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Abstract

In this thesis, I study the impact of consumer behaviour on service providers’ operations.

In the first study, I consider service systems where customers do not know the distribu-

tion of uncertain service quality and cannot estimate it fully rationally. Instead, they form

their beliefs by taking the average of several anecdotes, the size of which measures their

level of bounded rationality. I characterise the customers’ joining behaviour and the service

provider’s pricing, quality control, and information disclosure decisions. Bounded rational-

ity induces customers to form different estimates of the service quality and leads the service

provider to use pricing as a market segmentation tool, which is radically different from the

full rationality setting. When the service provider also has control over quality, I find that it

may reduce both quality and price as customers gather more anecdotes. In addition, a high-

quality service provider may not disclose quality information if the sample size is small.

In the second study, I analyse the performance of opaque selling in countering the nega-

tive revenue impact from consumers’ strategic waiting behaviour in vertically differentiated

markets. The advantage of opaque selling is to increase the firm’s regular price, whereas the

disadvantage lies in the inflexibility of segmenting different types of consumers. Both the

advantage and the disadvantage are radically different from their counterparts in horizon-

tally differentiated markets, and this contrast generates opposite policy recommendations

across the two settings. In the third study, I investigate an online store’s product return

policy when competing with a physical store, in which consumers can try the product be-

fore purchase. I find that the online store should offer product return only if it is socially

efficient. Moreover, it should allocate product return cost between the online store and the

consumers to minimise the total return cost.



Impact Statement

Thanks to the development of modern technologies, especially mobile Internet and e-

commerce, consumers can exhibit new behaviours and enhance their existing behaviours

when engaging with the operations of service systems. The impact of these behaviours

on service operations is addressed inadequately in the existing literature, and practitioners

are relying mainly on intuition to make their operational decisions. This thesis aims to

provide theoretical frameworks and policy recommendations about how service providers

should adjust their operational and marketing decisions when faced with specific consumer

behaviours.

From the academic perspective, this thesis lays the foundation for future research that

considers consumer behaviour in operations management. For example, Chapter 2 proposes

a modelling framework that incorporates customers’ social learning from word-of-mouth

information into service systems. Building on this framework, future modelling research

can investigate the impact of customers’ social learning on firms’ operational and market-

ing decisions that have not been addressed in this thesis, e.g., capacity choice or pricing and

quality decisions in a competitive market. Moreover, Chapter 4 establishes a model that

considers online-offline competition on an experience good. This framework can serve as

the basis for future research that studies the impact of various consumer behaviours (e.g.,

service free-riding) on competitive markets.

This thesis also contributes to the academia by improving its understanding regard-

ing the impact of consumer behaviours on service systems. In Chapter 2, I study a service

provider’s pricing, quality information disclosure, and quality control decisions when its

customers rely on word-of-mouth information to estimate service quality. In Chapter 3,

I analyse the performance of opaque selling in helping travel service companies to cope

with consumers’ strategic waiting behaviour in vertically differentiated markets. In Chapter

4, I examine an online retailer’s product return policy when consumers are ex ante unsure
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about the product fit and can learn about it from visiting an offline store. These studies not

only address research questions that are novel to the modelling literature, they also provide

testable hypotheses for future empirical research. For example, based on my modelling

framework in Chapter 2, researchers can estimate the size of customers’ word-of-mouth in-

formation for different types of service systems and how it evolves over time. Compounded

with my analysis, researchers can provide solid policy recommendations about how a ser-

vice provider should adjust its pricing, service quality, and information disclosure decisions

to customers’ word-of-mouth evolution.

From the practitioners’ perspective, this thesis provides new insights regarding service

providers’ operational and marketing strategies. First, the thesis highlights the importance

of gathering data to quantify the level of a particular consumer behaviour. Second, the mod-

elling framework in this thesis can serve as the foundation to make concrete operational

and marketing decisions based on consumer-level data. Finally, the analysis and discus-

sions in this thesis provide policy recommendations for a service provider’s operational and

marketing strategies.
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Chapter 1

Introduction

With the advancement of modern technologies (e.g., mobile Internet, online social media,

and e-commerce), consumers can exhibit new behaviours and enhance their existing be-

haviours when engaging with the operations of service systems. For example, the growing

popularity of online social media and review websites enables consumers to acquire word-

of-mouth information about the food quality of a particular restaurant before deciding to

eat there. The availability of price-tracking websites makes consumers more strategic in the

timing of purchase, i.e., they may wait for a future price cut instead of buying early. This

strategic waiting behaviour is particularly salient in the travel service industry, where dy-

namic pricing is a common practice. In addition, the growth of online retailing underscores

consumers’ need to touch and feel a product before making the purchase decision.

These behavioural elements may fundamentally change a firm’s operational and mar-

keting strategies, thereby posing new challenges for managers in practice. For example,

restaurant owners may need to change the menu (in terms of both prices and qualities) as

consumers are better informed about the food from their social media. An online booking

company should consider adjusting its dynamic pricing strategy to cope with consumers’

strategic waiting behaviour. An online retailer may need to offer more lenient return poli-

cies to compensate consumers for the inability to try before purchase. This thesis addresses

these challenges by modelling consumer behaviour in service operations to derive new in-

sights into managers’ operational and marketing strategies.

In Chapter 2, I consider service systems where customers do not know the distribu-

tion of uncertain service quality and cannot estimate it fully rationally. Instead, they form

their beliefs by taking the average of several anecdotes, the size of which measures their

level of bounded rationality. I characterise the customers’ joining behaviour and the service
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provider’s pricing, quality control, and information disclosure decisions. Bounded rational-

ity induces customers to form different estimates of the service quality and leads the service

provider to use pricing as a market segmentation tool, which is radically different from the

full rationality setting. As customers gather more anecdotes, the service provider may first

decrease and then increase price, and the revenue is U-shaped. Interestingly, a larger sample

size may harm consumer surplus, although it always benefits social welfare. When the ser-

vice provider also has control over quality, I find that it may reduce both quality and price

as customers gather more anecdotes. In addition, a high-quality service provider may not

disclose quality information if the sample size is small, while a low-quality service provider

may disclose if the sample size is large. Furthermore, as the expected waiting cost increases,

information non-disclosure is more attractive, thereby highlighting the importance of incor-

porating customer bounded rationality in congested settings.

In Chapter 3, I consider a new behavioural element in the setting of travel service op-

erations. In this setting, service capacities (e.g., airline tickets and hotel rooms) are usually

difficult to adjust in the short term and any leftover capacity after the expire date is worth-

less. As a result, it is common practice for online booking companies to mark down the price

as the expire date approaches. However, this last-minute selling strategy may not improve

the firms’ aggregate revenue since it induces some consumers to wait for the sales instead

of buying at the higher regular price. To counter the negative revenue impact from con-

sumers’ strategic waiting, Priceline and Hotwire have begun to adopt opaque/probabilistic

selling strategies, i.e., mixing different types of leftover products to sell as a new product.

The existing literature has analysed its performance in comparison to the classic last-minute

selling strategy (i.e., selling the leftover products separately) in horizontally differentiated

markets. However, it remains unclear how opaque selling performs in vertically differen-

tiated markets. To address this question, I consider a dynamic pricing model in which a

firm sells vertically differentiated products across two periods to strategic consumers with

uncertain demand. I characterise the firm’s optimal selling strategy and find that opaque

selling may outperform last-minute selling because it increases the regular price by depriv-

ing consumers of a choice to buy the preferred type of product during the sales season. Its

disadvantage, however, lies in the inflexibility of segmenting different types of consumers.

Both the advantage and the disadvantage are radically different from their counterparts in

horizontally differentiated markets, and this contrast generates opposite policy recommen-



15

dations across the two settings. Specifically, under vertical differentiation, the firm may

switch from opaque selling to last-minute selling as consumers become more differentiated

or the probability of a low demand increases. However, it always switches from last-minute

selling to opaque selling under horizontal differentiation.

Whereas Chapter 2-3 focus on monopoly settings, Chapter 4 considers the competi-

tion between an online store and a physical store in which the online store utilises money-

back guarantees (MBGs) to compensate consumers for its disadvantage in instore services.

Specifically, consumers who visit the physical store can try different variants of a product

before purchase with instore assistance, whereas in an online store they buy a product with-

out knowing whether it fits their need or not. To cope with this disadvantage, major online

retailers (e.g., Amazon, Zappos, Newegg) offer consumers the chance to return products

and get the full money back “no question asked.” Using a game-theoretical model, I study

how the online store should design its product return policy to compete with the physical

store. I find that MBGs can effectively raise profits if it is more efficient to transfer an unfit

product from the consumer side to the online store. Moreover, if the online store chooses

to offer MBGs, it should allocate product return cost in the socially optimal way, i.e., to

minimise the total return costs. I also study the impact of the stores’ service quality on their

optimal profits. Interestingly, the online store may lose profit from improving the service,

whereas it may benefit from a better service from the physical store.

I am the first author of all chapters. Chapter 2 was undertaken as joint work with

Tingliang Huang and Kenan Arifoglu. Chapter 3 draws on joint work with Tingliang Huang.

Chapters 4 is based on conjoint work with Tingliang Huang, Christopher Tang, and Ying-Ju

Chen. In all chapters, I performed all analyses and wrote all parts of the chapters myself.



Chapter 2

Managing Service Systems with Unknown

Quality and Customer Anecdotal Reasoning

2.1 Introduction

Service systems such as call centres, hospitals, restaurants, night clubs, and amusement

parks are prevalent in our everyday lives. In many situations, customers need to choose

between waiting for service in a queue or balking based on their inference of the service

quality. The existing literature (e.g., Debo et al. 2012, Guo et al. 2014) typically assumes

that customers make this inference fully rationally, e.g., following the Bayesian rule. How-

ever, this is usually challenging for average customers in real-time decision-making. First,

Bayesian updating requires customers to have prior knowledge about the service quality. In

practice, they may lack such knowledge because of scarce learning opportunities (e.g., din-

ers patronising a new restaurant) or because they do not have the relevant expertise (e.g., car

owners incapable of evaluating all possible causes of a car breakdown). Second, the calcu-

lation involved in Bayesian updating is demanding. In fact, the psychology and economics

literature has long argued that people usually do not follow the Bayesian rule in uncertain

situations (e.g., Edwards 1968, Kahneman and Tversky 1979, 1984).

Because of the informational and computational challenges underlying Bayesian up-

dating, customers naturally resort to simplified heuristics when estimating service quality.

An example of such a heuristic is to ask acquaintances about their past service experiences

(i.e., anecdotes) and then expect a service benefit equal to the sample average. Compared

to Bayesian updating, this anecdotal reasoning is non-parametric in nature and thus allows

customers to estimate service quality without knowing its distributional parameters. The

computation involved in anecdotal reasoning is also usually much simpler than applying
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the Bayesian rule. Furthermore, the worldwide booming of online social media has greatly

facilitated information sharing among customers, which makes anecdotal reasoning espe-

cially popular. According to surveys by Nielsen (2013, 2015), customers ranked word-of-

mouth recommendations as the most trustworthy source of advertising from 2007 to 2015,

with its percentage of trust nearly 20% higher than that of the runner-ups (i.e., consumer

opinions posted online and editorial content) in 2015.

Although anecdotal reasoning greatly simplifies customers’ inferences of service qual-

ity, it may lead them to hold incorrect estimates when service quality is intrinsically un-

certain.1 Specifically, anecdotal-reasoning customers attribute the server’s performance

inferred from anecdotes entirely to its capability rather than luck. Therefore they over-

estimate (underestimate) service quality if the performance happens to be good (bad) and

thus exhibit a joining behaviour different from the full rationality setting. This presents

new challenges for the management of service systems: (i) As customers gather more anec-

dotes, how should the service provider (e.g., a new restaurant with growing popularity)

adjust price and service quality? (ii) Should the service provider disclose service quality

information (e.g., restaurants inviting expert reviews or giving away free drinks/desserts to

customers who post food photos on social media)?

To address these questions, I consider an M/M/1 unobservable queue with uncertain

service quality. Customers do not know its expected value and estimate it as the average

of several anecdotes. The sample size measures their level of bounded rationality: With

more anecdotes, customers estimate service quality more accurately and thus their joining

behaviour converges to the fully-rational benchmark where they know the expected service

quality.

Using this anecdotal reasoning framework, I characterise customers’ equilibrium join-

ing rate and the service provider’s pricing, service quality, and information disclosure de-

cisions. Unlike the fully-rational benchmark, the service provider uses pricing as a tool to

segment customers with different service quality estimates. In particular, a low-quality ser-

vice provider prices higher than the fully-rational benchmark to target the niche customers

who considerably overestimate service quality, and a high-quality service provider prices

1Uncertainty about service quality is prevalent because of the inherent variability in service providers’

performance (e.g., a chef may be unable to guarantee perfect timing and seasoning for every dish) and un-

known/unpredictable environmental factors (e.g., a pharmacist may be unable to predict all of a drug’s side

effects).



2.2. Related Literature 18

lower to target the mass customers who do not considerably underestimate service quality.

As customers gather more anecdotes, the optimal revenue may first decrease and then in-

crease, while social welfare always increases. Interestingly, consumer surplus may decrease

due to intensified congestion. I also incorporate the service provider’s quality control deci-

sion and find that counter-intuitively, it may target a lower quality level as customers gather

more anecdotes (i.e., estimate service quality more accurately).

Apart from pricing, in practice service providers may also have the discretion to inform

customers of the mean service quality. For example, restaurants can disclose the average

food quality by inviting expert reviews and customers’ social media posts. I characterise

this information disclosure decision and find that high-quality service providers may not

disclose information if customers are sufficiently boundedly rational, while low-quality ser-

vice providers may disclose if customers are rational enough. In the former case, the high-

quality service providers are better off by not disclosing the service quality and setting a

high price to sell only to the niche customers. In the latter case, the low-quality service

providers should price low to sell to the mass customers, and the service providers should

disclose information since it increases the customer size. Moreover, a higher congestion

cost makes the service providers switch from targeting the mass customers to targeting the

niche customers. As a result, information non-disclosure is more attractive. This under-

scores the importance of considering customer anecdotal reasoning in congested settings.

The remainder of this chapter is organised as follows. I provide a literature review in

§2.2, and present my model and preliminary analysis in §2.3. In §2.4, I study the service

provider’s pricing, quality, and information disclosure decisions. In §2.5, I extend the anal-

ysis by considering welfare-maximising service systems and customer heterogeneity in the

sample size. I present concluding remarks in §2.6. The proofs of lemmas and propositions

are relegated to Appendix A.1.

2.2 Related Literature

The traditional queueing economics literature incorporates customers’ join-or-balk decision

by assuming that they perfectly understand the queueing system (Hassin and Haviv 2003,

and references therein). This assumption has been relaxed in several recent studies. For

example, the behavioural operations management literature studies service systems where

customers do not know the realised service quality and update their beliefs about it based on

the queue length (Debo et al. 2012, Debo and Veeraraghavan 2014, Guo et al. 2014) or the
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expected waiting time (Kremer and Debo 2015). Another branch of literature investigates

the operations of diagnostic services where customers rely on an expert service provider to

identify the type of service they need (Alizamir et al. 2013, Wang et al. 2010). As with

my model, the aforementioned research assumes that customers do not know the realised

service quality. However, it focuses on the full rationality setting where customers infer ser-

vice quality following the Bayesian rule, whereas I consider boundedly rational customers

who estimate service quality based on anecdotes.

