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Abstract 31 

Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are the two most common 32 

neurodegenerative dementias. Variants in APP, PSEN1 and PSEN2 are typically linked to 33 

early-onset AD, and several genetic risk loci are associated with late-onset AD. Inherited 34 

FTD can be caused by hexanucleotide expansions in C9orf72, or variants in GRN, MAPT or 35 

CHMP2B. Several other genes have also been linked to FTD or FTD with motor neuron 36 

disease.   37 

Here we describe a cohort of 60 Finnish families with possible inherited dementia. Our aim 38 

was to clarify the genetic background of dementia in this cohort by analysing both known 39 

dementia-associated genes and searching for rare or novel segregating variants with exome 40 

sequencing. C9orf72 repeat expansions were detected in 12 (20%) of the 60 families, 41 

including, in addition to FTD, a family with neuropathologically verified AD. Twelve 42 

families (10 with AD and 2 with FTD) with representative samples from affected and 43 

unaffected subjects and without C9orf72 expansions were selected for whole exome 44 

sequencing. Exome sequencing did not reveal any variants that could be regarded 45 

unequivocally causative of the disease in the families, but revealed potentially damaging 46 

variants in UNC13C and MARCH4. 47 

 48 
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Introduction 52 

Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are the two most common 53 

neurodegenerative dementias. AD is characterized by progressive loss of memory, typically 54 

presenting with deficits in anterograde episodic memory. Other cognitive functions, such as 55 

language, executive functions and visuospatial functions, deteriorate as the disease progresses 56 

1. Most AD patients first develop symptoms after 65 years of age (late-onset AD, LOAD), 57 

while less than 10% of patients present with early-onset AD (EOAD). Autosomal dominant 58 

inheritance and rare cases of autosomal recessive inheritance are seen in the EOAD group, 59 

due to variants in the amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 60 

(PSEN2) genes.  Familial cases are also seen in LOAD with an estimated heritability of 58 to 61 

79% 2. More than 20 disease-associated loci have been detected in genome-wide association 62 

studies (GWAS)3-7 and meta-analyses 8 but, apart from the APOE ε4 and TREM2 p.(R47H) 63 

risk alleles, most of these only have a modest effect. Although rare variants in APP, PSEN1 64 

and PSEN2 have been detected in LOAD patients by targeted resequencing 9, variants 65 

affecting function are rare in LOAD and its pathobiology reflects the interplay of 66 

predisposing genetic variants and environmental factors. Sequencing studies have also shown 67 

that rare variants can be found in dementia-associated loci identified through GWAS 10.  68 

In contrast to AD, FTD is more commonly observed in patients younger than 65 years 11. 69 

FTD may present with changes in personality and behaviour (behavioural-variant FTD) or 70 

language difficulties (non-fluent variant primary progressive aphasia and semantic-variant 71 

progressive aphasia) 11. Up to 40% of patients have a positive family history with autosomal 72 

dominant inheritance in 10% 12. The most commonly mutated genes are C9orf72 13,14, GRN 73 

15,16 and MAPT 17, while rare variants in TARDBP 18, FUS 19,20, VCP 21, CHMP2B 22, 74 

UBQLN2 23,24, TBK125, SQSTM1 26 and CCNF 27 have been detected in patients with either 75 

FTD and motor neuron disease (FTD-MND) or pure FTD. C9orf72 expansions are prevalent 76 
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in Finnish patients with FTD or ALS, accounting for 48% and 46% of familial FTD and ALS, 77 

respectively, and 19% and 21% of sporadic FTD and ALS13. 78 

Based on the known functions of disease-associated genes, several pathways involved in the 79 

pathogenesis of AD and FTD have been identified. In AD, these include the amyloid β 80 

pathway, the immune system (CLU, CR1, ABCA7, CD33, EPHA1, the MS4A gene cluster), 81 

synaptic activity (PICALM, CD33, CD2AP, EPHA1, BIN1) and lipid metabolism (CLU, 82 

