 bp band from WT chromosomes and a 450bp band from 

transgenic chromosomes (primers were 5′-AGACCGTGCTGAGATGATAGA-3′ and 5′-

CCGAAGGAAGTGTCTAGTAAT-3′). Three independent lines were generated and maintained 

in a mixed 129Sv × C57BL/6 background. jam-b deficient mutants were generated by cross-

breeding with the PGK-Cre line followed by interbreeding jam-bKO/+ heterozygotes. Mice 

used in the present study were backcrossed for more than 12 generations on C57Bl/6 

background. 
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3.4.5.2 Behavioural studies 

Behavioural studies were performed in the Jam-b mice and compared to controls. All mice 

were trained in a standard way before the relevant tests. Figure 3-14 presents 2 cartoons 

of the tests used in this thesis.  

 

Figure 3-14: A: Walking beam test. Mice are placed on the beam and their ability to traverse it is 

considered to be an indication of their balance. Paw slips and traverse time are used as the 

measurements. B: Footprint analysis. The paws are dipped in ink or paint, so that the mice leave a trail 

of footprints as they walk or run along a corridor to a goal box. Measurements of stride length, base 

width, and fore and hind paw overlap give an indication of gait. Reproduced with permission from 

(271)).    

 

3.4.5.2.1 Beam walking test 

The balance beam assesses a mouse's ability to maintain balance while traversing a narrow 

beam to reach a safe platform. It was originally designed to assess motor deficits in aged 

rats and has proved useful in assessing motor coordination and balance in mice. 

Measurements recorded can include the time taken to cross the beam and the number of 

paw faults or slips. Some versions use a range of cross sections and diameters to vary the 

task difficulty. Others use a beam that becomes progressively narrower as it approaches the 

safety platform. In early versions of the test, which use simple square and round cross 

sections, the mice may occasionally fall, and the frequency of falls becomes an additional 

dependent variable. Two useful modifications of beam design can promote a mouse's 

willingness to progress rapidly across to the escape platform rather than simply cling on to 

prevent falling: an additional ledge can be placed either side of the platform so that even 
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when the paw slips grip is maintained; and an inclined beam can be used instead of a 

horizontal beam, as mice seem to have a natural tendency to run upwards to escape(271).  

In this thesis, we used the beam walking test to assess the number of missteps of the Jam-

2 KO compared to controls when they walked through a round beam.  

3.4.5.2.2 Footprint analysis 

A detailed analysis of motor coordination and synchrony is provided by examining gait 

during normal walking. The more commonly used method for assessing gait is the 'footprint' 

test. The fore and hind paws are painted with dyes of different colours and the mouse is 

encouraged to walk in a straight line (typically in a narrow corridor) over absorbent paper. 

The footprint patterns are then analysed for a range of measurements, including stride 

length, base width, overlap between fore and hind paws, and paw and finger splay.  

Gait analysis is not only simple, and the scoring straightforward, but also it is one of the few 

tests that translates directly from animal to human studies. Although automated video 

analysis is possible, it is too early to determine whether this matches the sensitivity of the 

time-consuming manual analysis(271).  

In this thesis, we used footprint analysis to assess the stance, stride and sway length 

comparing Jam-b KO to wild type mice.  

3.4.5.3 Mice culling and CNS dissection 

Mice were culled by injection of a barbiturate overdose (pentobarbital). The brain and the 

spinal cord were harvested and fixed in paraffin for histopathological analysis. Sections 

were performed with a microtome in the following way: the brain was sampled with a mid-

sagittal cut and distributed into 2 different blocks, to ensure that sufficient material was 

available. The spinal cord was prepared according to a standard cutup protocol which 

separates cervical, thoracic, and lumbar segments and distribute them into 3 separate 

blocks. That way, all spinal cord material will be sampled. Each mouse generated 5 blocks. 

3.4.5.4 Mice brain pathology 

Histopathology is the microscopic study of diseased tissue, also called microscopic anatomy. 

It is performed by examining a thin tissue section under the light microscope. The technique 
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consists shortly of paraffin embedding, sectioning, and staining. Other techniques are 

available and could be performed on tissues for specific purposes (special stains, 

immunohistochemistry, in situ hybridization, etc.)(272).  

In this thesis, mouse brain and spinal cord samples were sectioned and fixed in paraffin as 

described in chapter 3.4.5.2, and then stained with Haematoxylin and Eosin (H&E). After 

morphological evaluation of the tissue, markers of neuronal cells (NeuN) and glial cells 

(GFAP) were used for further investigations.   

Basophilic and acidophilic staining: Acidic dyes react with cationic or basic components in 

cells. Proteins and other components in the cytoplasm are basic, and will bind to acidic dyes. 

Basic dyes react with anionic or acidic components in cells. Nucleic acids are acidic, and 

therefore bind to basic dyes(273). 

3.4.5.4.1 H&E 

Haematoxylin is nearly a specific stain for chromatin and it is therefore referred to as a 

"Basic" stain. Although the stain itself is not basic, the dye called hematein is used in 

combination with aluminium ions that bind to acidic (or basophilic) structures. It stains the 

nuclear network and chromosomes in colour blue. It may be used after almost any fixative 

and is a permanent stain.  

DNA (heterochromatin and the nucleolus) in the nucleus, and RNA in ribosomes and in the 

rough endoplasmic reticulum are both acidic, and so haemotoxylin binds to them and stains 

them purple.  

Eosin is a red general cytoplasmic stain. It combines with haemoglobin to give an orange 

colour. It is an acid dye and the terms acidophilic, oxyphilic and eosinophilic are often used 

interchangeably. It may be used after any fixative and is used as a counter-stain in many 

combinations in addition to haematoxylin. 

Most proteins in the cytoplasm are basic, and so eosin binds to these proteins and stains 

them pink. This includes cytoplasmic filaments in muscle cells, intracellular membranes, and 

extracellular fibres. 
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H&E staining is used routinely in pathology for recognising tissue types and morphological 

changes. It achieves this by clearly staining cell structures including the cytoplasm, nucleus, 

and organelles and extra-cellular components(272,273). An example of brain tissue stained 

with H&E is shown in Figure 3-15.  

 

Figure 3-15: Normal brain tissue stained with H&E visualised on a medium magnification (100X). The 
cortex of the cerebrum is shown with triangular neurons and scattered small darker glial cells in a pink 
neuropil background. Reproduced from (274) (permission requested).  

 

3.4.5.4.2 GFAP 

Expression of glial fibrillary acid protein (GFAP) has become a prototypical marker for 

immunohistochemical identification of astrocytes. GFAP was first isolated as a protein 

highly concentrated in old demyelinated plaques from multiple sclerosis patients and was 

then found to be associated immunohistochemically with reactive astrocytes in such 

plaques and in other pathological contexts. GFAP expression is a sensitive and reliable 

marker that labels reactive astrocytes that are responding to CNS injuries(275). An example 

of brain tissue stained with GFAP is shown on Figure 3-16.  
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Figure 3-16: Visualization of astroglial, oligodendroglial, and microglial cell bodies in the parietal 
neocortex from an adult donor. Arrows show staining astrocytes immunohistochemically positive with 
GFAP. Reproduced from  (276) (no permission needed). Magnification 400X.  

 

3.4.5.4.3 NeuN 

A monoclonal antibody against the neuronal nuclear protein (NeuN) is used in 

immunohistochemistry as a specific neuronal marker (Figure 3-17). This marker has not 

been detected in tissues other than nervous ones. Moreover, the protein has never been 

detected in glial cells and makes it a reliable marker or neuronal tissue in the brain. NeuN 

has been successfully used for more than 20 years as a reliable marker of postmitotic 

neurons in studies of neuronal differentiation and in the assessment of neuronal status both 

in norm and pathology(277).  

 

Figure 3-17: Immunohistochemical stainings for NeuN as a neuronal marker. Reproduced under a 
Creative Commons Attribution License from (277) Magnification 400X.  
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4 CHAPTER 4. CANDIDATE GENE STUDIES IN MSA 

This chapter consists of the analysis of different candidate genes that have been linked to 

MSA, PD or other relevant neurodegenerative disorders. Depending of the type of mutation 

this has been achieved by different methods that will be explained in each section. 

4.1 EIF4G1 

Statement of contribution: Samples were collected by Prof Henry Houlden and Dr Anna 

Sailer. Experiments and data analysis were performed by myself.  

4.1.1 Background 

The EIF4G1 gene has been recently linked to PD with an autosomal dominant 

inheritance(278). Mutations were first found in a French family and later detected in other 

4 families out of 96, and in 9 out of 4708 cases with sporadic PD. Chartier and colleagues 

showed in vitro that mutations in EIF4G1 increased the vulnerability of cells to oxidative 

stress and suggested translation initiation as an affected pathway in PD(278). We therefore 

decided to investigate if mutations in EIF4G1 are also a cause of MSA.  

4.1.2 Subjects, materials and methods 

Two-hundred and fifty-one pathologically confirmed MSA cases were included. Most of the 

mutations lie within EIF4G1 exons 8, 10 and 22 so we decided to focus on those exons for 

our analysis. Primers covering exons and splice sites are described in the Appendix. The 

reference sequence used was NM_182917.3. Exon 8 is very large and therefore we divided 

it into 2 parts, A and B.  

Sanger sequencing experiments and analysis was performed as described in chapter 3.3.4.   

4.1.3 Results 

We successfully sequenced exons 8, 10 and 22 of EIF4G1 in 251 definite MSA cases. We 

failed to detect any known PD mutations. We couldn’t find any variant in exon 10 and 22 

and changes in exon 8 are listed in Table 4-1.  
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Table 4-1: Variants in exon 8 of EIF4G1 in MSA. 

Variant Exon AA call Number of cases  
MAF 
MSA 

MAF dbsnp 
(EUR 

1000genomes) 

p 
value 
(x2)* 

rs2178403 8 p.M432V 
het 

hom 

96  

16  

0.254 0.243 0.6223 

novel in-frame 
deletion 

8 p.E453del het 1 
   

rs111659103  8 p.G466_A468del 
het 

hom 

7 

2 

0.021 0.033 

 

0.2490 

novel 8 p.P486S het 1 
   

*p value result from a χ2 test comparing the minor allele frequency of the SNPs detected in our study with the data 
from the 1000 genomes project.  

4.1.4 Discussion 

Two variants (rs2178403 and rs111659103) are common changes previously reported in the 

literature and the MAF in our cohort are similar to those reported in the European cohort 

of the 1000genomes project. 

Two coding variants are novel. One is an in-frame deletion close to another one that is 

common in the population (rs111659103) and possibly well tolerated too, and the last one 

is a missense mutation predicted by online software Polyphen2 

(http://genetics.bwh.harvard.edu/pph2/index.shtml) to and SIFT (http://sift.jcvi.org/) to be 

benign.  

Importantly I would like to comment that there is recent controversy of the role of EIF4G1 

variants in PD and there is a recent paper highlighting the presence of these variants in 

normal controls at a higher frequency than in PD(278). In conclusion, I could not find a link 

between EIF4G1 and MSA.  

4.2 VPS35 

Statement of contribution: Samples were collected by Prof Henry Houlden and Dr Anna 

Sailer. Experiments and data analysis were performed by myself.  

http://genetics.bwh.harvard.edu/pph2/index.shtml
http://sift.jcvi.org/
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4.2.1 Background 

The gene VPS35 encoding for vacuolar protein sorting 35 that is a component of the 

retromer complex and mediates retrograde transport between endosomes and the trans-

Golgi network. This gene has been recently reported as a rare cause of autosomal dominant 

PD by two groups originally finding mutations in a Swedish and an Austrian family(279,280). 

As MSA belongs to the group of the α-synucleinopathies together with PD and DLB we 

decided to investigate this gene in our pathologically confirmed cases with a diagnosis of 

MSA and DLB. We selected exon 15 for our analysis because it is the one containing the 

originally described PD causing mutation (p.D620N).  

4.2.2 Subjects, materials and methods 

Primer sequences to cover the exon 15 and intronic flanking regions of VPS35 are presented 

in the Appendix. Sanger sequencing was performed as described in chapter 3.3.4. Two-

hundred forty-nine pathologically confirmed MSA cases and fifty-one pathologically 

confirmed DLB cases were included.  

4.2.3 Results 

Screening of exon 15 of the VPS35 gene in 249 MSA cases and 51 DLB cases failed to detect 

pathogenic mutations. We found one synonymous change (rs138794859, p.A627=) in a case 

with a diagnosis of DLB.  

4.2.4 Discussion 

VPS35 is a rare cause of PD and is probably not linked to other synucleinopathies like MSA 

or DLB.  

4.3 LRRK2 

Statement of contribution. Data from the UK cohort was obtained by myself either by 

analysing genotyping data or by Sanger sequencing of the missing data. Data analysis of the 

merged cohort was done by our collaborators from the Mayo clinic Dr Mike Heckman and 

Dr Owen Ross.  
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4.3.1 Background 

LRRK2, encoding for the leucine-rich repeat kinase 2 is the most common genetic cause of 

PD and also presents variants that have risk-modifying variants to this disorder(281). 

Previous studies have looked into the p.G2019S mutation in MSA and a Taiwanese study 

investigated MSA risk with the p.G2385R variant, both with negative findings(282,283). In 

this section of this thesis, in collaboration with Dr Mike Heckman, we have investigated 

common LRRK2 coding variants for association with MSA.  

4.3.2 Patients, materials and methods 

We included data from 85 UK patients with pathologically confirmed MSA from the QSBB 

collected between 1987 and 2009 and 352 population matched controls from the British 

1958 Birth Cohort. All our MSA patients were of European descent.  

Genotyping data was obtained by extracting the data from the custom-built Immunochip. 

Data was extracted using the software Genome studio and missing data was completed by 

Sanger sequencing.  

The data obtained in this UK cohort was merged with data from our collaborators in the 

Mayo clinic in Jacksonville (US series) and they performed the final analysis of the merged 

cohort of MSA patients and compared for association with controls.  

Logistic regression under a dominant model was used to test for association using the 

software R (version 2.14.0). To account for multiple testing a single step minP permutation 

adjustment was used after which p values ≤0.0044 (for the US series), ≤0.0054 (UK series), 

and ≤0.0047 (combined series) were considered statistically significant.  

4.3.3 Results 

Seventeen coding LRRK2 common variants with MAF≥5% were analysed in the combined 

series of UK and US patients (177 patients and 768 controls). The results are presented in 

Table 4-2. The variant p.M2397T presented a significant association (after adjustment for 

multiple testing) with a protective effect towards risk of MSA (OR 0.6 CI 0.43-0.84; p = 0.002) 



121 
 

Table 4-2: LRRK2 coding variants analysed for association in 177 definite MSA cases and 768 controls. 
Values in bold are significant. (From (284) (no permission needed).   

Variant Amino acid Position MA OR 95% CI p value  

rs10878245 L153L 38918058 T 0.99 (0.71, 1.39) 0.95 

rs7308720 N551K 38943967 G 0.88 (0.54, 1.42) 0.59 

rs10878307 I723V 38958256 G 1.05 (0.65, 1.69) 0.85 

rs7966550 L953L 38974962 C 0.68 (0.45, 1.02) 0.064 

rs7133914 R1398H 38989178 A 0.83 (0.51, 1.35) 0.45 

rs11175964 K1423K 38989254 A 0.89 (0.55, 1.45) 0.64 

rs35507033 R1514Q 38994045 A NA   1 

rs33958906 P1542S 38994128 T 0.88 (0.42, 1.83) 0.72 

rs1427263 G1624G 39000101 C 0.63 (0.45, 0.88) 0.006 

rs11176013 K1637K 39000140 A 0.8 (0.57, 1.14) 0.22 

rs35303786 M1646T 39000166 C 1.64 (0.63, 4.24) 0.31 

rs11564148 S1647T 39000168 A 0.83 (0.59, 1.15) 0.25 

rs10878371 G1819G 39002527 T 0.84 (0.60, 1.20) 0.34 

rs33995883 N2081D 39026953 G 0.15 (0.02, 1.08) 0.01 

rs10878405 E2108E 39028521 A 0.97 (0.70, 1.35) 0.87 

rs33962975 G2385G 39043597 G 1.36 (0.95, 1.94) 0.096 

rs3761863 M2397T 39044919 T 0.6 (0.43, 0.84) 0.002 

Ref: MA: Minor allele; OR: odds ratio; CI: confidence interval.  

4.3.4 Discussion 

In this investigation we found an association for MSA with the variant p.M2397T 

(rs3761863). This variant has not been previously associated with PD but in this large study 

we found it was associated with a protective effect on MSA risk. This is the first study to 

report a significant association of MSA with variants in LRRK2. More studies will be needed 

to replicate these findings in a larger cohort and across populations.  

The role of LRRK2 in MSA has been recently highlighted in view of the publication of a 

neuropathologically confirmed MSA case carrying p. Ile1371Val mutation in LRRK2. This 

variant is not significantly associated with PD in association studies but it was previously 

reported in 5 PD families(285).  

4.4 C9ORF72 

Statement of contribution: DNA of PSP samples were provided by Dr Rohan de Silva and the 

CBD cohort was provided by Dr Rohan de Silva and Dr Helen Ling. I collected MSA samples, I 

performed DNA extractions, RP-PCR, sizing-PCR experiments and data analysis. Dr James 

Polke performed the Southern blot.  
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4.4.1 Background 

Recently, a breakthrough in genetic research of neurodegenerative diseases has occurred. 

An intronic expansion in C9orf72 was discovered as a major cause of familial and sporadic 

ALS and frontotemporal dementia (FTD)(252,286). These cases exhibit TAR DNA-binding 

protein-43 (TDP-43) pathology.  

There is extensive evidence that supports the concept of pathological overlap between 

neurodegenerative disorders and up to 35% of these cases may exhibit signs consistent with 

PSP and CBS. In particular, they may present slowness of vertical saccades, parkinsonism, 

frontal dementia and abnormal DATSCANs(287–293).  

Screening  for the C9orf72 mutation in other neurodegenerative diseases has been 

performed, and expansions detected in patients with FTD-ALS and parkinsonism, clinical PD, 

CBS, clinical-PSP, clinical-OPCA and clinical DLB (289,294,295). The expansion has been also 

detected in few families with Alzheimer’s disease (AD) which in some cases exhibit AD 

pathology but in most of them could represent a clinical misdiagnosis of FTD(296–298). A 

large UK study showed an association of the C9orf72 expansion with AD, Huntington’s 

disease (HD)-like patients, and other neurodegenerative diseases despite a large frequency 

in controls(299). One expansion in PD was found in a pathological study in the UK but this 

case also exhibited TDP-43 pathology(300).  

MSA, PSP and CBD conform a group of diseases known as atypical parkinsonian disorders 

that present overlapping features, and therefore we thought it would be interesting to 

include samples with a diagnosis of PSP and CBD in this section of our project. 

Clinically, PSP patients present with postural instability with early falls, cognitive 

dysfunction and abnormalities of vertical gaze(293). Pathologically, PSP cases exhibit 

neuronal loss, astrocytosis and neurofibrillary tangles in basal ganglia and brainstem nuclei. 

The tau deposition is predominantly 4-repeat tau into both neuronal and glial inclusions. 

The CBS phenotype consists of asymmetric parkinsonism, cortical signs (apraxia, cortical 

sensory loss, alien limb), and dystonia and myoclonus(293). CBD cases are characterized by 

cortical and striatal 4 repeat tau-positive neuronal and glial lesions, especially astrocytic 
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plaques and thread-like lesions in both white and grey matter, with neuronal loss in cortical 

regions and in the substantia nigra(301).  

4.4.2  Subjects material and methods 

We screened for the C9orf72 hexanucleotide repeat expansion in 96 pathologically 

confirmed MSA patients. We included 177 PSP, 18 CBD, 37 CBS and 22 clinical PSP samples 

as comparison groups(302). 

To provide a qualitative assessment of the presence of an expanded hexanucleotide repeat 

of GGGGCC in C9orf72, we performed a repeat-primed-PCR reaction and fragment analysis 

as described in the methods chapter. In cases where we detected an expanded allele and 

cases where we couldn’t detect both normal alleles we further characterized the expansion 

with a sizing PCR reaction. Genotyping primers using one fluorescently labelled primer were 

the forward from the repeat-primed PCR reaction and reverse genotyping primer that was 

previously published and are presented In the Appendix(252).  

PCR products were analysed by fragment length analysis on an automated ABI3730 DNA-

analyser and allele identification and scoring was accomplished using GeneMapper v3.7 

software (Applied Biosystems) as described in the methods.  

Haplotype analysis to determine the presence of the expansion-associated risk haplotype 

was performed by Sanger sequencing of the rs3849942 marker(303).   

Statistical analysis was performed with Open Source Epidemiologic Statistics for Public 

Health software (http://www.openepi.com/Menu/OE_Menu.htm).  

4.4.3 Results 

We detected an expansion in 3 cases fulfilling clinical criteria of CBS. There are a significant 

difference when compared to published data on controls(304) (p < 0,001).  These results 

can be found in Table 4-3. Interestingly we also found an expansion of 27 repeats in another 

case presenting with atypical parkinsonism. An example of a RP-PCR and a sizing PCR of a 

heterozygous expanded case is provided in Figure 4-2.  

http://www.openepi.com/Menu/OE_Menu.htm
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Haplotype analysis performed in the three expanded patients as well as the 27 repeat 

patient detected one A allele of the SNP rs3849942 in all of them and confirmed they are 

all carriers of the associated risk haplotype(303).   

The clinical characteristics of the expansion carriers are described in  

Table 4-4 and the family tree of the patient with an intermediate repeat of 27 is shown in 

Figure 4-1.  

Table 4-3: Results of C9orf72 expansion screening in atypical parkinsonism. Reproduced from (305) 
under a Creative Commons Attribution License. 

Diagnosis Number of samples Expanded 

MSA (pathologically confirmed) 96 0 

CBD (pathologically confirmed) 18 0 

PSP (pathologically confirmed) 177 0 

CBS (clinical) 37 3 (p < 0.001*) 

PSP (clinical) 22 1 (27 repeats) 

British controls (clinical) 7579 11 

Ref: CBD, corticobasal degeneration; CBS, corticobasal syndrome; MSA, multiple system atrophy; PSP, 
progressive supranuclear palsy. * Fisher exact test comparing our CBS cohort with previously published 
British controls 

 

Table 4-4: Clinical characteristics of the three cases with the C9orf repeat expansion and of the case 
with an intermediate repeat. Reproduced from (305) under a Creative Commons Attribution License. 