Recently, researchers have started to incorporate customer bounded rationality in ser-

vice systems. Huang et al. (2013) capture customers’ inability to accurately estimate the

expected waiting time by introducing a random error term in their waiting time estimates.

They derive the revenue and welfare implications of customer bounded rationality for a

monopolistic service provider. Li et al. (2016) extend this analysis by considering market

competition and the trade-off between service quality and service rate. Huang and Chen

(2015) study a service provider’s pricing and service rate decisions when faced with cus-

tomers who estimate the expected waiting cost based on past experiences and anecdotal

reasoning. Cui and Veeraraghavan (2016) consider customers who hold arbitrary beliefs

about service rate and study the service provider’s decision to disclose the true service rate.

Although this chapter also focuses on customer bounded rationality in service systems, it is

fundamentally different from this literature. First, the bounded rationality in Huang et al.

(2013), Li et al. (2016), and Cui and Veeraraghavan (2016) stems from customers’ inability

to perfectly perceive the service rate or accurately calculate the expected waiting time. In

this chapter, however, customer bounded rationality stems from their cognitive limitation

of attributing service performance inferred from anecdotes entirely to capability rather than

luck. Second, Huang and Chen (2015) focus on the extreme case where customers estimate

the expected waiting time from only one anecdote. In contrast, I study customer anecdotal

reasoning regarding service quality based on an arbitrary number of anecdotes. This al-

lows me to derive insights into the service provider’s information disclosure decision and

the evolution of its pricing and quality strategies as customers acquire more anecdotes over

time. Third, Cui and Veeraraghavan (2016) assume an exogenous price and service quality,

whereas I endogenise both.

Researchers have also incorporated decision-makers’ bounded rationality in inventory

management. For example, Li et al. (2016) consider competing newsvendors’ cognitive
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limitation in the form of inadequately perceiving demand uncertainty. In contrast, I study a

different type of bounded rationality (anecdotal reasoning) in a different operational setting

(monopolistic service systems).

My anecdotal reasoning framework is adapted from the S(k)-equilibrium proposed by

Osborne and Rubinstein (1998). Unlike the classic Nash equilibrium where each player

optimises based on a belief about other players’ behaviours, in the S(k)-equilibrium she

samples each action k times and chooses the one with the highest expected payoff. This

equilibrium concept has been widely applied to model customer bounded rationality in sev-

eral disciplines, including economics (Spiegler 2006a,b, Szech 2011), marketing (Huang

and Yu 2014), and operations management (Huang and Chen 2015).

This chapter is also related to the extensive economics literature on quality information

disclosure (see Dranove and Jin 2010, for a review). Grossman (1981) and Milgrom (1981)

show that all firms should disclose their quality to fully-rational customers because they in-

fer non-disclosing firms as having the lowest quality. This “unravelling” result is overturned

if information disclosure is costly (Jovanovic 1982), customers ignore or cannot fully un-

derstand the disclosed information (Fishman and Hagerty 2003, Hirshleifer et al. 2004), or

customers are unsure about the usefulness of a certain quality attribute (Stivers 2004). This

chapter complements the literature by showing that customer bounded rationality alone can

also overturn the unravelling result.

There is an emerging service operations literature on information disclosure. Hassin

(1986, 2007) examines a service provider’s decision to disclose its queue length, service

quality, service rate, and unit waiting cost. Guo and Zipkin (2007, 2009) analyse the impact

of different levels of waiting time information on the service system’s performance and

consumer surplus. Guo et al. (2011) study a service provider’s decision to disclose delay

information to customers who estimate waiting time by the entropy-maximisation principle.

Note that this literature imposes the full rationality assumption on customers, whereas I

focus on boundedly rational customers whose level of rationality (given by the sample size)

is influenced by the service provider’s information disclosure decision.

2.3 Model and Preliminaries

I consider an M/M/1 unobservable queue with homogeneous customers arriving according

to a Poisson process at rate λ (arrival rate or market potential, hereafter). In what follows, I

will refer to the service provider (server, manager, etc.) as “he” and each customer as “she.”
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Both the server and the customers are risk-neutral. Upon arrival, a customer chooses be-

tween joining the queue at price p or balking to obtain a constant payoff, which I normalise

to zero without loss of generality. Joining customers are served on a first-come first-served

basis, and the service time is exponentially distributed with rate µ . Waiting for service costs

a customer c per unit of time, and completing the service entails a random benefit R (ser-

vice quality or valuation, hereafter). For analytical simplicity, I assume that the benefit is

normally distributed, i.e., R ∼ N(R,σ2), where R and σ2 denote the expected benefit and

its variance. The benefit is realised upon completion of the service, and only the service

provider knows its distribution ex ante. In contrast, the existing queueing economics litera-

ture assumes that customers also know the service quality distribution (see, e.g., Guo et al.

2014). In my setting, this implies that their joining rate λr(p) is given by (Hassin and Haviv

2003):

λr(p) =


0, if µ− c

(R−p)+ < 0,

µ− c
R−p , if 06 µ− c

(R−p)+ 6 λ ,

λ , if µ− c
(R−p)+ > λ .

I will refer to this case as the fully-rational benchmark because customers have perfect

knowledge of the expected service quality. In what follows, I will derive the joining rate of

anecdotal-reasoning customers and show that it includes the fully-rational benchmark as a

limiting case.

2.3.1 Customer Anecdotal Reasoning

Building on the established S(k)-equilibrium concept (see, e.g., Huang and Yu 2014,

Spiegler 2006a,b), I develop customers’ anecdotal reasoning framework as follows. Upon

arrival, each customer gathers k service quality anecdotes/samples, which I denote as Ri,

i = 1, . . . ,k. Each anecdote is an independent draw from the service quality distribution, i.e.,

Ri ∼ N(R,σ2) for all i. The customer estimates service quality as the sample average of all

anecdotes. As a result, her service quality estimate R is given by

R =

(
k

∑
i=1

Ri

)
/k ∼ N(R,σ2/k).

Note that customers’ service quality estimates differ across each other and may not coincide

with the mean service quality R (i.e., they are indeed boundedly rational). Both results

are due to customer anecdotal reasoning: They attribute the service samples solely to the

server’s capability instead of luck, so some customers overestimate the expected service



2.3. Model and Preliminaries 22

quality when the sample average happens to be high, while the others underestimate because

the sample average happens to be low. Moreover, the sample size k measures customers’

level of bounded rationality since their service quality estimates deviate less from the mean

service quality as k increases (i.e., Var[R] decreases in k). Intuitively, as customers acquire

more anecdotes, the sample average is less influenced by luck and thus reflects the mean

service quality more accurately.

Remark 1. In practice, customers may also acquire anecdotes from online ratings/reviews,

which are not independent across customers. I have incorporated this type of anecdote as

an extension in Appendix A.2.4.

2.3.2 Customer Joining Behaviour

Based on the service quality estimate R, customers make the join-or-balk decision to max-

imise their estimated expected payoff. Therefore, unlike the fully-rational benchmark where

customers play mixed strategies, in this setting they use a pure threshold strategy: All cus-

tomers with R > p+W join the queue and the rest balk, where p is the price for service

and W denotes their belief about the expected waiting cost. Since R ∼ N(R,σ2/k), the

joining rate λP(R > p+W ) is equal to λ Φ̄(
√

k(p+W − R)/σ), where Φ̄ denotes the

complementary cumulative distribution function of the standard normal distribution.

Notably, this model is fundamentally different from an alternative model in which cus-

tomers are fully rational and hold heterogeneous service valuations. First, the two models

lead to different welfare implications. In my model, a customer’s actual benefit from the

service is independent of his service quality estimate, whereas they are equal in the alter-

native model. Second, the alternative model needs additional assumptions to replicate this

model from the revenue perspective. For example, it requires the consumers to hold val-

uations for the service before they experience it, and the service provider needs to know

the valuation distribution. Both assumptions may not hold in the settings of interest in this

chapter. Lastly, the focus of this chapter is to provide policy recommendations and examine

how they depend on the sample size k, whereas its counterpart in the alternative model is

unexplored by the extant literature (see, e.g., Littlechild 1974, Larsen 1998).

As in the traditional queueing economics literature (Hassin and Haviv 2003), I charac-

terise the equilibrium joining rate λ k
a (p) by the condition that customers’ beliefs about the

expected waiting time are correct. Therefore, using the PASTA property (Wolff 1982), I can

derive the expected waiting time as W = c
[µ−λ k

a (p)]+ . Substituting this into the expression for
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the joining rate, I have

λ
k
a (p) = λ Φ̄

(√
k
[

p+
c

µ−λ k
a (p)

−R
]
/σ

)
, (2.1)

in which [µ − λ k
a (p)]+ reduces to µ − λ k

a (p) because λ k
a (p) > µ cannot constitute an

equilibrium—in this case, the expected waiting time goes to infinity and each joining cus-

tomer can profitably deviate by balking. The next lemma shows that λ k
a (p) as defined by

Equation (2.1) uniquely exists.

Lemma 1. For any p> 0,

(i) A unique λ k
a (p) ∈ (0,min{λ ,µ}) exists and strictly decreases in p.

(ii) The equilibrium joining rate λ k
a (p) strictly decreases in k for R < p+ c

(µ−0.5λ )+ ,

strictly increases in k for R > p+ c
(µ−0.5λ )+ , and is invariant in k for R = p+ c

(µ−0.5λ )+ .

(iii) lim
k→+∞

λ k
a (p) = λr(p).

Lemma 1 shows that the equilibrium joining rate is well-defined and converges to the

fully-rational benchmark as k goes to infinity. Thus, my anecdotal reasoning framework

includes the fully-rational benchmark as a limiting case. Intuitively, with more service sam-

ples, customers estimate the expected service quality more accurately because the sample

average is influenced more by the server’s capability than by luck.

Lemma 1 also suggests that bounded rationality leads to fewer customers joining high-

quality service systems and more customers joining low-quality service systems. To see the

intuition, first recall that the service quality estimates are normally distributed (i.e., Bell-

shaped) among customers, who apply the threshold strategy of joining (balking) the queue

if their service quality estimate is higher (lower) than the total cost (i.e., the price plus the

expected waiting cost). In a low-quality (i.e., R < p+ c
(µ−0.5λ )+ ) service system, the cost

threshold is higher than the expected service quality, so only customers who considerably

overestimate the service quality (i.e., the right tail of the Bell curve, dubbed as the niche

customers) choose to join. In a high-quality (i.e., R > p+ c
(µ−0.5λ )+ ) service system, the

cost threshold is lower than the expected service quality, so all customers except those

who considerably underestimate the service quality (i.e., the Bell curve without the left

tail, dubbed as the mass customers) choose to join. Since bounded rationality lowers the

accuracy of customers’ service quality estimates (i.e., both tails of the Bell curves expand),

it increases the number of niche customers and decreases the number of mass customers.
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Therefore, the joining rate for low-quality service systems increases in k and the joining

rate for high-quality service systems decreases in k.

2.4 Analysis

In this section, I study the service provider’s revenue maximisation problem, as given by:

max
p>0

Π(p,k) = pλ
k
a (p). (2.2)

In §2.4.1, I characterise the optimal price and its revenue and welfare implications. Then

I incorporate the server’s quality control decision and examine the impact of the sample

size on the optimal price and quality. In §2.4.2, I analyse the quality information disclosure

decision and how it is influenced by the sample size and service system parameters.

2.4.1 Pricing and Quality Control

In this section, I analyse the service provider’s pricing and quality control decisions and

how they are influenced by the sample size k. This is of particular interest because it pro-

vides insights regarding a service provider’s dynamic decisions in a setting where customers

acquire more anecdotes over time.2 As an example, consider a new restaurant with grow-

ing popularity (i.e., k is increasing). My analysis makes recommendations about how the

restaurant owner should change the menu prices and the quality of the food and service

accordingly.

I first examine the server’s pricing decision, as given by (2.2). Let p∗(k) and Π∗(k)

denote the optimal price and revenue for a given sample size k, and let p∗r and Π∗r denote

the fully-rational counterparts. The next proposition characterises the impact of k on p∗(k)

and Π∗(k).

Proposition 1. (i) For any k > 1, a unique p∗(k)> 0 exists and lim
k→+∞

p∗(k) = p∗r .

(ii) The optimal revenue Π∗(k) strictly decreases in k for R < R1(k), strictly increases

in k for R > R1(k), and is invariant in k for R = R1(k), where R1(k)≡ cµ

[(µ−0.5λ )+]2
+ σ

2
√

kΦ′(0)

is the mean service quality at which λ k
a (p∗(k)) = 0.5λ .

(iii) For a sufficiently low λ , there exists a unique quality threshold R2(k) > R1(k),

which strictly decreases in k, such that p∗(k) strictly decreases in k for R < R2(k), strictly

increases in k for R > R2(k), and is invariant in k for R = R2(k).

2See Appendix A.2.1 for a discussion of the dynamic decision process.



2.4. Analysis 25

Proposition 1(i) shows that the revenue maximisation problem is well-defined and the

optimal price converges to the fully-rational counterpart as the amount of quality informa-

tion grows. Proposition 1(ii)-(iii) examine the impact of the sample size on the optimal

price and revenue, which I illustrate in Figure 2.1.

Figure 2.1: The Impact of k on p∗ and Π∗ (µ = 2, λ = 2, c = 1, σ = 1)
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As shown by Proposition 1(ii) and Figure 2.1, a larger sample size decreases the op-

timal revenue of a low-quality (i.e., R < R ≡ cµ

[(µ−0.5λ )+]2
) service provider by reducing

demand (i.e., the niche customers), and increases the optimal revenue of a high-quality (i.e.,

R > R1(1)) service provider by increasing demand (i.e., the mass customers). Somewhat

counter-intuitively, an intermediate-quality (i.e., R6 R6 R1(1)) service provider’s optimal

revenue first decreases and then increases in the sample size. This is because the service

provider changes the pricing strategy as the number of anecdotes increases. Specifically,

as the sample size increases, he switches from targeting exclusively the niche customers to

targeting the mass customers. Since a larger sample size decreases demand in the former

situation and increases demand in the latter situation, the optimal revenue is U-shaped in k.

The U-shaped revenue is similar in vein to Johnson and Myatt (2006) and Sun (2012).

Johnson and Myatt (2006) study the optimal pricing strategy of a firm that sells to customers

who hold heterogeneous product valuations. Sun (2012) extends the analysis by consider-

ing a 2-period model in which the period-2 customers infer product quality from ratings left

by the period-1 customers. Assuming that customers are fully rational and hold heteroge-

neous product valuations, both papers show that the firm’s optimal profit is U-shaped in the

variance of customers’ service quality estimates. My research contributes to this stream of
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literature by showing that when customers deviate from full rationality, the U-shaped rev-

enue persists even when customers are ex ante homogeneous in their valuation of service.

Proposition 1(iii) characterises the impact of the sample size on the service provider’s

optimal pricing decision. As customers acquire more anecdotes, the number of niche cus-

tomers decreases while the number of mass customers increases. In response, a low-quality

(i.e., R < R1(k)) service provider lowers price and a high-quality (i.e., R > R2(k)) service

provider raises price. Surprisingly, I find that an intermediate-quality (i.e., R1(k) < R <

R2(k)) service provider who targets the mass customers lowers price despite the increase in

demand. To fully understand this result, note that a larger sample size influences demand

in both directions. First, it leads customers to estimate service quality more accurately and

thus increases demand. Second, it intensifies congestion and thus decreases demand. When

the service quality is not high enough, the second factor dominates and the service provider

reduces price to incentivise customers to join. Notably, although I establish Proposition

1(iii) only for the low market potential case, I have numerically verified that it continues to

hold when market potential is high (see Figure 2.1). Moreover, Proposition 1 continues to

hold qualitatively for the no-congestion setting since my analysis includes c = 0 as a special

case.