ABCA7) (reviewed in 28). In FTD, the disease-implicated pathways include RNA processing 83 

and transcription regulation (C9orf72, TARDBP, FUS), microtubule function (MAPT), 84 

immune response (GRN), lysosome-mediated and ubiquitin-mediated protein degradation and 85 

autophagy (GRN, VCP, CHMP2B) (reviewed in 11). 86 

Here we describe a cohort of 60 Finnish families with possible inherited dementia. Our aim 87 

was to clarify the genetic background of dementia in this cohort by analysing both known 88 

dementia-associated genes and searching for rare or novel segregating variants using exome 89 

sequencing. We show that C9orf72 hexanucleotide repeat expansions are common in this 90 

cohort but variants affecting function of the other most common AD and FTD genes are not 91 

accountable for the disease in these families. We also present rare variants that segregate with 92 

AD and FTD in small families. Although no definite conclusion can be achieved regarding 93 

the causal involvement of these rare variants, these should be taken into account in future 94 

studies trying to identify the genetic cause of familial dementias. 95 

Subjects and methods 96 

Study cohort 97 

The study cohort is comprised of affected and unaffected members from 60 Finnish families 98 

with possible inherited dementia. The families were recruited from neurology clinics in the 99 
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Helsinki and Uusimaa hospital district (Southern Finland) and via an advertisement in a 100 

national newspaper in the late 1990s. The recruitment method proved particularly successful, 101 

resulting in 60 families suited for the study. A total of 364 blood-derived DNA samples (107 102 

from affected patients and 257 from unaffected family members) were available from the 103 

families. A prerequisite for participation was a positive family history with two or more 104 

living first-degree family members affected by dementia.  105 

The clinical diagnosis was AD in most families (n = 38), FTD in 10 families, dementia with 106 

Lewy bodies (DLB) in one family and unspecified dementia in 11 families (Supplementary 107 

table 1). The diagnoses were based on clinical findings and brain CT imaging studies. 108 

Extensive neuropsychological studies had been performed for some of the patients. Liquor 109 

biomarkers were not available at the time of patient recruitment and sample collection. 110 

Neuropathological data was available from patients belonging to seven of the 60 families. 111 

The ages at onset are listed in Supplementary table 2. 112 

Ethical aspects 113 

Informed consent was obtained from all participants. The study was approved by the Ethics 114 

committee of Neurology department at HUCH (4.6.1997 and 11.1.2012) and the HUCH 115 

Ethics Committee of Medicine (Dnro104/13/03/01/14). Approval for using patient tissue 116 

specimens was given by Valvira (Dnro 2855/06.01.03.01/2012). Approval for using medical 117 

records and autopsy reports of the patients living outside the HUS district was obtained from 118 

National Institute for Health and Welfare (Dnro THL/701/5.05.00/2013). 119 

Methods 120 

EDTA blood samples were drawn after obtaining informed consent from the participants. 121 

Both affected patients and unaffected family members were recruited for the study. DNA 122 
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was extracted using standard protocols. Overview of the study scheme is shown in Figure 123 

1.  APOE genotypes were determined by PCR and CfoI digestion as described in 124 

Myllykangas et al. 29. Screening of C9orf72 expansions was done by repeat primed PCR 125 

as described by Renton et al. 13. 126 

Expansion was defined by two criteria that had to be fulfilled: 1. Characteristic saw-tooth 127 

pattern in repeat-primed PCR extending over 30 G4C2 repeats on capillary electrophoresis 128 

of the PCR products, and 2. Lack of large allele (>30 repeats) amplicon in standard PCR 129 

across the repeat region. Standard PCR across the repeat region was performed using 130 

LongAmp Taq Reaction Buffer (New England Biolabs) with the following PCR primers 131 

5’-GGA GGG AAA CAA CCG CAG CCT GTA G-3’and 5’-ATG CCG CCT CCT CAC 132 

TCA CCC ACT CG-3’, 1.8 M of Betaine. The PCR products were run on 2 % agarose 133 

gels. 134 

We evaluated the pedigrees for the availability of samples from both affected and unaffected 135 

individuals as well as the availability of neuropathological data. Twelve families without 136 