Age of 
onset, 
gender 

Repeat Initial 
presentation 

Previous 
psychiatric 
features 

Other clinical 
features 

Working 
diagnosis 

CBD variant 
(consensus 
criteria) 

Family 
history 

Imaging 

51, F Expanded Falls and 
personality 
change 

Depression Akinetic-rigid 
syndrome with 
cognitive decline 
and asymmetrical 
upper-motor 
neuron signs.  
Progressed with 
minimal L-dopa 
response and 
atrophy on MRI 
brain scan. 
 

CBS Probable-
CBS 

Father 
with 
dementia 
in his 
early 
fifties 

MRI: generalized 
volume loss.  
DATSCAN: bilateral 
severe deficit of 
presynaptic 
dopamine 
transporter in the 
basal ganglia. 

44, F Expanded Parkinsonism 
after head 
trauma 

No Atypical PD with 
cognitive decline 
after 9 years, 
asymmetrical limb 
manifestations, 
falls, hypometric 
saccades and 
frontal liberation 
signs, dysphagia 
and dysarthria 
 

CBS Probable-
CBS 

Mother 
diagnosed 
with Pick's 
disease 

MRI: atrophy.   
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Ref: CBS, corticobasal syndrome; PSP, progressive supranuclear palsy.  

 

 

Figure 4-1: Family tree of the patient (II-3, arrow) with a 27-repeat allele. The patient’s father (I-1) and 
sister (II-1) were diagnosed with dementia, and the patient’s mother (I-2) was diagnosed with 
Parkinson’s disease. Reproduced from (305) under a Creative Commons Attribution License. 

 

 

60, M Expanded Parkinsonism 
(hypomimia, 
shuffling gait 
and reduced 
arm swing) 

Possibly Tremor, dysphagia 
and dysarthria, 
impaired memory 
and reduced 
concentration, 
staring expression 
with frontalis over-
activity.  
Asymmetrical 
parkinsonism 
poorly responsive 
to L-dopa. 
  

CBS Probable-
CBS 
(Frontal-
behavioural-
spatial 
syndrome) 

No MRI: generalized 
volume loss with 
marked 
involvement of the 
frontal and 
temporal lobes 
more severe on the 
left.   

74, F Intermediate 
allele of 27 

repeats 

Writing 
difficulties 
and falls 

No Parkinsonism, 
restriction of 
vertical gaze, 
cognitive decline, 
echolalia, brisk 
reflexes, dysphagia 

Clinical-
PSP 

Probable 
PSP 

See 
pedigree 

Figure 
4-1.  

MRI: the superior 
cerebellar 
peduncles were 
found slender, 
general atrophy. 
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Figure 4-2: This figure illustrates fragment analysis example of a heterozygous carrier of the C9orf 
repeat expansion. Top graph: Repeat-primed PCR. Bottom graph: Sizing PCR. Reproduced from (305) 
under a Creative Commons Attribution License. 

 

 

 

Figure 4-3: Southern blot (with BsU36I restriction digest) showing 2 of the expanded CBS cases. 
Abbreviations: C, control no expansion; CBS, corticobasal syndrome; E, expanded. Reproduced from 
(305) under a Creative Commons Attribution License. 
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Figure 4-4: Fig. 2. Top figure: RP-PCR showing the case with heterozygous 27 repeats on 1 allele, and 
5 repeats on the other allele. Bottom figure: Southern blot confirmation of different repeat sizes from 
20 to 27 showing the Southern blot appearance of different fragments. The number of repeats was 
also confirmed by fluorescent PCR of the C9orf72 repeat and fragment analysis. Reproduced from (305) 
under a Creative Commons Attribution License. 

 

Ref: PCR, polymerase chain reaction; RP-PCR, repeat-primed polymerase chain reaction 

4.4.4 Discussion 

Cases with 20-22 repeats were reported in FTD without clinical differences with expanded 

cases and proved segregation(306). Repeats between 7-24 have been shown to strongly 

correlate with the C9ORF72 expansion risk haplotype. Gene expression studies suggested 

that the intermediate repeats result in a significantly reduced promoter activity(307). The 

C9ORF72 intermediate repeat copies were found to be a significant risk factor for clinical-

PD in a Spanish study(308). Four cases with intermediate repeats (21,23,24,38) were found 

in a USA study of 781 PD cases without segregation in the latter(309); and 4 out of 289 in a 

Canadian study(298). No segregation of 2 intermediate repeats in 2 AD families were 

described in the same study. No segregation in 1 homozygous PD case and no repeat 

instability over 2 generations in an Australian study(310), and also no repeat instability in a 
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Belgian study(307). A possible risk factor over many generations has been 

proposed(307,310). In contrast, intermediate repeat instability in controls over 3 

generations was found in a UK study(299).   

A recent interesting report described the C9orf72 repeat expansion in a British-Canadian 

family in whom the father who is 89 years ols and carries a 70-repeat allele is not affected 

by the disease and four children with a larger expansion ~1750 are affected by ALS. 

Epigenetic studies showed that the offspring expansions where methylated and the fathers 

were not.RNA foci were detected in the offspring but again not in the father. This interesting 

study denotes the complexity of the different mechanisms for disease manifestation that 

may involve multiple mechanisms related and not related to the number of repeats(311).  

The significance of short/intermediate repeats is still unknown. Unfortunately, we are 

unable to investigate segregation in this family because of lack of DNA in deceased patients, 

but we could confirm the presence of the risk haplotype in this patient.  

To sum up, the C9ORF72 expansion can be detected in clinical cases presenting with 

parkinsonian syndromes that may have overlapping features with the FTD-ALS spectrum. 

These data show a significant association when compared to controls. We failed to detect 

an expansion in pathologically proven cases with MSA, PSP or CBD, and this confirms that 

C9ORF72 is not related to α-synuclein or tau pathology and the significance of intermediate 

repeats is under study. Although the common European risk haplotype(303) is not always 

present in expansion carriers(312), we think it is supporting the role that an intermediate 

repeat  presents in our clinical PSP case.  

4.5 COQ2  

4.5.1 Background 

In this chapter I investigated the role of COQ2 variants in MSA samples of European origin. 

I first began by analysing the paper describing the association between COQ2 variants and 

the risk of MSA(185), then went on to sequence the gene in all our pathologically confirmed 
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MSA cases and compared them to controls and analysed GWAS data for association. Finally, 

I measured Coenzyme Q10 levels in the brain as the final product of the pathway.  

4.5.2 COQ2 paper analysis  

The original paper has been described in chapter2.2.6.2. Here, I will comment on some 

considerations I think are important when reading this interesting paper.  

First of all, the data shown by the Japanese paper presents an association of COQ2 variants 

and MSA risk, and functional work done in rare variants in patients with familial MSA of 

which only 1 family was pathologically confirmed. Secondly, the association of the 

p.V393AV393A variant with increased risk of MSA was significant in Japanese patients but 

was not replicated in other populations. They only show rare variants detected in Europeans 

but not significant results when compared to controls(185). Also, they filtered against 

dbSNP130 which contains benign polymorphism data as well as disease-causing mutations. 

In this way, it is possible that a relevant genomic change could have been filtered out.  

4.5.2.1 COQ2 transcripts 

The reference genome used was NCBI36 and for COQ2 analysis they focused in transcript 

ENST00000311461 that is not the longest coding transcript. This particular one considers 

the first 136 base pairs of exon 1 as non-coding and therefore their analysis skips a large 

and potentially important section of the gene. The protein encoded by this transcript is 371 

amino acid long, whereas the longest one contains 421 amino acids (ENST00000311469).  

Forsgren et al(313) compared the functional activity of different human CoQ2 isoforms by 

using a yeast model with disrupted endogenous COQ2 gene. Their results suggest that the 

first 50 amino acids are required for a functional active human CoQ2 protein. 

In order to understand if the first 50 amino acids play a role in the human brain, I analysed 

brain expression data from normal subjects obtained from a publicly available database,  

BRAINEAC(314). These data are presented in Figure 4-5 and Figure 4-6. Figure 4-5 shows the 

expression of COQ2 from a probe located within the first portion of exon 1, a part that is 

not included in the transcript ENST00000311461 used by the Japanese group. Figure 4-6 

presents the mean expression levels of COQ2 in different brain regions. These data confirm 
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that all 7 exons of COQ2, including the 5’ ending of exon 1 are expressed in human brain 

tissue.   

 

Figure 4-5: Expression levels of COQ2 corresponding to the Affymetrix probe located in the 5’ end of 
exon 1. Data publicly available obtained from BRAINEAC(314).   

Ref: WHMT: white mater; SNIG: substatia nigra; PUTM: putamen; THAL: thalamus; OCTX: occipital cortex; FCTX: 
frontal cortex; HIPP: hippocampus; MEDU: medulla; TC TX: temporal cortex; CRBL: cerebellum. 
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Figure 4-6: Mean expression levels of COQ2 in different regions of control brains. Data publicly 
available obtained from BRAINEAC(314). 

Ref: WHMT: white mater; SNIG: substatia nigra; PUTM: putamen; THAL: thalamus; OCTX: occipital cortex; FCTX: 
frontal cortex; HIPP: hippocampus; MEDU: medulla; TC TX: temporal cortex; CRBL: cerebellum. 

 

4.5.2.2 Linkage region genomic location 

The proposed region of genetic linkage, is very close to the SNCA locus. Although we know 

that at least in Family 1 this gene was sequenced before(315), we do not know if they 

excluded SNCA CNVs in these families though. Using the online software genome browser, 

I highlighted in Figure 4-7 the SNCA gene location lying only 1.2 Mbase away from the 

linkage region and this is very close to COQ2. We therefore think it would be important to 

exclude CNVs in SNCA in this family.  
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Figure 4-7: Distance between the linkage region in chromosome 4 and the SNCA gene, and also 
between COQ2 and SNCA. Green lines highlight the beginning of COQ2 and the end of SNCA and the 
rex box shows the limits of the linkage region. 

 

4.5.3 Sequencing COQ2 in definite MSA cases of Caucasian ancestry 

Statement of contribution: Samples were collected by Dr Henry Houlden, Dr Anna Sailer and 

myself. All experiments and data analysis were performed by me with supervision from Dr 

Conceição Bettencourt.  The map of collaborating brain banks was created by myself and 

edited by the graphic designer Sol Gonzalez Clement.   

4.5.3.1 Subjects materials and methods 

The first approach of our replication was to Sanger sequence the entire coding region 

(including splice sites) of COQ2 in our definite MSA cases. All samples were of European 

ancestry confirmed by genome-wide genotyping(168) or exome sequencing data.  

We included a total of 305 pathologically confirmed MSA samples from different brain 

banks around the world (see map on Figure 4-8) and 264 controls from the Wellcome Trust 

1958 British birth cohort as a comparison group.  

 

Chr$ Start$ Stop$ Gene$Name$ Transcript$Name$ CDS$Start$ CDS$Stop$ Exon$Count$

4$ 72795000$ 89616000$ LINKAGE$REGION$

4$ 84404001$ 84425091$ COQ2$ NM_015697$ 84404375$ 84425091$ 7$

4$ 90864273$ 90977150$ SNCA$ NM_001146054$ 90866801$ 90975841$ 6$

REF_NCBI36$$
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Figure 4-8: Collaborating teams and brain banks that contributed samples for this project. Reproduced 
with permission from (163). Copyright Massachusetts Medical Society. 

 

COQ2 consists of 7 coding exons. We utilized the reference sequence from NCBI37 and 

Ensemble transcript ENST00000311469 was selected because it provides the largest 

coverage of the coding region of this gene which is shown to be expressed in human brain 
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tissue and encodes for the longest functional protein isoform (see previous section). Sanger 

sequencing was performed as described in the methods chapter and primers are provided 

in the Appendix.  

The sequences were analysed for base pair changes and insertions and deletions in the 

coding regions and flanking intronic regions of COQ2. Variant frequency was compared for 

association to our sequenced controls as well as data from online databases. Of note, we 

always selected data from European populations during the analysis. 

For statistical analysis, we utilized an online open source software 

(http://www.openepi.com/) and we used the two by two table to compare allele 

frequencies. We used mid P exact test because in many cases genotype count was under 5. 

We also run the analysis in SPSS but this is not presented here because there was no 

difference in the results with the 2 software.  

4.5.3.2 Results 

Five samples had to be excluded because of non-European ancestry and 1 sample because 

it had a different diagnosis (PSP). One sample failed for exons 1,2,3,4 and we believe this is 

secondary to bad DNA quality. And another sample was excluded because of failure 

sequencing exon 1. Exon 1 was a particularly difficult GC rich exon that required various 

different sets of primers and PCR conditions. The PCR of the sample excluded was repeated 

more than 10 times and with different protocols. Although our first thought is that this 

failure is probably due to these difficulties with the amplification of exon 1, one cannot 

exclude a CNV with this method. This sample was sent to us by Dr Owen Ross from the Mayo 

clinic in Jacksonville.  

The eight coding variants detected are listed in Table 4-5.  

We failed to detect any variants that were reported in the Japanese population of MSA 

cases and controls. We found one variant, p.S57T, that in the paper(185) was reported in a 

European MSA case. This variant was present in our study in one MSA case and one control.  

We identified a COQ2 nonsense variant that was present at a higher frequency in controls 

than in MSA (p.R22X, 24 control vs 9 MSA alleles, p<0.0024) and two other variants which 

http://www.openepi.com/
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were also found at a significantly higher frequency in controls (rs6818847 and rs6535454). 

No association between the synonymous COQ2 SNPs rs183012002 and rs1129617 was 

observed. Four heterozygous rare coding variants were detected: the p.S57T mutation 

reported by Tsuji and colleagues(185) was present in an MSA case and a control, the p.P68S 

variant was present in one MSA case as was rs121918231, and the rare SNP rs183012002 

was identified in 2 MSA cases and 6 controls.  

To increase the power of the study we compared MSA versus data from the European 

section of the 1000 genomes project (EUR) and we also merged our WT control data with 

the European data of the 1000 genomes project. There was no significant result under this 

analysis and values are shown in Table 4-6.  

We tested control data sets for Hardy–Weinberg equilibrium and these results are shown 

in Table 4-7. It is of note that when any individual genotype is <5 this method is not accurate. 

rs6818847 and rs1129617 are not in equilibrium in the WT controls. Also, rs6818847 is not 

in equilibrium in the EVS data. All SNPs are in equilibrium in the 1000genomes project which 

makes those data the most reliable. rs183012002, rs112033303, rs121918231 and variants 

p.S57T and p.P68S have a genotype count under 5.  
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Table 4-5: COQ2 coding variants compared to the WT controls. Results in bold are considered 
statistically significant. Reproduced with permission from (163). Copyright Massachusetts Medical 
Society. 

        

Variant Function Status n Alleles 
Allele 

frequencies 
OR 

(maf MSA vs maf WT) 
P value* 

rs183012002, 
p.R10R 

synonymous 

MSA_cases 299 
G 0.997 

0.29 0.13 
A 0.003 

WT_controls 261 
G 0.989 

A 0.011 

rs112033303, 
p.R22X 

nonsense 

MSA_cases 299 
A 0.985 

0.32 
0.002 

 

T 0.015 

WT_controls 261 
A 0.954 

T 0.046 

rs6818847, p.V66L missense 

MSA_cases 299 
T 0.696 

0.75 0.02 
G 0.304 

WT_controls 261 
T 0.630 

G 0.370 

p.S107T missense 

MSA_cases 299 
G 0.998 

0.87 0.93 
C 0.002 

WT_controls 261 
G 0.998 

C 0.002 

p.P118S missense 

MSA_cases 299 
C 0.998 

N/A N/A 
T 0.002 

WT_controls 261 
C 1 

T 0 

rs121918231±, 
p.R197H 

missense 

MSA_cases 299 
G 0.998 

N/A N/A 
A 0.002 

WT_controls 262 
G 1 

A 0 

rs6535454, 
p.D298D 

synonymous 

MSA_cases 299 
C 0.846 

0.73 0.02 
T 0.309 

WT_controls 262 
C 0.671 

T 0.337 

rs1129617, 
p.S330S 

synonymous 

MSA_cases 299 
C 0.741 

0.8 0.09 
T 0.259 

WT_controls 262 
C 0.695 

T 0.305 

Ref: Minor allele frequency (MAF), 1000 genomes project (1000g), Wellcome trust controls from the British 1958 
cohort (WT), odds ratio (OR), not available (NA). *p values are calculated with 2 tailed mi d P exact test. 
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Table 4-6: COQ2 coding variants compared to the 1000 genomes project data merged and unmerged 
to the WT controls. No significant associations were detected.  

Variant Function MAF_MSA MAF_WT MAF 1000g 

MAF_1000g plus 

WT 

OR_MSA_vs_

1000g p value* 

OR_MSA_vs_

1000g plus 

WT p value* 

rs183012002 synonymous 0.0033 0.0115 0.0040 0.0070 0.8445 0.8792 0.4739 0.3567 

rs112033303 nonsense 0.0151 0.0460 0.0185 0.0297 0.8120 0.6410 0.4994 0.0539 

rs6818847 missense 0.3043 0.3697 0.3113 0.3352 0.9677 0.7828 0.8679 0.1843 

c.G170C, p.S57T missense 0.0017 0.0019 unreported unreported N/A N/A N/A N/A 

c.C202T, p.P68S missense 0.0017 0.0000 unreported unreported N/A N/A N/A N/A 

rs121918231 missense 0.0017 0.0000 unreported unreported N/A N/A N/A N/A 

rs6535454 synonymous 0.3089 0.3373 0.2652 0.2942 1.0120 0.9206 0.8804 0.2516 

rs1129617 synonymous 0.2592 0.3053 0.2533 0.2746 1.0310 0.8043 0.9244 0.4859 

Ref: Minor allele frequency (MAF), 1000 genomes project (1000g), Wellcome trust controls from the British 1958 
cohort (WT), odds ratio (OR), not available (NA). *p values are calculated with 2 tailed mid P exact test. 

 

 

Table 4-7: Testing for Hardy-Weimberg equilibrium. 

  

n < 5 

WT 1000g 

x2 p x2 p 

rs183012002 yes 0.0353 0.8510 0.0060 0.9383 

rs112033303 yes 0.6062 0.4362 0.1342 0.7141 

rs6818847 no 14.4702 0.0001 0.8023 0.3704 

c.G170C, p.S57T yes 0.0010 0.9753 N/A N/A 

c.C202T, p.P68S yes N/A N/A N/A N/A 

rs121918231 yes N/A N/A N/A N/A 

rs6535454 no 3.5990 0.0578 0.1891 0.6636 

rs1129617 no 4.8648 0.0274 0.3958 0.5292 
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4.5.3.3 Discussion 

None of the detected variants in our replication study present with an increased risk of MSA. 

Overall, we think the results are variable when compared to different controls (WT and 1000 

genomes project) because of the fact that our controls are not completely ethnically 

matched. Also, there is possible relatedness within the 1958 Wellcome Trust cohort 

because they are all subjects born in the Cambridgeshire region in the UK. This however, 

doesn’t change our thoughts or interpretation of the data as explained in the following 

paragraph.  

We believe it is unlikely that a gene that is suggested to increase risk of MSA by loss of 

function(185) will present a frequent nonsense variant (rs112033303) in the beginning of 

the first exon that would be “protective” for MSA and so common among the WT cohort 

with a MAF of 0.046.  More recently, this variant was also found in other populations in the 

Exac database at a total MAF of 0.0299 (European maf 0.05521 including 8 homozygotes). 

Furthermore, this variant is in position +64 in exon 1 with transcript ENST00000311469, but 

would be in the 5’UTR according to the reference the Japanese team used in their paper 

(ENST00000311461), so that section of the gene was not analysed in that study.  

In Table 4-8 I present all the replication studies performed in MSA to investigate the role of 

CoQ2 variants. In short, no Caucasian association has been detected (including the largest 

pathologically confirmed cohort which is the work presented in this chapter) and the 

associations found in Asians are all from candidate gene studies and in MSA-C patients. It 

could be possible that there are population specific differences that are contributing to 

these results so a well powered population corrected study is warranted to validate these 

data. 
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Table 4-8 Replication studies performed on the relation of MSA and COQ2 variants. 

Ethnicity Sample Increased risk of MSA Source 

Japanese 

Sequencing exons 1,2,6,7 

133 clinical MSA, 200 

controls 

p.L25V associated with MSA (p=0.04, OR 3.54) (MSAC 

driven) 

Sun et al, Neurol 

Genet, 2016(155) 

East Asians (Han Chinese) 

Selected variants 

And meta-analysis 

82 probable MSA, 484 

controls 

p.V393A associated with MSA (OR 4.17, p=0.004) (MSAC 

driven) 

Meta-analysis: p.V393A associated with  MSA (OR 2.05, 

p=0.002) 

Zhao et al, Neurol 

Sci, 2016(158) 

Chinese 

Sequencing all exons 153 MSAC, 798 controls 

p.V393A associated with MSA (OR 3.1, p<0.001) (MSAC 

driven) 

Lin et al, Mov 

disord, 2015(316) 

Ethnic Chinese 

Sequencing all exons 

312 clinical MSA, 100 

controls Negative 

Chen et al, NBA, 

2015(158) 

North American 

(European) 

Sequencing all exons and 

CNV analysis 

97 definite MSA 58 clinical 

MSA, 300 controls Negative 

Ogaki et al. 

Molecular 

Neurodegeneration 

2014(159) 

Chinese 

Sequencing all exons 116 MSAC, 192 controls Negative 

Wen et al, CNS 

Neuroscience & 

Therapeutics, 

2016(160) 

Korean 

Sequencing all exons 299 MSA, 365 controls Negative 

Jeon et al, nejm 

2014(161) 
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4.5.4 Coenzyme levels Q10 in brain tissue 

Statement of contribution to this project: Brain samples were collected by myself. Brain 

experiments were performed by Dr Iain Hargreaves and me. Data analysis was performed 

by myself and supervised by Dr Conceição Bettencourt.  