Managerially, Proposition 1 shows that customer anecdotal reasoning fundamentally

changes the optimal pricing strategy in service systems: Managers should use pricing as

a market segmentation tool to “milk” the most profitable consumer segment and should

change it dynamically as customers acquire more word-of-mouth over time. For example,

consider a new restaurant whose service quality is neither too high nor too low. Unlike

the widely applied markup-on-cost pricing (Mealey 2016), the owner should start with high

prices to target only customers who have received very positive word-of-mouth. As cus-

tomers gather more anecdotes, he should lower prices to shift from this up-market strategy

to the down-market strategy (i.e., even customers receiving occasional negative word-of-

mouth patronise). With further growth in the restaurant’s popularity, the owner should then

switch to raising prices due to the substantial customer base.

2.4.1.1 Welfare implications.

Now I investigate the welfare implications of the service provider’s optimal pricing strategy.

Let W (p,k) and CS(p,k) denote the social welfare and consumer surplus for a given price
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p and sample size k. By definition, I have

W (p,k) = λ
k
a (p)R− cλ k

a (p)
µ−λ k

a (p)
,

CS(p,k) = λ
k
a (p)R− cλ k

a (p)
µ−λ k

a (p)
− pλ

k
a (p),

where the first terms on the right-hand side represent the expected social benefit of the

service and the second terms are the expected waiting cost. I will denote social welfare by

W (λ k
a (p)) instead of W (p,k) because it depends on p and k only indirectly through λ k

a (p).

This observation suggests that examining the impact of the sample size on social welfare

boils down to characterising its impact on λ k
a (p∗(k)), as given by the lemma below.

Lemma 2. The optimal joining rate λ k
a (p∗(k)) strictly decreases in k for R < cµ

{[µ−Φ̄(C)λ ]+}2 ,

strictly increases in k for R > cµ

{[µ−Φ̄(C)λ ]+}2 , and is invariant in k for R = cµ

{[µ−Φ̄(C)λ ]+}2 ,

where C ≈ 0.7517 is the unique solution of Φ̄(C) = Φ′(C)C.

Lemma 2 shows that a larger sample size decreases the demand for a low-quality ser-

vice system (i.e., the niche customers) and increases the demand for a high-quality service

system (i.e., the mass customers). Based on this, I examine the impact of k on social welfare

and consumer surplus, as shown in the next proposition. For ease of exposition, I will abuse

notation and write W (λ k
a (p∗(k))) as W ∗(k) and CS(p∗(k),k) as CS∗(k).

Proposition 2. (i) Social welfare W ∗(k) strictly increases in k for R 6= cµ

{[µ−Φ̄(C)λ ]+}2 and is

invariant in k for R = cµ

{[µ−Φ̄(C)λ ]+}2 .

(ii) Consumer surplus CS∗(k) strictly increases in k for R < R1(k). If c > 0, CS∗(k)

strictly decreases in k for a sufficiently high R.

A larger sample size always benefits social welfare because it leads customers to make

better decisions by inducing fewer (more) customers to join a low- (high-) quality service

system. Somewhat unexpectedly, this improvement in their decision-making at the individ-

ual level may harm their aggregate benefit. In fact, Proposition 2(ii) shows that consumer

surplus strictly decreases in k when service quality is sufficiently high. The key insight is

that the improved decisions (more customers join a high-quality service system) present

a negative externality (intensified congestion) for other joining customers. When service

quality is high enough, the increased sample size significantly intensifies congestion such

that the resulting consumer surplus loss outweighs the consumer surplus benefit due to better

decision-making at the individual level. Overall, the consumer surplus decreases. Notably,
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this result is unique to the congested setting, although the rest of Proposition 2 continues to

hold in the absence of congestion (see Appendix A.2.2). In fact, without congestion a larger

sample size never harms consumer surplus since their decision of joining does not impact

the other consumers’ welfare.

From a managerial perspective, Proposition 2 implies that customers’ quality informa-

tion sharing through word-of-mouth (e.g., dining experiences in a new restaurant) may not

create a win-win situation. In particular, information sharing leads fewer customers to visit

a low-quality service system and thus harms the service provider’s revenue, whereas it leads

more customers to visit a high-quality service system, which intensifies congestion and thus

may harm consumer surplus.

2.4.1.2 Quality control.

The preceding analysis focuses on the price as the only decision of the service provider. In

practice, he may also have control over the average service quality through, e.g., staff train-

ing, facility upgrading, and service design. In this section, I characterise his joint pricing

and quality decisions. As before, I focus on the impact of the sample size k on the opti-

mal price and quality because this provides insights regarding a service provider’s dynamic

quality and pricing strategies in the setting where customers acquire more anecdotes over

time (see Appendix A.2.1 for a detailed discussion).

I incorporate the quality decision by assuming that the service provider can choose R

at cost aR2 (the quality investment, hereafter), where a > 0 represents the rate of change of

the marginal quality investment. This quadratic cost structure is standard in the product and

service design literature (e.g., Anderson et al. 1997, Lahiri and Dey 2013). Moreover, all

results are qualitatively preserved for convex cost functions that are independent of k and p.

The service provider’s joint pricing and quality control problem is given by:

max
p,R>0

ΠR(p,R) = pλ
k
a (p,R)−aR2, (2.3)

where I denote λ k
a (p) as λ k

a (p,R) to stress its dependence on R. The next proposition

characterises the impact of the sample size k on the optimal price p̂ and quality R̂.

Proposition 3. (i) A unique p̂ > 0 determined by 2aR̂ = λ k
a (p̂, R̂) exists.

(ii) When the market potential λ is sufficiently low, the optimal quality R̂ strictly de-

creases in k. If, in addition, the standard deviation of service quality σ is sufficiently high

or sufficiently low, the optimal price p̂ strictly decreases in k.
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(iii) When the market potential λ is sufficiently high and c > 0, the optimal price p̂ and

quality R̂ strictly decrease in k.

(iv) When the market potential λ is sufficiently low, or sufficiently high and c > 0, the

optimal revenue strictly decreases in k.

A larger sample size implies that customers estimate service quality more accurately.

Therefore, conventional wisdom would probably recommend the service provider to im-

prove quality and raise price. However, Proposition 3 points to just the opposite under cer-

tain conditions. To fully understand this result, first note that both quality improvement and

price reduction may benefit the service provider: Quality improvement allows him to target

a higher price, while price reduction allows him to lower quality and thus save the quality

investment. The service provider chooses to reduce price because the quality improvement

benefit is lower. Specifically, when market potential is sufficiently low, demand is low and

raising price does not increase revenue much. When market potential is sufficiently high,

quality improvement leads to significant congestion, so the server cannot raise price much.

Notably, this result underscores the importance of incorporating customer bounded ratio-

nality in the congested setting: Without congestion, the optimal quality and price strictly

increase in k under sufficiently high market potential.3 Intuitively, in this case the server

always sets a high quality and targets the mass customers. As they acquire more anecdotes,

the joining rate increases and the server improves quality to better exploit the increase in

demand, which further allows him to charge a higher price.

I would also like to note that the preceding analysis relies on the implicit assump-

tion that quality control does not impact service quality uncertainty. This holds for certain

types of quality improvements (e.g., interior refurbishment and tableware upgrading in a

restaurant setting) but may fail for others. If quality improvement reduces service quality

uncertainty (e.g., staff training), then my recommendation to reduce both quality and price

is strengthened: Quality reduction not only lowers the quality investment, but also increases

demand (i.e., the niche customers) by magnifying the variation of customers’ service quality

estimates. Nevertheless, if quality improvement increases service quality uncertainty (e.g.,

recipe innovation that requires more complicated cooking techniques), my recommendation

may no longer hold.

3The rest of Proposition 3 continues to hold. See Appendix A.2.2 for the proof and a related numerical

study.
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Proposition 3 characterises the quality control problem for sufficiently high and low

market potential. The intermediate market potential case is analytically challenging, so I re-

sort to a numerical study, as illustrated in Figure 2.2. Consistent with the exogenous quality

scenario, the optimal price and revenue are both U-shaped in k. Perhaps more interestingly,

I find that a larger sample size can induce the service provider to improve quality. This

is because quality improvement is more profitable than price reduction under intermediate

market potential: Quality improvement and the resulting price increase can increase rev-

enue substantially due to the considerable market potential, while it does not significantly

intensify congestion because market potential is not too high.

Figure 2.2: The Impact of k on p̂, R̂, and ΠR(p̂, R̂) under Intermediate Market Potential (µ = 2,λ =

2,c = 1,σ = 10,a = 0.1)
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2.4.2 Quality Information Disclosure

Apart from pricing and quality control, in practice service providers may also have the

discretion to disclose service quality information. For example, a hospital can post key

performance measures (e.g., patient satisfaction scale, readmission rate, and mortality rate)

in its waiting rooms, and a restaurant can organise Yelp Elite events (Ayers 2011, Power

2011) and offer free drinks/desserts to customers who post food photos on social media

such as Instagram (Dizik 2013), Facebook (Werner 2014), and WeChat (SAMPi 2015).

To incorporate the information disclosure decision, I assume that the service provider

chooses to either inform customers of the mean service quality (i.e., k→ +∞) or not (i.e.,

k is unchanged). Therefore, his joint pricing and information disclosure decisions are given
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by:

max
p>0,i∈{k,+∞}

Π(p, i) = pλ
i
a(p), (2.4)

where I ignore the cost of the information disclosure to obtain sharper insights. As in Has-

sin (2007) and Guo and Zipkin (2007), I focus on truthful information disclosure. This

fits my setting since the disclosed information (i.e., the expected service quality) is ex-post

verifiable after collecting adequate service samples. Moreover, I do not explicitly consider

partial information disclosure (i.e., increasing k to a finite number) because this is always

sub-optimal (as will be shown in Proposition 4).

The joint optimisation problem in (2.4) can be treated as a 2-stage optimisation prob-

lem: The server first chooses k and then chooses p for any given k. By Proposition 1, the

optimal price and revenue are p∗(k) and Π∗(k). As a result, the server discloses informa-

tion if Π∗r > Π∗(k) and does not disclose if Π∗r < Π∗(k). The next proposition provides

a full characterisation of the information disclosure decision, where k̃ is the sample size

determined by Π∗(k̃) = Π∗r and R̃ is the mean service quality at which k̃ = 1.4

Proposition 4. (i) When R6 R, the service provider does not disclose information.

(ii)When R < R 6 R̃, the service provider does not disclose information for k < k̃,

discloses information for k > k̃, and is indifferent between the two for k = k̃, where k̃ strictly

decreases in R.

(iii) When R > R̃, the service provider discloses information.

I illustrate Proposition 4 by a numerical example in Figure 2.3. Intuitively, a low-

quality (i.e., R6 R) service provider exploits customer bounded rationality by pricing high

to target exclusively the niche customers. Therefore, he chooses not to inform them of

the mean service quality. In contrast, a high-quality (i.e., R > R̃) service provider targets

the mass customers. Since bounded rationality lowers revenue by leading some customers

to balk due to occasional unfavourable anecdotes, the service provider chooses to inform

customers of the mean service quality. Interestingly, I find that an intermediate-quality (i.e.,

R < R6 R̃) service provider informs customers of the mean service quality only when they

are sufficiently rational (i.e., k > k̃). To see the intuition, first recall from Proposition 1 that

the service provider switches from targeting exclusively the niche customers to targeting

the mass customers as the sample size increases. Since information disclosure induces all

4As shown in the proof of Proposition 4, R̃ uniquely exists. Moreover, k̃ ∈ [1,+∞) uniquely exists for

R < R6 R̃ and does not exist otherwise.
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customers to form an accurate service quality estimate (i.e., the niche customers vanish and

the mass customers expand), the service provider should inform them of the mean service

quality only when the sample size is sufficiently large.

Figure 2.3: The Impact of k and R on the Information Disclosure Decision (µ = 3, λ = 2, c = 1,

σ = 5, R = 0.75, R̃ = 2.346)
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Proposition 4 contributes to the economics literature of quality disclosure (Dranove

and Jin 2010, and references therein) by showing that customer bounded rationality alone

can overturn the classic unravelling result that a monopolistic firm should disclose quality

information whatever its quality is. This result is driven by the assumption of fully-rational

customers: Even a low-quality firm should disclose information because customers ratio-

nally infer non-disclosing firms as having the lowest quality. In my setting, however, cus-

tomers cannot make this rational inference. Therefore, the role of information disclosure is

not to signal quality but to influence the market composition (i.e., the niche & mass cus-

tomers). A low-quality service provider should not disclose quality information because it

reduces demand (i.e., the niche customers).

Managerially, Proposition 4 underscores the importance of an up-to-date understand-

ing of customers’ service quality information. Specifically, contrary to the conventional

wisdom that a high- (low-) quality service provider always (never) discloses quality in-

formation, I find that when service quality is not too high or too low, lower-quality ser-

vice providers may disclose information if word-of-mouth abounds in the market, whereas

higher-quality service providers may not disclose if word-of-mouth is scarce. In addition,

a manager who has chosen not to disclose information may still need to keep track of cus-
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tomers’ word-of-mouth: As they share more information over time, he may switch to dis-

closing quality information.

Comparative statics. The next corollary characterises the impact of service system

parameters on the service provider’s information disclosure decision; here I focus on the

λ < 2µ case (since otherwise the server never discloses information).

Corollary 1. When λ < 2µ , k̃ strictly decreases in µ and strictly increases in c. When

µ−
√

cµ/R6 λ < 2µ , k̃ strictly increases in λ .

Corollary 1 again highlights the importance of incorporating customer bounded ratio-

nality in congested settings: Information non-disclosure (i.e., customers remain boundedly

rational) is more attractive as the expected waiting cost increases (i.e., higher c, λ , or lower

µ). In particular, compared to the no-congestion setting (i.e., c = 0), the server is incen-

tivised to induce consumers to remain boundedly rational for a larger range of parameter

values in congested settings. To see the intuition, first note that a higher expected waiting

cost induces the service provider to reduce congestion by switching to targeting exclusively

the niche customers. He does not disclose information because this reduces demand. No-

tably, I have numerically verified that k̃ strictly increases in λ even when λ < µ−
√

cµ/R.

For completeness of the analysis, I have also examined the server’s information disclosure

decision under endogenous quality (see Appendix A.2.3). I find that all results in the present

section continue to hold qualitatively.

2.5 Other Modeling Considerations
In this section I extend the analysis in §2.4 by considering two modelling variations, i.e.,

welfare-maximising service systems and customer heterogeneity in the sample size.

2.5.1 Welfare Maximisation

Consider a social planner that takes control of a service system to maximise social welfare.

Typical examples include regulators levying tolls on public services, such as access to public

roads/bridges/tunnels, and passport/driver’s license applications. As in §2.4, I characterise

the social planner’s pricing, quality control, and information disclosure decisions.

2.5.1.1 Pricing.

The social planner’s pricing decision is given by:

max
p>0

W (p,k).
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Consistent with Huang et al. (2013), I assume that customers are not compensated for re-

ceiving the service, i.e., p > 0. This prevents individuals with no need of the service from

congesting the service system only for the compensation. Let p∗w(k) and W ∗w(k) denote the

optimal price and social welfare for a given sample size k, and let W ∗r denote the optimal

social welfare in the fully-rational benchmark. The next proposition provides a full charac-

terisation of p∗w(k) and W ∗w(k).