C9orf72 expansions (2 with FTD and 10 with AD) were selected for further genetic studies. 137 

The FTD families were screened for variants in GRN and the AD families for variants in 138 

exons 16 and 17 of APP and the coding regions of PSEN1 and PSEN2. Exons and flanking 139 

splice site regions were amplified by PCR and the purified PCR products were sequenced in 140 

both directions using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 141 

Biosystems, CA, USA). All primer sequences and PCR conditions are available upon request. 142 

Large structural and copy number variants were excluded by using HumanOmniExpress 143 

Bead Chip (Illumina, San Diego, CA, USA).  Loci known to have copy number variants that 144 

associate with dementia (such as APP and SNCA) were checked visually. In addition, the 145 

data was analysed with CNVPartition in Genome Studio (Illumina, San Diego, CA, USA) to 146 
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detect large (> 50 kb) CNVs. The identified CNVs were checked against the Database of 147 

Genomic Variants (DGV) 30. 148 

Whole exome sequencing (WES) of selected individuals was done at University College 149 

London (UCL, London, UK).  Exome enrichment was performed using TruSeq Exome 150 

Capture kit (Illumina, San Diego, CA, USA). Sequencing was performed on a HiSeq 2000 151 

(Illumina, San Diego, CA, USA). Reads were aligned to GRCh37/hg19 using BWA, variants 152 

called according to GATK best practice guidelines and annotated with ANNOVAR 31. In 153 

silico pathogenicity predictions of nonsynonymous variants were done with SIFT 32, 154 

Polyphen2 33, MutationTaster 34, MutationAssessor 35, and CADD 36. Variants were filtered 155 

against population databases (1000Genomes, ESP and ExAC) and prioritised based on 156 

variant type (missense, nonsense, splice site, frameshift, non-frameshift) and predicted 157 

pathogenicity. We concentrated on variants found in genes implicated in GWAS or genes that 158 

are highly expressed in the brain. We also assessed the known functions of the genes of 159 

interest. 160 

Selected variants (shared by the affected members in each family but not present in the 161 

unaffected family member, if appropriate sample was available) from WES were confirmed 162 

with Sanger sequencing and their segregation tested in a family setting. These variants and 163 

the associated phenotypes have been submitted to ClinVar 164 

(https://www.ncbi.nlm.nih.gov/clinvar/) with accession numbers SCV000576395, 165 

SCV000576396, SCV000576397, SCV000576398, and SCV000576399. We also checked 166 

the frequencies of these selected variants in SISu, a database of sequence variants in Finns 167 

(Sequencing Initiative Suomi project (SISu), Institute for Molecular Medicine Finland 168 

(FIMM), University of Helsinki, Finland (URL: http://sisuproject.fi), SISu v4.1, accessed in 169 

09/2016).  170 
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 171 

Results 172 

APOE genotyping 173 

APOE genotyping was performed for 364 samples from 60 families. There were 34 174 

individuals homozygous for the risk APOE genotype ɛ4 (20/107 affected, 18.7%; 14/257 175 

unaffected, 5.4%). A total of 166 individuals were heterozygotes APOE ɛ3/ɛ4 (56/107 176 

affected, 52.3%; 110/257 unaffected, 42.8%). The most common allele, APOE ɛ3, is not 177 

associated with an increased risk for AD, and it was detected in 28 of 107 (26.1%) affected 178 

patients and in 123 of 257 (47.8%) unaffected individuals. Five unaffected individuals 179 

(5/257, 1.99%) were APOE ɛ2/ɛ4 heterozygotes and one unaffected (1/257, 0.3%) was ɛ2/ ɛ3. 180 

No genotype was obtained for seven samples (3 affected and 4 unaffected). The genotypes in 181 

each family are shown in Supplementary table 2. 182 

C9orf72 183 

All 60 families were included in the C9orf72 hexanucleotide expansion screening. 184 

Expansions were detected in 12 of the 60 families (20%). The distribution of expansions in 185 

affected and unaffected individuals in each family is shown in Supplementary table 2. 186 