4.5.4.1 Background 

The mitochondrial complex I is dysfunctional in PD and PSP and CoQ10 acts as a cofactor in 

this complex(317,318). There is increasing evidence that impairment of mitochondrial 

function and oxidative damage are contributing factors to the pathophysiology of 

PD(319,320) and PSP(321). A reduced level of CoQ10 in cerebral cortex of PD brains has 

been reported(319). A study of antioxidant markers in PD cases found decreased CoQ10 

levels and CoQ10 was proposed as a biomarker of antioxidant status in PD(320). A small 

study revealed reduced levels of CoQ10 in serum of DLB patients(322).  

Many attempts have been made and are underway to assess CoQ10 as a therapeutic 

approach in these groups of patients.     

A clinical trial in 2002 showed promising results with CoQ10 in patients with PD. There was 

reduced disability especially at higher doses (1200mg)(323), and higher doses  of 2400mg 

European 

Genotyped selected 

variants 

788 clinical MSA, 600 

controls Negative 

Sharma et al, nejm 

2014(162) 

UK (European) 

Sequencing all exons 

300 definite MSA, 262 

controls 

p.R22X (OR 0.32, p = 0.002); p.V66L (OR 0.75, p = 0.02); 

p.D298D (OR 0.73. p = 0.02) all more frequent in controls 

than in MSA. 

Schottlaender et 

al., nejm 2014(163) 
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proved to be safe(324). A later trial of symptomatic improvement with CoQ10 in PD in 132 

patients was completed in 2007 and showed negative results(325). Finally, a larger trial that 

recruited 600 patients and tested 1200 mg or 2400 mg of CoQ10 vs placebo, was terminated 

after 16 months and did not achieve significant benefits(326).  

A short trial of CoQ10 in PSP (5mg/kg) vs placebo recruited 20 patients and showed an 

improved cerebral energy metabolism and a slight but significant improvement in the PSP 

rating scale and the Frontal Assessment Battery(317). A phase 3 trial of CoQ10 during 12 

months in PSP is ongoing (NCT00382824) had negative results.  

Finally, by analysing a small sample group, the authors of the paper proposing COQ2 as a 

cause of familial MSA and a risk factor of sporadic MSA suggested decreased levels of CoQ10 

in brain tissue of MSA cases (n = 3) in comparison with controls (n = 3)(185). In view of this 

result, we decided to determine the level of CoQ10 in brain tissue from a large cohort of 

pathologically confirmed MSA cases and compare these levels to those of normal controls 

as well as to patients with other neurodegenerative movement disorders as comparison 

groups.  

4.5.4.2 Subjects, materials and methods 

We analysed pathologically confirmed MSA cases (n=20) and pathologically normal elderly 

controls (n=37). With the purpose of comparing to other α-synucleinopathies we also 

analysed DLB cases (n=20) and IPD cases (n=7) and to compare to a tauopathy we used CBD 

cases (n=15). Finally, to compare to other degenerative diseases that affect the cerebellum 

we decided to include cerebellar ataxia (CRB_ATX) cases (n=18). A description of the cases 

is given in Table 4-9. We used flash frozen brain tissue from these cases and we measured 

CoQ10 in the cerebellum (cerebellar cortex) and frontal cortex (Brodmann areas 8 or 9). 

Cerebellum was selected as a severely affected region in MSA, particularly in OPCA and 

mixed pathological subtypes, and frontal cortex as an overall less affected brain region in 

this disease. Basal ganglia regions, which would be more severely affected in MSA-SND 

pathological subtype, were not available in most cases and were therefore excluded. All 

MSA cases included in this study have been sequenced for the entire coding region of the 
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COQ2 gene, with no COQ2 variants associated with increased risk of MSA being found in the 

entire cohort (see chapter 4.5.3). 

The method for CoQ10 measurement has been performed as described in the methods 

section.  

Data were analysed with SPSS (v.22). For both cerebellar and frontal cortex tissue, one-way 

analysis of variance was performed to check for omnibus significant differences in the 

CoQ10 levels between the main diagnosis groups (MSA, CRB_ATX, CBD, DLB, IPD, and 

controls). A post hoc Tukey HSD test was then used for pairwise comparisons. To reach a 

normal distribution of the CoQ10 levels, this variable was log-transformed prior to the 

abovementioned analyses. These analyses were also performed considering subgroups for 

MSA (MSA-OPCA, MSA-Mix and MSA-SND) and CRB_ATX (SCA, FRDA and other ataxias). 

Additionally, multinomial logistic regression was used to infer the magnitude of the 

association between the outcome (diagnosis) and levels of CoQ10, corrected for potential 

confounding factors. Controls were used as the reference group, except for comparisons 

between disease groups only; in this case MSA was taken as the reference. All models were 

adjusted for age (continuous), gender (binomial), and post-mortem delay (continuous). For 

all the analyses performed, a p-value <0.05 was considered significant.   

4.5.4.3 Results 

We measured the CoQ10 levels in brain tissue from the cerebellum and the frontal cortex 

of MSA, CBD, DLB, IPD, CRB_ATX, and elderly normal controls. Table 4-10 and Figure 4-9 

show a summary of the results. The analysis of variance revealed an omnibus significant 

difference between groups for the CoQ10 levels in the cerebellum [F(5,111) = 9.434, P < 

0.001], but not in the frontal cortex [F(4,88) = 1.976, NS]. Post hoc pairwise comparisons 

revealed that this difference is due to lower mean cerebellar CoQ10 levels in MSA when 

compared to all other diagnosis groups (Tukey test, P ≤ 0.002). The levels of CoQ10 were 

also mildly reduced in CRB_ATX cases compared to controls (Table 4-10 and Figure 4-9), but 

this did not reach statistical significance. 
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Table 4-9: Characterization of the samples included in the CoQ10 study. Reproduced from (327) undet eh Creative 

Commons Attribution License.  

Diagnosis groups MSA all MSA-OPCA MSA-MIX 
 

MSA-SND CBD DLB IPD CRB_ATXa Controls 

Demographic features    
 

      

Number of cases 20 9 5 
 

6 15 20 7 18 37 

Cases with CRBL available 20 9 5 
 

6 15 20 7 18 37 

Cases with FCTX available 20 9 5 
 

6 0 20 7 18 28 

Gender (% of female) 70% 56% 80% 
 

83% 40% 25% 14% 50% 46% 

Mean age at death, years 
(range) 

64.55 
(51; 74) 64.1 (57; 72) 65.4 (57; 73) 

 

64.5 (51; 74) 
69.60 
(48; 90) 

77.72 
(66; 92) 

77.86 
(65; 84) 59.89 (36; 88) 81.32 (63; 102) 

Mean post-mortem delay, 
hours 53.44 44.96 67.86 

 

54.14 53.43 21.23 54.89 33.25 15.66 

Unadjusted levels of 
CoQ10 (pmol/mg)    

 

      

Mean CRBL (±SD) 
169.30* 
(±49.71) 

150.52** 
(±29.12) 

163.44** 
(±73.40) 

 202.33 
(±41.79) 

271.18 
(±76.21) 

288.37 
(±133.72) 

262.47 
(±28.84) 

233.08 
(±46.97) 241.87 (±57.70) 

Mean FCTX (±SD) 
260.44 
(±70.22) 

264.87 
(±75.19) 

283.98 
(±88.91) 

 234.17 
(±44.12) - 

256.94 
(±75.20) 

276.02 
(±71.37) 

330.12 
(±96.14) 

259.39 
(±107.09) 

Ref: MSA = multiple system atrophy; MSA-OPCA = MSA olivopontocerebellar atrophy; MSA-MIX= MSA mixed type; 
MSA-SND = MSA striatonigral degeneration; CBD = corticobasal degeneration; DLB = dementia with Lewy bodies; 
IPD = idiopathic Parkinson’s disease; CRB_ATX = cerebellar ataxia [includes: SCA = spinocerebellar ataxia (n = 9); 
FRDA = Friedreich's ataxia (n = 5); other ataxias (miscellaneous) (n = 4)]; CRBL = cerebellar cortex; FCTX = frontal 
cortex; SD = standard deviation. 

Note: *MSA presents significantly lower cerebellar CoQ10 levels when compared to all other diagnosis groups 
(Tukey test, p ≤ 0.002);**when dividing by disease subgroups, only MSA-OPCA and MSA-Mix show significantly 
lower levels than controls, CBD, DLB, FRDAa, and IPD (Tukey test, p ≤ 0.02); no other significant differences were 
observed between groups for CoQ10 levels.   
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Table 4-10: Multinomial logistic regression estimates for the association between different diagnosis groups and 
CoQ10 levels in human brain tissue. Note: * and bold highlight significant values (p<0.05). All models were adjusted 
for age, gender, and post-mortem delay. Reproduced from (327) undet eh Creative Commons Attribution License. 

A) All disease groups versus controls in the Cerebellum tissue 

Diagnosis OR (95% CI) p value 

MSA 0.97 (0.95-0.99) 0.001* 

CBD 1.01 (1.00-1.02) 0.223 

DLB 1.01 (1.00-1.02) 0.058 

IPD 1.01 (1.00-1.02) 0.405 

CRB_ATX 1.00 (0.99-1.01) 0.935 

B) MSA and CRB_ATX subdivided into their respective subtypes versus controls in the Cerebellum tissue 

Diagnosis OR (95% CI) p value 

MSA_SND 0.98 (0.96-1.01) 0.128 

MSA_Mixed 0.96 (0.93-0.99) 0.005* 

MSA_OPCA 0.95 (0.92-0.98) 0.001* 

SCA 0.99 (0.97-1.01) 0.147 

FRDA 1.01 (1.00-1.03) 0.062 

other_ataxias 1.00 (0.97-1.02) 0.885 

C) All other degenerative diseases versus MSA in the Cerebellum tissue 

Diagnosis OR (95% CI) p value 

CBD 1.04 (1.02-1.06) <0.001* 

DLB 1.04 (1.02-1.06) <0.001* 

IPD 1.04 (1.02-1.06) <0.001* 

CRB_ATX 1.03 (1.01-1.05) 0.001* 
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D) All disease groups versus controls in the Frontal cortex tissue 

Diagnosis OR (95% CI) p value 

MSA 1.00 (1.00-1.01) 0.846 

DLB 1.00 (1.00-1.01) 0.792 

IPD 1.00 (1.00-1.01) 0.543 

CRB_ATX 1.01 (1.00-1.01) 0.123 

Ref: MSA = multiple system atrophy; MSA_SND = MSA striatonigral degeneration; MSA_mixed = MSA mixed; 
MSA_OPCA = MSA olivopontocerebellar atrophy; CBD = corticobasal degeneration; DLB = dementia with Lewy 
bodies; IPD = idiopathic Parkinson’s disease; CRB_ATX = cerebellar ataxia; SCA = spinocerebellar ataxia; FRDA = 
Friedreich’s ataxia; other_ataxias = other ataxias of miscellaneous origin; OR = odds ratio; 95% CI = 95% confidence 
interval. 
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Figure 4-9: A: Boxplot presenting CoQ10 levels in the cerebellum of MSA, CBD, DLB, IPD, CRB_ATX and controls. B: 
Boxplot presenting CoQ10 levels in the cerebellum of MSA cases subdivided by pathological subtypes MSA_SND, 
MSA_mixed and MSA_OPCA, and also CRB_ATX cases subdivided into SCA, FRDA and other_ATX. C: Boxplot 
presenting CoQ10 levels in the frontal cortex of MSA, DLB, IPD, CRB_ATX and controls. D: Boxplot presenting CoQ10 
levels in the frontal cortex of MSA cases subdivided by pathological subtypes MSA_SND, MSA_mixed and 
MSA_OPCA, and also CRB_ATX cases subdivided into SCA, FRDA and other_ATX. Each dot represents one individual, 
and dots beyond the boxplot whiskers represent outliers. Reproduced from (327) undet eh Creative Commons 
Attribution License. 

Ref: MSA = multiple system atrophy; MSA_SND = MSA striatonigral degeneration; MSA_mixed = MSA mixed; 
MSA_OPCA = MSA olivopontocerebellar atrophy; CBD = corticobasal degeneration; DLB = dementia with Lewy 
bodies; IPD = idiopathic Parkinson’s disease; CRB_ATX = cerebellar ataxia; SCA = spinocerebellar ataxia; FRDA = 
Friedreich’s ataxia; other_ATX = other ataxias of miscellaneous origin.
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 Following adjustment for potential confounders, we found a significant association 

between the diagnosis and cerebellar CoQ10 levels (Table 4-10), with MSA presenting 3% 

less CoQ10 than controls (Table 4-10 A; OR=0.97, p = 0.001) and less 3-4% than other disease 

groups (DLB, IPD, CBD, and CRB_ATX; Table 4-10C; p ≤ 0.001). Given the findings in the 

cerebellum, we also subdivided MSA samples into the 3 pathological subtypes, and the 

CRB_ATX cases into spinocerebellar ataxia (SCA), Friedreich’s ataxia (FRDA) and 

miscellaneous, and compared these subgroups to controls (Table 4-9 and Table 4-10 B). 

Significantly lower levels of CoQ10 in the cerebellar tissue were detected only in OPCA 

(OR=0.95, p=0.001) and the mixed type (OR=0.96, p=0.005) MSA cases but not in SND cases 

when compared to controls (Table 4-10 and Figure 4-9 B). Within the cerebellar diseases 

(CRB_ATX), even though SCAs presented with the lowest levels of CoQ10, this reduction was 

still not statistically significant when compared to the control group (Table 4-10 B). In the 

frontal cortex samples, we found no association between the diagnosis and CoQ10 levels 

(Table 4-10 D, and Figure 4-9 C). 

4.5.4.4 Discussion 

In this section of my thesis, we assessed the CoQ10 levels in the cerebellar and frontal 

cortices from MSA patients and compared these results to elderly controls and samples 

from CBD, IPD, DLB and CRB_ATX.  

The unavailability of basal ganglia tissue as well as the relatively small sample size of some 

of the disease groups (e.g. IPD) was a limitation of this study for the interpretation of the 

results. We found, however, significantly decreased levels of CoQ10 in the cerebellar cortex 

of MSA patients, particularly of the OPCA and mixed pathological subtypes, when compared 

to controls and all the other disease groups. No differences were detected in the frontal 

cortex. Although the role of the COQ2 variants as a cause of MSA is yet to be replicated, the 

specific and significant decrease of CoQ10 in the cerebellar cortex of the MSA cohort, but 

not of cerebellar ataxias (CRB_ATX), suggests that a perturbation in the CoQ10 biosynthetic 

pathway might be involved in the pathogenesis of MSA. In both cerebellar ataxias and MSA-

OPCA and mixed Purkinje cell loss will be present. Our results suggest that although CoQ10 
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reduction may reflect Purkinje cell loss it is likely that other factors are contributing to the 

observed effect in MSA. More detailed studies would be required to correlate the degree 

of Purkinje cell depletion with CoQ10 levels and elucidate the cause and specificity of the 

CoQ10 biosynthesis impairment in MSA. 

CoQ10 related pathways have been previously related to neurodegenerative diseases. The 

mitochondrial respiratory chain complex I, of which CoQ10 is a cofactor(328,329), has been 

found to be dysfunctional in several neurodegenerative diseases, including IPD and 

progressive supranuclear palsy (PSP). There is increasing evidence that impairment of 

mitochondrial function and oxidative damage are contributing factors to the 

pathophysiology of those diseases (330–332). Furthermore, reduced levels of CoQ10 in 

cerebral cortex and in lymphocytes of IPD brains have been previously reported(330), and 

CoQ10 has been also proposed as a biomarker of the antioxidant status in PD(331). A recent 

study(333), which measured brain energy metabolism in the basal ganglia of clinically 

diagnosed MSA-P cases, is not in support of mitochondrial dysfunction playing a primary 

role in the pathophysiology of MSA. Unfortunately, that study did not include comparisons 

with the MSA-C clinical subtype to help understanding whether this could be relevant to 

MSA when the cerebellum is the main affected brain region.  

The treatment of MSA is limited and purely symptomatic. Whether the reduction in CoQ10 

is linked specifically to the aetiology of MSA or is related to the degree of 

neurodegeneration in the cerebellum of MSA patients is uncertain. However, our results 

suggest that it may be worth undertaking further studies to evaluate the efficacy of CoQ10 

and/or Idebenone in the treatment of MSA given that these quinones are reported to be 

safe and well tolerated in patients(334,335).         

The role of COQ2 variants in the aetiology of MSA remains debatable. However, our data 

suggests that a deficiency in cerebellar CoQ10 status may be involved in the 

pathophysiology of MSA. More work is required before we can elucidate whether this 

consists of a primary involvement as a cause of MSA or is a secondary finding due to 

neurodegeneration.   
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Aditionally an independent study replicated my findings by studying 12 MSA, 9 Parkinson 

disease (PD), 9 essential tremor (ET) patients, and 12 controls. This study revealed CoQ10 

deficiency in MSA cerebellum, which was associated with impaired CoQ biosynthesis and 

increased oxidative stress in the absence of COQ2 mutations and with a normal 

mitochondrial mass(336).  

 

5 CHAPTER 5: EXOME SEQUENCING IN MSA 

5.1 BACKGROUND 

Whole exome sequencing (WES) has proven to be an effective technology when applied to 

familial studies and also association studies of rare variants in other neurodegenerative 

disorders(256,257).   

More recently, it is also being utilized to investigate the missing heritability in complex 

diseases and in families that are not large enough for traditional linkage studies. WES is a 

novel tool useful for the study of rare variants associated with moderate risk of sporadic 

disease(257,258).  

The largest genomic study in MSA has failed to identify significant risk loci for this disease 

through a GWAS(168). Although still awaiting replication, NGS were used to identify COQ2 

variants associated to Japanese MSA(185). Given that the estimated heritability from 

common variation in MSA is 2.09-6.65%, and lower to that of ALS, IPD and Alzheimer’s 

disease, we hypothesise that the genetic component might be unravelled through a rare 

variants approach study. Therefore, we performed the largest exome sequencing study in 

MSA by first studying an MSA family and later investigating risk factors in sporadic cases.   

5.2 WES IN FAMILIAL MSA 

Statement of contribution to this project: This project was started by Dr Anna Sailer and I 

followed up after her. DNA was provided by Professor Wüellner (University of Bonn, 
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Germany). Experiments were performed by Dr Anna Sailer and Dr Sonja Scholz in the NIH, 

and I worked on data analysis. Raw data analysis was performed by Dr Vincent Plagnol and 

downstream analysis by myself.  

5.2.1 Subjects, materials and methods 

The German MSA family is extremely interesting because it is pathologically confirmed in 

one individual, and consists of three generations with two affected individuals in two 

successive generations(337). The family tree is provided in Figure 5-1. Case I-1 presented in 

her late sixties and had an MSA-P phenotype. Case II-1, presented in her forties with MSA-

C. Both cases showed typical MRI findings of MSA. The disease duration was of 16 years in 

case I-1 and post-mortem brain examination revealed neuropathological changes 

consistent with a diagnosis of definite MSA. By personal communication, case III-1 

presented mild ataxia on examination in her late twenties. She was not further investigated 

and has not been examined since then. Thus, the significance of this finding remains 

currently unclear. She is under the typical age of disease onset for MSA.  

Of note, genetic testing for SCA 1,2,3,6,7, and 17 was performed with negative results. The 

SNCA gene was investigated for non-synonymous changes as well as CNV and no mutation 

was detected.  

Genomic DNA from 5 members (marked with an * on the pedigree shown on Figure 5-1 of 

the family was included in the study. Sequences corresponding to all annotated human 

exons were enriched by hybridization using the NimbleGen kit (Roche NimbleGen, Madison, 

WI, USA) and sequenced on the Illumina Genome Analyser II and HiSeq 2000. The DNA 

samples were sequenced on a paired-end 50 base-pair run. 

Raw sequencing reads were aligned to the UCSC hg19 build of the reference genome using 

the software novoalign. Calling was performed using samtools 0.18 and the resulting calls 

were annotated using ANNOVAR.  
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Figure 5-1: Pedigree of the German MSA family. Modified from (316) 

5.2.2 Results 

Summary metrics on the German MSA kindred are shown in Table 5-1. Unfiltered analysis 

of known genes causative of PD and cerebellar ataxias were first investigated and no 

pathogenic mutations were found.  

We have provided different strategies of filtering within this family. The numbers of variants 

are presented in Table 5-2Table 5-1 and the variants are listed in Table 5-3, Table 5-4, Table 

5-5, Table 5-6 and Table 5-7. We focused on rare variants (MAF <5%) and variants that had 

good quality and depth with a heterozygous call because this was based on interpreting the 

family as presenting autosomal dominant inheritance.  

Of note we first looked at shared variants between affected cases because there could be 

reduced penetrance. However, as the number of variants was still too large, we later 

decided to filter excluding variants carried by unaffected family members.  

 

Table 5-1: Summary metrics of WES in the MSA family.  

Patient Affected 
Target size 

(bp) 

Total number 

of unique 

reads 

Mean target 

coverage 

Total 

number of 

variants 

Heterozygous, 

unreported, depth 

>20, quality >30. 

Excluding 
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synonymous 

changes 

I1 Yes 33989968 156383446 88.461946 15400 131 

II1 Yes 33989968 102246602 67.868065 15095 121 

II2 No 33989968 111339445 75.489936 15212 145 

II4 No 33989968 124010439 63.061651 15147 124 

III1 Unknown 33989968 153925228 89.268034 15724 141 

Ref:  Target size = unique number of target bases in the experiment; total number of unique reads = 
number of reads that are not marked as duplicates after alignment; mean target coverage = mean 
coverage of targets that received at least coverage depth = 2 at one base. 

Table 5-2: Different filtering strategies in the German MSA family. 

Present in  I1 and II1  I1 and II1 I1, II1 and III1 I1, II1 and III1 I1 and II1 

Absent in 
 

II2 and II4 
 

II2 and II4 II2, II4 and III1 

Number of 

variants 

68 10 32 2 8 

 

Table 5-3: Variants present in I1, II1 and III3. 