Proposition 5. (i) When R > R and k < k̂w, the optimal price p∗w(k) = 0 and W ∗w(k)<W ∗r ,

where k̂w ≡

[
σΦ−1

((
1− µ−

√
cµ/R

λ

)+
)]2

/
(√

cR
µ
−R
)2

.

(ii) Otherwise, the optimal price p∗w(k) = R−
√

cR
µ
+

σΦ−1
(

1− µ−
√

cµ/R
λ

)
√

k
and W ∗w(k) =

W ∗r . Moreover, the optimal price p∗w(k) strictly increases in k for R > cµ

[(µ−λ )+]2
, strictly

decreases in k for R < cµ

[(µ−λ )+]2
, and is invariant in k for R = cµ

[(µ−λ )+]2
.

Bounded rationality leads customers to deviate from the socially optimal joining rate,

but does not influence joining customers’ benefit from the service. Therefore, it never im-

proves social welfare. To correct for the distorted joining rate, the social planner prices

higher (lower) than the fully-rational benchmark if the mean service quality is low (high).

This induces the socially optimal joining rate (i.e., welfare loss does not exist) unless the

mean service quality is high and customers are sufficiently boundedly rational. In this case,

fully correcting for the distortion requires the social planner to set a negative price, which is

infeasible. Therefore, he prices at zero and bounded rationality leads to welfare loss. Notice

that in the no-congestion setting, the social planner always prices at zero for R > 0 since

k̂w→+∞. Intuitively, in the absence of congestion, joining is always socially beneficial as

long as the service quality is positive. This result highlights the vital role of congestion in

determining the impact of customer bounded rationality on managing service systems.

Compared to revenue maximisation, Proposition 5 shows that bounded rationality af-

fects welfare-maximising service systems differently: It reduces the optimal revenue only

when customers are sufficiently rational (i.e., k > k̃), whereas it reduces the optimal social

welfare only when they are sufficiently boundedly rational (i.e., k < k̂w). The key insight

is that the impact of bounded rationality on customers’ joining behaviour may have con-

trasting revenue and welfare implications. For example, when R > R and k < min{k̃, k̂w},

bounded rationality leads customers to join much more than they should and thus harms

social welfare. However, it increases the optimal revenue by allowing the service provider
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to raise price.

2.5.1.2 Quality control.

Similar to §2.4.1.2, I incorporate the server’s quality decision by assuming that he can

choose the expected service quality R at cost aR2. Therefore, his quality control problem is

given by:

max
p,R>0

WR(p,R) = λ
k
a (p)R− cλ k

a (p)
µ−λ k

a (p)
−aR2,

where the first two terms on the right-hand side represent social welfare and the last term

is the quality investment. Let p̂w and R̂w denote the optimal price and quality. The fol-

lowing proposition characterises the impact of k on p̂w and R̂w for sufficiently high market

potential.5

Proposition 6. (i) A unique optimal price p̂w exists.

(ii) For sufficiently high market potential λ and c > 0, the optimal price p̂w strictly

decreases in k. The optimal quality R̂w and social welfare are invariant in k when a 6 ā,

and the social planner should not offer service when a > ā, where ā uniquely exists.

The social planner uses the pricing decision to maximise social welfare for a given

quality level, and uses the quality decision to balance between the maximised social welfare

and the corresponding quality investment. When market potential is sufficiently high and

quality investment is not too costly (i.e., a6 ā), the service system is sufficiently congested

and bounded rationality leads customers to join more than socially desirable. In response,

the social planner prices higher than the fully-rational benchmark and thus always achieves

the first-best social welfare. As customers collect more anecdotes, they join less and the so-

cial planner prices lower to maintain the same joining rate and social welfare. This further

implies that the trade-off between social welfare and quality investment is unchanged. As a

result, the social planner maintains the same service quality. Notably, this result is unique

to congested settings. Without congestion, a larger sample size leads more customers to

join as long as the service quality is positive. Therefore, the social planner should improve

quality (see Appendix A.2.2).

To complement Proposition 6, I have conducted a numerical study to examine the in-

termediate market potential case, as illustrated in Figure 2.4. In this situation, the service

5I have analytically shown that the social planner should not offer service for sufficiently low market poten-

tial (see the proof of Proposition 6). Here I omit the presentation for brevity.
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system is not too congested and bounded rationality leads customers to join less than so-

cially desirable. When λ is moderately low, the joining rate is very low such that inducing

the socially optimal joining rate requires a negative price. Since this is not feasible, the

social planner prices at zero. As customers acquire more anecdotes, they join more and this

higher service utilisation drives the social planner to improve quality. However, when the

service system is sufficiently congested, an even larger sample size leads the social planner

to lower quality to alleviate congestion. When λ is moderately high, the joining rate is

higher and the social planner can fully correct for customers’ under-joining behaviour at a

positive price. As customers acquire more anecdotes, they join more and the social plan-

ner prices higher to maintain the first-best social welfare. However, he maintains the same

quality level since the trade-off between social welfare and quality investment is the same.

Figure 2.4: The Impact of k on R̂w, p̂w, and λ k
a (p̂w, R̂w) under Intermediate Market Potential (a =

0.1,µ = 2,c = 1,σ = 10)
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2.5.1.3 Information disclosure.

Now I consider the social planner’s decision to disclose service quality information. This

has been widely practised in the healthcare sector. For example, the Centers for Medicare

& Medicaid Services (CMS 2017) in the US and the National Health Service (NHS 2016)

in the UK disclose hospitals’ key performance measures to the public online.

As in revenue maximisation, I capture the information disclosure decision by assuming

that the social planner chooses between informing customers of the mean service quality or
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not. Therefore, his joint pricing and information disclosure decisions are given by:

max
p>0,i∈{k,+∞}

W (p, i).

The next corollary, which follows immediately from Proposition 6, characterises the infor-

mation disclosure decision.

Corollary 2. The service provider discloses information if R > R and k < k̂w, and is indif-

ferent between disclosure and non-disclosure otherwise.

Corollary 2 suggests that a high-quality public service manager should inform cus-

tomers of the mean service quality when they are sufficiently boundedly rational. This is

because bounded rationality leads to welfare loss in this case: It induces customers to join

significantly less than socially desirable such that the manager cannot fully correct for the

distortion with a non-negative price.

2.5.2 Heterogeneous Sample Sizes

To obtain sharper insights, I assumed in §2.4 that all customers estimate service quality

based on k anecdotes. In practice, however, some customers may have a larger sample size

than others because of easier access to anecdotes or higher cognitive capabilities. Consistent

with the cognitive hierarchy model (Nagel 1995, Stahl and Wilson 1994), I incorporate this

heterogeneity into my model by assuming that k follows a zero-truncated Poisson distribu-

tion with rate n.6 Therefore, the proportion of customers with sample size i (i = 1,2, . . .) is

equal to fi =
nie−n

i!(1−e−n) , where n = E[k] measures the average sample size across customers.

Let λi denote the equilibrium joining rate of customers with i anecdotes, and let λ n
P ≡

+∞

∑
i=1

fiλi

denote the total joining rate. I can show that

λi = λ Φ̄

(√
i
(

p+
c

µ−λ n
P
−R
)
/σ

)
,

and then I have

λ
n
P = λ

+∞

∑
i=1

fiΦ̄

(√
i
(

p+
c

µ−λ n
P
−R
)
/σ

)
. (2.5)

The next lemma shows that λ n
P as defined by Equation (2.5) uniquely exists, where RP is

determined by
+∞

∑
i=1

fiΦ̄

(√
i
[

p+ c
(µ−0.5λ )+ −RP

]
/σ

)
= 0.5.

6I have truncated k = 0 from the Poisson distribution because the anecdotal reasoning framework requires

that customers have at least one anecdote.
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Lemma 3. (i) A unique λ n
P ∈ (0,min{λ ,µ}) exists and strictly decreases in p.

(ii) The joining rate λ n
P strictly decreases in n for R < RP, strictly increases in n for

R > RP, and is invariant in n for R = RP.

(iii) lim
n→+∞

λ n
P(p) = λr(p).

Consistent with Lemma 1, Lemma 3 shows that a larger average sample size leads to

fewer customers joining a low-quality service system and more customers joining a high-

quality service system. In other words, incorporating customer heterogeneity in k does not

qualitatively change the impact of customer bounded rationality on their joining behaviour.

Based on this, I have numerically verified that the impact of customer bounded rationality

on the service provider’s pricing, quality, and information disclosure decisions are also

qualitatively preserved (see Appendix A.3.2).

2.6 Concluding Remarks

In this chapter, I studied the management of service systems with boundedly rational cus-

tomers who infer service quality based on anecdotes. I characterised their equilibrium

joining behaviour and the service provider’s pricing, quality, and information disclosure

decisions. Bounded rationality induces customers to form heterogeneous service quality es-

timates; thus the service provider adopts a pricing strategy different from the fully-rational

benchmark. Specifically, a low-quality service provider targets the niche customers who

considerably overestimate service quality, whereas a high-quality service provider targets

the mass customers whose service quality estimates are not too low. With quality control,

the service provider may reduce both price and quality as customers gather more anecdotes.

I also characterised the service provider’s quality information disclosure decision and found

that it can be greatly influenced by customer bounded rationality: A lower-quality service

provider may disclose information if customers are sufficiently rational, whereas a higher-

quality service provider may not disclose if they are sufficiently boundedly rational.

This chapter has several implications for service system management in practice. First,

estimating customers’ level of bounded rationality (i.e., the number of service quality anec-

dotes) is critical because it greatly influences a manager’s optimal pricing, quality, and

information disclosure decisions. I conjecture that ignoring customer bounded rationality

(by assuming that customers know the actual average service quality) can lead to signif-

icant profit loss. Second, even though conventional wisdom would probably suggest that
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managers should disclose quality information, I show that this may lower profit even for a

high-quality service system. Third, when customers acquire more anecdotes over time, a

service system manager may not improve service quality. In fact, when market potential is

sufficiently high or low, he should reduce quality and compensate customers by lowering

price. I hope that my theoretical model can stimulate future empirical studies in behavioural

operations and help improve service management in practice.

For parsimony, I abstract away from several factors, which could serve as the basis

for future modelling research. For example, I assumed that the service provider knows the

service quality distribution. This is plausible for service systems with an established service

content. However, it may fail if the service content is new, e.g., a restaurant experimenting

with a new recipe. Future research can extend my work by considering service providers’

decisions when they do not know the service quality distribution. Another research direction

is to incorporate market competition in my model. It would be interesting to investigate

whether customer anecdotal reasoning can soften service providers’ competition on price

and information disclosure. Finally, future research can consider customers’ estimation of

service quality based on both earlier customers’ anecdotes and the service system itself

(e.g., a prior belief, the queue length, or the expected waiting time).



Chapter 3

Opaque Selling and Last-Minute Selling:

Revenue Management in Vertically

Differentiated Markets

3.1 Introduction

Due to uncertain demand, firms across different industries (travel, electronics, fashion, etc.)

may end up with leftover inventory/capacity (hereafter, inventory) after the regular (selling)

season. To dispose of the leftovers, firms usually offer last-minute sales discounts. This

strategy may generate additional revenue from the sales. However, it could harm the firms’

overall profits by inducing consumers to strategically wait for the sales and be less willing

to buy at the regular price. In fact, practitioners have long been sceptical about last-minute

selling because it “gives away profits while simultaneously eroding the base of full-price

business” (Schuster 1987).

As an alternative clearance strategy, opaque selling has recently been introduced by

two online booking intermediaries: Priceline and Hotwire. Unlike last-minute selling, firms

that adopt opaque selling offer a new product during the sales season that is equivalent to

a lottery between different types of leftover products. Opaque selling has been widely ap-

plied since its introduction, most notably because it can“. . . generate incremental revenue

by selling distressed inventory cheaply without disrupting existing distribution channels or

retail pricing structures” (Smith et al. 2007, p. 75).

A salient feature of the application of opaque selling as a clearance strategy is that the

leftover products within the opaque mix are usually vertically/quality differentiated, i.e.,

consumers unanimously prefer one product type to another. For example, Hotwire includes



3.1. Introduction 41

“special cars” in its rental car service, which are cars that have a compact size or larger,

with the exact size revealed to consumers only after the transaction completes. Travellers

typically prefer a larger size because there is more space for passengers and belongings.

Hotwire and Priceline also offer opaque hotel rooms from brands that differ significantly

in service quality as measured by the American Customer Satisfaction Index (ACSI 2016).

For example, Priceline’s 4-star opaque hotel brand list includes Hyatt Regency, Sheraton,

and Holiday Inn (Priceline 2016), which are respectively ranked 4th, 18th, and 27th by

ACSI. It seems likely that consumers who care more about hotel service than location (e.g.,

leisure travelers) will all be willing to pay a higher booking fee for Hyatt Regency than for

Holiday Inn. As another example, consider the worldwide “Mystery Box” sale offered by

Swatch during the winter sales season. Each box contains a watch randomly picked from

the leftover inventory (Swatch 2015), and these may have considerably different regular

prices, e.g., ranging between £32 and £105 in the 2014 UK sale (Swatch 2014). Since the

price difference generally reflects differences in the quality of the design, construction, and

materials, it seems reasonable to expect that consumers will prefer a higher-priced watch to

a lower-priced one.

Despite the wide application of opaque selling as a clearance strategy in vertically dif-

ferentiated markets, the existing literature has not yet examined its performance to cope

with consumers’ strategic waiting in this setting. Specifically, researchers have adopted

single-period models to illustrate the advantage of opaque selling in terms of finer con-

sumer segmentation (Anderson and Xie 2014, Rice et al. 2014) and higher inventory utili-

sation (Rice et al. 2014, Zhang et al. 2014), where the interaction between opaque selling

and consumers’ strategic waiting behaviour is absent. In contrast, Jerath et al. (2010) incor-

porate this interaction in horizontally differentiated markets. They find that consumers with

heterogeneous preferences hold the same valuation for the opaque product (hereafter, the

homogenizing effect). This allows the firm to charge a single price to extract full surplus

from all purchasing consumers during the sales season (hereafter, the clearance advantage).

Therefore, opaque selling may outperform last-minute selling. However, the homogenizing

effect no longer exists under vertical differentiation: A consumer with a higher valuation

is willing to pay more for all types of products, and thus more for their opaque mix. Con-

sequently, it is unclear whether opaque selling can still outperform last-minute selling in

vertically differentiated markets.
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To address this question, I consider a stylised game-theoretical model in which a mo-

nopolistic firm sells vertically differentiated products across two periods to consumers who

are heterogeneous in their product valuations. The inventory levels are exogenous, and the

demand is uncertain. In period 1 (i.e., the regular season), the firm sells the products to

the consumers separately, without knowing the realised state of demand. Then the demand

realisation is revealed to all players. In period 2 (i.e., the sales season), the firm sells the

leftover products, if any, either separately as transparent products (i.e., last-minute selling)

or collectively as opaque products (i.e., opaque selling).

Using this model, I characterise the firm’s optimal selling strategy and derive insights

regarding the mechanism of opaque selling. The advantage of opaque selling is to allow

the firm to price higher in the regular season because it prevents consumers from choosing

their preferred product type if they delay their purchase until the sales season. However,

opaque selling has the disadvantage of being less flexible in segmenting different consumer

types, i.e., it lowers the sales-season revenue. Intriguingly, I find that both the advantage

and the disadvantage are radically different from their counterparts in the horizontal dif-

ferentiation setting. This contrast induces opposite policy recommendations across the two

settings. Specifically, under vertical differentiation, the firm may switch from opaque sell-

ing to last-minute selling as consumers become more differentiated or the probability of

the low-demand realisation increases. Under horizontal differentiation, however, the firm

should always switch from last-minute selling to opaque selling.