Clinical diagnosis was FTD in seven families, AD or variant AD in four families and 187 

degenerative dementia (ALS, DLB or AD resembling syndromes) in one family (Table 1). 188 

The proportions of C9orf72 expansions in each diagnosis group in shown in Figure 2. As 189 

FTD or FTD/ALS are the typical clinical phenotypes associated with C9orf72 expansions, we 190 

only describe the five families with more atypical presentations in detail. No additional 191 

information was available from family Fam-62. 192 
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Table 1. Families with C9orf72 expansions. Two families (Fam-18 and Fam-73) marked with 193 

an asterisk may have been initially misdiagnosed as AD. In Fam-25 (marked with two 194 

asterisks) the neuropathological diagnoses are based on haematoxylin & eosin and ancillary 195 

stainings. No immunohistochemical stainings for FTLD were available at the time of the 196 

neuropathological examination. 197 

Family ID Clinical diagnosis Neuropathological 
diagnosis 

Fam-18 AD*+FTD not available 
Fam-22 FTD not available 
Fam-25 FTD FTLD + AD-type 

lesions** 
Fam-27 dementia (AD) not available 
Fam-31 degenerative dementia 

(ALS, DLB or AD 
resembling syndromes) 

AD 

Fam-33 FTD not available 
Fam-39 FTD not available 
Fam-50 AD not available 
Fam-62 AD not available 
Fam-71 FTD not available 
Fam-73 variant AD* not available 
Fam-77 FTD/ALS not available 

 198 

The index patient of family Fam-18 developed symptoms at 65 years. Clinical presentation 199 

was compatible with AD, but CT and MRI studies showed frontal atrophy. Clinical data from 200 

other family members was not available.  201 

Patient records of two affected patients from family Fam-27 were available for review. Both 202 

patients had clinical AD with late onset.   203 

Neuropathological data of two affected patients from family Fam-31 were available. The 204 

index patient had late-onset AD and the diagnosis was verified neuropathologically post 205 

mortem in 1998 using the methods available at that time. Re-analysis of the archived 206 

formalin-fixed, paraffin-embedded sample revealed Braak stage V tau-pathology and 207 
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CERAD stage B beta-amyloid load. TDP-43 staining was negative. p62 positive inclusions 208 

were observed in the granular cerebellar cells. No DNA sample was available for study. 209 

Formalin-fixed brain tissue from temporal lobe of another patient of the family was available 210 

for immunohistochemistry. TDP-43 staining was negative, but moderate to severe tau-211 

pathology suggestive of AD was observed. This patient was shown to harbor a C9orf72 212 

expansion and carried the APOE ɛ4/4 genotype. 213 

Family Fam-50 included several affected individuals with onset of disease after 70 years of 214 

age. DNA sample was available from one of them. One patient had visual hallucinations as 215 

the first symptom and subsequently developed loss of concentration and memory deficit. 216 

Neuropsychological examination was consistent with large-scale impairment and visual 217 

defect.  218 

The index patient of family Fam-73 was diagnosed with variant AD. However, brain SPECT 219 

was suspective of FTD. The index patient’s sister had been diagnosed with ALS. Thus, the 220 

actual diagnostic spectrum of this family is consistent with FTD and ALS.  221 

Further studies on 12 families without C9orf72 expansions 222 

Exclusion of GRN, APP, PSEN1, PSEN2 223 

Twelve families without C9orf72 expansions and representative samples from both affected 224 

and unaffected individuals were selected for further studies (Figure 1.). The clinical 225 

diagnoses in these families were FTD (two families: Fam-13 and Fam-59) and AD (10 226 

families: Fam-15, Fam-29, Fam-32, Fam-35, Fam-38, Fam-49, Fam-52, Fam-55, Fam-56, 227 

and Fam-57). Sanger sequencing did not reveal any causal variants in GRN (FTD), APP 228 

exons 16 and 17, or coding regions of PSEN1 and PSEN2 (AD families). 229 

Exclusion of large structural and copy number variants by SNP microarray 230 
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None of the 12 index patients had a duplication of APP. Neither did we identify any deletions 231 

or duplications involving other known dementia-associated genes, such as SNCA. 232 

