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Abstract   17 

Aims: Using optical coherence tomography angiography (OCTA) to investigate the area with 18 

flow in the superficial retinal vessel network (SVRN) and choriocapillaris (CC) layer 19 

amongst male subjects with Choroideremia (CHM), female carriers and normal controls to 20 

identify vascular changes. 21 

Methods: Images of SRVN and CC layer were acquired in 9 affected males, 5 female 22 

carriers and 14 age- and gender-matched controls using the Angiovue software of the RTVue 23 

XR Avanti (Optovue, Inc., Fremont, CA).  24 

Results: The mean age was 33 years for affected male CHM patients (median 30 years), 46 25 

years for female carriers (median 53 years) and 39 years for controls (median 38.5).  Mean 26 

SRVN area ± SD in subjects with CHM was 12.93±2.06 mm2 in carrier subjects, 15.36±0.60 27 

mm2 and in controls 15.30±1.35 mm2 (p<0.01). The mean CC area ± SD with flow was 28 

6.97±5.26 mm2 in CHM subjects, 21.65±0.17 mm2 in carriers and 21.36±0.76 mm2 in controls 29 

(p<0.01). SRVN and CC area with flow showed a negative correlation in CHM subjects with 30 

the age (r=-0.86; p<0.003 and r= -0.77; p<0.01, respectively). CC area with flow had a 31 

positive correlation with SRVN (r=0.83, p<0.001) Overall, visual acuity had a negative 32 

correlation with SRVN and CC area with flow (r=-0.67, p<0.001 and r=- 0.57, p<0.002, 33 

respectively).  34 

Conclusions: This is the first study to highlight changes in the SRVN in CHM subjects. 35 

OCTA detected a reduced area with flow in both retinal and choroidal circulations, and may 36 

be a useful tool for monitoring natural history and disease progression in forthcoming clinical 37 

trials.  38 
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Introduction 39 

Choroideremia (CHM) is an X-linked chorioretinal dystrophy. It was first described in 1872 40 

by Mauthner 1 and  is characterized by a progressive atrophy of the choroid, retinal pigment 41 

epithelium (RPE) and retina. The estimated prevalence is 1 in 50,000-100,0002, 3. The CHM 42 

gene is located at Xq21.2 and encodes Rab escort protein 1 (REP1)2, 4. The classical 43 

anatomical description of the choriocapillaris (CC) is a single continuous layer of capillaries 44 

forming a network on Bruch’s membrane. Each segment of the CC is supplied by an 45 

independent terminal choroidal arteriole. The various segments intersect only via the venous 46 

channels.5 The lobules varies in their geometric configuration, having between three to six 47 

sides forming an irregular triangular to hexagonal shape. The average size of a lobule is 48 

between 620 to 830 µm from venular to venular intersection.6  It has been proposed that the 49 

primary site of degeneration in CHM is the RPE, with a consequent loss of photoreceptors7. 50 

This concept has been supported by the recent technology acquisition such as optical 51 

coherence tomography (OCT).8, 9 However, before the advent of OCT, the histology of CHM 52 

eyes showed that the primary defect presented in the uveal vessels10 with progressive 53 

choroidal thinning towards the transition zone between pigmented and non-pigmented fundus 54 

areas. The samples also showed extensive fragmentation of the basement membranes 55 

between the pericyte and endothelial cells, with a progressive obliteration of the CC leading 56 

to a sharply defined area of simultaneous RPE loss.10 Flannery et al described similar 57 

histology in a subject carrier of CHM 11. The CC was normal in areas with normal 58 

photoreceptors, except for widening of the intercapillary pillars, but in those regions with 59 

abnormal photoreceptors, choroidal capillaries were fewer in number, had reduced luminal 60 

diameter, and fenestrae were sparse. In some areas of intense atrophy, there were no 61 

choroidal capillaries.  62 
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The superficial retinal vessel network (SVRN) is supplied by the central retinal artery and 63 

mainly provides blood flow to the retinal nerve fiber layer and ganglion cell layer.  The 64 

plexus is spread all over the retina except for three specific areas; the posterior edge of the 65 

