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Abstract 

Sporadic early onset Alzheimer’s disease (sEOAD) exhibits the symptoms of late onset Alzheimer’s 
disease (LOAD) but lacks the familial aspect of the early onset familial form. The genetics of 
Alzheimer’s disease (AD) identifies APOEε4 to be the greatest risk factor; however, it is a complex 
disease involving both environmental risk factors and multiple genetic loci. Polygenic risk scores 
(PRS) accumulate the total risk of a phenotype in an individual based on variants present in their 
genome. We determined whether sEOAD cases had a higher PRS compared to controls. A cohort of 
sEOAD cases were genotyped on the NeuroX array and PRS were generated using PRSice. The target 
dataset consisted of 408 sEOAD cases and 436 controls. The base dataset was collated by the IGAP 
consortium, with association data from 17,008 LOAD cases and 37,154 controls, which can be used 
for identifying sEOAD cases due to having shared phenotype. PRS were generated using all common 
SNPs between the base and target dataset, PRS were also generated using only SNPs within a 500kb 
region surrounding the APOE gene. Sex and number of APOE ε2 or ε4 alleles were used as variables 
for logistic regression and combined with PRS. The results show that PRS is higher on average in 
sEOAD cases than controls, although there is still overlap amongst the whole cohort. Predictive 
ability of identifying cases and controls using PRSice was calculated with 72.9% accuracy, greater 
than the APOE locus alone (65.2%). Predictive ability was further improved with logistic regression, 
identifying cases and controls with 75.5% accuracy.  

  



1.0 Introduction 

Alzheimer’s disease (AD) is the most common form of dementia, characterised by the deterioration 
of memory, language, visuospatial skills, and behaviour (Budson and Kowall, 2011). Dementia 
currently affects an estimated 46.8m people globally (Prince et al., 2015). Hallmarks of AD were 
originally identified post-mortem from histopathological signs of neuritic plaques, composed of 
amyloid-β, and neurofibrillary tangle formation; post-mortem examination of brain tissue for these 
hallmarks remains the most definitive diagnosis of AD. Clinical diagnosis is accurately verified in 
more than 85% of cases (Naj and Schellenberg, 2016). 

AD can be categorised based on age of onset, where presentation of symptoms in individuals before 
the age of 65 are classified as early-onset Alzheimer’s disease (EOAD), whilst late onset (LOAD) 
classifies individuals with onset over 65 (Barber et al., 2017; Wingo et al., 2012). LOAD has a 
heritability estimated to be around 70%, lower than estimates of heritability for EOAD, which vary 
between 80-100% (Barber et al., 2017; Wingo et al., 2012). An estimated 10% of EOAD cases have a 
familial aspect and are subsequently classified as early-onset familial AD (EOFAD). Autosomal 
dominant variants in the genes Amyloid precursor protein (APP), Presenilin 1 (PSEN1) and Presenilin 
2 (PSEN2) have been discovered to increase amyloid-β production, increasing risk of EOFAD (Liu, C. 
et al., 2013; Wingo et al., 2012). The remainder of early-onset cases, classed as sporadic (sEOAD), 
are thought to be predominantly polygenic. The accumulation of variants which independently 
increase risk of LOAD may lead to sEOAD at an earlier stage of life (Barber et al., 2017; Wingo et al., 
2012). 

The association of the APOE gene has been the most consistent observation in AD genetics with the 
presence of an APOE ε4 allele significantly more common amongst individuals diagnosed with AD, 
whilst the ε2 allele is considered protective (Liu, C. et al., 2013; Naj and Schellenberg, 2016).Through 
genome wide association studies (GWAS), around 20 genetic loci had been discovered, which affect 
risk of LOAD (Lambert et al., 2013). Follow-up studies based on the GWAS have identified other 
potential candidate genes AD risk genes not previously identified, including the TRIP4, SPPL2A genes 
(Ruiz et al., 2014), and ABI3 gene (Sims et al., 2017).  Next-generation sequencing (NGS) has also 
enabled the identification of rare variants, one of the most consistent being the R47H variant in the 
TREM2 gene locus (Guerreiro et al., 2013; Jonsson et al., 2013) which affect risk of AD previously not 
identified in GWAS (Giri et al., 2016; Lambert et al., 2013; Naj and Schellenberg, 2016).  Although 
most studies utilise Caucasian populations, further risk variants have been identified through NGS in 
African American individuals within the gene AKAP9 (Giri et al., 2016; Logue et al., 2014).  Conversely 
protective variants have also been identified including a small coding deletion (rs10553596) within 
the CASP7 gene associated with reduced incidence of AD amongst individuals with the APOE ε4ε4 
genotype in four independent imputed datasets (Ayers et al., 2016).  Further protective rare variants 
have also been identified by imputation of previous datasets such as the PLCG2 gene (Sims et al., 
2017). 