Whole exome sequencing 233 

Whole exome sequencing (WES) data was generated for at least two affected patients from 234 

each of the 12 families. The oldest unaffected family members from whom a DNA sample 235 

was available (7 families) were exome sequenced as controls. We concentrated on rare 236 

variants identified in WES shared by the affected patients in each family but not seen in the 237 

analysed healthy family members, when available (list of rare variants in each family can be 238 

found in a Supplementary table 3). Confirmation and segregation analyses were done with 239 

Sanger sequencing. A large number of shared rare variants were identified in each family, but 240 

we concentrated on variants in GWAS hit genes or in genes with known functions possibly 241 

relevant for neurodegeneration. The validated variants are listed in Table 2 and presented in 242 

detail below. 243 

Table 2. Rare variants identified in exome sequencing and validated in a family setting. 244 

Minor allele frequencies (MAFs) of each variant in 1000Genomes, ESP, SiSU and ExAC are 245 

shown. Different prediction programs (SIFT, PolyPhen, MutationTaster, MutationAssessor, 246 

CADD) were used to estimate the deleteriousness of the variants. 247 

Gene CLU PCDH11X UNC13C MARCH4 MARCH4 
Family Fam-56 Fam-15 Fam-49 Fam-59 Fam-13 
clinical diagnosis AD AD AD FTD FTD 
genomic location 
(hg19) 

27462662 91133518 54306424 217234945 217148338 

chromosome 
location 

8p21.1 Xq21.31 15q21.3 2q35 2q35 

reference 
sequence 

NM_001831.3 NM_001168360.4 NM_001080534.2 NM_020814.2 NM_020814.2 

cDNA change c.608C>T c.2279A>T c.1324_1326del c.39G>C c.631A>G 
amino  acid 
change 

p.(Thr203Ile) p.(Asp760Val) p.(Lys443del) p.(Trp13Cys) p.(Lys211Glu) 

rs identifier rs41276297 rs781770086 rs746069739 rs145386484 rs756981946 
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SIFT tolerated Damaging - tolerated damaging 
PolyPhen Benign possibly 

damaging 
- benign damaging 

MutationTaster Neutral damaging - damaging damaging 
MutationAssessor medium effect neutral - neutral neutral 
CADD phred 
score 

8.521 14.33 - 2.416 19.62 

1000G 0.005 
 

absent Absent 0.000599042 absent 

ESP 0.0027 absent Absent 7.7e-05 absent 
SISu 0.000698324 0.00017454 Singleton 0.00124611 singleton 
ExAC (Finnish) 0.00121 singleton Absent 0.001285 absent 
ExAC (total) 0.001673 singleton Absent 0.0002082 singleton 
Significance likely benign possibly benign possibly 

deleterious 
likely benign possibly  

deleterious 
 248 

WES findings in AD families 249 

CLU 250 

A heterozygous CLU c.608C>T, p.(Thr203Ile) variant (rs41276297) was identified in two 251 

affected patients of family Fam-56. The variant was not detected in the four unaffected 252 

family members from whom a sample was available (Figure 3a). This variant is a previously 253 

known, rare variant with a frequency of 0.00121 in Finnish samples in ExAC. Polyphen and 254 

SIFT predicted no deleterious effect. This variant has also been detected in British AD 255 

samples (reported as p.T255I) with a frequency of 0.003 as well as in unaffected controls 256 

(frequency 0.006)37. One of the affected individuals also carried one APOE ɛ4 allele, while 257 

the other was homozygous for ɛ3. 258 

PCDH11X 259 

Affected members of family Fam-15 carried a heterozygous c.2279A>T, p.(Asp760Val) 260 

variant in PCDH11X. This variant (rs781770086) is present as a singleton in ExAC and in 261 

SISu. Sanger sequencing confirmed the variant in the two affected patients (II:4 and III:4). 262 