  Gene Full gene name Variant 

1 NADK NAD kinase uc010nyv.1:c.1238_1240del:p.413_414del 

2 PEG3 paternally expressed 3 uc002qnt.2:c.C402G:p.N134K 

3 MUC6 mucin 6, oligomeric mucus/gel-forming uc001lsw.2:c.G6136A:p.V2046I 

4 RXFP2 relaxin/insulin-like family peptide receptor 2 uc010aba.2:c.C1363T:p.R455C 

5 C14orf159 chromosome 14 open reading frame 159 uc001xyw.2:c.C1015G:p.L339V 

6 ATP11B ATPase, class VI, type 11B uc003fla.2:c.C40T:p.P14S 

7 LEPREL1 leprecan-like 1 uc003fsg.2:c.C1363T:p.P455S 

8 OR2B3 olfactory receptor, family 2, subfamily B, member 3 uc003nlx.2:c.A97G:p.I33V 

9 EGFL8 EGF-like-domain, multiple 8 uc003oab.1:c.G34A:p.G12S 



153 
 

10 NOL9 nucleolar protein 9 uc001ans.2:c.G594C:p.L198F 

11 THAP11 THAP domain containing 11 

uc002euo.2:c.372_373insCAA:p.Q124delin

sQQ 

12 KLK3 kallikrein-related peptidase 3 uc002pts.1:c.G260A:p.G87D 

13 TTC30B tetratricopeptide repeat domain 30B uc002uln.2:c.G710A:p.R237H 

14 CRYBB3 crystallin, beta B3 uc003abo.1:c.G455A:p.R152H 

15 PRCC 

papillary renal cell carcinoma (translocation-

associated) uc001fqa.2:c.C1135G:p.P379A 

16 CD1A CD1a molecule uc001frt.2:c.C553T:p.R185C 

17 OR4C3 olfactory receptor, family 4, subfamily C, member 3 uc010rhv.1:c.169_177del:p.57_59del 

18 HNF1A HNF1 homeobox A NA 

19 PABPC3 poly(A) binding protein, cytoplasmic 3 

uc001upy.2:c.878_879insACTAGGG:p.V29

3fs 

20 TSC22D1 TSC22 domain family, member 1 uc001uzn.3:c.C182G:p.P61R 

21 OR4N2 olfactory receptor, family 4, subfamily N, member 2 uc001yuf.2:c.208_209insT:p.L70fs 

22 OR4N4 olfactory receptor, family 4, subfamily N, member 4 uc010tzv.1:c.448_449insT:p.L150fs 

23 MYH11 myosin, heavy chain 11, smooth muscle uc002ddw.2:c.G3806A:p.S1269N 

24 JMJD5 jumonji domain containing 5 uc010bxw.2:c.G517T:p.D173Y 

25 HIRIP3 HIRA interacting protein 3 uc002dve.2:c.G756C:p.E252D 

26 ZNF423 zinc finger protein 423 uc010vgn.1:c.G2308A:p.G770S 

27 HIF3A hypoxia inducible factor 3, α subunit NA 

28 SEC14L3 SEC14-like 3 (S. cerevisiae) uc003ahy.2:c.A1118G:p.H373R 



154 
 

29 KLHDC8B kelch domain containing 8B uc003cwh.2:c.G1052A:p.R351H 

30 FLJ00114 NA uc010vfk.1:c.T626A:p.V209D 

31 ESPNL NA uc002vxq.3:exon6:c.1102+1G>T 

32 DKFZ NA p586D0922 

 

Table 5-4: Variants present in I1 and II1 and absent in II2 and II4. 

  Gene Full gene name  Variant  

1 URB2 URB2 ribosome biogenesis 2 homolog (S. cerevisiae) uc001hts.1:c.A266G:p.N89S  

2 MBTPS1 membrane-bound transcription factor peptidase, site 1 uc002fhh.2:c.C1274T:p.P425L  

3 NOTCH3 notch 3 uc002nao.1:c.A3196T:p.N1066Y  

4 C19orf44 chromosome 19 open reading frame 44 uc002nef.1:c.T1405A:p.S469T  

5 PEG3 paternally expressed 3 uc002qnt.2:c.C402G:p.N134K  

6 STK32B serine/threonine kinase 32B uc003gih.1:c.A151G:p.M51V  

7 EVC2 Ellis van Creveld syndrome 2 uc003gij.2:c.G2248A:p.E750K  

8 REV3L 

REV3-like, catalytic subunit of DNA polymerase zeta 

(yeast) uc003puy.3:c.C3092T:p.P1031L 

 

9 APAF1 apoptotic peptidase activating factor 1 uc009zto.2:c.C308G:p.T103S  

10 NADK NAD kinase 

uc010nyv.1:c.1238_1240del:p.413_

414del 

 

 

Table 5-5: Variants present in I1 and II1. 

 

Gene Full gene name Variant 

1 NADK NAD kinase 

uc010nyv.1:c.1238_1240del:p.41

3_414del 
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2 URB2 URB2 ribosome biogenesis 2 homolog (S. cerevisiae) uc001hts.1:c.A266G:p.N89S 

3 APAF1 apoptotic peptidase activating factor 1 uc009zto.2:c.C308G:p.T103S 

4 MBTPS1 membrane-bound transcription factor peptidase, site 1 uc002fhh.2:c.C1274T:p.P425L 

5 NOTCH3 notch 3 uc002nao.1:c.A3196T:p.N1066Y 

6 C19orf44 chromosome 19 open reading frame 44 uc002nef.1:c.T1405A:p.S469T 

7 PEG3 paternally expressed 3 uc002qnt.2:c.C402G:p.N134K 

8 STK32B serine/threonine kinase 32B uc003gih.1:c.A151G:p.M51V 

9 EVC2 Ellis van Creveld syndrome 2 uc003gij.2:c.G2248A:p.E750K 

10 REV3L 

REV3-like, catalytic subunit of DNA polymerase zeta 

(yeast) uc003puy.3:c.C3092T:p.P1031L 

11 NRD1 nardilysin (N-arginine dibasic convertase) uc001ctd.3:c.A2869G:p.T957A 

12 C8B complement component 8, beta polypeptide uc001cyp.2:c.G164A:p.S55N 

13 MUC6 mucin 6, oligomeric mucus/gel-forming uc001lsw.2:c.G6136A:p.V2046I 

14 RXFP2 relaxin/insulin-like family peptide receptor 2 uc010aba.2:c.C1363T:p.R455C 

15 MMP14 matrix metallopeptidase 14 (membrane-inserted) uc001whc.2:c.G446A:p.R149H 

16 CDH24 cadherin 24, type 2 uc001wil.2:c.G1052A:p.R351Q 

17 C14orf21 chromosome 14 open reading frame 21 uc001wom.1:c.A128T:p.H43L 

18 AKAP6 A kinase (PRKA) anchor protein 6 uc001wrq.2:c.C827T:p.T276M 

19 C14orf159 chromosome 14 open reading frame 159 uc001xyw.2:c.C1015G:p.L339V 

20 BLMH bleomycin hydrolase uc010wbn.1:c.C445T:p.R149X 

21 CNTN6 contactin 6 uc011asj.1:c.A1369C:p.I457L 

22 ATP11B ATPase, class VI, type 11B uc003fla.2:c.C40T:p.P14S 
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23 LEPREL1 leprecan-like 1 uc003fsg.2:c.C1363T:p.P455S 

24 RGS12 regulator of G-protein signaling 12 uc010icv.2:c.C233T:p.S78F 

25 OR2B3 olfactory receptor, family 2, subfamily B, member 3 uc003nlx.2:c.A97G:p.I33V 

26 EGFL8 EGF-like-domain, multiple 8 uc003oab.1:c.G34A:p.G12S 

27 DOCK8 dedicator of cytokinesis 8 uc003zgk.2:c.A391G:p.I131V 

28 NOL9 nucleolar protein 9 uc001ans.2:c.G594C:p.L198F 

29 TDRD5 tudor domain containing 5 uc001gnf.1:c.A727G:p.T243A 

30 DUSP10 dual specificity phosphatase 10 uc001hmy.1:c.A628G:p.I210V 

31 PSEN2 presenilin 2 (Alzheimer disease 4) uc009xeo.1:c.C205G:p.P69A 

32 ASCC1 activating signal cointegrator 1 complex subunit 1 uc001jsr.1:c.G65A:p.G22D 

33 THAP11 THAP domain containing 11 

uc002euo.2:c.372_373insCAA:p.

Q124delinsQQ 

34 ADAMTS18 

ADAM metallopeptidase with thrombospondin type 1 

motif, 18 uc002ffe.1:c.C32T:p.T11I 

35 KLK3 kallikrein-related peptidase 3 uc002pts.1:c.G260A:p.G87D 

36 TTC30B tetratricopeptide repeat domain 30B uc002uln.2:c.G710A:p.R237H 

37 XKR7 

XK, Kell blood group complex subunit-related family, 

member 7 uc002wxe.2:c.C233G:p.A78G 

38 CRYBB3 crystallin, beta B3 uc003abo.1:c.G455A:p.R152H 

39 UNC13B unc-13 homolog B (C. elegans) uc003zwq.2:c.C115T:p.R39C 

40 LANCL3 

LanC lantibiotic synthetase component C-like 3 

(bacterial) uc004ddp.1:c.A680G:p.Y227C 

41 AWAT1 acyl-CoA wax alcohol acyltransferase 1 uc004dxy.2:c.C647T:p.P216L 
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42 PHKA1 phosphorylase kinase, α 1 (muscle) uc010nll.2:c.G607A:p.A203T 

43 DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6 uc001dcd.1:c.A2486G:p.K829R 

44 OLFM3 olfactomedin 3 uc001duf.2:c.C689T:p.T230I 

45 PRCC papillary renal cell carcinoma (translocation-associated) uc001fqa.2:c.C1135G:p.P379A 

46 CD1A CD1a molecule uc001frt.2:c.C553T:p.R185C 

47 OR4C3 olfactory receptor, family 4, subfamily C, member 3 

uc010rhv.1:c.169_177del:p.57_5

9del 

48 HNF1A HNF1 homeobox A NA 

49 PABPC3 poly(A) binding protein, cytoplasmic 3 

uc001upy.2:c.878_879insACTAGG

G:p.V293fs 

50 TSC22D1 TSC22 domain family, member 1 uc001uzn.3:c.C182G:p.P61R 

51 ANKRD10 ankyrin repeat domain 10 uc001vrn.2:c.C592T:p.H198Y 

52 OR4N2 olfactory receptor, family 4, subfamily N, member 2 uc001yuf.2:c.208_209insT:p.L70fs 

53 OR4N4 olfactory receptor, family 4, subfamily N, member 4 

uc010tzv.1:c.448_449insT:p.L150

fs 

54 TP53BP1 tumor protein p53 binding protein 1 uc010udp.1:c.A3002G:p.E1001G 

55 MYH11 myosin, heavy chain 11, smooth muscle uc002ddw.2:c.G3806A:p.S1269N 

56 JMJD5 jumonji domain containing 5 uc010bxw.2:c.G517T:p.D173Y 

57 HIRIP3 HIRA interacting protein 3 uc002dve.2:c.G756C:p.E252D 

58 ZNF423 zinc finger protein 423 uc010vgn.1:c.G2308A:p.G770S 

59 HIF3A hypoxia inducible factor 3, α subunit NA 

60 SEC14L3 SEC14-like 3 (S. cerevisiae) uc003ahy.2:c.A1118G:p.H373R 
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61 KLHDC8B kelch domain containing 8B uc003cwh.2:c.G1052A:p.R351H 

62 ACSL1 acyl-CoA synthetase long-chain family member 1 uc011ckn.1:c.G608A:p.R203Q 

63 VPS13A vacuolar protein sorting 13 homolog A (S. cerevisiae) 

uc004akq.3:c.9237_9251del:p.30

79_3084del 

64 IARS isoleucyl-tRNA synthetase uc010mqt.2:c.C1247T:p.T416I 

65 LOC401308 NA 

uc009zbd.1:c.1174_1175insACTC

G:p.L392fs 

66 FLJ00114 NA uc010vfk.1:c.T626A:p.V209D 

67 ESPNL NA uc002vxq.3:exon6:c.1102+1G>T 

68 DKFZ NA p586D0922 

 

Table 5-6: Variants present in I1, II1 and III1 and absent in II2 and II4. 

 Gene Full gene name Variant  

1 PEG3 paternally expressed 3 uc002qnt.2:c.C402G:p.N134K  

2 NADK NAD kinase uc010nyv.1:c.1238_1240del:p.413_414del  

 

Table 5-7: Variants present in I1 and II1 and absent in II2, II4 and III1. 

 Gene Full gene name Variant  

1 URB2 

URB2 ribosome biogenesis 2 homolog (S. 

cerevisiae) uc001hts.1:c.A266G:p.N89S 

 

2 MBTPS1 

membrane-bound transcription factor 

peptidase, site 1 uc002fhh.2:c.C1274T:p.P425L 

 

3 NOTCH3 notch 3 uc002nao.1:c.A3196T:p.N1066Y  

4 C19orf44 chromosome 19 open reading frame 44 uc002nef.1:c.T1405A:p.S469T  
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5 STK32B serine/threonine kinase 32B uc003gih.1:c.A151G:p.M51V  

6 EVC2 Ellis van Creveld syndrome 2 uc003gij.2:c.G2248A:p.E750K  

7 REV3L 

REV3-like, catalytic subunit of DNA 

polymerase zeta (yeast) uc003puy.3:c.C3092T:p.P1031L 

 

8 APAF1 apoptotic peptidase activating factor 1 uc009zto.2:c.C308G:p.T103S  

5.2.3 Discussion 

At a first glance, there are variants in 2 known genes that cause other neurological diseases 

and these are PSEN2 and NOTCH3 and are linked to AD and CADASIL (Cerebral-Autosomal-

Dominant-Arteriopathy-with-Subcortical-Infarcts-and-Leukoencephalopathy) respectively. 

The variant in PSEN2 is present in dbSNP as rs202133351 and has an allele frequency of 

9.078x10-05 in Exac (11 het counts of 121,176 alleles) and it is reported as of uncertain 

significance in ClinVar. This variant needs to be followed up and it is possible that it is rare 

polymorphism. The variant in NOTCH3 is in exon 20 (rs376950447) has a frequency in Exac 

of 5.793 x10-05 (7 of 120,840 alleles) and also most of CADASIL causing mutations are in 

exons 2 to 6.  These variants are not present in case III-1 so, if this case was affected it would 

be unlikely to be linked to MSA in this family. Although a mutation in exon 22 of NOTCH3 

has been reported in a case with dementia(338) and it is possible that variants that code for 

other regions of this protein can be causing different phenotypes, the frequency of this 

variant in Exac is probably too common to be pathogenic.  

One stop-gain variant shared by 2 affected individuals in the BLMH gene was detected. This 

gene encodes for bleomycin hydrolase that is a cytoplasmic cysteine peptidase that is highly 

conserved through evolution; however, the only known activity of the enzyme is metabolic 

inactivation of the glycopeptide bleomycin, an essential component of combination 

chemotherapy regimens for cancer. An association of a polymorphism in BLMH and AD has 

been found in 1996(339) but could not be replicated. Finally, the stop-gain variant in BLMH 

we detected is present also in an unaffected case from our MSA family and not present in 

our possibly-affected case; so, we conclude that although it would be a functionally 

interesting variant it is probably not linked to MSA in this family.  
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Unfortunately, this family is small and we continue to wait for clinical information on case 

III-1 and therefore this is where the analysis stands so far.  

5.3 WES IN SPORADIC MSA 

Statement of contribution: Pathologically confirmed samples were collected, sectioned and 

organized by myself. DNA extractions were performed in part by me and also on a 

commercial basis at LGC Genomics. The lab work on the pathologically confirmed samples 

was performed in part in the ION, UCL and in part at the NIH. The experiments were 

performed by Debbie Hughes, colleagues from the NIH lab and myself.  

The clinical samples were collected and prepared by myself. Half of the cohort was from 

Queen Square and half were shared with us by our French collaborators (Dr Wassillios 

Meissner and colleagues).  Sequencing experiments were performed by Dr Monica Federoff 

in the NIH.   

Data analysis presented in this thesis was performed by Dr Alan Pittmann, Dr Jana 

Vandrocova and me.  

5.3.1 Subjects, materials and methods 

5.3.1.1 Samples 

The total number of samples where we were able to obtain exome sequencing data was 

1109 (Table 5-8). Six-hundred fifty-nine were controls and 450 were MSA cases. Obtaining 

this large cohort of pathologically confirmed MSA cases and well-characterised clinically 

diagnosed cases was possible thanks to an enormous effort from our team and from 

collaborators in other centres. A complete list of collaborators is available upon request.  
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Table 5-8: Origin of MSA samples included in this exome sequencing study. Ref: IOP=Institute of 
Psychiatry; QSBB=Queen Square Brain Bank; NHNN=National Hospital for Neurology and 
Neurosurgery. A list of collaborators from each centre is available upon request. 

Brain bank of origin Number of samples 

 

Clinical centre of origin Number of samples 

Barcelona 13 

 

French reference centre for MSA 121 

Bordeaux 3  NHNN 31 

Emory 2 

 

Total clinical MSA samples 152 

Harvard 2    

Imperial College 3    

IOP Kings College 8    

Manchester 2    

Mayo clinic Jacksonville 41 

 

  

Miami 10    

Munich 17    

Netherlands 11    

Newcastle 6    

Paris 9    

QSBB 138    

Toronto 3    

Upenn 28    

Wurzburg 2    

Total definite MSA 
samples 298 

 

  
 

Most of the control subjects were sequenced and data kindly shared with us by Dr Andy 

Singleton and his team from the NIH. The remaining controls were central UCL control data 

provided by Dr Alan Pitman.  

5.3.1.2 WES chemistries and initial steps for analysis.  

This project took many years to complete. Therefore, the chemistries used for exome 

sequencing varied in time. Sequencing methods are described in chapter 3.3.7.  

For the first batch of samples we used Tru Seq custom amplicon from Illumina, as well as 

for most of the controls. The latest batch of samples was sequenced with Nextera focussed 
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capture. During downstream analysis, we performed different quality control steps to 

ensure maximal reliability of the final data. In particular, the Nextera focussed exome does 

not contain as much out of target data as Tru seq (for example 5’UTRs) and we therefore 

selected the output from nextera genomic coordinates from the bed files to select the final 

variants for analysis.  

The methods for the initial steps for raw data analysis are described in chapter 3.3.9.  

5.3.2 Quality control 

5.3.2.1.1 Steps for Variant and Sample QC 

The first steps of data alignment, merging files and genotype QC have been described in 

Chapter 3.3.9 and listed in Figure 5-2 

 

Figure 5-2: Quality control steps performed for this association study in MSA. 

 

In order to perform sample and variant QC we started from a concatenated VCF file of all 

cases and controls which only contains ID and genotypes. We then annotated the file adding 

dbSNP annotations onto the VCF file. This was done on GATK. This file now contained 

genomic positions of variants. Then, we generate a binary (.bed) file for PLINK input. After 

that we add individual sex and phenotype information with a .ped file. We provide PLINK 

with 2 files: "MSA_SexInfo.txt" and "MSA_pheno.txt". This will allow sex check and HWE 

testing the subsequent steps. 

Splitting XY chromosomes in PLINK is performed to avoid haploid calls in the X chromosome 

pseudo-autosomal region of male samples that will otherwise create errors.  
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Sex check is an important step where we compare the ascertained sex against the genotype 

sex. If there is a mismatch we have to exclude those samples. Checking sex in PLINK is 

performed by analysing the proportion of homozygosity of the X chromosome. The output 

gives us F values. An F estimate smaller than 0.2 yields female calls, and values larger than 

0.8 yields male calls. We were a little less stringent because PLINK is designed for array data 

as opposed to sequencing data and used the parameters 0.3 and 0.7 as limits. The results 

are shown on Figure 5-3.  

SNPs that have a call rate less than 90% are interpreted as “bad SNPs” according to the 

generated F_MISS score in PLINK. The information from this step is visualised by the 

researcher. If there are still samples that present high missingness rates even after removal 

of the bad SNPs (F_MISS) they will have to be subsequently removed.  The steps of 

missingness check by SNP as well as by sample are illustrated in Figure 5-4, Figure 5-5 and 

Figure 5-6.  

 

 

Figure 5-3: Scatterplot exhibiting the results of gender calculations in the MSA cases and controls. 
Samples in the intersection between X and Y axis correspond to 13 samples with missing genotypes 
and therefore no data for sex check. They were removed. All samples between 0.3 and 0.7 (ambiguous 
sex) and all samples with discordant sex information were removed.  



164 
 

 

Figure 5-4: Scatterplot showing missingness scores before removing SNPs with low call rates. Samples 
over 0.2 cut off = 98.  

 

Figure 5-5: Scatterplot showing the distribution of missingness per variant. Variants with a score under 
0.1 were removed.  
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Figure 5-6: Scatterplot presenting sample missingness after removing SNPs with a call rate under 90%. 
Samples over 0.2 cut-off = 34.  

 

The number of variants excluded in the different steps of variant QC and the number of 

samples excluded in the steps of sample QC are presented in Table 5-9 and Table 5-10. 

Table 5-9: Table showing the number of variants excluded by SNP QC steps in the MSA association 
study. 

QC step Number of variants 

 452168 

Exclude SNPs with <90% call rate 116527 

HWE 940 

Total variants 334701 
 

Table 5-10: Table showing the number of samples excluded in the different sample QC steps of the 
MSA association study. 

QC step 
Total 
samples 

MSA 
cases Controls Female Male Ambiguous 

Number of samples 
to exclude 

Sex check 1109 450 659 460 648 1 51 

Exclude samples with 
>20% missingness 1059 422 637 443 615 1 34 

Total samples 1025 402 623 429 596   
 



166 
 

The following steps of quality control where the calculations of heterozygosity rates, 

Identity by descent (IBD), Identity by state (IBS), and principal component analysis (PCA) as 

described in chapter 3.3.9. The results of these steps are illustrated in Figure 5-7, Figure 5-8, 

Figure 5-9 and Figure 5-10. The thresholds used were the following: heterozygosity rate (>-

0.05), IBD (<0.24), IBS (<1), PCA (x<0; y>0).  