Following on from these studies Marden and colleagues (Marden et al. 2014, Marden et al. 2016) 
sought to determine if a summative analysis of GWAS variants would be able to predict a dementia 
probability score.  An AD genetic risk score (AD-GRS) was calculated by multiplying each individual 
GWAS allele effect size using the beta coefficients obtained from a previous dataset. This type of 
analysis demonstrated that AD-GRS could predict LOAD phenotype (Verhaaren et al. 2013, Sleegers 
et al. 2015, Xiao et al. 2015, Yokoyama et al. 2015, Chouraki et al. 2016, Desikan et al. 2017), MCI 
conversion to LOAD (Rodriguez-Rodriguez et al. 2013, Adams et al. 2015), hippocampal cortical 
thickness (Sabuncu et al. 2012, Harrison et al. 2016), hippocampal volume (Lupton et al. 2016), CFS 
biomarkers (Martiskainen et al. 2015), and plasma inflammatory biomarkers (Morgan et al. 2017).  



This approach has been expanded to include further polymorphisms of smaller but important effect 
sizes to develop a polygenic risk score (PRS) (Euesden et al. 2015).   This is an improvement on 
previous tests as they do not perform well when non-associated SNPs are included (Chapman and 
Whittaker 2008, Basu et al. 2011) and is considered to find SNPs of disease relevance that have too 
small an effect size to be identified conventionally (Pan et al. 2015) . 

In a recent study, polygenic scores were calculated for a cohort of LOAD cases and controls: the 
study used genotype information of the cohort to identify common variants that affect the risk of 
developing AD and used polygenic scores to form a risk prediction model (Escott-Price et al., 2015). 
By producing a model which identifies individuals with a high polygenic risk score, the potential for 
early screening, diagnosis and determination of disease severity becomes possible (Eusden, et al., 
2015).  

In this study we have used genotype information generated on the NeuroX chip to generate a PRS in 
sEOAD. The NeuroX is a customised genotyping array built on the foundation of the Infinium 
HumanExome BeadChip v1.1, with additional custom content. The array is designed to collect 
genotype information at markers across the entire genome. The HumanExome BeadChip foundation 
is made up of 242,901 markers, identifying variants in a series of metabolic, cancerous, diabetic, and 
psychiatric disorders (Barber et al., 2017; Nalls et al., 2015). The custom content includes 24,706 
markers from candidate loci associated with neurological diseases such as AD, Frontotemporal 
Dementia, Parkinson’s Disease, Multiple System Atrophy, Amyotrophic Lateral Sclerosis, Myasthenia 
Gravis, Charcot Marie Tooth, and Progressive Supranuclear Palsy (Nalls et al., 2015). 

To calculate a PRS we have used the software package, PRSice, which utilises genotype information 
from individuals in a target dataset based on the effect scores of single nucleotide polymorphisms 
(SNPs) from a second dataset, termed the base dataset. The program uses R to define parameters 
and PLINK for the computational analysis (Purcell et al., 2007; R Core Team, 2013). PRSice is a 
command line program that allows specific parameters to be considered when generating PRS. The 
output files of the analysis include a list of individuals’ scores at the best-fit threshold for predicting 
disease risk and a list of each tested threshold with its corresponding Nagelkerke’s R2 value, 
quantifying the level of predictability using that threshold (Eusden et al., 2015). 

Linkage disequilibrium (LD) is a common problem when SNPs are scored based on their weighted 
effect and frequency when comparing cases and controls of a disease. The alleles of two SNPs 
present on the same chromosome can be commonly inherited together, and the recurrence of 
particular alleles at loci are an indicator of the degree of LD between SNPs (Bush and Moore, 2012). 
Given two SNPs in tight LD, both could be perceived as contributing to the disease risk in a functional 
haplotype, however it may be that only one polymorphism is responsible for the phenotypic effect.  