ora serrata, the fovea avascular zone (FAZ),  and the area of retina adjacent to the major 66 

arteries.12 Interestingly, in high myopic patients a correlation exists between decreased 67 

choroidal blood flow and reduction of the SVRN.13, 14 Decreased choroidal blood flow is 68 

considered the outcome of increased axial length resulting in  ocular elongation stretching the 69 

vessels and modifying the retinal microvascular network.13 In CHM patients, the progressive 70 

atrophy of the CC and choroid  may directly affect the outer retinal supply and also the retinal 71 

vasculature system. 72 

The purpose of this paper is to  identify changes in the SRVN and CC layer in vivo in 73 

affected male CHM patients and compare it with female carriers and normal subjects by 74 

OCTA. 75 

Methods 76 

This is a prospective observational study conducted between June and October 2016 at 77 

Moorfields Eye Hospital London (UK). The protocol of this study adhered to the provisions 78 

of the Declaration of Helsinki and was approved by the national research ethics committee. 79 

Informed consent was obtained from all subjects. The inclusion criteria was a confirmed 80 

molecular diagnosis of CHM; and the exclusion criteria included the presence of any other 81 

ophthalmic disease.  Affected male CHM patients, female carriers, and age-matched controls 82 

underwent OCTA imaging (Avanti RTVue XR; Optovue, Inc).15-17 Macular angiograms 83 

(6x6mm) acquired using the Angiovue software of the RTVue XR Avanti (Optovue, Inc., 84 

Fremont, CA) were used to detect areas of flow in otherwise static tissue18 related to the 85 

SVRN and CC flow without using fluorescein or indocyanine green dye. The FAZ was 86 



5 
 

calculated at the superficial retinal layer from a macular angiogram of 3x3 mm using the “no 87 

flow function” provided by the same software to identify the area devoid of vessels at the 88 

centre of the macula. The SVRN was automatically segmented, using the Angiovue software 89 

(Optovue, Inc., Fremont, CA)19,   from the inner limiting membrane with an offset (from the 90 

interface reference) of 3 mm to the inner plexiform layer with an offset (from the interface 91 

reference) of 15 mm. The CC layer from the RPE with an offset (from the RPE reference) of 92 

30 mm to the deeper choroidal layer with an offset (from the RPE reference) of 60 mm. The 93 

segmentations of all examinations were checked before any measurement was performed. In 94 

subjects with CHM, the CC segmentation was performed manually 20, 21 for each subject to 95 

ensure proper identification of the layer reducing the risk of artefacts. In subjects with CHM, 96 

the area with CC was manually corrected by two different observers. Five measurements for 97 

each subject were collected by two observers to analyse the CC and inter-observer agreement 98 

was determined using the intraclass correlation coefficient (ICC). The average of them was 99 

considered for the analysis. The “flow” function in AngioView was used to detect the SRVN 100 

and CC area with flow.  101 

All statistical analyses were performed using the Statistical Package for the Social Sciences 102 

(version 21.0; SPSS Inc., an IBM Company, Chicago, IL). Continuous variables are 103 

presented as the mean ± standard deviation (SD). Normal distribution of data was analysed 104 

by the Shapiro-Wilk test. Categorical variables were compared using Fisher’s exact test or 105 

Chi squared test. Parametric variables between groups were compared using the unpaired t-106 

test. Levene’s test was used to verify variance homogeneity. Non-parametric distributed 107 

values were analyzed by the Mann–Whitney U test. For the comparison of several related 108 

samples, the ANOVA test or the Kruskal-Wallis test were used. Bivariate relationships were 109 

evaluated by the Spearman coefficient, or the Pearson analysis, as appropriate. A P value 110 

<0.05 was considered statistically significant. Taking into consideration the symmetry 111 
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between the right and left eye of an individual,  the absence of any treatment given, and the 112 

non-normal distribution for many continuous variables (such as?), the mean data from both 113 

eyes was considered for the statistical analysis as previously suggested.22, 23 114 