I then extend the model by considering product damage. Consumers are usually will-

ing to pay less if a product is obtained from the opaque mix because, e.g., opaque products

are usually exempt from product returns/service cancellation. I find that such product dam-

age lowers the firm’s profit from the sales, but it makes consumers more willing to buy at

the regular price. Therefore, the firm raises the regular price and its profit may go up.

The remainder of this chapter is organised as follows. §3.2 reviews the relevant litera-

ture. §3.3 sets up the base model, and §3.4 characterises the firm’s optimal selling strategy

and the mechanism of opaque selling. In §3.5, I extend the model by incorporating an addi-

tional consumer segment and product damage. I conclude in §3.6 by summarising the key

findings and managerial insights. All proofs are relegated to Appendix B.1.
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3.2 Literature Review

The investigation of firms’ dynamic pricing decisions in the presence of strategic consumers

can be traced back to the Coase conjecture: Coase (1972) shows that with an infinite number

of selling seasons, consumers strategically delay their purchase until the price drops to the

marginal cost. Since then, a growing body of operations management literature has exam-

ined the impact of strategic consumers on the pricing and inventory decisions of a firm that

faces demand uncertainty and a limited inventory. In particular, Su (2007) characterises a

firm’s pricing strategy when consumers have heterogeneous product valuations and patience

levels. Mersereau and Zhang (2012) study a firm’s dynamic pricing decisions when some of

the consumers are strategic but the firm does not know their proportion. Liu and van Ryzin

(2008) consider a firm’s capacity choice and find that it may deliberately understock to in-

centivise consumers to buy early at a higher price. Other papers in this literature investigate

the impact of strategic consumers on the performance of different marketing and opera-

tions strategies, e.g., inventory replenishment (Cachon and Swinney 2009, Swinney 2011),

enhanced design (Cachon and Swinney 2011), displaying all or one (Yin et al. 2009), pos-

terior price matching (Lai et al. 2010), and single/dual rollover (Liang et al. 2014). My

research complements this branch of literature by characterising the performance of opaque

selling as a clearance strategy to counter the negative revenue impact of consumers’ strate-

gic waiting.

This chapter is also related to the emerging literature that studies the performance of

opaque selling in horizontally differentiated markets. Opaque selling may emerge in equi-

librium because of its advantages in facilitating price discrimination (Jiang 2007, Fay and

Xie 2008), reducing capacity-demand mismatches (Fay and Xie 2008), and softening price

competition (Fay 2008, Shapiro and Shi 2008). The literature has also studied the impact

of opaque selling on a firm’s other marketing and operations decisions, e.g., the timing of

product allocation (Fay and Xie 2014) and product line design (Fay et al. 2015).

Recently, researchers have begun to examine the performance of opaque selling in

vertically differentiated markets. Opaque selling may increase profits by inducing finer

consumer segmentation (Anderson and Xie 2014, Rice et al. 2014) and higher inventory

utilisation (Rice et al. 2014, Zhang et al. 2014). Moreover, when consumers are salient

thinkers (Zheng et al. 2016) or cannot fully anticipate their post-purchase regret (Chao et al.

2016), opaque selling may emerge even when it cannot do so with rational consumers. In
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a more general setting in which the market can be either horizontally or vertically differ-

entiated, Huang and Yu (2014) show that opaque selling can be optimal solely because of

consumer anecdotal reasoning. In another paper, Fay and Xie (2010) compare the profitabil-

ity of opaque selling with that of advance selling and show that the firm’s optimal strategy

depends on consumer heterogeneity in both horizontal and vertical dimensions. This stream

of literature focuses on static settings and studies whether a firm should sell opaque products

in addition to transparent products. In contrast, this chapter uses a dynamic model to iden-

tify the mechanism of opaque selling in helping a firm to cope with consumers’ strategic

waiting behaviour and characterise a firm’s choice of offering opaque sales or transparent

sales (i.e., last-minute selling).

From this perspective, this chapter is closely related to Jerath et al. (2010), who con-

sider a two-period model in which firms offer either opaque sales or transparent sales to

consumers who are horizontally differentiated in their product valuations. They find that

opaque selling may outperform last-minute selling because of the previously mentioned ho-

mogenising effect. Moreover, opaque selling can be more attractive when there is a higher

probability of low demand or a higher level of consumer differentiation. My research con-

tributes to the literature by showing that the mechanism of opaque selling in vertically dif-

ferentiated markets is radically different, and that it may induce policy recommendations

that are exactly the opposite of those for the horizontal differentiation setting.

My work is also related to the extensive literature on substitute products (Bassok et al.

1999, Netessine et al. 2002, Shumsky and Zhang 2009, and references therein). Similar

to opaque products, substitute products offer consumers the opportunity to receive either a

high- or a low-quality product with a single purchase. However, the two selling strategies

differ in several important respects. First, consumers of the substitute product do not antic-

ipate being upgraded (i.e., receiving the high-quality product) and thus value the substitute

the same as the low-quality product. In contrast, consumers of the opaque product take into

account the possibility of receiving either product type and thus value the opaque product

as a weighted average of their valuations for the high- and low-quality products. Second,

substitute products help the firm meet otherwise unsatisfied demands and thus are usually

offered when demand is high (Shumsky and Zhang 2009). In contrast, opaque products

help the firm dispose of excess inventory and thus are usually offered when demand is low

(Jerath et al. 2010).



3.3. Model 45

3.3 Model

I consider a stylised game-theoretical model in which a monopolistic firm offers vertically

differentiated products across two periods. The products can be physical goods or services,

e.g., electronics, watches, or hotel rooms for a particular day. Moreover, they are perishable

in the sense that products remaining after the second period are worthless. Consumers hold

heterogeneous valuations for the products, and each consumer purchases at most one unit.

I will refer to the firm as “she” and each consumer as “he.”

Product valuations. The firm offers two types of products that differ in quality: A

high-type product (denoted by subscript H) with inventory level M and a low-type product

(denoted by subscript L) with inventory level N. All consumers value the high-type product

more than the low-type product. However, they may hold different valuations for a given

product type. As in Zhang et al. (2014), I capture this heterogeneity by considering two

consumer segments, with one having higher valuations for both product types than the other.

I will refer to the former segment as the high-type consumers (denoted by subscript h) and

the latter segment as the low-type consumers (denoted by subscript l). Let Vi j denote a type-

i consumer’s valuation for a type- j product (i ∈ {h, l}, j ∈ {H,L}). By definition, ViH >ViL

for each i and Vh j > Vl j for each j. In addition, I assume that VhH −VhL > VlH −VlL. This

allows me to rule out the somewhat implausible equilibrium outcome where the firm sells

the high-type products only to the low-type consumers and at the same time sells the low-

type products only to the high-type consumers. All the above assumptions are standard in

the classic vertical differentiation models (Moorthy 1988, Tirole 1988), which have been

extensively adopted in the literature of strategic consumer behaviour (Parlaktürk 2012) and

opaque selling (Chao et al. 2016, Zheng et al. 2016).

Demand uncertainty. Consistent with the opaque selling literature (see, e.g., Jerath

et al. 2010, Zhang et al. 2014), I incorporate demand uncertainty by assuming that, with

probability α , the demand turns out to be high in the sense that the numbers of the high-

and low-type consumers (denoted by Nh and Nl) are respectively greater than the inventory

levels of high- and low-type products (i.e., M and N).7 Otherwise, the demand is low and

the numbers of the high- and low-type consumers (denoted in this case by nh and nl) are

less than M and N respectively.8 In addition, I assume that nh + nl > M and Nh 6M +N.

7All insights continue to hold when demand is deterministic (see Appendix B.2).
8All insights continue to hold when the demands for two consumer types are negatively correlated (e.g.,

nh < M < Nh and nl > N > Nl). I omit the formal presentation for brevity.
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The first inequality, which is similar in spirit to Lemma 1 in Zhang et al. (2014), rules out

the obvious case where opaque selling is not feasible because the high-type products are

always out of stock in the sales season. Through the second inequality, I focus on the more

plausible scenario where the firm cannot always meet the demand with only the high-type

products. However, it can be verified that in other scenarios this chapter’s major insights

continue to hold.

Below I summarise the set of assumptions that I adopt throughout this chapter, unless

stated otherwise:

Assumption 1. Vh j >Vl j for each j, ViH >ViL for each i, VhH−VhL >VlH−VlL, nh < M <

Nh 6M+N, nl < N < Nl , and nh +nl > M.

For expositional convenience, I denote K ≡ (1−α)nh +αM, ∆i ≡ ViH −ViL for i ∈

{h, l}, and α ′ ≡ αM/[(1−α)Nh +αM].

Timing. I consider two selling periods: In period 1 (the regular season), the firm sells

the different types of products separately; in period 2 (the sales season), she sells them ei-

ther separately as transparent products or collectively as opaque products (i.e., the different

types of products are randomly allocated to the consumers). Following Jerath et al. (2010),

I assume that (i) the firm cannot offer both opaque and transparent products in the sales sea-

son, and (ii) she chooses between opaque sales and last-minute sales (if applicable) before

the regular season and commits to the choice in the sales season. However, the key mecha-

nism of opaque selling is robust to these assumptions, and I omit the formal presentation for

brevity. Within each selling season, the firm chooses the selling price(s) first, and then the

consumers make their purchase decisions. Specifically, in the regular season, they decide

whether to buy now or wait for the sales based on rational expectations about the future

price and availability of each type of product. In the sales season, the consumers choose

either to buy a product or to leave the market without a purchase. They make their pur-

chase decisions to maximise their expected surplus. Anticipating the consumers’ purchase

behaviours, the firm determines the selling and pricing strategies to maximise her expected

profit. Note that in both seasons she has the discretion to offer only one type of product by

pricing the other type high enough to effectively prevent consumers from buying it. Both

the firm and the consumers know the demand distribution, inventory levels, and consumer

valuation structure from the beginning of the game. However, they do not know the de-

mand realisation until the end of the regular season. Moreover, I assume that there is no
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Figure 3.1: Sequence of Events
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discounting between the two periods. All of these assumptions are consistent with Jerath

et al. (2010).

I summarise the sequence of events as follows and illustrate it in Figure 3.1:

• Stage 1 – Nature decides the demand realisation. The firm and the consumers do not

observe it.

• Stage 2 – The firm decides whether or not to use opaque selling in period 2, when

applicable.

• Stage 3 – The firm sets the period-1 (regular) prices for both types of products.

• Stage 4 – The consumers choose to either buy a certain type of product in the regular

season or wait for the sales season.

• Stage 5 – The firm and the consumers observe the demand realisation.

• Stage 6 – The firm sets the period-2 (sales) price(s). If she uses opaque selling, the

firm also determines the product mix.

• Stage 7 – The consumers choose to either buy a product or leave the market without

a purchase.

Other assumptions. I assume that the firm cannot defer introducing the high-type

product to the sales season. This may increase revenue by allowing the firm to condition

its price on the demand realisation.9 However, I rule out this strategy to reflect the general

observation that firms usually introduce their high-quality products well before the start of

9I can show that this strategy never arises in equilibrium if Nh < N.
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the sales season, possibly because (i) high-valuation consumers may not visit a firm in the

sales season after discovering that no high-quality products are offered during the regular

season, and (ii) firms cannot charge a high sales price for their high-quality products due to

intense market competition. Notably, Parlaktürk (2012) has imposed a similar assumption.

I also adopt the following tie-breaking rules. First, I employ the efficient rationing

scheme, i.e., a high-type consumer receives a particular type of product before a low-type

consumer does when they are willing to pay the same price for it. This scheme has been

widely adopted in the strategic consumer behaviour literature (Cachon and Swinney 2011,

and references therein); the rationale is that the high-type consumers are more willing to

compete for the product because they face a higher cost if it stocks out. However, I have

verified that adopting the proportional rationing scheme does not qualitatively change the

major insights of this chapter. Second, consumers who are indifferent between buying in

either period will buy in period 1, and consumers who are indifferent between buying either

type of product will buy the high-type product. Third, I assume that the firm strictly prefers

last-minute selling when opaque selling yields the same expected profit. This break-even

rule has also been adopted by Zhang et al. (2014) and can be justified by the fact that

opaque selling usually involves additional transaction costs stemming from clarification

and fulfilment. Finally, when different pricing strategies lead to the same expected profit, I

assume that the firm adopts the strategy that entails the highest demand.

3.4 Analysis

In this section, I characterise the firm’s optimal selling strategy and how it depends on

demand uncertainty. In §3.4.1, I identify three candidate selling strategies and derive the

corresponding equilibrium expected profits. In §3.4.2, I specify the firm’s optimal selling

strategy and how it depends on the probability of the high-demand realisation. Then I

compare my results with Jerath et al. (2010) to highlight the difference in the mechanism of

opaque selling across vertical and horizontal differentiation settings.

3.4.1 Candidate Selling Strategies

In this subsection, I describe all possible selling strategies and derive the corresponding

profit expressions. Like Jerath et al. (2010), I assume that the consumers have rational

expectations about the future price and availability of each type of product, and I solve for

all pure strategy subgame perfect Nash equilibria using backward induction.
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Before delving into the equilibrium analysis, I would first like to define the following

selling strategies:

• Traditional selling: In period 1, the firm sells the high-type products to the high-type

consumers and the low-type products to the low-type consumers. In period 2, she

does not sell any products because there are either no leftover products (under high

demand) or no remaining consumers (under low demand).

• Last-minute selling: In period 1, the firm sells the high-type products to the high-type

consumers and does not sell the low-type products. In period 2, she sells the leftover

products separately (i.e., as transparent products) to the remaining consumers.

• Opaque selling: In period 1, the firm sells the high-type products to the high-type

consumers and does not sell the low-type products. In period 2, she mixes the leftover

high- and low-type products (if applicable) and sells them collectively as opaque

products.

For ease of exposition, I will denote traditional selling, last-minute selling, and opaque

selling by subscripts T , L, and O respectively. Notably, this enumeration is not exhaustive.

For example, in period 1 the firm may sell both types of products to the high-type con-

sumers, or sell the high-type products to both types of consumers. The next lemma rules

out these alternative selling strategies since they cannot improve revenue based on T , L, and

O.

Lemma 4. Under Assumption 1, selling strategies other than traditional selling, last-minute

selling, and opaque selling cannot emerge in equilibrium.

Next I will derive the profit expressions for the three selling strategies. This will serve

as the basis for characterising the firm’s optimal selling strategy in §3.4.2.

Traditional selling. In period 1, the firm prices the low-type products at VlL to extract

full surplus from the low-type consumers. She prices the high-type products at VhH−VhL +

VlL so that the high-type consumers obtain the same surplus (i.e., VhL−VlL) from buying the

high- and low-type products. The firm does not sell in period 2 because she has no leftover

products if demand turns out to be high and no remaining consumers if it is low. Therefore,

her expected profit is:

ΠT ≡ (1−α)[nh(VhH −VhL +VlL)+nlVlL]+α[M(VhH −VhL +VlL)+NVlL].
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Last-minute selling. In period 1 the firm sells the high-type products exclusively to

the high-type consumers and does not sell the low-type products. Therefore, if demand turns

out to be low, in period 2 she has M−nh high-type products and N low-type products, and

the market has nl low-type consumers. By subgame perfection, she should price the high-

type products at VlH and the low-type products at VlL. This will allow the firm to extract

full consumer surplus, which is equal to (M− nh)VlH +(nl −M + nh)VlL. If demand turns

out to be high, in period 2 the firm has N low-type products and the market has Nh−M

high-type and Nl low-type consumers. Therefore, she sells the products either exclusively

to the high-type consumers at price VhL, or to both types of consumers at price VlL. Since

the corresponding profits are (Nh−M)VhL and NVlL respectively, the firm should price at

VhL if (Nh−M)VhL > NVlL and at VlL otherwise.