 

Figure 5-7: Scatterplot showing the heterozygosity rate per sample. 

 

Figure 5-8: Scatterplot of identity by descent score. A score of 1 or close to 1 is probably due to sample 
duplicates. 
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Figure 5-9: Scatterplot of identity by state score. 

 

Figure 5-10: Principal component analysis plot (PCA) presenting population stratification in the 
dataset. 

Ref: The HapMap genotype data contains individual genotypes from Europe (CEU=Utah residents with ancestry 
from northern and western Europe), Asia (CHB=Chinese in Beijing; JPT=Japanese in Tokyo), and Africa (YRI=Yoruba 
in Ibadan, Nigeria). Ref: PC1 = principal component 1, PC2 = principal component 2, MSA = Multiple system atrophy.  
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Table 5-11: Table showing number of samples excluded by sample QC steps.  

Sample QC step samples Cases controls outliers 

Heterozygosity rate 1025 402 623 30 

IBD 995 390 605 32 

IBS 995 390 605 52 

PCA 995 390 605 131 
Ref: IBD=identity by descent; IBS=identity by state; PCA=principal component analysis. 

All samples with sexcheck problems presented also PCA problems. One sample had very 

bad quality and failed for sex, missingness and PCA. All samples with high missingness are 

PCA flagged. And all samples exhibiting high heterozygosity are flagged on PCA. As 

expected, all outliers on IBS and outliers on IBD but not the other way around. Two samples 

flagged on IBS and IBD are also PCA flagged.  

The final file after QC contains 953 people (563 males, 390 females) of which 375 were MSA 

cases (113 clinical and 168 path) and 578 were controls. The clinical information regarding 

sex and subtype of MSA (where available) is presented in Table 5-12 and Table 5-13.  

 

 

Table 5-12: Sex information on the MSA samples included in the case-control association study. 

  Definite MSA Clinical MSA Total 

Male 93 60 153 

Female 75 53 128 

Total 168 113   
 

Table 5-13: MSA subtype of the samples included in the MSA case-control association study. 

  Number of samples 

MSA-C 73 

MSA-P 118 
Ref: MSA-C: multiple system atrophy cerebellar subtype; MSA-P: multiple system atrophy parkinsonian subtype.  

5.3.3 Candidate genes results 

Candidate genes studied were performed looking for possible known pathogenic alterations 

linked to MSA or related disorders as well as comparing findings to controls for single 

association and sequencing artefacts detection.  
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The list of genes investigated was based on previous associations with MSA(44) and 

interesting genes reported as pathogenic and/or risk factors of PD and DLB(24,340).  A list 

of the genes analysed can be found in Table 5-14.  Scripts used for this analysis can be found 

in the Appendix.  

Table 5-14: List of candidate genes studied in the MSA exome sequencing project. 

ACMSD HLA-DRB5 

APOE LRKK2 

APP MAPT 

ATP13A2 MCCC1/LAMP3 

BST1 PARKIN/PARK2 

CCDC62/HIP1R PINK1 

CHCHD2 PLA2G6 

COQ2 PSEN1 

DJ1 RAB39B 

DNAJC6 SCARB2 

EIF4G1 SNCA 

FBXO7 STK39  

GAK SYT11 

GBA VPS35 

GCH1  
 

For MSA related genes (COQ2 and SNCA), we analysed all variants present in our cohort of 

patients including synonymous changes and putatively pathogenic variants. They were all 

searched for in databases for potentially known pathogenic variants and also tested for 

single association.  

There were 20 variants in COQ2. From those, 17 were exonic. One was a stop-gain, 11 non-

synonymous changes and 5 were synonymous changes.  I will mention here the relevant 

variants: 

1. The stop-gain variant p.R22X (rs112033303)  that was previously reported by us 

with a protective effect on MSA(341) was detected in both MSA and controls with 

no significant difference in this study. The MAF in MSA was 0.021 and in controls 

0.019. The allele count in MSA was 16 and in controls 22 and there were 2 MSA 

cases homozygous for this change. Very common in exac (with 10 homozygotes 

out of 23378) 
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2. The variant p.V393A in COQ2 (rs148156462) that has been proposed to increase 

risk of MSA in Japanese(342) was found in one healthy control only.     

In SNCA we found 2 variants. One synonymous change and one non-synonymous change. 

Both (rs138969470, p.L100L; rs200056149, p.E123K) were present in one control each. No 

MSA cases had variants in SNCA after QC.  

All the rest of the variants manually analysed were first filtered by frequency (MAF<0.01), 

functional consequence (excluding synonymous changes and changes outside exons and 

splice sites), and then evaluated on the basis on the clinical information stored in the ClinVar 

database for known pathogenic alterations. All variants known to be pathogenic or 

presented as of uncertain significance were analysed. This list together with my 

interpretation is presented in Table 5-15. 
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Table 5-15: List of filtered rare potentially pathogenic variants in candidate genes studied in the MSA case control exome study. 

Chr:position, 
transcript 

Gene Function exon change 1000g2015_all ExAC_all SIFT 
Polyphe
n2 

MutationT
aster 

CADD_r
aw 

CADD_p
hred 

CLINSIG CLNDBN 
msa count 
(all het) 

control 
count (all 
het) 

comment 
relevant role in our 
study 

1:17314656, 
NM_001141974 

ATP13A2 nonsyn 24 c.A2704T, 
p.I902F 

0.000798722 0.001 T B D 3.512 23.1 
Uncertain 
significance 

not provided 0 2 present only in controls unlikely 

1:17322750, 
NM_001141973 

ATP13A2 nonsyn 14 c.G1337A, 
p.R446Q 

NA 4.96E-05 T B N 2.063 16.62 
Uncertain 
significance 

not specified 0 1 present only in controls unlikely 

1:155206167, 
NM_001171811 

GBA nonsyn 7 
c.G832A, 
p.E278K 

0.00499201 0.0098 T B A 2.173 17.33 Pathogenic 
Gaucher's 
disease 

11 9 

present in 11 msa cases in the het 
state and 9 controls in the het 
state. No comp het. Also no sign 
difference with chi sq 

unlikely 

1:155207965, 
NM_001171811 

GBA nonsyn 5 c.G460A, 
p.G154R 

NA 2.47E-05 T P D 4.556 24.4 Pathogenic 
Gaucher's 
disease 

1 0 
present in 1 msa case in the het 
state. No compound het 

unlikely 

3:182810333, 
NM_020166 

MCCC1 nonsyn 3 c.G137A, 
p.G46E 

0.000199681 4.98E-05 T B D 2.771 21.2 Pathogenic Not provided 0 1 present in 1 control only unlikely 

4:84194658, 
NM_015697 

COQ2 nonsyn 3 c.A683G, 
p.N228S 

NA 0.0002 D D A 4.178 23.8 Pathogenic 
Coenzyme 
Q10 
deficiency 

1 1 
present in 1 msa case and 1 
control. All in the heterozygous 
state. No compound het  

unlikely 

4:84194751, 
NM_015697 

COQ2 nonsyn 3 
c.G590A, 
p.R197H 

NA 8.29E-06 D D A 8.07 35 Pathogenic 
Coenzyme 
Q10 
deficiency 

1 0 
present in 1 msa case in the 
heterozygous state. No 
compound het  

possible test for 
association 

4:84200234, 
NM_015697 

COQ2 nonsyn 2 
c.G437A, 
p.S146N 

NA 5.84E-05 D D A 5.994 27.8 Pathogenic 
Coenzyme 
Q10 
deficiency 

1 0 
present in 1 msa case in the 
heterozygous state. No 
compound het 

possible test for 
association 

4:77084391, 
NM_001204255 

SCARB2 nonsyn 8 c.G956A, 
p.G319E 

0.000798722 0.0003 T P N 2.731 21 
Uncertain 
significance 

not specified 0 1 
present in 1 control. Not the pd 
related snp (rs6812193)  

unlikely 

4:77091123, 
NM_001204255 

SCARB2 nonsyn 5 c.T581C, 
p.M194T 

0.000399361 8.25E-05 D P D 3.657 23.2 
Uncertain 
significance 

not specified 0 1 
present in 1 control. Not the pd 
related snp (rs6812193)  

unlikely 

4:77100846, 
NM_005506 

SCARB2 
framesh 
ins 

4 

c.435_436ins
AG, 
p.W146fs 

NA 6.60E-05 NA NA NA NA NA Pathogenic 

Epilepsy 
progressive 
myoclonic 4, 
renal failure 

1 0 

present in 1 msa case. However 
this causes myoclonic epilepsy 
and glomerulosclerosis and is AR. 
https://www.ncbi.nlm.nih.gov/pu
bmed/18308289. Our case is het 
and no comp het. And this is not 
the pd related snp rs727502773 

unlikely 

6:162206852, 
NM_013988 

PARK2 nonsyn 4 
c.C376T, 
p.R126W 

0.000399361 0.0021 D D A 7.462 34 Pathogenic 
Parkinson 
disease 2 

3 4 
present in het state in 3 msa and 
4 controls. No compound het 

unlikely 
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6:162394435, 
NM_013988 

PARK2 nonsyn 3 c.A186T, 
p.K62N 

NA 1.67E-05 D D A 5.959 27.7 Pathogenic 
Parkinson 
disease 2 

0 1 present in 1 control . No comp het unlikely 

6:162683724, 
NM_004562 

PARK2 nonsyn 3 

c.C245A, 
p.A82E 

0.00119808 0.0047 T B A -0.878 0.029 Pathogenic 
Parkinson 
disease 2 

1 1 

present in 1 msa and 1 control in 
het state. Both have another snp 
(rs1801582) in hom state (msa 
case) and het state (control) but 
that one is a known benign anc 
common snp with a maf of 16% 

unlikely 

12:40629436, 
NM_198578 

LRRK2 nonsyn 4 
c.T356C, 
p.L119P 

0.000798722 0.0013 D D D 5.916 27.5 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

6 5 
uncertain role in PD. Maf 1%. 
Present in 6 msa cases and 5 
controls 

unlikely 

12:40645075, 
NM_198578 

LRRK2 nonsyn 9 

c.G1000A, 
p.E334K 

0.00139776 0.003 T B N 2.897 21.8 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

0 1 
likely benign. Maf 9%. Present in 1 
control 

unlikely 

12:40677813, 
NM_198578 

LRRK2 nonsyn 19 

c.G2378T, 
p.R793M 

0.000199681 0.0008 D D N 4.94 25 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

0 3 
probably benign snp. Present in 3 
controls 

unlikely 

12:40687426, 
NM_198578 

LRRK2 nonsyn 21 

c.G2769C, 
p.Q923H 

0.000199681 0.0002 D D N 1.265 12.09 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

1 0 
probably a rare snp present in 1 
msa case 

Possible test for 
association 

12:40689368, 
NM_198578 

LRRK2 nonsyn 23 

c.A3018G, 
p.I1006M 

NA 2.48E-05 D P N 3.068 22.4 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

0 1 
probably a rare snp present in 1 
control 

unlikely 

12:40697842, 
NM_198578 

LRRK2 nonsyn 27 
c.G3683C, 
p.S1228T 

NA 0.0001 D P N 2.047 16.51 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

1 1 
probably a rare snp present in 1 
control and 1 msa case 

unlikely 

12:40713845, 
NM_198578 

LRRK2 nonsyn 34 
c.G4883C, 
p.R1628P 

0.00638978 0.0017 D D D 5.999 27.8 Pathogenic 

Parkinson 
disease 8, 
autosomal 
dominant 

1 2 

this is a known risk factor for PD in 
asians. In our study it was present 
in 2 controls and 1 msa case. The 
maf of this variant is 0.2% 

unlikely 

12:40713899, 
NM_198578 

LRRK2 nonsyn 34 
c.T4937C, 
p.M1646T 

0.00479233 0.0092 T B D 2.261 17.91 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

10 14 

likely benign snp maf 0.5% 
present in more controls than msa 
in our series and not significant 
difference 

unlikely 

12:40715849, 
NM_198578 

LRRK2 nonsyn 36 

c.G5183T, 
p.R1728L 

NA 1.66E-05 D D D 7.359 34 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

1 0 
probably a rare snp. Present in 1 
msa case 

possible test for 
association 

12:40734202, 
NM_198578 

LRRK2 nonsyn 41 
c.G6055A, 
p.G2019S 

0.000199681 0.0004 D D A 7.654 35 Pathogenic 

Parkinson 
disease 8, 
autosomal 
dominant 

0 1 
this known pathogenic alteration 
was present in 1 control only 

unlikely 
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12:40757242, 
NM_198578 

LRRK2 nonsyn 48 

c.C7067T, 
p.T2356I 

NA 0.0002 T B N 2.017 16.32 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

0 1 
probably a rare snp. Present in 1 
control 

unlikely 

12:40758647, 
NM_198578 

LRRK2 
framesh 
ins 

49 
c.7185_7186i
nsGT, 
p.E2395fs 

NA 9.18E-06 NA NA NA NA NA 
Uncertain 
significance 

Parkinson 
disease 8, 
autosomal 
dominant 

0 1 
probably a rare snp. Present in 1 
control 

unlikely 

14:55312502, 
NM_000161 

GCH1 nonsyn 5 c.G610A, 
p.V204I 

0.000199681 0.0003 D D D 5.863 27.3 
Uncertain 
significance 

Dystonia, 
dopa-
responsive 

0 1 present in 1 control only unlikely 

19:45411110, 
NM_000041 

APOE nonsyn 3 
c.T137C, 
p.L46P 

0.000798722 0.0024 T P N 1.14 11.43 Pathogenic 
APOE4(-)-
FREIBURG 

1 3 
citation is not pathogenic. Also 
present in 3 controls in contrast to 
1 msa case 

unlikely 

22:38509628, 
NM_001004426 

PLA2G6 nonsyn 14 c.G1906A, 
p.V636I 

0.000199681 0.0005 D D D 6.859 33 
Uncertain 
significance 

Iron 
accumulation 
in brain 

0 2 present in 2 controls. No comp het unlikely 

22:38516893, 
NM_001004426 

PLA2G6 nonsyn 11 
c.G1453A, 
p.G485S 

0.000599042 0.0006 T B N 1.413 12.86 
Uncertain 
significance 

Iron 
accumulation 
in brain 

1 1 
present in 1 msa case and 1 
control in het state. No comp het 

unlikely 
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5.3.4 Association studies 

5.3.4.1 Single locus 

5.3.4.1.1 Power calculation 

The power calculation for a single variant association study was performed retrospectively 

on http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html. The results 

are as follows: 

Considering a prevalence of MSA of 3.4 per 100,000 and in order to reach a genome-wide 
significance level of 1.494x10-07 (0.05 threshold on 334,701 tests), the study has 15% power 
at the current sample size (MSA = 375; control = 578) with a relative risk (RR) =3.0 for a 
MAF=0.02.  

This is illustrated in Figure 5-11 and Figure 5-12 according to allele frequency and relative 

risk.  

 

 

Figure 5-11: Figure presenting estimated study power according to disease allele frequency. 

http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
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Figure 5-12: Figure presenting estimated study power according to genotype relative risk. 

 

 

5.3.4.1.2 Quantile-quantile plot 

A QQ plot was performed using R commands. The scripts are presented in the appendix. 

The QQ plot is shown in Figure 5-13. The points deviating from the y=x line may indicate 

associations.   



176 
 

 

Figure 5-13: Quantile-quantile plot (QQ plot)..  

 

5.3.4.1.3 Single variant results and Manhattan plot 

A single association test for variants with a MAF >0.05 was performed and adjusted for 

multiple testing with Bonferroni correction. The Manhattan plot showing this is presented 

in Figure 5-14. The top 10 SNPs are presented in Table 5-16 and the results after adjustment 

for multiple testing in Table 5-17.  

There were 2 variants that were significant after correction for multiple testing. These were 

in chromosomes 1 and 7. Both were called as small indels in two CAG repetitive regions.  

The variant in chromosome 7 is present in the Exac database at a MAF of 0.002648 across 

all populations and of 0.00269 among Europeans. This variant was detected 92 times across 

our cases and once across our controls. Also, there were 74 samples with missing 

genotypes. This variant is located in the intronic region of the gene TBX20 and is multiallelic. 

I therefore visually inspected the data with the IGV viewer for samples in all categories (alt 

allele, ref allele, missing genotype). This is presented in Figure 5-15. All samples appear very 

similar when visually inspecting the, they presented between 60 and 100 reads at this 
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position and therefore the data is of good quality. The variant is detected by reads in both 

forward and reverse directions.  

The variant in chromosome 1 is called as an inframe insertion in the gene SERINC2 and 

presents a MAF across all populations of 0.7309 in the Exac database. In Europeans, the 

MAF is of 0.7877. This variant is also multiallelic and is present in a repetitive region of a 

CAG repeat. This variant was found 196 times in cases and 158 times among controls in our 

cohort. Six MSA cases and 9 controls were homozygous and the rest heterozygous calls. 

Again, the visual inspection results are presented in Figure 5-16.    

Of note, there are no other variants in either region in LD with these variants. This can be 

visualised in the Manhattan plot.  

 

Figure 5-14: Manhattan plot presenting the association p-values from a simple χ2 allelic test on MSA 
cases and controls.  

 

Table 5-16: Top 10 SNPs of the MSA case control single variant association study.  

Variant CHR SNP BP A1 C_A C_U A2 CHISQ P OR 

1 7 . 35288458 C 92 1 CAG 178.8 9.03E-41 203.7 

2 1 . 31905889 A 194 158 ACAG 52.6 4.09E-13 2.359 

3 14 rs112192573 20528448 T 212 490 
TCATAGATT 
TGCTCACTGAC 24.94 5.92E-07 0.6028 

4 5 rs6233 95733112 G 336 404 A 18.1 2.10E-05 1.503 

5 16 rs12931227 81199538 C 154 348 T 17.75 2.52E-05 0.6273 

6 17 rs17811250 10404046 A 189 201 G 17.57 2.77E-05 1.612 

7 16 rs12597040 81199555 G 157 348 A 16.6 4.62E-05 0.6384 

8 18 rs2240906 9887546 A 321 368 G 15.99 6.36E-05 1.478 



178 
 

9 9 rs2297537 139564474 G 290 548 C 15.77 7.14E-05 0.6782 

10 5 rs10073017 180551937 T 72 57 C 15.72 7.36E-05 2.048 
Ref: CHR=Chromosome; BP=basepair; A1=allele 1; C_A=Allele 1 count among cases; C_U=Allele 1 count among 
controls; A2=allele 2; CHISQ= Allelic test chi-square statistic; P=p-value; OR=odds ratio. 

 

Table 5-17: Top 10 SNPs of the MSA case control single variant association study after adjusting for 
multiple testing. 

Variant CHR SNP UNADJ BONF 

1 7 . 9.03E-41 2.81E-36 

2 1 . 4.09E-13 1.27E-08 

3 14 rs112192573 5.92E-07 0.01842 

4 5 rs6233 2.10E-05 0.6545 

5 16 rs12931227 2.52E-05 0.7858 

6 17 rs17811250 2.77E-05 0.8627 

7 16 rs12597040 4.62E-05 1 

8 18 rs2240906 6.36E-05 1 

9 9 rs2297537 7.14E-05 1 

10 5 rs10073017 7.36E-05 1 
Ref: CHR=Chromosome; UNADJ=unadjusted p-values; BONF= Bonferroni single-step adjusted 

p-values. 
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Ref: Samples named ref allele were called as reference, alt allele was called as the first alternative allele and no call 
were missing genotypes; however, when visually inspecting the data they all look very similar and present with a 

small deletion (black horizontal lines).   

 

 

 

 

 

 

 

 

 

Figure 5-15: Genomic view of the chromosome 7 at position 35288459 corresponding to the TBX20 gene.  
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Figure 5-16: Genomic view of the chromosome 1 at position 31905889 corresponding to the SERINC2 
gene.  

Ref: Samples named ref allele were called as reference, alt allele was called as the first alternate allele and no call 
were missing genotypes. The sample in the bottom was called as a reference. When visually inspected samples 
appear to have different genotypes. For instance, the sample in blue resembles a deletion and is was called as a 
homozygous insertion. Note: black horizontal lines correspond to small deletions and vertical purple lines are 
insertions.   
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5.3.4.2 Rare variant tests 

A rare variant association test was performed using the software package RVTESTS(267) as 

described on the methods section 3.3.9.6. RVTEST software was used to annotate the joint 

VCF file containing all MSA cases and controls that passed QC steps. This annotated file was 

then tested for a burden test and 2 kernel tests: 

• Burden test: CMC test(268).  

• Kernel methods: SKAT(343) and SKAT-O tests(344).   

The number of variants included in the analysis is 198,567. Variants were grouped into gene 

units and the number of genes/regions analysed was 55,765. The significance level 

considered correcting for multiple testing was p<0.05 divided by the number of units tested 

that was 55,765: 0.0000008966 (8.966E-07).  

The analysis was first performed on pathologically confirmed cases only. Later we included 

the clinical cases in a replication phase and re-analysed the data as a whole dataset.  

The strategies used to analyse these data were: 

1. Analysis of all variants 

2. Analysis of rare (<0.01MAF) variants 

3. Analysis of all variants excluding synonymous changes  

After reviewing the results, I have decided to present the SKAT-O results because these are 

the ones that less likely show false positive results as the QQ appear to be more reliable. 

CMC and SKAT results are available upon request.  

The QQ plots and Manhattan plots are presented in Figure 5-17, Figure 5-18, Figure 5-19 

and Figure 5-20. The significant results by gene are presented in Table 5-18 and the protein 

product and function of this list is in Table 5-19.  
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Figure 5-19: QQ plot (left) and Manhattan plot (right) of SKAT-O results analysing all variants and 
comparing all MSA cases versus controls. 

Figure 5-17: QQ plot (left) and Manhattan plot (right) of SKAT-O results analysing all variants and comparing 
pathologically confirmed MSA cases versus controls. 

Figure 5-18: QQ plot (left) and Manhattan plot (right) of SKAT-O results analysing rare variants (MAF under 0.01) and 
comparing pathologically confirmed MSA cases versus controls. 
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Table 5-18: Significant results of SKAT-O test investigating association of rare variation in MSA cases 
versus controls. 