The aim of this study was to genotype sEOAD cases and controls to generate a PRS based on the 
genotype information of SNPs identified, and then using the estimated cumulative effect size the 
SNPs have on disease risk, to determine the predictability of the PRS at predicting cases vs controls. 

 

  



2.0 Methods 

2.1 Samples  

The cohort genotyped consisted of 451 sEOAD cases (48.6% female) and 528 controls (51.3% 
female). sEOAD cases were screened for known disease causing variants within exons 16 and 17 of 
APP as well as variants in genes PSEN1 and PSEN2 to minimise inclusion of EOFAD cases. The 
diseased individuals had a documented or predicted age of onset of ≤65 years. Diagnosis of definite 
or probable sEOAD had met guidelines set by the National Institute of Neurological and 
Communicative Disorders and Stroke (NINCDS), the Alzheimer’s disease and Related Disorders 
Association (ADRDA) and the Consortium to Establish a Registry for Alzheimer’s disease (CERAD). 
APOE ε status was determined for all individuals. At least one APOE ε4 allele was present in 57.6% of 
cases, with 22.3% of which being homozygotes (n=58); 22.7% of controls harboured at least one ε4 
allele, seven control samples were ε4 homozygotes. These samples are described in greater detail in 
the paper by Barber et al. (2017). Full details of the samples used in this study are outlined in Table 
1. Experimental procedures were completed with informed consent, with approval from local ethics 
committee (Nottingham Research Ethics Committee 2 (REC reference 04/Q2404/130) and 
completed in accordance with approved guidelines. A standard phenol chloroform DNA extraction 
method was used on 2mls of blood or 100mgs of brain tissue. DNA quality was assessed using gel 
electrophoresis and quantity was determined by NanoDrop 3300 spectrometry (Barber et al., 2017).  

 

2.2 NeuroX array 

Clustering and the first stage of Quality Control (QC) was completed in Illumina GenomeStudio 
2011.1. GenomeStudio took raw fluorescent signal results and formed clusters of the individual 
genotypes for each SNP. A cluster file, provided by the Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE), was used to assist in forming the cluster boundaries for most 
SNPs present on the chip and the remaining SNPs are allocated automatically by the program 
(Barber et al., 2017).  

The SNPs were assessed on how well clusters formed in GenomeStudio: clusters are expected to 
localise at single points with high intensity, to form in certain locations based on the allele present 
and whether the genotype is heterozygous, not form too close to one another, and to not be too 
wide or elliptical. SNPs were grouped into each non-autosomal chromosome whilst all autosomal 
SNPs were assessed together. Clustering of SNPs in genes of interest such as APOE were also 
assessed (Barber et al., 2017).  

Once QC was completed for clustering, the resulting dataset underwent final QC, SNPs and 
individuals were assessed using PLINK (Purcell et al., 2007). Individuals with a sample call rate below 
95% were removed, likely as a result of poor DNA quality, as well as SNPs with a call rate below 90% 
as that could be due to probe design issues. PLINK was used to calculate ancestry information, 
Hardy-Weinberg equilibrium, relatedness, and heterozygosity (Barber et al., 2017). Adherence to 
Hardy-Weinberg equilibrium (HWE) was identified and SNPs which did not meet HWE (P<1.2E-06) 
were removed. Individuals sharing more than 18.75% identity by state (equivalent to second or third 
cousins) were removed to distinguish between relatives with atypical heterozygosity and outliers in 
populations. Individuals with a heterozygosity greater than or less than three times the standard 
deviation were removed as indicators of cross-contamination or inbreeding respectively. Univariate 
logistic regression was performed where the outcome variable was disease status (case vs control) 
and all SNPs with a P-value below this corrected threshold were removed. The final target dataset 



contained genotype information for 265,049 SNPs of 408 cases (48.0% female) and 436 controls 
(58.6% female) (Barber et al., 2017). 