Results: 115 

A total of 17 eyes from 9 male CHM subjects and 9 eyes from 5 female carriers and 28 eyes 116 

from 14 normal subjects (9 men and 5 women) were included in this study. All patients and 117 

controls were Caucasian. The demographic features are summarised in table 1. The molecular 118 

diagnosis for each subject is reported in table 2. Mean age was 33 years (median 30 years; 119 

range 12-57 years) for affected males, 46 years (median 53 years; range 21-64 years) for 120 

carriers, and 39 years (median 38.5; range 12-60) for controls. Only one eye of an affected 121 

male CHM patient was excluded from the study owing to the low quality of the OCTA 122 

images and OCTA artefacts resulting from lack of fixation, and one eye of a female carrier 123 

was excluded due to previous choroidal neovascularization. Mean best corrected visual acuity 124 

(BCVA) was 0.47±0.31 LogMAR (median 0.17; range 0.0-3.0) for affected males, -125 

0.08±0.00 LogMAR (median 0.0; range -0.04-0.0) for carriers and -0.03±0.00 LogMAR 126 

(median 0.0; range -0.08-0.03) for controls. The distribution of the visual acuity was 127 

statistically significant different amongst groups. (p<0.01)  128 

Summary of SRVN, CC area with flow and FAZ is given in table 1. The difference in SRVN 129 

and CC between groups was statistically significant (p<0.01, Fig 1 A, B). However, the 130 

difference in FAZ between groups was not statistically significant (p=0.59). The FAZ had a 131 

negative correlation with SRVN (r= -0.54, p<0.003) and CC area with flow (r= -0.48, 132 

p<0.008).Visual acuity has a negative correlation with SRVN and CC area with flow (r=-133 

0.67, p<0.001 and r=- 0.57, p<0.002, respectively).  134 
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Analyzing only affected males, the age had a positive correlation with the size of the FAZ 135 

(r=0.75; p<0.01) and  it  was negatively correlated to the SRVN and CC area with flow (r=-136 

0.86; p<0.003 and r= -0.77; p<0.01, respectively. Fig 1 C-D.) Moreover, CC area with flow 137 

had a positive correlation with SRVN (r=0.83, p<0.001). A high degree of reliability between 138 

the 2 observers measuring variables from OCTA was seen; the ICC was 0.99 with a 95% 139 

confidence interval from 0.99 to 1.0 (p<.0.01). Examples of SRVN and CC area with flow in 140 

each group of patients are shown in Fig. 2 and 3. 141 

 142 

In order to use the mean value between eyes, linear regression analysis was performed to 143 

determine symmetry between right and left eyes for OCTA variables. This test showed a 144 

strong degree of symmetry between eyes for FAZ (r2=0.74; p<0.01), SRVN (r2=0.62; p<0.01) 145 

and CC area with flow (r2=0.98, p<0.01).   146 

 147 

Discussion 148 

To the best of our knowledge, this is the first paper to report the analysis of the SRVN and 149 

CC area of flow using OCTA in subjects with CHM and identify differences between 150 

affected males, female carriers and controls. Recently, Spaide et al reported that the 151 

visualization of flow in individual choriocapillary vessels is below the current resolution limit 152 

of OCTA, but areas of absent flow signal are identified as “flow voids”. The automatic flow 153 

function provided by OCTA shows the area with perfusion based on the bright intensity of 154 

each layer providing an estimation of the area perfused 24  . The instrument is not able to 155 

visualize the flow but it can furnish important information related to the normal vessels 156 

anatomical distributions. Previous papers 25 26 described that the CC integrity and RPE are 157 

strictly related and the CC atrophy was correlated to RPE degeneration.  A similar finding 158 
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was reported by a recent paper that analysed the CC integrity in CHM subjects by OCTA. 27 159 

The authors identified the CC density was significantly lower in CHM subjects than in female 160 

carriers and controls but they did not analyse the CC area with flow. In both subjects and 161 

carriers, CC density was significantly greater underlying regions with photoreceptor 162 

preservation as opposed to regions with photoreceptor loss.27 The polarized nature of the RPE 163 

is essential for the health of the inner retina and CC. 28, 29 Apical and basolateral RPE secrete 164 

different molecules, for example  soluble vascular endothelial growth factor (VEGF) 165 

isoforms,  released from the basolateral membrane, maintain the vitality of the CC and the 166 

integrity of the CC fenestrations, which disappear with VEGF depletion and lead to atrophy30-167 