Next I determine the period-1 price of the high-type products. Consider a high-type

consumer who visits the firm in period 1 and finds the high-type products still in stock. To

incentivise him to buy now, the firm should price the high-type products below VhH so that

the consumer is indifferent between buying in period 1 and in period 2. As a result, the

period-1 price is equal to VhH −CSL, where CSL denotes the consumer’s expected surplus

of buying in period 2. To derive the expression for CSL, first note that if demand turns out

to be low, in period 2 the consumer should buy a high-type product at price VlH to obtain

surplus VhH−VlH . If demand turns out to be high, he should buy a low-type product, and the

surplus will be equal to VhL−VlL if (Nh−M)VhL 6 NVlL and 0 otherwise. Therefore CSL =

(1−α ′)(VhH−VlH) if (Nh−M)VhL > NVlL and CSL = (1−α ′)(VhH−VlH)+α ′(VhL−VlL)

otherwise, where α ′ ≡ αM/[(1−α)Nh+αM] denotes the consumer’s updated belief about

the probability of the high-demand realisation after discovering that the high-type products

are still in stock when he visits the firm. The firm’s expected profit is:

ΠL≡



(1−α){nh[VhH − (1−α ′)(VhH −VlH)]+(M−nh)VlH

+(nl−M+nh)VlL}+α{M[VhH − (1−α ′)(VhH −VlH)]

+(Nh−M)VhL}, if (Nh−M)VhL > NVlL,

(1−α){nh[VhH − (1−α ′)(VhH −VlH)−α ′(VhL−VlL)]

+(M−nh)VlH +(nl−M+nh)VlL}+α{M[VhH

−(1−α ′)(VhH −VlH)−α ′(VhL−VlL)]+NVlL}, if (Nh−M)VhL 6 NVlL.

Opaque selling. This selling strategy is identical to last-minute selling except that under



3.4. Analysis 51

low demand, in period 2 the firm mixes the leftover high- and low-type products and sells

them collectively as opaque products.10 By subgame perfection, she should mix all M−nh

high-type products with nh + nl −M low-type products and price the opaque products at
M−nh

nl
VlH + nh+nl−M

nl
VlL. This allows the firm to extract full consumer surplus, which is equal

to (M−nh)VlH +(nh +nl−M)VlL.

Next I derive the period-1 price of the high-type products. The firm should price them

below VhH so that a high-type consumer who finds the product in stock will be indifferent

between buying in period 1 and waiting until period 2. Therefore, the period-1 price is equal

to VhH −CSO, where CSO denotes the consumer’s expected surplus of waiting for period 2.

Similar to the derivation of CSL, I have

CSO =


(1−α ′)[M−nh

nl
(VhH −VlH)+

nh+nl−M
nl

(VhL−VlL)], if (Nh−M)VhL > NVlL,

(1−α ′)[M−nh
nl

(VhH −VlH)+
nh+nl−M

nl
(VhL−VlL)]

+α ′(VhL−VlL), if (Nh−M)VhL 6 NVlL.

Based on this, I can derive the expected profit as:

ΠO≡



(1−α){nh[VhH − (1−α ′)(VhH −VlH)]+(M−nh)VlH

+(nh +nl−M)VlL}+α{M[VhH − (1−α ′)(VhH −VlH)]

+(Nh−M)VhL}+(1−α ′)nh+nl−M
nl

K(VhH −VlH

−VhL +VlL), if (Nh−M)VhL > NVlL,

(1−α){nh[VhH − (1−α ′)(VhH −VlH)−α ′(VhL−VlL)]

+(M−nh)VlH +(nh +nl−M)VlL}+α{M[VhH

−(1−α ′)(VhH −VlH)−α ′(VhL−VlL)]+NVlL}

+(1−α ′)nh+nl−M
nl

K(VhH −VlH −VhL +VlL), if (Nh−M)VhL 6 NVlL.

I summarise the equilibrium prices and demands for the three selling strategies in Table

3.1. For ease of exposition, I denote ψ ≡ (M− nh)/nl , ψ̄ ≡ 1−ψ , and use p j
i and D j

i to

denote the price and demand for product i in period j (i ∈ {H,L,o}, j ∈ {1,2h,2l}), where

the subscript o denotes the opaque products and the superscripts 2h and 2l denote high and

low demand in period 2.

10She does not offer opaque products under high demand because in this case the high-type products are out

of stock.
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Table 3.1: The Equilibrium Prices and Demands for Traditional Selling, Last-Minute Selling, and

Opaque Selling

(a) Traditional Selling

Prices Demands for High-Type Products Demands for Low-Type Products

(p1
H , p1

L) (D2l
H ,D2h

H ) (D2l
L ,D2h

L )

(VhH −VhL +VlL ,VlL) (nh ,M) (nl ,N)

(b) Last-Minute Selling

VlL
VhL

The Regular Season
The Sales Season

Low Demand High Demand

Price Demands Prices Demands Price Demand

p1
H (D2l

H ,D2h
H ) (p2l

H , p2l
L ) (D2l

H ,D2l
L ) p2h

L D2h
L

VlL
VhL

<
Nh−M

N VhH − (1−α ′)(VhH −VlH )

(nh ,M) (VlH ,VlL)
(M−nh ,nl

VhL Nh−M

VlL
VhL

>
Nh−M

N
VhH − (1−α ′)(VhH −VlH )

−M+nh) VlL N
−α ′(VhL−VlL)

(c) Opaque Selling

VlL
VhL

The Regular Season
The Sales Season

Low Demand High Demand

Price Demands Price Demand Price Demand

p1
H (D2l

H ,D2h
H ) p2l

o D2l
o p2h

L D2h
L

VlL
VhL

<
Nh−M

N
VhH − (1−α ′)[ψ(VhH −VlH )

(nh ,M)

ψVlH+

nl

VhL Nh−M
+ψ̄(VhL−VlL)]

VlL
VhL
>

Nh−M
N

VhH − (1−α ′)[ψ(VhH −VlH )+
ψ̄VlL VlL N

ψ̄(VhL−VlL)]−α ′(VhL−VlL)

3.4.2 The Optimal Selling Strategy

In §3.4.1, I derived the profit expressions for all candidate selling strategies. The next

proposition compares the expressions to characterise the firm’s optimal selling strategy.

Proposition 7. Under Assumption 1, opaque selling strictly dominates last-minute selling.

(i) When VhL > N
Nh−MVlL, the firm should use opaque selling if ∆h < [1+ (1−α)nl

(1−α ′)K ]∆l +

α ′nl
(1−α ′)(M−nh)

(VhL−VlL)+
αnl

(1−α ′)(M−nh)
[Nh−M

K VhL− N
KVlL] and traditional selling otherwise.

(ii) When VhL < N
Nh−MVlL, the firm should use opaque selling if ∆h < [1+ (1−α)nl

(1−α ′)K ]∆l

and traditional selling otherwise.

Proposition 7 shows that opaque selling may still outperform last-minute selling in ver-

tically differentiated markets. This is somewhat surprising, since the previously mentioned

homogenising effect no longer exists in vertically differentiated markets. In fact, since the

high-type consumers value all types of products higher than the low-type consumers, they

also have a higher valuation for the opaque mix. To see this formally, consider a special
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case of my model in which VhH/VlH = VhL/VlL ≡ σ .11 This ratio represents consumers’

level of heterogeneity in terms of their valuations for transparent products. For the opaque

mix with the proportion of the high-type products equal to ω , the high- and low-type con-

sumers’ valuations are ωVhH +(1−ω)VhL and ωVlH +(1−ω)VlL respectively. As a result,

their level of heterogeneity regarding the opaque products is

ωVhH +(1−ω)VhL

ωVlH +(1−ω)VlL
=

ωσVlH +(1−ω)σVlL

ωVlH +(1−ω)VlL
= σ .

In other words, opaque selling does not influence consumers’ level of heterogeneity. There-

fore, its clearance advantage no longer holds in vertically differentiated markets. In fact,

opaque selling and last-minute selling lead to the same expected sales revenue (see the ex-

pressions of ΠL and ΠO).

Despite the absence of the homogenising effect, I find that opaque selling may still

outperform last-minute selling in vertically differentiated markets. This is because opaque

selling deprives high-type consumers of the opportunity to choose their preferred product

type during the sales season (hereafter, the choice-deprivation advantage). Specifically,

under low demand, a high-type consumer finds both types of products in stock in the sales

season. If the firm sells them separately, the consumer should buy a high-type product since

it entails a higher surplus. In contrast, if the firm sells them collectively as opaque products,

the consumer may be allocated a low-type product that entails a lower surplus. Therefore,

he has less incentive to wait for the sales, and the firm can charge a higher regular price on

the high-type products than she can with last-minute selling.

Notably, opaque selling may also increase the regular prices in horizontally differenti-

ated markets. However, this is because of the homogenising effect rather than the choice-

deprivation advantage. In fact, this advantage does not exist under horizontal differentiation

because consumers never face a choice between the two product types in the sales season:

All remaining consumers would rather leave the market than buy the products at the other

end of the Hotelling line (see Proposition 5.2 of Jerath et al. 2010). This difference leads

to contrasting policy recommendations under vertical and horizontal differentiation (as will

be shown in Proposition 10).

Another difference between the two settings is that opaque selling always outperforms

last-minute selling in vertically differentiated markets, whereas it may not do so in hor-

izontally differentiated markets. As shown by Jerath et al. (2010), opaque selling under
11This assumption is standard in the literature (see, e.g., Mussa and Rosen 1978, Parlaktürk 2012).
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horizontal differentiation may allocate to a consumer the product type he dislikes (i.e., the

net purchase payoff is negative). Therefore, it significantly reduces the product valuations

of strong-preference consumers (i.e., those close to either endpoint of the Hotelling line),

which further implies that opaque selling may be less effective in separating out these high-

preference consumers and thus becomes suboptimal. This product deterioration effect no

longer holds in vertically differentiated markets because all product types are valuable, i.e.,

there does not exist a product type that induces a negative net purchase payoff. In fact,

since consumers value the opaque products as the weighted sum of their valuations for the

transparent products, the firm obtains the same sales-season revenue from opaque selling

and last-minute selling.

Since last-minute selling is always suboptimal, the firm effectively chooses between

opaque selling and traditional selling. Proposition 7 provides a full characterisation of how

this decision depends on consumer valuations, which I illustrate in Figure 3.2. Compared to

traditional selling, opaque selling enables the firm to clean up the leftover high-type prod-

ucts by selling them to the low-type consumers in the sales season. However, this clean-up

advantage comes at the cost of a lower regular price, which prevents the high-type con-

sumers from waiting for the sales. Therefore, opaque selling outperforms traditional selling

when the low-type consumers’ valuation for the high-type products is close to the high-type

consumers’ valuation.

Interestingly, Figure 3.2 also shows that opaque selling dominates traditional selling

for a larger range of parameter values when the high-type consumers value the low-type

products much more than the low-type consumers do (i.e., VhL > N
Nh−MVlL). Intuitively, in

this case with a high-demand realisation, it is more profitable to sell the leftover low-type

products exclusively to the remaining high-type consumers than to both types of consumers.

Opaque selling is more attractive than traditional selling since it provides an additional pric-

ing opportunity for the firm to sell the low-type products to different consumer types across

the two seasons.

Managerially, Proposition 7 indicates that selling quality-differentiated leftover prod-

ucts collectively (i.e., as an opaque mix) rather than separately can be optimal because it

allows the firm to charge a higher regular price. Moreover, the firm should offer opaque

sales rather than no sales when consumers’ valuations for the high-quality products are

close.
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Figure 3.2: The Optimal Selling Strategy*

VlH

VhH

(VlL ,VhL)

∆h
= ∆ l

l1

Traditional Selling

Opaque Selling

(a) VhL > N
Nh−M VlL

VlH

VhH

(VlL ,VhL)

∆h
= ∆ l
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Traditional Selling

Opaque Selling

(b) VhL 6
N
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*l1 : ∆h = {1+(1−α)nl/[(1−α ′)K]}∆l +α ′nl (VhL−VlL)/[(1−α ′)(M−nh)]+αnl [(Nh−M)VhL−NVlL ]/[(1−α ′)K(M−nh)]

l2 : ∆h = {1+(1−α)nl/[(1−α ′)K]}∆l

The impact of demand uncertainty. The previous discussion showed that opaque

selling may outperform traditional selling by allowing the firm to clean up the leftover

products under both high- and low-demand realisations. Therefore, it is not intuitively

clear whether a higher probability of the high-demand realisation increases or decreases the

attractiveness of opaque selling. I answer this question in the next proposition, where the

expressions of thresholds for VlH and VhL are relegated to the proof for brevity.

Proposition 8. Under Assumption 1,

(i) when VhL 6
N

Nh−MVlL, opaque selling becomes less preferable than traditional sell-

ing as α increases;

(ii) when VhL >
N

Nh−MVlL, opaque selling becomes less preferable than traditional sell-

ing as α increases if VlH is high or VhL is low, and becomes more preferable otherwise.

When the high-type consumers’ valuation for the low-type products is close to the low-

type consumers’ valuation (i.e., VhL 6
N

Nh−MVlL), it is optimal to price the low-type products

at the low-type consumers’ valuations in both selling seasons. As a result, offering opaque

sales cannot increase profits under the high-demand realisation. This further implies that the

firm prefers traditional selling to opaque selling as the probability of high demand increases.

The situation is more complicated when the high-type consumers’ valuation for the

low-type products is much higher than the low-type consumers’ valuation (i.e., VhL >

N
Nh−MVlL). In this case, opaque selling generates higher profits from leftover products under
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both high- and low-demand realisations. Specifically, if demand turns out to be low, opaque

selling allows the firm to clean up the leftover high-type products (at price VhL); if demand

turns out to be high, opaque selling increases the price of the leftover low-type products by

allowing the firm to sell them exclusively to the remaining high-type consumers (at price

VlH). When VlH is high or VhL is low, the clean-up advantage under the low-demand real-

isation dominates. Since a higher α weakens the aggregate clean-up advantage, it makes

opaque selling less preferable than traditional selling. Otherwise, opaque selling is more

attractive as α increases.

3.5 Model Extensions

To derive richer insights into the mechanism of opaque selling, I extend the base model in

this section by considering an additional consumer segment and damaged opaque products.

3.5.1 Three Consumer Segments

Based on the stylised model with two consumer segments, the analysis in §3.4.2 reveals sev-

eral fundamental differences in opaque selling’s mechanism for vertically and horizontally

differentiated markets. In particular, its clearance advantage in horizontally differentiated

markets no longer exists under vertical differentiation, and its choice-deprivation advantage

in vertically differentiated markets does not exist under horizontal differentiation. In this

section, I will consider an additional consumer segment and show that these differences

continue to hold in the extended model.12 This extension also allows me to derive richer

insights into the firm’s optimal selling strategy and how it depends on demand uncertainty.