 

2.3 Polygenic Risk Scoring  

PRS calculated using PRSice required SNP information (SNP coordinate, affected allele, reference 
allele, P-value, and effect size as either odds ratio or θ) from an independent cohort, to act as a base 
dataset (Eusden et al., 2015). The base dataset was collated by the International Genomics of 
Alzheimer’s Project (IGAP) consortium, with association data for 7,055,881 SNPs from 17,008 LOAD 
cases and 37,154 controls. The data was accumulated as a meta-analysis of genome wide association 
studies performed by Genetic and Environmental Risk for Alzheimer’s Disease (GERAD), European 
Alzheimer’s Disease Initiative (EADI), Cohorts for Heart and Ageing Research in Genomic 
Epidemiology (CHARGE), and Alzheimer’s Disease Genetics Consortium (ADGC) (Lambert et al., 
2013). There is no equivalent data to this available for sEOAD due to the lower frequency of the 
disease and its diagnosis, however the shared phenotype between the two forms of AD may be 
caused by variants which affect risk of developing AD common to both LOAD and sEOAD. 

PRSice initially identified all SNPs common between the base and target dataset; PRS were 
calculated by ordering all SNPs in the base dataset by association tested P-value; SNPs present 
within the P-value threshold defined by the user were used to provide an accumulative risk score for 
individuals in the target dataset, based on the alleles present at each SNP. The PRS calculated were 
compared between sEOAD cases and controls and the ability to successfully identify cases and 
controls was determined by Nagelkerke’s R2 value: the threshold which contains SNPs that produce 
the greatest Nagelkerke’s R2 value is the best-fit threshold for analysis. 

PRSice was set to calculate polygenic risk scores for all individuals in the cohort at each P-value 
threshold in increments of one thousandth between 10-3 and 1. Uninformative SNPs determined to 
be in strong LD (r2 >0.8) within a linkage block when compared to the index SNP were removed. We 
tested a range of r2 from 0.2 to 0.9 and selected 0.8 as this gave the best predictive model -   
Nagelkerke’s value of 0.169 for r2 <0.2 versus 0.209 for r2 <0.8.   

 

2.4 Statistical Analyses 

Using the best-fit model, as identified by PRSice by the greatest Nagelkerke’s R2 value, the scores for 
each individual were analysed in SPSS to calculate the sensitivity and specificity of the model. The 
predictability of the model at correctly identifying cases and controls was calculated from the area 
under the receiver operating characteristic curve (AUC). 

The results produced by PRSice were further analysed by decile scoring as carried out by Escott-Price 
et al. (2015). Decile scoring is an alternative to quartile and percentile scoring and provides further 
detail of trends in the data. Decile ranges were determined by segmenting the range of PRS into 
tenths and counting the number of cases and controls within each decile. Average scores of cases 
and controls within each decile were also calculated. 

2.5 Polygenic Risk Score of the APOE locus 

The APOE region is known to contain SNPs which affect risk of LOAD, the presence of the APOE ε4 
allele correlates with a high risk of AD. To ensure coverage of the entire APOE locus with nearby 
genes, a 500kb region surrounding the APOE gene was isolated in the analysis by extracting the SNPs 



within this region from the NeuroX dataset to produce an alternative target dataset (Karolchik et al., 
2004). The locus was identified as chr19:45,160,844-45,660,844 (GRCh37) (Kent et al., 2002). This 
altered version of the target dataset, carrying genotype information for 198 SNPs (including rs7412 
but not including rs429358 as this failed QC) within the APOE region, was also tested using PRSice to 
calculate risk scores.  

Additional cohort information that is traditionally found to also be associated with AD risk; age, sex, 
and number of APOE ε2 and/or ε4 alleles were also integrated into the analysis. Logistic regression 
was performed on the APOE locus, PRS including the APOE locus, variables relevant to the analysis, 
and the combination of relevant variables with individual scores. Age was excluded as a variable as 
all cases were below age 65 whilst healthy controls were over age 65 at time of sampling. The AUC 
was calculated to determine whether accuracy of the model at predicting disease status improved 
with the inclusion of these demographic variables in the model. Hosmer-Lemeshow P-value is a 
result used to identify the goodness-of-fit of regression models; a non-significant value is considered 
a good model. Nagelkerke’s R2 value was calculated to compare models for the best fit, the greater 
the R2 value, the better fit the model had for prediction. 



3.0 Results  

In this study sEOAD cases and controls were genotyped on the NeuroX array; the array results were 
clustered and subjected to QC to produce a target dataset. This, along with the base dataset 
provided by the IGAP consortium were used to generate PRS for all cases and controls using PRSice.  