32,28 We can assume that the reduction in the secretion of VEGF following RPE disruption 168 

can lead to a progressive CC atrophy that increases the instability of the RPE. The main 169 

function of the CC is to deliver oxygen and remove metabolites from the RPE and the outer 170 

retina, which has the highest metabolic demand of all biological tissues33. The CC is the only 171 

route for metabolic exchange in the retina within the FAZ. We identified a negative 172 

correlation between the CC area with flow and the FAZ area. This means that the reduction in 173 

the CC area with flow may be associated with an enlargement of the FAZ, which may be 174 

related to a reduction in the visual acuity outcome. The identification of flow area change in 175 

subjects with CHM may be important for management and therapeutic endpoints. 176 

 177 

Interestingly, the RPE has been found to regenerate together with CC in some animal models, 178 

such as in the rabbit following iodate-induced retinopathy. 34-36 Majji and colleagues 34, 36 179 

developed a surgical model of CC atrophy by surgically debriding the RPE in rabbits. The 180 

RPE regenerated in a centripetal manner, covering the wounded area by day seven post injury 181 

followed by CC revascularization by 4-8 weeks. Using this model, the area of RPE cell loss 182 

can be controlled and the effects of pharmacological agents on CC can be measured. The 183 
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identification of the molecular trigger could be beneficial for potential targeted regenerative 184 

treatment in human subjects and OCTA may be a good instrument to follow subjects during 185 

is regenerative phase. 186 

 187 

In this study the SRVN was found to show a significantly lower area of capillary plexus with 188 

flow in affected males compared to female carriers and controls, suggesting that ischaemic 189 

conditions affects the outer retinal layers. This parameter was associated with an enlargement 190 

of FAZ, but did not reach statistical significance amongst the different groups. Abnormalities 191 

in the superficial capillary plexus were reported in a recent paper that analysed Stargardt’s 192 

disease by OCTA37 but this feature was expected as the disease affects the central retina. It 193 

remains unclear why we observe superficial retinal vascular changes in CHM when the 194 

central retina tissue is still preserved. It may be related to the reduction in the CC area with 195 

flow, influencing a reduction in the superficial retinal circulation to maintain a balance 196 

between both circulatory networks. Vascularity of the retina is not related to the volume of  197 

tissue but to metabolic need38, so reduction in photoreceptor density and subsequent ganglion 198 

cells can be the cause of constriction of capillary network. A different assumption can be 199 

based on the reduced levels of VEGF secretion from the RPE. The lack of VEGF can down 200 

regulate both the growth of the retinal capillary network and the CC vessels. In subjects with 201 

diabetes, a reduction of the superficial capillary network has been reported39 and it was 202 

associated with a decrement of contrast sensitivity and visual field defects.40, 41 We can 203 

assume that changes in the capillary network may play a role in CHM subjects causing 204 

similar loss of function. Moreover, a reduction of blue color discrimination amongst patients 205 

with CHM have been noted in line with the loss of photoreceptors in the peripheral retina 206 

area  (Personal communication with MM)where the short wave cones are more highly 207 
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represented.42  Similar colour vision impairment is reported in type II diabetic patients 208 

preceding vascular alterations in the peripheral retina.43  209 

  210 

Studying changes over time between vascularization and functional tests may provide useful 211 

data for these subjects. The relationship between age and CC area with flow was previously 212 

described by Mullins et al who reported increased choroidal non-perfusion with age.44 In 213 

affected male CHM patients, we found that the age is an important factor for the reduction of 214 

the CC area perfused. This result is in line with the evolution of the disease and its 215 

progression over the time.  216 

 217 

Our analysis presents some limitations, including its small sample size for each category due 218 

to the rare disease status of CHM. There is a lack of standardization of OCTA analysis 219 

protocol, highlighted by no previous studies using OCTA to analyse the difference in CC 220 

between male CHM patients, female carriers and normal controls. This is a prospective 221 

observational study that allows us to report these features, however further larger studies are 222 

required, in addition to natural history studies from a young age to monitor the changes in the 223 