Only definite MSA--All variants 
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Q Pvalue 

HRCT1 9:35906188-35907138 841 1 1 121711 5.61E-28 

TBX20 7:35242041-35293758,7:35271111-35293242 841 7 7 91764.4 2.15E-10 

OPCML 

11:132284870-132813566,11:132284874-
133402414,11:132289753-
133402297,11:132289913-
132813663,11:132290086-
132812987,11:132526981-
132812905,11:132687020-132730672 841 6 6 19566.9 1.50E-08 

Only definite MSA--Rare variants (MAF<0.01) 
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Q Pvalue 

HRCT1 9:35906188-35907138 841 1 1 336775 5.61E-28 

Figure 5-20: QQ plot (left) and Manhattan plot (right) of SKAT-O results analysing rare variants (MAF under 0.01) and 
comparing all MSA cases versus controls. 
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CCDC30 

1:42929000-42948667,1:42929024-
43119857,1:42929024-43119852,1:42929096-
42939088,1:42929592-42939231,1:42933414-
42939056,1:42948364-43003656,1:42955599-
43119857,1:42962781-43047087,1:42999549-
43119861,1:43000559-43120335,1:43002155-
43120011,1:43002243-43061244,1:43008459-
43119852,1:43047104-43056132 841 20 14 307978 2.15E-10 

OPCML 

11:132284870-132813566,11:132284874-
133402414,11:132289753-
133402297,11:132289913-
132813663,11:132290086-
132812987,11:132526981-
132812905,11:132687020-132730672 841 6 6 19699.2 1.43E-08 

SRRT 

7:100472732-100473557,7:100472747-
100486285,7:100472747-
100486285,7:100472784-
100479326,7:100472806-
100486285,7:100472809-
100486285,7:100473010-
100479343,7:100479384-
100481860,7:100480340-
100482173,7:100482374-
100483208,7:100482612-
100486277,7:100482915-
100484445,7:100483328-
100483806,7:100484180-
100484821,7:100484622-
100485117,7:100484968-
100485994,7:100485323-
100486281,7:100485655-100486285 841 31 27 34431.9 1.94E-08 

HSD17B14 

19:49316273-49339935,19:49316274-
49318329,19:49316280-49339767,19:49316365-
49339080 841 9 7 22865.1 6.32E-08 

BTN1A1 6:26501448-26510650 841 12 10 21373.6 1.61E-07 

PRKRA 

2:179296140-179315958,2:179296141-
179308734,2:179296380-
179315878,2:179296380-
179315878,2:179296692-
179315491,2:179296702-
179315484,2:179301000-
179310610,2:179308015-
179315211,2:179308069-
179315786,2:179310152-
179316239,2:179310221-
179315456,2:179312046-
179315840,2:179314805-179315900 841 14 10 26262.4 1.73E-07 

HLA-J 

6:29974359-29977733,6:29974363-
29977733,6:29974372-29977733,6:29974382-
29977316 841 4 4 13212.5 3.47E-07 

All samples--All variants 
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Q Pvalue 

HRCT1 9:35906188-35907138 953 1 1 206090 4.44E-16 

OPCML 

11:132284870-132813566,11:132284874-
133402414,11:132289753-
133402297,11:132289913-
132813663,11:132290086-
132812987,11:132526981-
132812905,11:132687020-132730672 953 6 6 42977.4 2.15E-10 

TBX20 7:35242041-35293758,7:35271111-35293242 953 7 7 100004 2.15E-10 

All samples--Rare variants (MAF<0.01) 
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Q Pvalue 

HRCT1 9:35906188-35907138 953 1 1 551117 7.84E-30 

CCDC30 

1:42929000-42948667,1:42929024-
43119857,1:42929024-43119852,1:42929096-
42939088,1:42929592-42939231,1:42933414-
42939056,1:42948364-43003656,1:42955599-
43119857,1:42962781-43047087,1:42999549-
43119861,1:43000559-43120335,1:43002155-
43120011,1:43002243-43061244,1:43008459-
43119852,1:43047104-43056132 953 20 15 716149 2.15E-10 

SRRT 

7:100472732-100473557,7:100472747-
100486285,7:100472747-
100486285,7:100472784-
100479326,7:100472806-
100486285,7:100472809-
100486285,7:100473010-
100479343,7:100479384-
100481860,7:100480340-
100482173,7:100482374-
100483208,7:100482612-
100486277,7:100482915-
100484445,7:100483328-
100483806,7:100484180-
100484821,7:100484622-
100485117,7:100484968- 953 31 29 45790.2 1.83E-08 
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I have also analysed with the rvtests the candidate genes that presented a p value below 

10-6  in the MSA GWAS(168) but were no statistically significant results after correction for 

multiple testing. None of the genes presented variants for analysis after the QC steps so 

those genes were skipped during the analysis process. 

Finally, I also run the analysis weighting variants by function, including  Start_Gain, 

Stop_Loss, Start_Loss, Essential_Splice_Site, Stop_Gain, Normal_Splice_Site, and 

Nonsynonymous changes and excluding synonymous changes. This did not show any 

significant result.  

100485994,7:100485323-
100486281,7:100485655-100486285 

GPR37L1 1:202091985-202102720 953 13 11 42848 1.95E-08 

YTHDC1 

4:69176104-69215807,4:69179038-
69215807,4:69179041-69215471,4:69181572-
69184439,4:69188209-69195791,4:69203483-
69204130,4:69203557-69215763 953 14 14 25768.7 2.09E-07 

PRKRA 

2:179296140-179315958,2:179296141-
179308734,2:179296380-
179315878,2:179296380-
179315878,2:179296692-
179315491,2:179296702-
179315484,2:179301000-
179310610,2:179308015-
179315211,2:179308069-
179315786,2:179310152-
179316239,2:179310221-
179315456,2:179312046-
179315840,2:179314805-179315900 953 14 13 32181.4 3.29E-07 

SLC9A5 

16:67271585-67306093,16:67280817-
67293845,16:67282774-67305961,16:67282852-
67306093,16:67282879-67306093,16:67282881-
67290381,16:67282980-67299051,16:67286638-
67299009,16:67286711-67304883 953 24 22 31746.3 3.30E-07 

RP11-
127I20.7 16:4780115-4802566 953 28 22 26273.3 6.37E-07 

ANP32C 4:165118158-165118863 953 15 7 18058.4 7.61E-07 

C16orf71 

16:4784272-4799397,16:4784344-
4790346,16:4784480-4799396,16:4784502-
4799397 953 27 21 25994 8.23E-07 
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Table 5-19. Table presenting the protein encoded by significant genes in the MSA case control SKAT-O 
analysis and the function of these proteins. 

  Gene Protein Function 

1 HRCT1 Histidine-rich carboxyl terminus protein 1 Unknown 

2 TBX20 T-box transcription factor TBX20 

Transcriptional activator and repressor 
required for cardiac development and may 
have key roles in the maintenance of 
functional and structural phenotypes in adult 
heart 

3 OPCML 
Opioid-binding protein/cell adhesion 
molecule 

Binds opioids in the presence of acidic lipids; 
probably involved in cell contact. 

4 CCDC30 Coiled-coil domain-containing protein 30 Unknown 

5 SRRT Serrate RNA effector molecule homolog 

Mediator between the cap-binding complex 
and the primary microRNAs processing 
machinery during cell proliferation 

6 HSD17B14 17-beta-hydroxysteroid dehydrogenase 14 

NAD-dependent 17-beta-hydroxysteroid 
dehydrogenase activity. Converts oestradiol 
to oestrone 

7 BTN1A1 Butyrophilin subfamily 1 member A1 

May function in the secretion of milk-fat 
droplets. May act as a membrane-associated 
receptor for the association of cytoplasmic 
droplets with the apical plasma membrane. 
Inhibits the proliferation of CD4 and CD8 T-
cells activated by anti-CD3 antibodies, T-cell 
metabolism and IL2 and IFNG secretion.  

8 PRKRA 
Interferon-inducible double-stranded RNA-
dependent protein kinase activator A 

Inhibition of translation and induction of 
apoptosis. Required for siRNA production by 
DICER1 and for subsequent siRNA-mediated 
post-transcriptional gene silencing.  

9 HLA-J 
Major Histocompatibility Complex, Class I, J 
(Pseudogene) Pseudogene 

10 GPR37L1 Prosaposin receptor GPR37L1 

Receptor for the neuroprotective and 
glioprotective factor prosaposin. Ligand 
binding induces endocytosis, followed by an 
ERK phosphorylation cascade 

11 YTHDC1 YTH domain-containing protein 1 

Regulator of alternative splicing that 
specifically recognizes and binds N6-
methyladenosine (m6A)-containing RNAs 

12 SLC9A5 Sodium/hydrogen exchanger 5 

Involved in pH regulation to eliminate acids 
generated by active metabolism. Major 
proton extruding system driven by the inward 
sodium ion chemical gradient. Role in signal 
transduction  

13 RP11-127I20.7 RNA gene Unknown 

14 ANP32C 
Acidic leucine-rich nuclear phosphoprotein 
32 family member C 

Tumor suppressor that can inhibit several 
types of cancers, including prostate and 
breast.  

15 C16orf71 
Uncharacterized protein Chromosome 16 
Open Reading Frame 71 Unknown 
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5.3.5 Discussion 

MSA is a rare disease with a low heritability(345). A recent GWAS was unable to detect 

common variants associated with risk of the disease(265). This is possibly due to lack of 

power of the study because the number of definite cases was ~300 and that of clinical cases 

~700. Unfortunately, given the rarity of the disease it is unlikely that we will be able to 

increase our cohort significantly for a long period of time, and WES has been proposed as 

an alternative approach to unravel the genetic contribution of rare variation in rare 

neurodegenerative disorders such as AD(346) and PD(347).  

In the study presented here, we performed WES in the largest MSA cohort available and 

represents a unique opportunity to improve our understanding of this devastating disorder.  

After a stringent QC we studied candidate genes that have been previously linked to PD, 

DLB and MSA. We did not find any relevant pathogenic variants. In the gene COQ2, the 

variant that has been proposed to increase risk of MSA in Japanese (p.V393A) was found in 

this study in 1 control sample only. Also, the variant p.R22X that was previously identified 

with a significant protective effect, in this study did not show significant differences 

between MSA and controls. There were other variants detected that are known to cause 

coenzyme Q10 deficiency with an AR mode of inheritance, but were here found in the 

heterozygous state. These variants warrant further follow up and study.  

There were 2 variants in SNCA that were interpreted to be unlikely pathogenic or affect risk 

of MSA (see Table 5-15).  

There was one p.G2019S known pathogenic alteration in LRRK2 but this was present in one 

control sample. We interpreted this mutation as probably of reduced penetrance. All the 

samples included as controls were reported as healthy at the time of assessment.  
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There were other variants in the genes studied but they were all interpreted as unlikely 

related to MSA. The details of each variant and the reasons for this interpretation are 

presented in Table 5-15.  

We also performed a single variant chi square allelic association test of MSA cases and 

controls to investigate for common variation (MAF ≥ 0.05). There were 2 signals that 

appeared significant after Bonferroni correction for multiple testing. They were located in 

chromosome 7 and chromosome 1. Both variants are called as small indels and do not 

appear to have other variants in LD close to them. I therefore decided to visually inspect the 

data and look at the sequence. When analysing the data on the IGV viewer I realised that 

the actual sequence appears in a repetitive region of CAG repeats. The genotypes that were 

in my final files were not consistent with what I was seeing in the bam files. I think the most 

likely explanation is that these 2 variants are artefacts due to the limitation of the WES 

technique in repetitive regions. Moreover, the 2 variants are common in the population and 

are multi allelic. For multiallelic sites, Plink 1.9 defaults to keeping only the reference allele 

and the most common alternative allele; any call involving a lower-frequency alternative 

allele is treated as missing data. This could have also contributed to these highly significant 

results because we used plink for the association study and the QC steps.  

The next step of analysis performed was investigating the role of rare variants in MSA. This 

was established by using a software called RVTESTS(267) where multiple tests can be 

performed. We did a burden test and two sequence kernel association tests (SKAT and 

SKAT-O). This test was recently successfully implemented in discovering PD associated 

gene(348) variants. The results of the SKAT-O test were the most reliable ones so this 

analysis was presented in the results section above.  

There were several genes that appear to have significant results with a p value below the 

level of Bonferroni correction for multiple testing. These are presented in Table 5-18.   

The only gene that appears to have a significant p value under all strategies of analysis is 

HRCT1. The signal in the gene HRCT1 is given by only one change and is present only in MSA 

cases and absent controls. This variant (rs370606246) has an 8% MAF in Exac. It is a small 
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deletion present in a repetitive region (CTG repeat) and therefore I think this is likely an 

artefact due to the limitation of this technique in such areas; a similar scenario to the 2 

variants found significant by single variant analysis.  

The signal in the gene TBX20 is mostly given by the common variants in this gene and the it 

appears to be given by 7 variants. This gene encodes a protein that has been found to 

present functions in cardiac development. The signal did not replicate when excluding 

common variation and it is also present in a repetitive region 

The genes CCD30, SRRT and PRKRA are significant only when including the variants with a 

MAF ≤ 0.01. The protein product of CCD30, Coiled-coil domain-containing protein 30, has 

an unknown function, whereas the one encoded by SRRT, Serrate RNA effector molecule 

homolog, is important during cell proliferation. Interferon-inducible double-stranded RNA-

dependent protein kinase activator A, encoded by PRKRA, is known to participate in the 

inhibition of translation and induction of apoptosis. Mutations in PRKRA have been shown 

to cause Dystonia 16 characterized by early-onset progressive limb dystonia, laryngeal and 

oromandibular dystonia, and non-levodopa responding parkinsonism that is inherited in an 

AR manner. These genes are interesting and will be followed up in future studies.  

The genes HSD17B14, BTN1A1 and HLA-J are significant when analysing the pathologically 

confirmed cases and looking into rare variation. These did not show significant results in the 

replication phase of this study and therefore we cannot draw many conclusions on that 

standalone data. Moreover HLA-J is a pseudogene and unlikely to be of relevance.  

Finally, the genes GPR37L1, YTHDC1, SLC9A5, RP11-127I20.7, ANP32C, and C16orf71 

appeared only to be significant when analysing the whole cohort including the clinical cases. 

The gene GPR37L1 encodes for prosaposin receptor that functions as a neuroprotective and 

glioprotective factor and may have relevant functions in MSA. However, all the 

abovementioned genes including GPR37L1 only showed a significant result with the large 

cohort including clinically diagnosed patients and not in the initial discovery phase of 

analysis of the pathologically confirmed samples. Thus, further investigations should be 

done to understand if they play a role in MSA or not.  
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A limitation of our WES study is that we were not able to account for age as a covariate. 

Unfortunately, the data we have for age of these samples was incomplete and in most of 

the cases it was not clear if it was age of onset, age at DNA extraction or age at death. 

Another limitation of this study was the fact that samples were sequenced with different 

chemistries in different labs. We tried to minimise this bias by applying a stringent QC and 

focusing on the shared genotypes covered as much as possible and we visually inspected a 

large number of samples at different positions for coverage intensity.   

In summary, these data don’t support previous associations of MSA with the genes COQ2 

or SNCA and presents interesting genes that require further study to be validated.   
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6 CHAPTER 6. PRIMARY FAMILIAL BRAIN 

CALCIFICATION 

6.1 CANDIDATE GENE ANALYSIS 

6.1.1 SLC20A2 

Statement of contribution. I performed the sample collection, lab work and data analysis 

and Dr Niccolo Mencacci supervised the sequences.  

6.1.1.1 Background 

Mutations in SLC20A2, encoding for Type III sodium-dependent inorganic phosphate 

transporter 2, are the most common cause of AD primary familial brain calcification among 

multiple populations(239). We decided to sequence this gene in our patients with Fahr’s 

disease. 

6.1.1.2 Subjects, materials and methods 

We sequenced by Sanger sequencing the coding sequence and flanking regions of the 

SLC20A2 gene in 28 sporadic and 3 familial cases with evidence of CNS calcification. The 

human gene consists of 11 exons, of which 10 are coding. The transcript used was: 

ENST00000342228.7.  

6.1.1.3 Results 

We found 2 synonymous changes (rs34124953 and rs111553899), 2 missense variants 

(rs73675069 and rs79577461) both presenting a MAF over 1% so interpreted an unlikely to 

be pathogenic and finally one missense change previously reported in 2 individuals of a 

PFBC family of Spanish origin with functional data supporting its pathogenicity(244). The 

mutation was heterozygous and in exon 10: c.1723G>A; p.Glu575Lys. The Sanger 

sequencing result is shown in Figure 6-1.   
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Figure 6-1: Sanger sequencing result of the heterozygous c.1723G>A p.Glu575Lys pathogenic missense 
mutation in SLC20A2.  

Ref: Top: reference sequence. Bottom: mutated sequence highlighted in bold. 

 

The patient exhibiting the heterozygous c.1723G>A p.Glu575Lys missense mutation was 

male. His symptoms started in his childhood with myoclonic epilepsy and also non-epileptic 

attacks, psychiatric symptoms, diabetes type I, polyneuropathy, bilateral ptosis, proximal 

upper and lower-limb weakness. At age 35 he was diagnosed with hypertrophic 

cardiomyopathy and required an implanted defibrillator. When we examined the patient 

we also detected a parkinsonian syndrome in this patient.  

On neuroimaging, our patient had brain calcification in the basal ganglia, thalamus, frontal 

and parietal sub cortical areas, and the cerebellum Figure 6-2.  

He was largely investigated for mitochondrial dysfunction (including a muscle biopsy and 

whole mitochondrial genome sequencing, respiratory chain enzyme assay, POLG and PEO1 

screening) with negative results.   
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Figure 6-2: Axial CT scan presenting brain calcification in the basal ganglia, thalamus, frontal and 
parietal sub cortical areas, and the cerebellum of a patient presenting a p.Glu575Lys mutation in 
SLC20A2. 

 

 

Figure 6-3: Family tree of a patient presenting with familial brain calcification caused by a p.Glu575Lys 
mutation in SLC20A2. 

 

Other family members at the time of diagnosis were thought to be unaffected. However, 

when we examined them, the mother who also carries the mutation, had mild 

neuropsychiatric symptoms and had brain calcification on CT scan. Also, the sibling, a carrier 

as well, is currently asymptomatic and presents calcification in a brain scan (Figure 6-3).  

6.1.1.4 Discussion 

In this project we discovered the cause of brain calcification in a patient that had a complex 

disorder and had been investigated for many years. The patient had a known pathogenic 

alteration in SLC20A2 (p.Glu575Lys). It is important to mention that the mother of the 

patient who was previously thought to be unaffected, when undergoing a detailed 
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assessment also presented neuropsychiatric symptoms and is a carrier of the same 

mutation.  

This patient also presented type 1 diabetes, hypertrophic cardiomyopathy and muscle 

weakness and this has not been reported in relation with SLC20A2. The cause of these 

features in this patient are still unknown.   

6.1.2 PDGFB 

Statement of contribution: I performed the sample collection, lab work and data analysis.  

I sequenced by the Sanger method the coding sequence and flanking intronic regions of the 

PDGFB gene in 28 sporadic and 3 familial cases with evidence of CNS calcification. The 

human gene consists of 7 exons, of which 6 are coding. The transcript used for this 

experiment was: ENST00000331163.10.  

No relevant variants were detected.  

6.1.2.1 Discussion 

In this project we did not detect any relevant variants causing brain calcification in these 

patients.  

6.2 JAM2 VARIANTS CAUSES PFBC IN RECESSIVE FAMILIES 

6.2.1 Statement of contribution 

Samples were collected by Prof Henry Houlden and myself in collaboration with Dr Orlando 

Swayne, Dr Patrick Morrison, Dr Gavin McDonnel, Dr Raeburn Forbes, Dr John Mckinley and 

colleagues.  

Skin biopsies were performed by Prof Henry Houlden and myself.  

WES library preparation was performed by Debbie Hughes, Raw data analysis was 

performed by Dr Alan Pitmann and downstream analysis by myself. Genotyping data was 

performed in the ICH genomics (UCL), and data analysis was performed by myself. The 

fibroblasts were grown by Mr Chris Lovejoy and the western blot performed by Dr Marc 

Soutar while I was on maternity leave.  
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The Jam-b mice were provided by Prof Michel Aurrand-Lyons and the mice care and tests 

were performed by Dr Rosella Abeti. Histopathological analysis was done by Dr Zane 

Jaunmuktane. I led this collaboration and coordinated the data interpretation together with 

Dr Abeti, Dr Jaunmuktane and Prof Houlden.  

6.2.2 Background 

Homozygosity mapping in conjunction with WES has proven to be a successful combination 

in the discovery of disease genes in recessive disorders(349). In this section we used these 

techniques to investigate the genetic cause of Fahr’s disease in two families.  

6.2.3 Subjects materials, and methods 

Two consanguineous recessive families of the travellers’ communities from England and 

Northern Ireland were studied in this section of the thesis. The patient was from London 

and Professor Houlden and I assessed him and his family. The second family included is from 

Northern Ireland and was assessed by our collaborators after we contacted them regarding 

a previous abstract describing this family presented in the ABN meeting in 2007.  

Samples were genotyped with Illumina HumanCytoSNP-12v2-1_H (described in the 

methods 3.3.6). Samples selected were 3 affected and 2 unaffected from the Irish family 

(Figure 6-5). 

The exome was captured using nextera focussed library as described in the methods 

chapter 3.3.7.1.2.   

Sanger sequencing for segregation was performed as described in the methods chapter 

3.3.4.  

The fibroblasts were cultured and the western blots were performed as described in the 

methods chapter 3.4.3 and 3.4.5.  

The Jam-b deficient mice were generated and studied as described in the methods 0.  

6.2.4 Results 

The family from London consisted of one affected patient that presented marked dystonia, 

ophthalmoplegia, cerebellar ataxia and cognitive impairment. This male patient was 
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reported to have been born normal and started to show neurological symptoms during his 

childhood. The family tree is presented in Figure 6-4.  