However, segregation analysis showed that the variant was also present in two currently 263 
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unaffected individuals (III:2 and III:5) and in one individual (III: 6) with unclear status. The 264 

remaining two unaffected family members (II:7 and III:7) did not carry the variant (Figure  265 

3b). Only one of the affected individuals carried APOE ɛ4. 266 

 UNC13C 267 

In family Fam-49, a heterozygous 3-bp deletion in UNC13C, c.1324_1326del, p.(443del) was 268 

detected in two affected patients. The variant was not seen in two unaffected family members 269 

(Figure 3c). This in-frame deletion variant (rs746069739) is present as a singleton in ExAC 270 

and in SISu (low-quality). In addition to the UNC13C variant, both affected individuals also 271 

carried one APOE ɛ4 allele. 272 

WES findings in FTD families 273 

MARCH4 274 

Two affected patients from the FTD family Fam-13 carried a heterozygous c.631A>G, 275 

p.(Lys211Glu) variant, (rs756981946) in MARCH4. This variant was absent from the 276 

unaffected family members (Figure 3d). The APOE genotypes of the two affected individuals 277 

of Fam-13 were ɛ3/4 and ɛ3/3.Two affected members of the second FTD family, Fam-59, 278 

carried a heterozygous c.39C>G variant, p.(Trp13Cys) (rs145386484) in MARCH4. 279 

Segregation analysis showed that this variant was also present in 7 currently unaffected 280 

family members (ages 45 – 73 years) and absent in other 9 unaffected family members 281 

(Figure 3e). All studied individuals in Fam-59 were homozygous for APOE ɛ3. 282 

MARCH4 p.(Lys211Glu) variant is present in ExAC as a singleton in a non-Finnish European 283 

sample and in SISu as a singleton (identifier: rs756981946). In silico predictions gave the 284 

following results: Polyphen2 predicted the variant to be probably damaging (score 0.995), 285 

SIFT tolerated (score 0.29), MutationTaster damaging (score 1.000), MutationAssessor 286 
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medium effect (score 2.22), CADD Phred-like scaled C-score was 19.62. These data 287 

demonstrate that the variant is extremely rare and suggest that it might alter the normal 288 

function of MARCH4. 289 

The p.(Trp13Cys) variant is more common as it is reported in ExAC with a frequency of 290 

0.001285 in Finnish samples. It has also been detected in other populations: European 291 

(3/56914), South Asian (8/13234), African (3/7972) and Latino (1/9762). SIFT predicted this 292 

variant to be tolerated (score 0.29), Polyphen2 benign (score 0.00), MutationTaster damaging 293 

(score 0.981), MutationAssessor neutral (score -0.55), and CADD Phred-like scaled C-score 294 

was 2.416. These predictions along with the fact that it was present in individuals over 70 295 

years of age suggest that p.(Trp13Cys) might be a rare neutral variant. 296 

Discussion 297 

In contrast to early-onset AD, late-onset Alzheimer’s disease is rarely caused by segregating 298 

variants in families. The strongest identified risk factor is the APOE ɛ4 allele. In few cases, 299 

variants in APP, PSEN1 and PSEN2 have been reported in LOAD families9. GWAS studies 300 

have identified approximately 20 loci associated with predisposition to AD but finding 301 

variants that actually have a biological effect has proven difficult. In FTD, variants in 302 

C9orf72, MAPT and GRN account for up to 60% of familial cases while variants in other 303 

genes are rare 11.   304 

In addition to the ALS/FTD entity, C9orf72 expansions have been linked to several other 305 

clinical manifestations including AD, Parkinson’s disease and Huntington’s disease 306 

phenocopies (reviewed in 38). We detected C9orf72 expansions in 7/60 (11.6%) families with 307 

either FTD or FTD/ALS but also in 3/60 (5%) families with clinical AD. In one family, Fam-308 

31, neuropathological examinations disclosed moderate to severe AD tau-pathology, and no 309 

TDP-43-positive inclusions were seen. However, p62-positive inclusions were present in the 310 
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cerebellum, consistent with the C9orf72 expansion. Several earlier reports have described 311 