PRSice provides the Nagelkerke’s R2 scores produced at every P-value threshold tested and the 
number of SNPs used to calculate the scores. A total of 28,538 SNPs were common between the 
target dataset and the base dataset. The P-value threshold with the highest Nagelkerke’s R2 defines 
the best-fit for the dataset for identifying cases and controls. The best fit threshold used association 
data from 9,434 SNPs with a P-value ≤0.302 and produced the highest Nagelkerke’s R2 value of 
0.209. A range of scores at different P-value thresholds with their corresponding R2 values and 
number of SNPs included is presented in Table 2.  

The sensitivity and specificity of the best PRSice model was calculated in SPSS. Of the 408 cases in 
the NeuroX dataset, 59.1% were correctly identified as cases and 72.9% of the 436 controls were 
correctly identified as controls. The greatest predictive ability, AUC, of the PRS calculated by PRSice 
for this cohort was 72.9%. The value of Nagelkerke’s R2 calculated in SPSS, 0.209, was identical to the 
value obtained in PRSice, an indicator of reproductive power.   

The average PRS for controls was 3.8E-04±6.75E-04 and 5.8E-04±6.9E-04 for cases - using an 
unpaired t-test on these PRS values gives a t-value of 12.33 with p<0.0001. Decile scoring was also 
used to visualise the pattern of PRS distribution between cases and controls. Each decile covered 
one tenth of the score, however the proportion of individuals within each decile varied. The first four 
deciles have a majority of controls, with fewer controls having high PRS compared to cases. A 
PRS>0.00045 would determine an individual to more likely be a case than control. The details of 
decile scoring are displayed in figure 1 along with the distribution of scores for cases and controls, 
with the identification of the average score at each decile presented in figure 2. 

A 500kb region surrounding the APOE gene was identified and the SNPs within the locus were 
isolated in the target dataset; PRS was calculated for individuals using association data from the 
IGAP consortium. Of the 198 SNPs present on the NeuroX array within this region, 31 were common 
with the base dataset. The Nagelkerke’s R2 value corresponding with the best-fit threshold of 
P≤0.001 was 0.124 using association data from 28 SNPs; using only the APOE locus, cases and 
controls of AD can be predicted with an AUC of 65.2%. Linear regression was completed on the APOE 
locus dataset and compared to the PRS model as shown in figure 3. The APOE model identified 
controls with a specificity similar to the PRS model, calculated as 75.5% and 72.9% respectively; 
however, the ability to identify cases was not as accurate as the PRS model, with a sensitivity of 
51.7% compared to 59.1%. 

Variable information can also impact an individuals’ risk of developing AD: identifying an individuals’ 
APOE ε status is common in diagnosis, whilst gender needs to be controlled for whenever possible. A 
combination of these variables using logistic regression produced the best model for identifying 
controls, with a specificity of 76.8% and sensitivity of 56.9%, most likely due to the protective effect 
of the ε2 allele. However, combining these three variables (ε2, ε4 and Sex) with individuals’ PRS 
produced a model with the best overall predictive ability of 75.5%; together with sensitivity of 64.5% 
and specificity of 73.1%. Results of logistic regression analysis for each risk-scoring model are 
depicted in figure 3. 

 



  



4.0 Discussion 

A cohort of sEOAD cases and controls were genotyped on the NeuroX array and this information was 
used to generate PRS in PRSice using SNP association data from the IGAP consortium as the training 
set. The resulting risk model could successfully recognise an individual to either have sEOAD or be a 
healthy control with 72.9% accuracy. The addition of variables (number of APOE ε2 alleles, APOE ε4 
alleles and Sex) in logistic regression improved the predictability to 75.5%.  

There was a significantly higher average PRS in cases than controls (p<0.0001) with most individuals 
having a PRS above zero. Decile scoring showed most controls were within the lower deciles, with 
the absence of controls at the highest decile. For this analysis the base dataset we used was formed 
from LOAD cases rather than sEOAD, however we do not perceive this as an issue since the 
pathogenic mechanisms for both sEOAD and LOAD are likely shared (Barber et al, 2017).  