 

Figure 6-4: Family tree of the consanguineous family of a patient presenting with Fahr's syndrome.  

Note: The proband is homozygous (+/+) for the p.R229X mutation in JAM2 and the subjects with a +/- sign are 

heterozygous unaffected carriers. 

 

The Irish proband presented at age 41 with a 4-year history of akinetic rigid parkinsonism, 

memory problems and pyramidal signs. There were other 3 members of the family affected 

by familial brain calcification and they were highly consanguineous although the exact 

degree of consanguinity in each generation was difficult to assess. The family tree is 

presented in Figure 6-5.  

The CT scans presenting widespread calcification in these patients are shown in Figure 6-6.  

 

Figure 6-5: Family tree of a consanguineous family with primary familial brain calcification. Symbols 
+/+ show subject homozygous for the p.R229X mutation in JAM2. +/- are heterozygous unaffected 
carriers. 
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Figure 6-6: CT scan of the affected probands of the two consanguineous families with Fahr's syndrome 
exhibiting widespread calcification of the basal ganglia, thalamus, cerebral cortex and cerebellum. 

 

6.2.4.1 Homozygosity mapping  

Homozygous regions shared among the 3 affected members of the Irish family and absent 

in the 2 unaffected subjects were investigated using the online tool at 

http://www.homozygositymapper.org (350).  

There were 3 homozygous regions in the chromosomes 10, 13 and 21 spanning:  

• Chr 10: 37414883-43132376 

• Chr 13: 88327643-93518692 

• Chr 21: 22370881-28338710 

http://www.homozygositymapper.org/
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These regions are represented in Figure 6-7.  

Figure 6-7: Genome-wide illustration of homozygous regions in the Irish family with brain calcification. 
The chromosomes numbers are depicted in green and the homozygous regions in red. 

 

6.2.4.2 Exome sequencing  

After delimiting the homozygous regions in the consanguineous family of interest, we 

decided to investigate for causal mutations in these regions.  

We therefore decided to sequence the coding region of our proband.  

The exome was enriched with Illumina’s Nextera focused library and sequenced on a HiSeq 

2000 to an average sequence depth of 43%; and on average, 93% of targets were covered 

at least 10X.  

Under the assumption that a mutation would be present in the homozygous state in one of 

the homozygous regions, we determined the putatively damaging mutations (defined as 

missense, nonsense, frameshift, canonical splice-site) with a minor allele frequency < 1%. 

We only found 1 variant under this strategy of filtering.  

The variant is a nonsense variant: c.C685T:p.R229X in the gene JAM2.   
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6.2.4.3 Sanger sequencing and segregation study 

We thus sequenced this gene in the other recessive family with Fahr’s syndrome and 

detected the same mutation found in the proband of the family from London.  

We investigated for segregation in both families and we could confirm this was present in 

all affected individuals and was either absent or heterozygous in the unaffected (Figure 6-4 

and Figure 6-5). Segregation was confirmed in the family from London and was not 

complete in the family from Ireland due to lack of samples although all unaffected samples 

available were either not carriers or heterozygous carriers. Some subjects are not shown in 

the family tree due to the size of the family and the difficulties in ascertaining relationships.  

6.2.4.4 Western blot 

After confirming the mutation in both families, in collaboration with Dr Marc Soutar we 

obtained a Western blot showing lack of expression of the JAM2 protein in the affected 

proband of the family from London in contrast to the expression of this protein in a 

heterozygous carrier (mother) as well as 2 unrelated controls (Figure 6-8).  

 

Figure 6-8: Western blot showing absence of JAM2 protein in homozygous mutation containing 
fibroblasts compares to a heterozygous carrier and 2 unrelated controls. 

 

6.2.4.5 JAM2 KO mice 

In order to characterise the link between mutations in JAM2 and this neurological 

phenotype, we decided to investigate further using an animal model. There was no 

invertebrate model covering the region of interest so we assessed the possibility of a mouse 

model because this would potentially provide us of additional data. Through a collaborative 

work, we studied a JAM-B (ortholog of human JAM2) knock out (KO) mouse model.  
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6.2.4.5.1 Behavioural tests 

We investigated the neurological manifestations of these mice by means of behavioural 

tests on locomotion abnormalities: walking beam performance and gait analysis. This work 

was done by Dr Rosella Abeti. The JAM-B KO animals exhibited significant difficulties when 

compared to wild type in beam walking test (p=0.017) and gait abnormalities (stride length 

p<0.001; sway length p=0.002) (Figure 6-9 and Figure 6-10).  

 

Figure 6-9: Behavioural study on JAM-B KO mice. Gait analysis results. 

 

Figure 6-10: Behavioural study on JAM-B KO mice. Beam walking results. 

A video of the beam walking test of a KO and a wild type have been presented to the 

examiners and discussed during the viva.  

6.2.4.5.2 Histopathological analysis 

The histopathological evaluation of JAM-B KO mice compared to controls is shown in Figure 

6-11. JAM-B KO presented marked vacuolization of the brain and cerebellum and in 

particular this was more evident in the midbrain. Interestingly, this vacuolization was 

associated to glial activation as seen by inmuhistochemistry on GFAP staining. Vacuoles 
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appear to be localized in the neurons. 

 

Figure 6-11: Histopathological analysis of JAM-B KO mice compared to wild type mice exhibiting 
vacuolization of the midbrain and glial activation in the KO mice. Low magnification (above), higher 
magnification (below).  

 

6.2.5 Discussion 

The data presented in this chapter is showing that a nonsense mutation in the gene JAM2 

causes a recessive disorder presenting with severe brain calcification in the absence of 

secondary causes of brain calcification. Through homozygosity mapping analysis we 

identified a region of homozygosity in one family and through exome sequencing we 

discovered the causing mutation. The same mutation was also found in a second family. By 

investigating a mouse model, we support these data showing that the KO mice present gait 

and histopathological abnormalities in the brain when compared to controls.  

Identifying the genetic cause of neurological disorders where there is no current disease-

modifying therapies available is of great importance. On one hand, offering families a 

precise diagnosis can help them understand the condition and allows the possibility of 
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genetic counselling and family planning. On the other hand, with the advances in clinical 

trials and the possibility of targeting different mutations by their mechanism (i.e. Ataluren, 

currently approved for Duchenne muscular dystrophy could be considered in the future for 

other nonsense mediated genetic disorders such as the one presented here) may bring light 

into diseases where the feasibility of a clinical trial would be impossible because they are 

very rare. 

Junctional adhesion molecules are a family of proteins localized at the tight junction of 

polarized cells and on the cell surface of leukocytes. They play an important role in the 

regulation of cell polarity, endothelium permeability and leukocyte migration. In particular, 

an important role of tight junction proteins in the blood brain barrier regulation has been 

shown when recessive mutations in JAM3 and OCLN were linked to neurological disorders 

presenting with calcification in the brain in addition to other manifestations(351,352). 

Additionally, recently JAM2 was identified as an inhibitor of somatodendritic myelination in 

spinal cord neurons and this further confirms the importance of this molecule in the 

neuronal tissue(353). 

Mechanistically, the proteins encoded by SLC20A2 and XPR1 have been linked to 

impairment of phosphate homeostasis in genetically determined brain calcification; and 

PDGFB and PDGFRβ to blood brain barrier control regulation and integrity(239). 

JAM2 presents a role in endothelium permeability and binds to platelet-derived growth 

factor receptor α positive (encoded by PDGFRα+ )(353) and we thus believe the mechanism 

by which it is causing brain calcification in our families is probably linked to blood brain 

barrier dis-regulation. 

In summary, in collaboration with members of our lab and other teams I discovered that a 

nonsense mutation in the gene JAM2 causes recessive brain calcification in 2 

consanguineous families with a severe neurological disorder.   

The most likely mechanism for the lack of JAM2 protein in our patient is by nonsense-

mediated decay caused by the presence of a premature stop codon. The gait disturbances 
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in JAM2 KO mice are in line with the phenotype we see in humans where the presenting 

features are movement disorders.  
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7 CHAPTER 7: CONCLUSIONS 

The aim of this thesis was to investigate the genetic basis of two main diseases: Multiple 

system atrophy and primary familial brain calcification. This was achieved by both 

traditional Sanger sequencing and next generation sequencing.   

7.1 MSA 

In this thesis I investigated the genetic risk factors of MSA. MSA has proven to be a difficult 

disease to understand and unfortunately all previous genetic links to MSA have not been 

replicated in larger studies. By Sanger sequencing I found that a nonsense variant in the first 

exon of COQ2 (not covered by the original publication linking COQ2 and MSA) had a 

significantly increased frequency in controls compared to MSA cases. There was also 

another protective variant. Overall, this study, that is the largest of its kind including only 

pathologically confirmed MSA cases, did not support the association of increased risk of 

MSA with COQ2 variants.  

In contrast, I found a decreased level of coenzyme q10 in the cerebellum of MSA cases with 

some degree of cerebellar involvement (MSA-C and MSA-mixed cases) when compared to 

controls as well as cerebellar ataxia cases and other parkinsonian disorders. This interesting 

link between cerebellar MSA and coenzyme q10 has been replicated by others. However, 

although some researchers have proposed that this finding is supportive of the role of COQ2 

variants in MSA, in my opinion this still awaits confirmation and the mechanism may not 

involve COQ2 variants because at least in our cases this gene was sequenced and not found 

significant in the same MSA cases.  

In a collaborative study, by candidate variant approach we found that a variant in LRRK2 

was significantly protective of MSA. This link is promising but requires further replication.  

I also studied the role of the C9ORF72 repeat expansion in MSA as well as other related 

disorders. I could not detect any expansion in pathologically confirmed cases with MSA, PSP 

or CBD, but we found 3 large pathogenic expansions in CBS cases and one intermediate 

expansion or 27 repeats in a case with a clinical syndrome of PSP. This further supports the 
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overlapping clinical phenotypes encountered in the FTD spectrum and the importance of 

using pathologically confirmed cases where possible.  

Finally, my main PhD project consisted in the generation and analysis of exome sequencing 

data in MSA.  I first analysed data from an MSA family, and unfortunately, given that the 

family is small and some members are still young, the filtering strategies are limited and the 

list of genes is too long to have any conclusive finding. Later, by sequencing a large cohort 

of MSA cases (including 298 pathologically confirmed cases and 152 clinically diagnosed 

cases) I studied this population by a candidate gene approach and an association study. 

First, by analysis of common variation and then by looking into rare variants  with a SKAT-O 

test. Although we were not able to replicate previous findings linking MSA to COQ2 or SNCA, 

there are several genes of interest to follow up in future studies or with different 

techniques, however this will require larger collaborative efforts. A strength of this study 

was the large number of definite MSA cases and the stringent QC steps applied in exome 

wide data that allowed for a reliable dataset to be analysed.  

Future directions in the research of genetic causes and risk factors of MSA require 

international multicentre collaborations in order to enable adequately powered studies. 

Genome sequencing is becoming a cost-effective technology that is currently been 

implemented to study the genetic background of PD, and is an excellent strategy that 

hopefully will be applied in MSA in the near future.   

7.2 PFBC 

By studying candidate genes in patients exhibiting primary brain calcification I identified a 

causative mutation in SLC20A2 by Sanger sequencing. This is interesting because not only 

the patient was finally diagnosed after many years of follow up, but also because we 

detected two additional affected family members with neuropsychiatric symptoms that 

were never investigated before. 

After investigating candidate genes in further samples, I selected a recessive family with no 

known mutation for further analysis. I performed homozygosity mapping and identified 3 

homozygous regions in which I found a nonsense mutation in JAM2 by WES that segregated 
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with the disease. I then studied another family and they carry the same mutation. A western 

blot showed lack of expression of the JAM2 protein in the homozygous state supporting the 

role of this mutation in these families. In collaboration with others I studied a JAMB-KO 

(ortholog of JAM2) mouse model and found gait and histopathological abnormalities in the 

KO mice when compared to wild type. In conclusion, I discovered the cause of brain 

calcification in these 2 families and supported this link with functional and animal studies.  
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APPENDIX 

7.3 EXOME SEQUENCING SCRIPTS 

7.3.1 Scripts used to analyse exomes  

7.3.1.1 Example of script to analyse an individual exome 

#!/bin/bash 

#$ -S /bin/bash 

#$ -o cluster/out 

#$ -e cluster/error 

#$ -cwd 

date ##to measure the duration 

export 

PATH=${PATH}:/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013:/illumina/pi

peline/vincent/Software/tabix-0.2.3 

export PERL5LIB=/illumina/pipeline/vincent/Software/vcftools_0.1.8/lib: 

/illumina/pipeline/vincent/Software/novocraft/novoalign -c 12 -o SAM 

$'@RG\tID:MSA_1632\tSM:MSA_1632\tLB:MSA_1632\tPL:ILLUMINA' --rOQ --hdrhd 3 -H -

k -a -o Soft -t 320 -F ILM1.8 -f 

/illumina/runs/MSA_New/Unaligned/MSA_1632/1632_MSA_R1.fastq.bz2 

/illumina/runs/MSA_New/Unaligned/MSA_1632/1632_MSA_R2.fastq.bz2  -d 

/illumina/pipeline/vincent/reference_genome/novoalign/human_g1k_v37.fasta.k15.s2.no

voindex > /illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632.sam 

 

/illumina/pipeline/vincent/Software/samtools-0.1.18/samtools view -bS -t 

/illumina/pipeline/vincent/reference_genome/fasta/human_g1k_v37.fastai -o 
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/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632.bam 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632.sam   

## make BAM file 

/illumina/pipeline/vincent/Software/samtools-0.1.18/samtools sort -m 5000000000 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632.bam 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted   

## sort 

/illumina/pipeline/vincent/Software/samtools-0.1.18/samtools index  

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted.bam   ##build index 

## Now remove duplicates using PICARD 

java -Xmx10g -jar /illumina/pipeline/vincent/Software/picard-tools-

1.75/MarkDuplicates.jar TMP_DIR=/illumina/runs/temp/java ASSUME_SORTED=true 

REMOVE_DUPLICATES=FALSE 

INPUT=/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted.bam 

OUTPUT=/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted_unique.bam 

METRICS_FILE=/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_picard_metric

s.out 

/illumina/pipeline/vincent/Software/samtools-0.1.18/samtools index  

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted_unique.bam    

##build index 

rm /illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted.bam 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted.bam.bai 

rm /illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632.bam 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632.sam  

java -Xmx10g -jar /illumina/pipeline/vincent/Software/picard-tools-

1.75/CalculateHsMetrics.jar 
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BAIT_INTERVALS=/illumina/pipeline/vincent/reference_genome/query_novopile/TruSeq_

ExomeTarget_hg19_0bp.tab.intList 

TARGET_INTERVALS=/illumina/pipeline/vincent/reference_genome/query_novopile/TruS

eq_ExomeTarget_hg19_0bp.tab.intList  

INPUT=/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted_unique.bam  

OUTPUT=/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632.hybridMetrics 

/illumina/pipeline/vincent/Software/samtools-0.1.18/samtools mpileup  -q 20 -L 400 -d 400 

-ugf /illumina/pipeline/vincent/reference_genome/fasta/human_g1k_v37.fasta 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_sorted_unique.bam  | 

/illumina/pipeline/vincent/Software/samtools-0.1.18/bcftools/bcftools view -bvcg - > 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_rawVar.bcf   

 /illumina/pipeline/vincent/Software/samtools-0.1.18/bcftools/bcftools view 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_rawVar.bcf  > 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_Var.vcf 

rm /illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_rawVar.bcf 

/illumina/pipeline/vincent/Software/vcftools_0.1.8/cpp/vcftools --vcf 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_Var.vcf --bed  

/illumina/pipeline/vincent/reference_genome/query_novopile/TruSeq_ExomeTarget_hg1

9_0bp.tab.bed --recode --out 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_Var_target 

/illumina/pipeline/vincent/Software/samtools-0.1.18/bcftools/vcfutils.pl varFilter  

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_Var.vcf | awk '{if ( ($6 >= 18) 

|| ( $1 ~ /^#/) ) print}' > 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_Var.vcf_filtered 

/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013/convert2annovar.pl -

format vcf4  /illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_Var.vcf_filtered -

outfile 
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/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_annovar/annovar_MSA_1632

_temp 

cut -f1-8 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_annovar/annovar_MSA_1632

_temp > 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_annovar/annovar_MSA_1632 

/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013/summarize_annovar_VP.pl 

-ver1000g 1000g2012apr -verdbsnp 137 -veresp 6500si -alltranscript -buildver hg19 --

genetype gencodegene --remove -buildver hg19 

/illumina/runs/MSA_New/v_aligned/MSA_1632/MSA_1632_annovar/annovar_MSA_1632 

/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013/humandb_hg19     

Date 

7.3.1.2 Script to align multiple samples 

pipeline=/illumina/pipeline/vincent/Software/pipeline/align_pipeline_DNA_v4_1_ATLAS.s

h 

build=hg19 

###Z:\illumina\runs\MSA_New 

### align all the data 

iFolder=/illumina/runs/MSA_New/Unaligned 

oFolder=/illumina/runs/MSA_New/v_aligned 

myIDs="MSA_1132 

MSA_1386 

MSA_1409 

MSA_15569 

MSA_1561 
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if [ ! -e $oFolder ]; then mkdir $oFolder; fi 

for nID in $myIDs; do    folder=${iFolder}/${nID} 

    inputFiles="" 

    nfiles=0 

    for file1 in `find $folder -name *R1*bz2`; do 

 ((nfiles=nfiles+2)) 

 file2=`echo $file1 | sed -e 's/R1/R2/g'` 

 inputFiles="$inputFiles $file1 $file2"  

    done 

    inputFiles="$nfiles $inputFiles" 

    fasta=/illumina/pipeline/vincent/reference_genome/fasta/human_g1k_v37.fasta 

    

reference=/illumina/pipeline/vincent/reference_genome/novoalign/human_g1k_v37.fast

a.k15.s2.novoindex 

    output=${oFolder}/${nID}/${nID} 

    script=/illumina/runs/MSA_New/${nID}_H.sh 

    

query=/illumina/pipeline/vincent/reference_genome/query_novopile/TruSeq_ExomeTarg

et_hg19_0bp.tab 

    

baitFile=/illumina/pipeline/vincent/reference_genome/query_novopile/TruSeq_ExomeTar

get_hg19_0bp.tab.intList 

    if [ ! -e ${oFolder}/${nID} ]; then mkdir ${oFolder}/${nID}; fi 

         align=yes 
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    summaryStats=yes 

    pileup=yes 

    annotate=yes 

 

    local=interactive 

     echo $nID 

        sh ${pipeline} --script ${script} --inputFiles ${inputFiles}  --fasta ${fasta} --reference 

${reference} --output ${output} --annotate ${annotate} --align ${align} --pileup ${pileup} 

${query} --local ${local} --build ${build} --summaryStats ${summaryStats} --tparam 320 --

baitFile ${baitFile} --fullPileup --inputFormat ILM1.8 --javaTemp /illumina/runs/temp/java 

done 

7.3.1.3 Script to filter the vcf file 

#!/bin/bash 

#$ -S /bin/bash 

#$ -o cluster/out 

#$ -e cluster/error 

#$ -cwd 

date ##to measure the duration 

export 

PATH=${PATH}:/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013:/illumina/pi

peline/vincent/Software/tabix-0.2.3 

export PERL5LIB=/illumina/pipeline/vincent/Software/vcftools_0.1.8/lib: 

/illumina/pipeline/vincent/Software/samtools-0.1.18/bcftools/vcfutils.pl varFilter  

/illumina/runs/MSA_Joint_VCF/v_aligned/combinedGATK_MSA_Samples_1/combinedGA
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TK_MSA_Samples_1_Var.vcf | awk '{if ( ($6 >= 18) || ( $1 ~ /^#/) ) print}' > 

/illumina/runs/MSA_Joint_VCF/v_aligned/combinedGATK_MSA_Samples_1/combinedGA

TK_MSA_Samples_1_Var.vcf_filtered 

/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013/convert2annovar.pl -

format vcf4  

/illumina/runs/MSA_Joint_VCF/v_aligned/combinedGATK_MSA_Samples_1/combinedGA

TK_MSA_Samples_1_Var.vcf_filtered -outfile 

/illumina/runs/MSA_Joint_VCF/v_aligned/combinedGATK_MSA_Samples_1/combinedGA

TK_MSA_Samples_1_annovar/annovar_combinedGATK_MSA_Samples_1_temp 

cut -f1-8 

/illumina/runs/MSA_Joint_VCF/v_aligned/combinedGATK_MSA_Samples_1/combinedGA

TK_MSA_Samples_1_annovar/annovar_combinedGATK_MSA_Samples_1_temp > 

/illumina/runs/MSA_Joint_VCF/v_aligned/combinedGATK_MSA_Samples_1/combinedGA

TK_MSA_Samples_1_annovar/annovar_combinedGATK_MSA_Samples_1 

/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013/summarize_annovar_VP.pl 

-ver1000g 1000g2012apr -verdbsnp 137 -veresp 6500si -alltranscript -buildver hg19 --

genetype gencodegene --remove -buildver hg19 

/illumina/runs/MSA_Joint_VCF/v_aligned/combinedGATK_MSA_Samples_1/combinedGA

TK_MSA_Samples_1_annovar/annovar_combinedGATK_MSA_Samples_1 

/illumina/pipeline/vincent/Software_heavy/annovar_Feb2013/humandb_hg19     

date 

7.3.1.4 Script to join multiple samples 

java -jar /illumina/pipeline/vincent/Software/GenomeAnalysisTK-1.4-16-

g3ba918a/GenomeAnalysisTK.jar -R 

/illumina/pipeline/vincent/reference_genome/fasta/human_g1k_v37.fasta -T 

CombineVariants   --variant 002-08_Var.vcf_filtered --variant 003-

08_Var.vcf_filtered --variant 004-08_Var.vcf_filtered --variant 004-

10_Var.vcf_filtered --variant 006_08_Var.vcf_filtered --variant 006-
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10_Var.vcf_filtered --variant  MSA_1887_Var.vcf_filtered --variant

 MSA_P51_05_Var.vcf_filtered --variant MSA_P51_99_Var.vcf_filtered --

variant MSA_P53_03_Var.vcf_filtered --variant UMARY-814_Var.vcf_filtered -o 

combinedGATK_MSA_Samples_For_PLINK.vcf 

7.3.1.5 Script used to annotate the Joint VCF file with annovar 

/data/kronos/NGS_Software/annovar/convert2annovar.pl -format vcf4old 

Steph_genes.vcf -includeinfo > Steph_genes.vcf.avinput 

/data/kronos/NGS_Software/annovar/table_annovar.pl Steph_genes.vcf.avinput 

/data/kronos/NGS_Software/annovar_Nov2014/humandb_hg19/ -buildver hg19 -protocol 

refGene,genomicSuperDups,1000g2012apr_all,esp6500si_all,esp6500si_aa,esp6500_ea,sn

p129,snp137,cg69,exac02,ljb_all,clinvar_20140211,caddgt20 -remove -otherinfo -

operation g,r,f,f,f,f,f,f,f,f,f,f,f -nastring . 