I introduce the additional consumer segment by splitting the low-type consumers into

two segments: Intermediate-type consumers (denoted by subscript m) and low-type con-

sumers (denoted by subscript l). Let Vi j denote the valuation of a type-i consumer for a

type- j product (i ∈ {h,m, l}, j ∈ {H,L}). Moreover, let ∆i ≡ ViH −ViL, and ni (Ni) denote

the number of type-i consumers under the low- (high-) demand realisation. I adopt the

following set of assumptions throughout this section:

Assumption 2. Vh j > Vm j > Vl j for each j, ViH > ViL for each i, ∆h > ∆m > ∆l , nh < M <

Nh 6M+N, nh +nm > M, nh +nl > M, Nh +Nm > M+N, and nm +nl 6 N < Nm +Nl .

Assumption 2 is a direct extension of Assumption 1 except Nh+Nm >M+N. I impose

12I do not incorporate more than three segments since the analysis would be prohibitively difficult. Presum-

ably major insights in this section are robust to the three-segment assumption.
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this assumption to rule out the somewhat implausible equilibrium outcome in which the firm

sells the high-type products exclusively to the intermediate-type consumers and does not sell

the low-type products in the regular season. However, it can be verified that major insights

continue to hold when Nh +Nm 6M+N.

Next I enumerate all candidate selling strategies and derive their profit expressions.

• Traditional selling: In period 1, the firm sells the high-type products to the high-type

consumers at price VhH −VhL +VlL and the low-type products to the intermediate-

and low-type consumers at price VlL. As in the base model, the firm does not sell

in period 2 because there are either no leftover products or no remaining consumers.

I will denote this strategy by subscript T m. The corresponding expected profit is

ΠT m ≡ (1−α)[(VhH −VhL +VlL)nh +VlL(nm +nl)]+α[(VhH −VhL +VlL)M+VlLN].

• Last-minute selling: The firm sells the high-type products to the high-type consumers

in period 1 and sells the leftover products separately to the remaining consumers in

period 2. Specifically, if demand turns out to be high, in period 2 she has N low-type

products and the market has Nh−M high-type consumers, nm intermediate-type con-

sumers, and nl low-type consumers. Similar to the base model, the firm should sell the

products exclusively to the remaining high-type consumers if (Nh−M)VhL > NVmL,

and to both the high- and intermediate-type consumers otherwise. If demand turns out

to be low, in period 2 the firm has M− nh high-type products and N low-type prod-

ucts, and the market has nm intermediate-type consumers and nl low-type consumers.

She either sells both types of products exclusively to the intermediate-type consumers

or sells the high-type products to the intermediate-type consumers and the low-type

products to the low-type consumers. In the former case (denoted by subscript L1m),

the firm prices the high- and low-type products at VmH and VmL, and her expected

profit is: ΠL1m ≡ (1−α){nh[VhH−(1−α ′)(VhH−VmH)]+(M−nh)VmH +(nh+nm−

M)VmL}+α{M[VhH−(1−α ′)(VhH−VmH)]+(Nh−M)VhL} if (Nh−M)VhL > NVmL,

and ΠL1m≡ (1−α){nh[VhH−(1−α ′)(VhH−VmH)−α ′(VhL−VmL)]+(M−nh)VmH +

(nh+nm−M)VmL}+α{M[VhH−(1−α ′)(VhH−VmH)−α ′(VhL−VmL)]+NVmL} oth-

erwise. In the latter case (denoted by subscript L2m), the firm prices the high-type

products at VmH −VmL +VlL and the low-type products at VlL. Therefore, the firm’s

expected profit is ΠL2m ≡ (1−α){nh[VhH−(1−α ′)(VhH−VmH +VmL−VlL)]+(M−

nh)(VmH −VmL +VlL)+ (nh +nm +nl−M)VlL}+α{M[VhH − (1−α ′)(VhH −VmH +
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VmL−VlL)]+ (Nh−M)VhL} if (Nh−M)VhL > NVmL, and ΠL2m ≡ (1−α){nh[VhH −

(1−α ′)(VhH −VmH +VmL −VlL)−α ′(VhL −VmL)] + (M− nh)(VmH −VmL +VlL) +

(nh + nm + nl −M)VlL}+α{M[VhH − (1−α ′)(VhH −VmH +VmL−VlL)−α ′(VhL−

VmL)]+NVmL} otherwise.

• Opaque selling: This strategy is identical to last-minute selling except that under

low demand, in period 2 the firm mixes the leftover high- and low-type products

and sells them collectively either to the intermediate-type consumers only or to both

the intermediate- and low-type consumers. In the former case (denoted by sub-

script O1m), the firm prices the opaque products at M−nh
nm

VmH + nh+nm−M
nm

VmL, and

her expected profit is ΠO1m ≡ (1−α){nh[VhH − (1−α ′)(θ(VhH −VmH)+ θ̄(VhL−

VmL))]+(M−nh)VmH +(nh +nm−M)VmL}+α{M[VhH − (1−α ′)(θ(VhH −VmH)+

θ̄(VhL−VmL))]+(Nh−M)VhL} if (Nh−M)VhL >NVmL and ΠO1m≡ (1−α){nh[VhH−

(1− α ′)(θ(VhH −VmH) + θ̄(VhL −VmL))− α ′(VhL −VmL)] + (M − nh)VmH + (nh +

nm −M)VmL} + α{M[VhH − (1 − α ′)(θ(VhH − VmH) + θ̄(VhL − VmL)) − α ′(VhL −

VmL)] + NVmL} otherwise. In the latter case (denoted by subscript O2m), the

firm prices at M−nh
nm+nl

VlH + nh+nm+nl−M
nm+nl

VlL, and the expected profit is ΠO2m ≡ (1−

α){nh[VhH − (1− α ′)(φ(VhH −VlH) + φ̄(VhL −VlL))] + (M − nh)VlH + (nh + nm +

nl −M)VlL}+α{M[VhH − (1−α ′)(φ(VhH −VlH) + φ̄(VhL−VlL))] + (Nh−M)VhL}

if (Nh −M)VhL > NVmL, and ΠO2m ≡ (1− α){nh[VhH − (1− α ′)(φ(VhH −VlH) +

φ̄(VhL−VlL))−α ′(VhL−VmL)]+(M−nh)VlH +(nh+nm+nl−M)VlL}+α{M[VhH−

(1−α ′)(φ(VhH −VlH)+ φ̄(VhL−VlL))−α ′(VhL−VmL)] +NVmL} otherwise, where

φ ≡ (M−nh)/(nm +nl) and φ̄ ≡ 1−φ . The next lemma shows that I do not need to

consider other selling strategies.

Lemma 5. Under Assumption 2, selling strategies other than traditional selling, last-minute

selling, and opaque selling cannot emerge in equilibrium.

According to Lemma 5, characterising the firm’s optimal selling strategy boils down

to comparing ΠT m, ΠL1m, ΠL2m, ΠO1m, and ΠO2m. The next proposition provides a full

characterisation, where I relegate the expressions of thresholds for VhH and VmH to the proof

for brevity.

Proposition 9. Under Assumption 2,
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(i) when (nm + nl)VlL < nmVmL, the firm should use traditional selling if VmH is suffi-

ciently low compared to VhH and opaque selling otherwise;

(ii) when (nm + nl)VlL > nmVmL, the firm should use traditional selling if VmH is suffi-

ciently low compared to VhH , last-minute selling if VmH is sufficiently high compared to VhH ,

and opaque selling otherwise.

I graphically illustrate Proposition 9 in Figure 3.3. When the intermediate-type con-

sumers value the low-type products much more than the low-type consumers do (i.e.,

(nm +nl)VlL < nmVmL), the firm should sell the leftover high- and low-type products exclu-

sively to the intermediate-type consumers in the sales season under low demand. Therefore,

opaque selling and last-minute selling generate the same sales-season revenue. Due to its

choice-deprivation advantage, opaque selling allows the firm to raise the regular price of

the high-type products and thus strictly dominates last-minute selling. Interestingly, I find

that last-minute selling may outperform opaque selling when the intermediate- and low-

type consumers’ valuations for the low-type products are close (i.e., (nm+nl)VlL > nmVmL).

To see the intuition, first note that opaque selling is less flexible in segmenting different

consumer types (hereafter, the segmentation inflexibility). Specifically, last-minute selling

allows the firm to target the intermediate-type consumers with the leftover high-type prod-

ucts while at the same time targeting the low-type consumers with the low-type products.

In contrast, she cannot separate them under opaque selling since she has only one product

type (i.e., the opaque product) to offer.13 Therefore, opaque selling may generate a lower

revenue from the sales. This clearance disadvantage is strengthened when VmH is high, and

opaque selling’s choice-deprivation advantage is weakened when VhH is low. Therefore, the

firm uses last-minute selling instead of opaque selling when VmH and VhH are close.

Perhaps unexpectedly, I find that the segmentation inflexibility increases the attractive-

ness of opaque selling when VmH is high and VmL 6
nm+nl

nm
VlL (i.e., to the right of l5 in Figure

3.3(b)). Specifically, as VmH increases and strengthens the segmentation inflexibility, the

firm uses opaque selling for a larger range of parameter values. This is because the segmen-

tation inflexibility helps maintain high sales price(s) for the leftover products, which further

increases the regular price of the high-type products. In particular, with last-minute selling,

13The segmentation inflexibility is qualitatively preserved when the firm can offer both opaque and transpar-

ent sales. Here opaque selling makes the offered products less differentiated (i.e., opaque and low-type products

v.s. high- and low-type products), so it is less efficient in separating different consumer types.
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Figure 3.3: The Optimal Selling Strategy with Three Consumer Segments*
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the firm prices the leftover high-type products below the intermediate-type consumers’ val-

uation to prevent them from buying the low-type products at VlL. In contrast, with opaque

selling, the firm cannot separate consumers and thus chooses to sell the opaque products

exclusively to the intermediate-type consumers at their expected valuation. Since the firm

extracts full surplus from them with opaque selling and only partial surplus with last-minute

selling, the high-type consumers who buy in the regular season are less willing to wait for

the opaque sales. Therefore, the firm can raise the regular price with opaque selling, i.e.,

the segmentation inflexibility increases her profit.

The preceding discussion highlights several important differences in opaque selling’s

mechanism in vertically and horizontally differentiated markets. First, opaque selling is

always less efficient in cleaning up leftover products in vertically differentiated markets.

However, it may be more efficient under horizontal differentiation. Second, opaque selling

is less preferable than last-minute selling as customers are more horizontally differentiated,

whereas it can be more preferable as they are more vertically differentiated (e.g., higher

VhH/VmH or VmL/VlL).

The impact of demand uncertainty. Next I examine how demand uncertainty influ-

ences the firm’s choice between opaque selling and last-minute selling. In horizontally dif-

ferentiated markets, a higher probability of a high-demand realisation makes opaque selling

more preferable since its clearance advantage becomes more valuable (Jerath et al. 2010).

Specifically, as the probability of high demand increases, the firm raises the regular price and
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more consumers remain active in the market under low demand in the sales season. Due to

its clearance advantage, opaque selling yields higher sales-season revenue and thus is more

attractive. However, this rationale no longer holds in vertically differentiated markets, since

opaque selling is no more efficient in cleaning up the leftover products than last-minute

selling. In fact, the next proposition shows that the opposite policy recommendation can

be optimal. Notably, I focus on the VmL 6 (nm + nl)VlL/nm case (otherwise opaque selling

always outperforms last-minute selling) and relegate the expressions of thresholds for α ,

VhH , and VmH to the proof for brevity.

Proposition 10. Under Assumption 2, when VmL 6
nm+nl

nm
VlL, last-minute selling outper-

forms opaque selling for a larger range of parameter values as α increases if α and VhH

are sufficiently high and VmH is sufficiently low.

Unlike in the horizontally differentiated setting, in vertically differentiated markets

the firm may switch from opaque selling to last-minute selling as high demand becomes

more likely. To see the intuition, first recall that opaque selling’s advantage here is that it

increases the regular price by depriving consumers of the choice of buying the preferred

product type during the sales season. Its disadvantage, however, lies in its inflexibility in

segmenting different types of consumers. Since the choice deprivation and the segmentation

inflexibility take place only when demand is low, both the advantage and the disadvantage

are weakened as the probability of high demand α increases. When α and VhH are high and

VmH is low, the advantage dominates the disadvantage. In particular, a higher α increases the

expected demand and a higher VhH increases the price in the regular season, both of which

strengthen the choice-deprivation advantage. In contrast, a higher VmH allows the firm to

charge a higher sales price for the high-type products when selling them exclusively to

the intermediate-type consumers. Therefore, this strengthens opaque selling’s disadvantage

of segmentation inflexibility. When α and VhH are high and VmH is low, the advantage

dominates the disadvantage, so a higher α reduces the advantage more and the firm switches

from opaque selling to last-minute selling.

3.5.2 Damaged Opaque Products

Throughout the preceding analysis, I assumed that opaque selling does not affect con-

sumers’ product valuations. In practice, however, it usually requires the firm to “damage”

the products by, e.g., prohibiting product returns (Swatch 2017) or service cancellation

(Priceline 2017). In this section, I study the impact of this product damage on the mecha-
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nism of opaque selling. As in Jerath et al. (2010), I incorporate product damage by assuming

that opaque selling discounts consumers’ product valuation by 1−δ . In other words, a type-

j product from the opaque mix is worth δVi j to a type-i consumer. Following the deriva-

tion of ΠO, I can show that the firm’s expected profit from this new opaque selling strat-

egy (denoted by subscript Od) is ΠOd ≡ (1−α){nh[VhH − (1−α ′)δ (VhH −VlH)]+δ (M−

nh)VlH + δ (nl −M + nh)VlL}+α{M[VhH − (1−α ′)δ (VhH −VlH)]+ (Nh−M)VhL}+(1−

α ′)δ nl+nh−M
nl

K(VhH−VlH−VhL+VlL) if (Nh−M)VhL > NVlL, and ΠOd ≡ (1−α){nh[VhH−

(1−α ′)δ (VhH−VlH)−α ′(VhL−VlL)]+δ (M−nh)VlH +δ (nl−M+nh)VlL}+α{M[VhH−

(1−α ′)δ (VhH−VlH)−α ′(VhL−VlL)]+NVlL}+(1−α ′)δ nl+nh−M
nl

K(VhH−VlH−VhL+VlL)

otherwise.

Based on this expression, I can characterise the impact of product damage on the prof-

itability of opaque selling as follows.

Lemma 6. Under Assumption 1, ΠOd >ΠO if ∆h > [1+ (1−α)(M−nh)
(1−α ′)θK ]∆l− [KVhL−( 1−α

1−α ′ nl +

K)VlL]/(θK), ΠOd < ΠO if ∆h < [1+ (1−α)(M−nh)
(1−α ′)θK ]∆l− [KVhL−( 1−α

1−α ′ nl +K)VlL]/(θK), and

ΠOd = ΠO if ∆h = [1+ (1−α)(M−nh)
(1−α ′)θK ]∆l− [KVhL− ( 1−α

1−α ′ nl +K)VlL]/(θK).

Perhaps unexpectedly, Lemma 6 shows that product damage may influence the ex-

pected profit from opaque selling in both directions. First, it reduces the sales-season rev-

enue by lowering consumers’ product valuations. Second, it increases the regular-season

revenue since the high-type consumers have less incentive to wait for the sales. When

VhH is high and VlH is low, the latter effect dominates and the expected profit increases.

Notably, this is just the opposite of what happens in the horizontal differentiation setting,

where product damage always reduces profit (Jerath et al. 2010). This difference is driven

by the contrasting mechanisms of opaque selling across the two settings. Specifically, under

horizontal differentiation, opaque selling increases the regular price since its homogenising

effect allows the firm to extract full surplus from the consumers who wait for the sales.