The APOE locus (500kb region centred on APOE) had a predictive accuracy of 65.2%, which confirms 
the high-risk contribution from known variants within this locus.  Our analysis demonstrates that 
additional genetic variation across the rest of the genome also influences the risk of sEOAD. The 
NeuroX array that we have used genotypes SNPs from regions across the entire genome together 
with custom content which includes genes associated with several other neurological diseases 
including AD. These types of arrays provide a practical means to obtain greater accuracy of 
predictive ability in complex diseases. 

The presence of controls with high PRS suggests that individuals can have SNPs that are associated 
with a greater risk of sEOAD but they may not develop AD. This would support the idea that in 
addition to risk variants there are uncharacterised protective variants in the genome that modify an 
individual’s risk of getting the disease. The five controls present within the ninth decile had a high 
PRS; these individuals might have gone on to develop AD - the average age at death of these 
individuals was below eighty years.  Additionally a high PRS could indicate risk for AD in later life or 
the risk of other neurological diseases that correlate with AD. Low PRS could be indicative of 
neuroprotection, however low scores were also be found in some of our sEOAD cases. Healthy 
controls with high PRS and cases with low PRS are possible indicators of missing heritability or as yet 
unknown environmental factors affecting the risk of developing AD. 

The predictability of disease as estimated by the AUC derived from ε2, ε4 and Sex was 71.4%. The 
AUC for the best model included these variables but the addition of PRS increased the predictive 
ability by more than 3%. More extensive genotyping and additional information collected about 
individuals’ lifestyles could further improve the predictability of AD risk. Further improvements of 
genetic-based prediction models could increase the predictability to the point where at-risk 
individuals are readily identified and potentially stratified using genetic testing.  

The NeuroX array we have used in this study was the first version of an array specifically designed 
for neurological diseases. The custom content contributed 4,401 variants within the PRS threshold 
we have utilised, which accounted for 17.3% of the markers used to generate the scores. An increase 
in the number of markers to include a greater range of genetic variants associated with AD will 
undoubtedly lead to the generation of improved scores. Several of the loci identified more recently 
were not present on the first iteration of the NeuroX array.  Increased coverage, such as that 
available from the latest version of the NeuroXChip version2 (Blauwendraat et al., 2017), could 
provide additional information for generating more accurate risk scores thereby providing a better 
predictive model.   



In the study performed by Escott-Price et al. (2015), an AUC of 78.2% was achieved using association 
data from 87,605 SNPs combined with covariate information for sex, age, and APOE. The study 
produced a set of scores with more variability, due to more SNPs in common between both datasets, 
although the indicator for a good model is ultimately determined by the Nagelkerke’s R2 value.  A 
more diverse set of scores for AD could lead to the ability of identifying specific groups within the 
disease cohort, and introduce treatment plans according to the variants identified (Eusden et al., 
2015).  In our study using a much-reduced number of pathologically confirmed sEOAD cases (n=408) 
we have obtained comparable PRS (AUC of 75.5%) to the original study of Escott-Price et al. (2015) 
generated for 3,049 LOAD cases and 1,554 controls. This demonstrates the increased power that can 
be realised using pathologically confirmed tissue in comparison to clinically defined samples. In a 
more recent study, Escott-Price et al. (2017a) used a modified approach to calculate the maximum 
possible predictive power (AUCmax) thereby improving the AUC produced previously from a value of 
78.2% to 82%.  More recently Escott-Price et al. (2017b) have performed PRS analysis on 
pathologically confirmed samples and found improved scores compared with the previous study on 
clinically diagnosed cases (Escott-Price et al. (2015)). 

Other studies in AD using SNP scoring to generate risk scores have used SNPs with greater effect size 
as a means to reduce the number of SNPs required to calculate risk as discussed in the introduction. 
For example a genome-wide risk score has been calculated previously from the effect scores of just 
31 SNPs and genotypes of the APOE ε2 and ε4 alleles (Desikan et al., 2017).  Using a model with tens 
of SNPs compared to thousands would provide a more cost-effective approach to screen for AD in 
individuals. Alternatively, identifying the variants which increase phenotypic risk in an individual 
using a risk score model could be used to form a more effective symptom-specific treatment plan. 
The ultimate driver will be the SNP set which provides the greatest prediction irrespective of SNP 
number.  
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Legends 

Figure 1 – Proportion of diagnosed sEOAD cases and controls at each decile determined by range of 
score.  