7.3.2 Scripts used for the MSA exome study QC 

#/!bin/bash 

studyNAME="MSA_all" 

inputVCF="MSApath_MSAclinical_BrainControls_CardiovacularControls.vcf" 

sexINFO="MSA_SexInfo.txt" 

phenoINFO="MSA_pheno.txt" 

WorkingDirectory="/array/lschottlaender/MSA_all" 

GATK_VariantAnnotator="/data/kronos/General_Software/jre1.7.0_67/bin/java -jar 

/data/kronos/NGS_Software/GATK_v3_5/GenomeAnalysisTK.jar -R 

/data/kronos/NGS_Reference/fasta/human_g1k_v37.fasta -T VariantAnnotator" 

#########################################################################

################## 

#Optional parameters: 

SAMPLEEXLUSION="$WorkingDirectory/samples_to_exclude_final.txt" 



245 
 

##################################STAGE1 : VARIANT AND SAMPLE QC 

######################### 

#STEP1 

#ADD dbSNP annotation to vcf file in GATK 

$GATK_VariantAnnotator -V $WorkingDirectory/$inputVCF --dbsnp 

/data/kronos/NGS_Reference/GATK_refFiles/common_all.vcf -o 

$WorkingDirectory/db_$inputVCF  

mv db_$inputVCF $studyNAME.vcf 

#STEP2 

#Make a binary (bed) file for PLINK input: 

plink --vcf $studyNAME.vcf --double-id --make-bed --out $studyNAME 

#STEP3 

#Update individual sex information and phenotype: 

plink --bfile $WorkingDirectory/$studyNAME --update-sex $WorkingDirectory/$sexINFO --

make-bed --out $WorkingDirectory/${studyNAME}_updated_sex 

plink --bfile $WorkingDirectory/${studyNAME}_updated_sex --pheno 

$WorkingDirectory/$phenoINFO --make-bed --out 

$WorkingDirectory/${studyNAME}_updated_sex_and_pheno --allow-no-sex 

#STEP4 

#Split XY chromosomes 

plink --bfile $WorkingDirectory/${studyNAME}_updated_sex_and_pheno --double-id --

split-x hg19 --make-bed --out $WorkingDirectory/${studyNAME}_Xsplit --allow-no-sex 

#STEP5 
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#Sex Check and removal of ambiguous I added the allow no sex command to keep the 

samples where there was unknown sex information in the input file 

plink --bfile $WorkingDirectory/${studyNAME}_Xsplit --check-sex 0.3 0.6 --out 

$WorkingDirectory/${studyNAME} --allow-no-sex 

cat $WorkingDirectory/${studyNAME}.sexcheck | awk '($3=="0" || $5=="OK"){print 

$1"\t"$2}' > Sex_samples_to_keep 

plink --bfile $WorkingDirectory/${studyNAME}_Xsplit --keep Sex_samples_to_keep --make-

bed --out $WorkingDirectory/${studyNAME}_Xsplit_SexPruned --allow-no-sex 

#STEP6 

#remove SNPs that have a call rate less than 90% (probably bad SNPs) (oneu can also visually 

inspect distribution) 

plink --bfile $WorkingDirectory/${studyNAME}_Xsplit_SexPruned --missing --out 

$WorkingDirectory/${studyNAME}_missingness_before_bad_SNP_removal 

plink --bfile $WorkingDirectory/${studyNAME}_Xsplit_SexPruned --geno 0.1 --make-bed --

out $WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate 

#STEP7 

#now lets remove bad samples that still have a lot of missingness after removal of the bad 

SNPs (one can also visually inspect distribution)  

plink --bfile $WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate --missing 

--out $WorkingDirectory/${studyNAME}_missingness_after_bad_SNP_removal 

plink --bfile $WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate --mind 

0.2 --make-bed --out 

$WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate_80pc_sample_call_r

ate  

plink --bfile 

$WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate_80pc_sample_call_r
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ate --missing --out 

$WorkingDirectory/${studyNAME}_missingness_after_bad_SNP_removal_and_bad_sampl

e_removal 

#STEP8 

#Hardy-Weinberg Equilibrium 

plink --bfile 

$WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate_80pc_sample_call_r

ate --hardy --out 

$WorkingDirectory/${studyNAME}_missingness_after_bad_SNP_removal_and_bad_sampl

e_removal_HWE 

#filter: 

plink --bfile 

$WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate_80pc_sample_call_r

ate --hwe 0.001 --make-bed --out 

$WorkingDirectory/${studyNAME}_Xsplit_SexPruned_90pc_call_rate_80pc_sample_call_r

ate_HWE_filtered 

##################################STAGE2 : POPULATION 

STRATIFICATION######################### 

#STEP1 - HET 

#het outliers (inc.removal)) 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC/${studyNAME}_

post_variantANDsampleGenotypeQC --het --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_het 
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awk ' $6 >= 0.05 || $6 <= -0.1 ' 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_het.het > 

$WorkingDirectory/het_samples_to_remove.txt  

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC/${studyNAME}_

post_variantANDsampleGenotypeQC --remove 

$WorkingDirectory/het_samples_to_remove.txt --make-bed --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails 

#STEP2 - IBD Calculation 

#delete low MAF SNPs: 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails --

maf 0.01 --make-bed --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails1 

##prune_LD_SNPS 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails1 -

-indep-pairwise 50 5 0.5 --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned 

###use only RS numbers here! 

awk '$1 ~ /^rs/' 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.prune.in > 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.prune2.in 
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plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails --

extract 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.prune2.in --make-bed --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned 

#IBD calculation: 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned --genome --min 0.1 --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned 

#STEP3 - IBS Calculation 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned --cluster --neighbour 1 5 --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned_IBS 

#----> Neighborhood Z scores (visually Inspect to remove outliers that slip off at the end(low) 

) 

#STEP4 - PCA visualisation 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned --extract 

/data/kronos/NGS_Reference/HapMap_Refernce/hapmap3r2_CEU.CHB.JPT.YRI.no-at-cg-

snps.txt --make-bed --out 
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$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.hapmap-snps 

#REMOVE MULTI-ALLELE SNPS (by finding out which ones are multi-allelic first): 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.hapmap-snps --bmerge 

/data/kronos/NGS_Reference/HapMap_Refernce/hapmap3r2_CEU.CHB.JPT.YRI.founders.

no-at-cg-snps.bed 

/data/kronos/NGS_Reference/HapMap_Refernce/hapmap3r2_CEU.CHB.JPT.YRI.founders.

no-at-cg-snps.bim 

/data/kronos/NGS_Reference/HapMap_Refernce/hapmap3r2_CEU.CHB.JPT.YRI.founders.

no-at-cg-snps.fam 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.hapmap-snps --exclude $WorkingDirectory/plink.missnp --make-bed --out 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.hapmap-snps2 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_less_het_fails_L

D_Pruned.hapmap-snps2 --bmerge 

/data/kronos/NGS_Reference/HapMap_Refernce/hapmap3r2_CEU.CHB.JPT.YRI.founders.

no-at-cg-snps.bed 

/data/kronos/NGS_Reference/HapMap_Refernce/hapmap3r2_CEU.CHB.JPT.YRI.founders.

no-at-cg-snps.bim 

/data/kronos/NGS_Reference/HapMap_Refernce/hapmap3r2_CEU.CHB.JPT.YRI.founders.

no-at-cg-snps.fam --out 

$WorkingDirectory/${studyNAME}_merged_with_HapMap_for_PCA  

#now need to remove warning SNPs: use a bit of awk magic on the log file: 
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grep 'Warning: Multiple' 

$WorkingDirectory/${studyNAME}_merged_with_HapMap_for_PCA.log > 

$WorkingDirectory/removal1.txt 

awk '{print $7}' $WorkingDirectory/removal1.txt > $WorkingDirectory/removal2.txt 

sed -i 's/^.//' $WorkingDirectory/removal2.txt  

sed -i 's/..$//' $WorkingDirectory/removal2.txt  

#great now remove these additionl warning SNPs!: 

plink --bfile $WorkingDirectory/${studyNAME}_merged_with_HapMap_for_PCA --exclude 

$WorkingDirectory/removal2.txt --make-bed --out 

$WorkingDirectory/${studyNAME}_merged_with_HapMap_for_PCA_clean 

#now ready for PCA: 

#GCTA 

gcta --bfile $WorkingDirectory/${studyNAME}_merged_with_HapMap_for_PCA --make-

grm --autosome --thread-num 10 --out $WorkingDirectory/${studyNAME}_matrix 

gcta --grm $WorkingDirectory/${studyNAME}_matrix --pca 4 

##################################STAGE3 : DECIDE ON FINAL SAMPLE INCLUSION 

FOR ASSOCIATION ANALYSIS before re-running ######################### 

mkdir $WorkingDirectory/${studyNAME}_Analysis_Ready_Variants 

plink --bfile 

$WorkingDirectory/${studyNAME}_post_variantANDsampleGenotypeQC_PopulationStrati

fication/${studyNAME}_post_variantANDsampleGenotypeQC_PopulationStratification --

make-bed --remove $SAMPLEEXLUSION --out 

$WorkingDirectory/${studyNAME}_Analysis_Ready_Variants/${studyNAME}_Analysis_Rea

dy_Variants 



252 
 

7.3.2.1 Single association study 

#######################STAGE1:SINGLE LOCUS - COMMON VARIATION 

############################ 

mkdir $WorkingDirectory/${studyNAME}_Asociation_analysis_results 

plink --bfile 

$WorkingDirectory/${studyNAME}_Analysis_Ready_Variants/${studyNAME}_Analysis_Rea

dy_Variants --maf 0.05 --make-bed --out 

$WorkingDirectory/${studyNAME}_Analysis_Ready_Variants/${studyNAME}_Analysis_Rea

dy_Variants_common 

plink --bfile 

$WorkingDirectory/${studyNAME}_Analysis_Ready_Variants/${studyNAME}_Analysis_Rea

dy_Variants_common --allow-no-sex  --assoc counts --pheno $pheno --out 

$WorkingDirectory/${studyNAME}_Asociation_analysis/singlelocus 

#######################STAGE2:QQ PLOT - COMMON VARIATION 

################################# 

#QQ PLOT... 

plink --bfile 

$WorkingDirectory/${studyNAME}_Analysis_Ready_Variants/${studyNAME}_Analysis_Rea

dy_Variants_common --assoc --allow-no-sex --pheno $pheno --adjust --qq-plot --out 

$WorkingDirectory/${studyNAME}_Asociation_analysis/singlelocus_adjust_forQQ 

echo "#!/usr/bin/env Rscript" > 

$WorkingDirectory/${studyNAME}_Asociation_analysis/${studyNAME}_QQ.R 

echo "QQdata <- read.table(file = 

\"$WorkingDirectory/${studyNAME}_Asociation_analysis/singlelocus_adjust_forQQ.assoc.

adjusted\", header = T )" >> 

$WorkingDirectory/${studyNAME}_Asociation_analysis/${studyNAME}_QQ.R 
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echo "plot(-log(QQdata\$QQ, 10), -log(QQdata\$UNADJ, 10), xlab = \"expected-logP 

values\", ylab = \"observed-logP values\")" >> 

$WorkingDirectory/${studyNAME}_Asociation_analysis/${studyNAME}_QQ.R 

echo "abline(a = 0, b = 1)" >> 

$WorkingDirectory/${studyNAME}_Asociation_analysis/${studyNAME}_QQ.R 

echo "dev.off()" >> 

$WorkingDirectory/${studyNAME}_Asociation_analysis/${studyNAME}_QQ.R 

Rscript $WorkingDirectory/${studyNAME}_Asociation_analysis/${studyNAME}_QQ.R 

7.3.2.2 Script for rare variant tests 

#!/bin/sh 

RVTESTS="/array/jvandrovcova/software/rvtests/executable" 

INPUT="MSA_all_for_RVTESTS.vcf.gz" 

$RVTESTS/rvtest --inVcf $INPUT.gz \ 

--pheno MSA_all_Analysis_Ready_Variants.fam \  

--covar covar_file_for_rvtest.txt --covar-name age,pc1,pc2 

--out $INPUT.rvtest \ 

--geneFile refFlat.gencode.v19.gz \ 

--burden cmc \ 

--vt price \ 

--kernel skat,skato,kbac 

7.3.2.3 Script for QQ plot and Manhattan plot in R 

data <- read.table("all_samples_all_variants_SKAT-O_plot.txt",header=TRUE) 

manhattan(data, cex.axis = 1,chr = "CHR", bp = "BP", p = "P", snp = "SNP", col = c("blue4", 

"red2"), chrlabs = NULL,suggestiveline = -log10(8.966E-07), genomewideline = -log10(5e-
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08),highlight = NULL, logp = TRUE, annotatePval = 8.966E-07,annotateTop = FALSE, cex.Top 

= 1) 

qq(data$P, main = "Q-Q plot of SKAT-O p-values") 

7.3.2.4 Script used to merge MSA cases and controls in a VCF file, annotate with 

annovar and select candidate genes to be studied.  

#!/bin/bash 

export PATH=$PATH:/data/kronos/NGS_Software/vcftools_0.1.8/tabix-

0.2.6:/data/home/jvandrovcova/bcftools/ 

SAMPLES=$1    #add sample file  

bcftools merge --force-samples -l samplenamefile > merged.vcf   

qsub -cwd -pe make 10 annotate sh MSA_all_for_VEP.vcf merge.annotated 

#!/bin/bash 

VCF=$1 

NAME=$2 

/data/kronos/NGS_Software/annovar_Feb2016/convert2annovar.pl -format vcf4 $VCF -

allsample -withfreq -includeinfo -outfile $NAME.avinput 

#annotate > all results in one file  

/data/kronos/NGS_Software/annovar_Feb2016/table_annovar.pl $NAME.avinput 

/array/jvandrovcova/software/annovar_additional/humandb/ -buildver hg19 -protocol 

refGene,knownGene,ensGene,spidex,cytoBand,genomicSuperDups,1000g2015aug_all,esp

6500siv2_ea,esp6500siv2_aa,esp6500siv2_all,exac03,kaviar_20150923,hrcr1,cg69,gme,m

cap,avsnp147,dbnsfp30a,dbnsfp31a_interpro,dbscsnv11,clinvar_20160302,gwava,eigen -

remove -otherinfo -operation g,g,g,f,r,r,f,f,f,f,f,f,f,f,f,f,f,f,f,f,f,f,f -argument '-hgvs,-hgvs,-

hgvs,-hgvs,,,,,,,,,,,,,,,,,,,' -genericdbfile hg19_spidex.txt -out $NAME.annovar.$(date 

+"%m%d") -nastring 'NA' -arg '-splicing 5,-splicing 5,-splicing 5,,,,,,,,,,,,,,,,,,,,' -thread 10  
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grep 

"Chr\|ACMSD\|APOE\|APP\|ATP13A2\|BST1\|CCDC62\|CHCHD2\|COQ2\|DNAJC6\|EIF4

G1\|FBXO7\|GAK\|GBA\|GCH1\|HIP1R\|HLA-

DRB5\|LAMP3\|LRKK2\|MAPT\|MCCC1\|PARK2\|PARK7\|PINK1\|PLA2G6\|PSEN1\|RAB

39B\|SCARB2\|SNCA\|STK39\|SYT11\|VPS35" 

merge.annotated.annovar.0902.hg19_multianno.txt > all_candidate_genes_together 

7.4 PRIMER SEQUENCES  

7.4.1 JAM2 

JAM2_X7_A_F ATGACTGCATCTGTCCGTGT 

JAM2_X7_A_R AGATGAGCTGGGTGTGTTGG 

JAM2_X3_A_F CCAATTCATGGGACCTGTTGA 

JAM2_X3_A_R TGCCTGAGTTGAGAGAGAAGAG 

JAM2_X2_B_F GGAAAATGCTTAAAGGCCAAAGC 

JAM2_X2_B_R TCTTTGCACATCCGGTCTTT 

JAM2_X8_B_F GCCCCAAAGCCTAAAATGGT 

JAM2_X8_B_R AGTGTTGGTGCCAGGATTGT 

JAM2_X9_A_F GTGCACAAGGCTTCACACTG 

JAM2_X9_A_R TGCCATCCTAGACAGGGTACA 

JAM2_X1_B_F CTTTCCCGCCCCAGAAGTTC 

JAM2_X1_B_R TGCATTCGAATCACGTCCCT 

JAM2_X5_A_F GCAGTCTCTATCACAGGGTCC 

JAM2_X5_A_R AGTGCTGCCATCTTTCCTGG 

JAM2_X4_A_F CCATCATGCCTGGCCTTTTG 

JAM2_X4_A_R TGGTCTCTGTAACTTGACTGGT 

JAM2_X6_2_F TGCTAAAATTTGAGGGACAGGG 

JAM2_X6_2_R TGGCTTATTTGGGAGATGGC 
 

 

7.4.2 SLC20A2 (from (244)) 

X2 F CATGCCAAAGTTAGATCCCA 

X2 R AGAAAATAAATGGTTGCCTGA 

X3 F CGCTTTGTAAAGAAACAATTCACA 

X3 R GCTCACGCCTATAATCCTG 

X4 F GTCAGCTCTGCCAAGTCA 

X4 R ACAATTATTCCTCTAACCCCTC 

X5 F CAACAGTGGGCTCTTTGACA 

X5 R TTACTATCAGCCAACAACTCC 

X6 F TTTAAGCACATATTCGCCAGA 
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X6 R CTTCCAGTTACTCATGGCAAC 

X7 F CCTGGCCTCAACTTCATTTTCTC 

X7 R CCCCAGTGCCTCCGGTTAG 

X8 F GGCATGGTGTCGCGCTTGTAG 

X8 R CCGGCGACCTCCTAGCTTGT 

X9 F CCGCGGCTGTAGTCTCAATTA 

X9 R GGGGCCTGTTTAAGTCTGTGC 

X10 F GCGGCCTCTTGTTCTGTTAAAAT 

X10 R CCCGGAGACCTGGAGAACCT 

X11 F GCTGAAGAGAAGAATCCCCAAAC 

X10 F GCGGCCTCTTGTTCTGTTAAAAT 

X10 R CCCGGAGACCTGGAGAACCT 

X11 F GCTGAAGAGAAGAATCCCCAAAC 
 

7.4.3 PDGFB 

PDGFB-Ex1_F aggcctgagcgcctgatcgc 

PDGFB-Ex1_R cgctgttgccttcccttaga 

PDGFB-Ex2_F gaggcctttgtgctcctgat 

PDGFB-Ex2_R caagtcccaggtaccaaccc 

PDGFB-Ex3_F ctggaaggagggactgttct 

PDGFB-Ex3_R agttcgctcagtcctgaatgt 

PDGFB-Ex4_F taatgacagccaggacttgaaac 

PDGFB-Ex4_R tgcccagtcaaggaagcctggtca 

PDGFB-Ex5_F ccgggctttcgaggaaagat 

PDGFB-Ex5_R cttgtgtctcagcaagatg 

PDGFB-Ex6_F agaaggtccatggcaggccttggt 

PDGFB-Ex6_R cacaggattctgggcctcagttg 

 

7.4.4 EIF4G1 

Exon  basepairs covered  Forward  Reverse  

Exon_8A  605  TGGAGTGACTTGAACT
GGGTAC  

GCTCATGAATTTCCACT
GTGTG  

Exon_8B  662  TCTCGCCGAACCCATAC
TG  

CAGGGACCCAGAAACA
TGTC  

Exon_10  292  GAGCAGTGGTCATTCTG
CAA  

GCCTCCTCTGGCCCTAA
TAA  

Exon_22  403  TGCTAAGAACAAGGCC
CAACAG  

CTAGTCCCAAGGCAGCC
AATG  

 

 

7.4.5 VPS35 

Exon Forward Reverse 
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Exon_15 TGCTCAACTAGAGGATGGTTG ACACAAGGCCATGACAACTG 

 

7.4.6 COQ2 

Exon Forward Reverse Alternative forward 

1 option a gtgttgcccgataatggaac gactcggaggctgctacttg 

 

aaggatgaggaaaggttctg 

1 option b cctagagtaagcgaccacgatg tgaaggagggccacgagaa    

2 agtaaggggtcctttgtgat tcactgaatgatcttgttgc   

3 gggccagtctcttcattaaa cttaactcctttggctgaaa   

4 aagtcgaaggctaggaagat aaaatagctaactgctctcc   

5 cactgaacacactccgatg ccatggaactgtgaatgac   

6 tagtggtaattggttgcaca gtaaacacagagggcatactg   

7 ctgttttctcctccgtgtta gctctaaatcttcatcttcagg   

  
  

  

7.4.7 C9orf72 (from (354) 

C9ORF72_revers

e 

 

CAGGAAACAGCTATGACCGGGCCCGCCCCGACCACGCCCCGGCCCCGGC

CCCGG 

 

C9ORF72_forwa

rd 

 

FAM-CAAGGAGGGAAACAACCGCAGCC 

 

C9ORF72_ancho

r 

 

CAGGAAACAGCTATGACC 
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7.4.8 LRRK2 exon 34 

F: GGTACTGTGTTGCACTTGAAAA 

R: CAGTAGGAGGTTTACACTAGAAGC 

 

 