C9orf72 expansions in either clinically diagnosed 39-42 or neuropathologically confirmed AD 312 

43. It is possible that the AD pathology is at least partly attributable to APOE as the one 313 

affected individual with C9orf72 expansion and AD-type neuropathology was homozygous 314 

for the APOE ε4 allele (Supplementary table 2). Previous work has shown that C9orf72 315 

expansions are seen in ~30% of Finnish FTD patients 13 and in 48.1% of familial FTD 44. Our 316 

results confirm this finding and suggest that C9orf72 expansions may manifest as clinical AD 317 

and some patients may also show concomitant AD pathology at the neuropathological 318 

examination. Previous studies on C9orf72 expansions in AD patients have suggested that the 319 

clinical or neuropathological classification as AD may have been incorrect, and this appeared 320 

to be the case in some of our families with clinical diagnosis of AD.   321 

No variants in APP exons 16 and 17 or the coding regions of PSEN1 and PSEN2 were 322 

observed in the 10 AD families selected from our cohort. Whole-genome genotyping also 323 

showed no clearly causative CNVs. Both results are in agreement with previous studies. Only 324 

a few  PSEN1 variants have been reported in Finnish AD families: two families carry the 325 

‘Cotton-wool’ variant, Δ9Finn (c.869_955del) 45, p.(Met146Val) has been reported in a 326 

Swedish family of Finnish descent 46,47 and p.(Pro264Leu) in one family 48. Screening of 327 

APP, PSEN1 and PSEN2 in a cohort of 140 EOAD patients revealed no variants that might 328 

affect function 49.  In addition, duplication of APP was not detected in a cohort of 64 Finnish 329 

EOAD patients 50. 330 

GRN sequencing and exome sequencing did not reveal any pathogenic variants in the two 331 

FTD families without C9orf72 expansions. In agreement with our results, previous work 332 

suggests that GRN variants are rare among Finnish FTD patients 51. 333 
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Exome sequencing revealed rare, potentially relevant variants in five families. Two variants 334 

were in genes previously linked to AD (CLU and PCDH11X) while three variants were in 335 

genes (UNC13C and MARCH4) that have not been directly linked to dementia but could be 336 

important in maintaining normal neuronal function. 337 

In 2010, a large GWAS study indicated that PCDH11X was linked to LOAD in a combined 338 

American Caucasian cohort52. However, subsequent studies in different populations failed to 339 

confirm the findings of Carrasquillo et al. 53-56 Recently, Jiao et al. reported a SNP in 340 

PCDH11X to confer a risk to LOAD 57. Thus, the possible role of PCDH11X in AD 341 

susceptibility is still somewhat unclear. Our results show that the rare p.(Asp760Val) variant 342 

is present in all affected individuals of family Fam-15 but also in two asymptomatic 343 

individuals and in one subject with unclear status. 344 

The role of CLU as an AD risk gene has been established in independent datasets 3,4.  We 345 

noted co-segregation of a rare CLU variant and dementia in an AD family (Fam-56). Even 346 

though rare non-synonymous and small insertion/deletion variants have been reported to 347 

increase AD risk58,59, the p.(Thr203Ile) variant is predictably not deleterious, but at present  348 

we cannot exclude its possible role in AD risk.  349 

Two AD patients from family Fam-49 shared a 3bp in-frame deletion in UNC13C. The 350 

UNC13C gene is highly expressed in brain. Experimental evidence from cat and mouse 351 

models have suggested that its mammalian homologue, Munc13-3, has a role in controlling 352 

critical-period neuronal plasticity in visual cortex.60,61 Gene expression studies in human AD 353 

and control brain samples showed increased UNC13C expression in hippocampal CA3 354 

compared to CA1 in Alzheimer patients. This implicates that UNC13C might have a 355 

neuroprotective role in the brain 62. The rare variant found in family 49 removes one amino 356 
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acid residue but does not disturb the reading frame. Both affected patients were also 357 

heterozygous for the APOE ɛ4 allele, a likely risk factor in this family. 358 

A rare segregating missense variant in MARCH4 was identified in the FTD family Fam-13.  359 