The figure breaks down the range of PRS into deciles. The range of scores which make up each decile 
are depicted as well as the number of cases and controls, and the percentage of individuals which 
fall into each decile. Controls are right-skewed whilst cases demonstrate left skewness. These figures 
were produced from PRS of 408 sEOAD cases and 436 controls. The embedded table lists the decile 
ranges with the number of cases and controls in each decile along with the proportion of the cohort 
which make up each decile. 

 

Figure 2 – Distribution of polygenic risk score amongst sEOAD cases and controls with average scores 
at each decile.   

The range of PRS obtained for cases and controls are distributed into deciles. The range of coverage 
of each decile is shown in the bar plot together with the proportion of cases and controls which 
make up each decile. The average scores for all cases and controls are indicated by the thick bar 
whilst the short horizontal bars show PRS for each individual. Average scores at each decile are 
indicated as hollow circles for cases and filled circles for controls. 

 

Figure 3 – Results of logistic regression with an area under the receiver operating characteristic 
curve (AUC) for alternative risk scoring models in sEOAD.  

For this analysis, the APOE locus was defined as a 500kb region surrounding the APOE gene and the 
scores produced by PRSice for this model are based on the SNPs within that region; PRS represents 
the score produced for all SNPs present on both the NeuroX array and in the base dataset. The 
relevant variables included sex together with the number of APOE ε2 allele and/or APOE ε4 allele. As 
shown in the table a non-significant Hosmer-Lemeshow P-value suggests the model is suitable for 
using as a predictive tool. Nagelkerke’s R2 can also be used to identify the best model for risk 
prediction, the higher the value of R2 the greater the predictive accuracy of each model. This 
approach identified Sex, E2, E4 + PRS as the best model for calculating risk in our sEOAD cohort as 
the largest AUC value is produced from the combination of variables. 

 

 

 

 

 

 

 

 

  



Table 1 
 
A 

Centre N Mean age at onset Females (%) APOE ε4+ (%) APOE ε4ε4 (%) 
Bristol 21 53.3 11 (52.4) 10 (47.6) 3 (14.3) 

Manchester 328 57.1 152 (46.3)  194 (59.1) 47 (14.3) 
Nottingham 26 58.2 12 (46.2) 11 (42.3) 1 (3.8) 

Oxford 33 55.6 19 (57.6) 19 (57.6) 3 (9.1) 
All sEOAD Cases 408 56.8 194 (47.5) 234 (57.4) 54 (13.2) 

B 
Centre N Mean age at death Females (%) APOE ε4+ (%) APOE ε4ε4 (%) 

UCL 436 77.2 256 (58.7) 104 (23.9) 9 (2.2) 

 
  

 

 

 

 

 

 

 



Table 2 

P-value threshold Nagelkerke’s R2 Number of SNPs 
≤0.001 0.149 141 
≤0.002 0.154 203 
≤0.005 0.163 355 
≤0.010 0.172 546 
≤0.020 0.176 930 
≤0.050 0.181 2,022 
≤0.100 0.193 3,595 
≤0.200 0.204 6,545 
≤0.302 0.209 9,434 
≤0.500 0.207 14,995 
≤1.00 0.203 28,538 

 

 



Legends 

Table 1 – Demographics of the sEOAD and controls cohort. 

The sEOAD cases were recruited from four centres within the UK, the number of individuals from 
each centre is outlined above. All cases had a documented or calculated age at onset below 65 
years. The number of females from each centre is recorded with the percentage per centre together 
with the percentage of individuals from each centre harbouring at least one APOE ε4 allele (ε4+) 
along with the number and percentage of individuals from each centre with the ε4ε4 genotype. (B) 
All controls were recruited from a single centre in the UK (UCL, London), the number of individuals is 
given above. The mean age at death for controls is given with the number and proportion of 
females. The number of individuals harbouring at least one APOE ε4 allele and the number and 
proportion of controls with the ε4ε4 genotype is also included. 

 

Table 2 – Nagelkerke’s R2 values at varying p-value thresholds 

The table lists some of the P-value thresholds tested by PRSice and their corresponding Nagelkerke’s 
R2 value, along with the number of SNPs used in calculating PRS. A total of 28,438 SNPs were 
common between the NeuroX array and the SNPs collected by the IGAP consortium. The greatest R2 
value was at the threshold of P≤0.302, and used variant information from 9,434 SNPs.  

 

 