CC over time. The manual selection of the CC layer was fundamental to select the correct 224 

layer and to analyse the area with flow area avoiding the inclusion of deep choroidal vessels. 225 

The automatic segmentation was not reliable in affected males compared to female carriers 226 

and controls, as it often included different layers. Furthermore, we excluded subjects with 227 

poor fixation leading to the exclusion of more advanced stages of the disease. OCTA is able 228 

to detect normal capillary flow between 0.4-3 mm/s45, 46  and this value includes the CC blood 229 

velocity that is estimated to be around 0.48 to 2.45 mm/s47-49 but it may be limited by areas 230 

where blood flow is lower than 0.4 mm/sec,45, 46  and where shadowing from overlying retinal 231 



11 
 

vessels cause an over representation of areas without perfusion. In addition, the data reported 232 

on the SRVN included both small vessels and the capillary network. The software provided 233 

does not allow differentiation between these two systems.  A 6X6 mm analysis was preferred 234 

to the 3X3 mm analysis because the quality of the images showed less artefacts especially for 235 

patients with difficulty in maintaining fixation and it allows us to image outside of the central 236 

retinal islands where the CC is atrophied and corresponding SRVN is reduced.  237 

 238 

In conclusion, OCTA provides an estimation of the CC blood status even if it remains 239 

challenging. It shows blood flow impairment in both superficial and CC layer in CHM 240 

subjects. It does play an important role for better understanding the pathogenesis of 241 

choroideremia, allowing the application for new therapeutic strategies and monitoring of 242 

disease progression. 243 
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Summary Box 250 

What was known before:  251 

• It is established that Choroideremia  induces changes in choroidal circulation  and in 252 

the outer retinal layer in affected male subjects. 253 

What this study adds:  254 
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• This is the first study to identify reduced area with flow in the superficial retinal 255 

vessel network in the peripheral area of the retina where the choriocapillaris is fully 256 

atrophied.  257 

• OCTA may be a useful tool for monitoring natural history and disease progression in 258 

forthcoming clinical trials. 259 

260 
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 Titles and legends to figures: 446 

Figure 1: Boxplots illustrating the distribution of (A) superficial retinal vessel network 447 

(SRVN), and (B) choriocapillaris (CC) area with flow amongst CHM affected males, carriers 448 

and controls. The mean ranks are represented by horizontal lines in the gray boxes. Error bars 449 

represent the minimum and maximum value. Kruskal Wallis analysis shows statistical 450 

significant difference for SRVN (p=0.01) and CC flow area (p=0.00). Mann Whitney U test 451 

significance between pairs of groups are reported in the figure. (*=p<0.05) Scatter diagrams 452 

show relationship between age of participants and (C) SRVN area with flow and (D) CC area 453 

with flow amongst (o) CHM affected males,  (▲)female carriers and (+) controls.  454 

Figure 2: Optical Coherence Tomography Angiography (OCTA) images of CHM affected 455 

male, female carrier and control. Macular angiograms 6x6 shows (A, C, E) superficial retinal 456 

layer and (B, D, F) CC layer with automatic flow detection highlighted in yellow. 457 

 458 

Figure 3: Optical Coherence Tomography Angiography (OCTA) images of two affected male 459 

patients with CHM at different stages of the disease. (A) Patient 7, age 36 c.116+1G>A. The 460 

remaining CC tissue can be identified in the OCTA scan because it is arranged in a 461 

honeycomb-like pattern. (*)  Clear detection of (α) Sattler's layer of intermediate vessels in 462 

the middle and (β) the outermost Haller's layer with large vessels is possible when the CC is 463 

absent. (B)Patient 1 age 54 with c.877 C>T; p.R293X, shows a small area of  choriocapillaris 464 

(CC) and deep choroidal vessels compared to a larger area of CC showed in (A). (C-D) The 465 

OCT segmentation of the CC with the flow detection is represented by red spots.  (E-F) The 466 

area of CC with flow analysis highlighted in yellow is reported for both cases. 467 