MARCH4 is a member of membrane-associated RING-CH family of ubiquitin E3 ligases. 360 

These ligases function in the last step of ubiquitination by recruiting the ubiquitin carrying E2 361 

enzyme and transferring ubiquitin from E2 to the target protein63. MARCH4 is predominantly 362 

expressed in the adult human brain 64.  The ubiquitin-related protein degradation pathway has 363 

been implicated in many neurodegenerative diseases, including FTD. Recent work by 364 

Williams and coworkers described variants in a component of the ubiquitin E3 ligase 365 

complex, CCNF, in a large ALS/FTD family and a few singleton patients 27. Although the 366 

MARCH4 variant segregated with FTD in our small family, we cannot exclude the possibility 367 

that we merely identified a rare neutral variant in a gene with function that could fit in the 368 

model of FTD pathogenesis.  369 

C9orf72 repeat expansions are common among Finnish FTD patients and our results indicate 370 

that expansions may also be seen in patients with clinical and neuropathological diagnoses of 371 

AD. Our results suggest that unknown genetic factors are likely to be responsible for a 372 

proportion of familial dementia in the Finnish cohort, but definitely causal or risk variants in 373 

novel genes are yet to be identified. Exome sequencing is an efficient way to search for rare 374 

coding variants, but thus far only few segregating risk variants (e.g. TREM2 p.(Arg47His) 65 375 

and TTC3 p.(Ser1038Cys) 66)  have been described in LOAD families. Our results 376 

corroborate the view that even in large LOAD families with multiple affected individuals the 377 

disease is likely caused by combination of multiple genetic and environmental risk factors. 378 

The APOE ε4 risk allele can be assumed to account for multiple affected individuals in 379 

several of the AD families in our study. 380 
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We detected rare segregating coding variants in UNC13C in an AD family and in MARCH4 381 

in an FTD family. However, replication in larger familial and case-control datasets and 382 

functional assays would be needed to prove their causality. The limitation or our study is the 383 

relatively small number of patients. Thus, we could only aim to find highly penetrant 384 

pathogenic variants. In addition, exome sequencing does not enable the identification of non-385 

coding variants that might affect splicing or gene expression. 386 

While our exome sequencing approach failed to identify any clearly causal variants in the 12 387 

families, we believe that the rare variants found in our cohort will be of interest for other 388 

dementia researchers. Thus, we presented all the variants and genes of potential interest in the 389 

hope this may be useful for future studies and can facilitate analyses in other families and 390 

datasets. 391 
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Legends to the figures 628 

Figure 1. Schematic presentation of the study describing the workflow of genetic 629 
examinations. WES = whole exome sequencing. 630 

Figure 2. Proportions of C9orf72 expansions in clinical frontotemporal dementia (FTD), 631 
Alzheimer’s disease (AD) and unspecified dementia in a cohort of 60 families. DLB = 632 
dementia with Lewy bodies. 633 

Figure 3. Pedigrees of the families with rare variants verified by Sanger sequencing. DNA 634 
samples were available from individuals marked with an asterisk. APOE genotypes are also 635 
marked in the pedigree. 636 

a. Family Fam-56 with the CLU p.(Thr203Ile) variant. Heterozygous variant (-/+), 637 
homozygous wild-type allele (-/-). 638 

b. Family Fam-15 with the PCDH11X p.(Asp760Val) variant. Heterozygous variant (-/+), 639 
homozygous wild-type allele (-/-), hemizygous variant (+), hemizygous wild-type allele (-). 640 

c. Family Fam-49 with the UNC13C p.(443del) variant. Heterozygous variant (-/+), 641 
homozygous wild-type allele (-/-). 642 

d. Family Fam-13 with the MARCH4 p.(Lys211Glu) variant. Heterozygous variant (-/+), 643 
homozygous wild-type allele (-/-). 644 

e. Family Fam-59 with the MARCH4 p.(Trp13Cys) variant. Heterozygous variant (-/+), 645 
homozygous wild-type allele (-/-). 646 

 647 