Since product damage cannot extract even more surplus, it does not increase the expected

profit. Under vertical differentiation, however, opaque selling increases the regular price

because of the choice-deprivation advantage. Since this advantage allows the firm to extract

only partial surplus from the consumers who wait for the sales, it leaves room for prod-

uct damage to extract even more surplus and thus raise the regular price. As a result, the

expected profit from opaque selling may increase.

The next proposition characterises the firm’s optimal selling strategy when product
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damage is considered, where I relegate the expressions of thresholds for VhH and VlH to the

proof for brevity.

Proposition 11. Under Assumption 1, the firm should use traditional selling when VhH is

high or VlH is low, opaque selling when VhH and VlH are intermediate, and last-minute

selling when VhH is low or VlH is high.

I summarise Proposition 11 in Figure 3.4. With product damage, last-minute selling

may still emerge in equilibrium since it induces a higher sales-season revenue than opaque

selling. However, it is optimal only when the size of the sales-season revenue is considerable

compared to the regular-season revenue (i.e., low VhH or high VlH). When the regular-

season revenue dominates (i.e., high VhH or low VlH), the firm should use traditional selling

to maintain the highest regular price for the high-type products. Moreover, the firm may

still use opaque selling despite its damage to the products. Intuitively, opaque selling is a

compromise between the profits from the regular season and those from the sales season.

Therefore, it dominates the other selling strategies when these profits are comparable in size

(i.e., intermediate VhH and VlH).

3.6 Concluding Remarks

In this chapter, I analysed the performance of opaque selling as a clearance strategy in verti-

cally differentiated markets. I considered a two-period model with strategic consumers and

a monopolistic firm selling two types of quality-differentiated products. I characterised the

firm’s optimal selling strategy and showed that opaque selling may outperform last-minute

selling by virtue of preventing consumers from choosing their preferred product type if they

delay their purchase to the sales season. The disadvantage of opaque selling is that it is less

efficient in cleaning up the leftover products due to its inflexibility in segmenting differ-

ent types of consumers. Both results are in sharp contrast to the horizontal differentiation

setting. This difference further induces opposite policy recommendations for vertically and

horizontally differentiated markets. Specifically, under vertical differentiation, the firm may

switch from opaque selling to last-minute selling as consumers become more differentiated

or the probability of the low-demand realisation increases. Under horizontal differentiation,

however, she should always switch in the opposite direction. I have also shown that the

advantage and disadvantage of opaque selling continue to hold in the presence of market

competition and product damage. Surprisingly, I found that market competition adds a new
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Figure 3.4: The Optimal Selling Strategy with Product Damage*
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advantage to opaque selling: It makes better use of the leftover low-type products. More-

over, product damage may also make opaque selling more attractive since it allows for an

even higher regular price.

This analytical framework provides the following insights for managers in practice.

First, offering opaque sales is attractive only when high-valuation consumers (due, e.g., to

brand loyalty or an urgent need for the product) are unwilling to pay a much higher price

than the low-valuation consumers for the most valuable product type. Second, opaque sales

are more attractive if demand is more likely to be low or consumers hold similar prod-

uct valuations. Third, although consumers generally value opaque products lower than the
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corresponding transparent ones, product damage may in fact increase the attractiveness of

opaque selling by making high-valuation consumers less willing to wait for the sales.

For the sake of parsimony, I have abstracted away from several factors, which could

serve as the basis for future research. For example, to focus on the performance analysis of

opaque selling purely as a clearance strategy, I followed the analytical framework of Jerath

et al. (2010) by assuming that the firm can use opaque selling only during the sales season.

Future research can extend my work by relaxing this assumption in order to examine the

performance of opaque selling as both a market segmentation tool and a clearance strategy.

Another research direction would be to endogenise the firm’s quality choice. It would be

interesting to investigate whether opaque selling induces more differentiated product types

to better exploit its choice-deprivation advantage, or less differentiated product types to

reduce its disadvantage of segmentation inflexibility. Finally, future research can incorpo-

rate behavioural elements and examine their impact on the performance of opaque selling.

For example, consumers may use anecdotes to estimate the likelihood of each product in

the opaque mix. Moreover, they may anticipate post-purchase regret when making their

purchase decisions.



Chapter 4

Money Back Guarantees with Competing

Physical and Online Stores

4.1 Introduction

As consumers have increasingly easier access to the Internet, online retailing has been grow-

ing steadily. For example, the global sales volume from online retailing has increased from

1,336 billion dollars in 2014 to 1,859 in 2016, and the figure is estimated to rise to 4,479 in

2021 (Statista 2018). Often-cited reasons for consumers to purchase online include saving

time and money from travelling to a physical store and the convenience to purchase anytime

and anywhere (Miller 2012, The Telegraph 2016, Domingo 2017).

Despite the convenience of online retailing, consumers may hesitate to buy online since

physical stores usually provide better services in the sense that consumers can try different

variants of a product with the help of instore assistance before making the purchase. In fact,

recent surveys have shown that the ability to “touch and feel” products is the primary reason

for consumers to buy in a physical store instead of an online store (Retail TouchPoints 2015,

Retail Dive 2017).

To cope with the disadvantage in instore services, many online stores choose to offer

money-back guarantees (MBGs). With MBGs, consumers can return a product to get the

full money back “no question asked.” For example, Zappos, an US-based online shoe and

clothing retailer, allows customers to return products with a free return label for any reason

(Zappos 2018). Other online retailers may offer a less lenient return policy by imposing a

return fee on the consumers or a post-purchase time limit after which MBGs are not offered.

For instance, Amazon requires customers to return products within 30 days after receiving

the shipment to claim MBGs (Amazon 2018). In addition to this time limit, Newegg also
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charges customers for product returns if the returned item is non-defective (Newegg 2018).

Although MBGs may alleviate consumer concerns about product misfit before pur-

chase, they can be costly for the online retailers in several aspects. First, handling product

returns involve return repackaging, return shipment, and restocking, all of which are costly.

Second, returned products are usually sold at a lower price as open-box items. The cost

is especially prominent considering the fact that the online return rate are at least 30%, as

compared to 8.89% in physical stores (Saleh 2018).

Since both the benefit and cost of MBGs are salient, it is critical for online retailers

to understand how to design the product return policy in order to compete with brick-and-

mortar retailers. This chapter aims to address this question using a stylised game-theoretical

model. The model consists of a physical store and an online store competing for consumers

on a single product. The consumers do not know whether the product fits or not before ty-

ing it, and they differ in their valuations for a fitting product. The physical store allows the

consumers to try different variants of the product and thus they know whether it fits their

need or not before purchase, whereas the online store cannot. However, the online store

can choose to offer consumers MBGs, i.e., they can return a product after purchase to get

the full money back. The online store also determines the allocation of product return cost

between itself and the consumers.

Using this model, I characterise both stores’ optimal pricing decisions and the online

store’s optimal product return policy. I find that the online store should offer MBGs only if

it is more efficient to transfer an unfit product from the consumer side to the store. More-

over, if the online store chooses to offer MBGs, it should allocate product return cost in the

socially optimal way, i.e., to minimise the total product return cost. I also study the impact

of the stores’ service quality on their optimal profit. I find that the online store may lose

profit from improving the service, since it intensifies competition. Moreover, it may benefit

from a better service from the physical store.

The remainder of this chapter is organised as follows. §4.2 reviews the relevant lit-

erature. §4.3 introduces model specifications, and §4.4 characterises both stores’ pricing

decisions an the online store’s optimal product return policy. In §4.5, I conclude this chap-

ter by summarising the key findings and managerial insights. All proofs are relegated to

Appendix C.
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4.2 Related Literature

This chapter is closely related to two streams of the extensive literature: MBGs and multi-

channel competition.

MBGs. Product returns are widely provided for consumers who cannot fully evaluate a

product before purchase. By promising them to refund the full purchase price “no question

asked,” retailers can mitigate consumers’ uncertainty about their product valuations. Davis

et al. (1995) examine a monopolistic firm’s decision of offering MBGs or not to consumers

who are ex ante unsure if the product fits or not. Che (1996) studies the welfare implications

of MBGs for risk-averse consumers and shows that the firm adopts MBGs only if they are

highly risk averse, whereas MBGs always improve social welfare. Moorthy and Srinivasan

(1995) consider MBGs as a way to signal product quality and show that they can be more

effective than uninformative advertising. Shulman et al. (2010) investigate the impact of

reverse channel structure (i.e., returns are salvaged by the manufacturer v.s. by the retailer)

on a firm’s optimal return policy.

The aforementioned literature treats MBGs as a given policy in the sense that the firm

and consumers incur a predetermined amount of cost associated with product returns. In

practice, however, retailers typically can choose the amount of return cost incured by them

and consumers. To analyse this MBG design problem, Davis et al. (1998) consider a mo-

nopolistic firm who decides on the return hassle imposed on consumers. They find that a

firm should offer low-hassle MBGs if consumers do not benefit much from using the prod-

uct and then returning it, or the returned item has a high salvage value. Hsiao and Chen

(2014) extend Davis et al. (1998) by comparing the profitability of MBGs with a partial-

refund policy.

Recently, researchers have started to examine the performance of MBGs in competi-

tive markets. Shulman et al. (2011) and McWilliams (2012) study the product return pol-

icy of competing retailers with horizontal and vertical differentiation, respectively. Ofek

et al. (2011) consider the impact of product returns on competing brick-and-mortar retail-

ers’ decisions to open an online channel. Although this chapter also considers MBGs in a

competitive market, it is fundamentally different from this stream of literature. In fact, the

competing firms in the literature operate in the same way (i.e., brick-and-mortar or brick-

and-click), whereas they are different in my study: Physical-store customers can try the

product before purchase, whereas online-store consumers cannot. The main contribution of
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this study is to consider how MBGs help the online store cope with this operational disad-

vantage.

Multi-channel competition. The existing literature in supply chain management,

marketing, and information systems literature has studied competition between firms that

operate on different channels, but the role of MBGs on market competition has not been

examined. In supply chain management, the extant literature focuses on duel-channel coor-

dination problems in which a manufacturer who sells to an independent retailer can choose

to open its own direct-to-customer store to coordinate the supply chain (Tsay and Agrawal

2004, Gupta et al. 2009, and references therein). Introducing the online channel may benefit

not only the manufacturer, but also the retailer, since it can mitigate double marginalisation

(Chiang et al. 2003, Arya et al. 2007), improve market segmentation (Cattani et al. 2006),

and induce customer free-riding on the manufacturer’s store (Bernstein et al. 2009). In

the marketing literature, researchers have studied competition between independent retail-

ers from different channels. For example, Balasubramanian (1998) examines the impact of

online sellers on the competition with and among brick-and-mortar sellers. Viswanathan

(2005) extends Balasubramanian (1998) by considering network externality and switch-

ing cost among different channels. The information systems literature has also examined

online-offline competition, yet it focuses on the role of consumers’ instore service free rid-

ing (Wu et al. 2004, Balakrishnan et al. 2014, Mehra et al. 2017).

As in this stream of literature, this chapter also studies online-offline competition.

However, my study differs from the literature fundamentally since it addresses the prob-

lem of how the online store should design its return policy in the face of competition from

a physical store, whereas the literature typically abstracts away from consumer product re-

turns.

4.3 Model

I consider heterogeneous-valuation consumers in need of at most one unit of an experience

good (Nelson 1970, Shulman et al. 2010), i.e., a good that the consumer does not know if it

fits her need until after trying it. Consistent with the MBG literature (e.g., Chu et al. 1998,

McWilliams 2012), I incorporate this fitting uncertainty by assuming that each consumer

values an unfit product at 0 and a fitting product at v, which is uniformly distributed between

0 and 1. Moreover, the consumers know whether the product fit their need or not only after

trying it. Each store knows consumers’ valuation distribution but not a specific consumer’s
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valuation, which is her private knowledge.

In practice, the consumers may also be uncertain about their product valuation v before

purchase and fully understand this valuation only after using it. This valuation uncertainty

prevails in product categories such as books, beauty and health products, and has been in-

corporated by the MBG literature (Che 1996, Davis et al. 1998, Su 2009, Akçay et al. 2013).

However, I abstract away from the valuation uncertainty to focus on the market where the

fitting uncertainty is more prominent, e.g., clothes, shoes, and electronics. For example, the

value of a pair of shoes can be almost fully revealed to the consumer after browsing the

online product description, and the major uncertain that influences her purchase decision is

whether the shoes fit her feet or not.

The product is offered by two competing retailers: A physical store (denoted by sub-

script 1) and an online store (denoted by subscript 2). We denote ci as store i’s per-unit

procurement cost and αi as the probability for consumers to find a fitting product in the

store (i ∈ {1,2}). We can interpret αi as service quality since it measures how effective

a store helps consumers find the fitting product type. Because the physical store allows

consumers to try different variations (colors, sizes, shapes, etc.) physically and offers pro-

fessional advice about which one to choose, I assume that consumers have a higher chance

to find a fitting product in the physical store,14 i.e., α1 > α2. Notably, this assumption has

also been adopted by Ofek et al. (2011).

Timing. The sequence of events is as follows.

In Stage 1, the physical store determines the price of the product P1, and the online

store determines the price P2 and chooses to offer MBGs or not. If she offers MBGs, the

online store allocates the total return hassle cost T1 (due to, e.g., repacking, return shipment,

restocking) between each consumer and the store. Each store’s objective is to maximise her

own expected profit.

In Stage 2, consumers arrive at the market and choose among three options: (i) Vis-

iting the physical store and incurring the travelling hassle K; (ii) visiting the online store

and buying there; (iii) leaving the market without a purchase to obtain null payoff. Notably,

14Admittedly, the online store may display more product variations because online display does not require

the product to be in stock. However, consumers are still more likely to find a fitting product in the physical

store, because they learn whether the product fits or not more by trying it than by comparing the specifications

online. Moreover, brick-and-mortar retailers (e.g., J. C. Penney, Nordstrom, and Sears Holdings) have deployed

in-store touchscreens and tablets to show more product variations (Townsend 2012).
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I do not consider consumer decision of visiting the online store first and then going to the

physical store. In fact, if they do not buy online, then the former visit does not bring any

benefit since product fit is revealed only after trying the product. Therefore, the decision is

equivalent to going to the physical store directly. If the consumers indeed buy online after

visiting the online store, then they should not go to the physical store after this purchase: 1.

If the product fits, they do not need to buy offline. 2. If the product misfits, their surplus

from visiting the physical store is equal to −K, so the consumers should leave the market

instead.

In Stage 3, consumers who visit the physical store try the product and find it fit with

probability α1 and unfit otherwise. Consumers who visit the online store cannot try the

product before purchase and thus buy it without resolving the fitting uncertainty (note that

if they do not buy, they should not visit the online store in Stage 2). Upon receiving the

product, consumers try the product and find it fit with probability α2 and unfit otherwise.

In Stage 4, physical-store consumers, who have already known whether the product fits

or not, choose to buy the product or leave the market without a purchase. Online-store con-

sumers, who have bought the product and known whether it fits or not, choose among three

options: (i) Using the product; (ii) salvaging the product to a secondary market at value d

(the consumer salvage value, hereafter); (iii) returning the product to the online store for

full refund (i.e., P2) at hassle cost t ∈ [0,T1]. The online store incurs the rest of the return

hassle (i.e., T1− t) and salvages the returned product in the secondary market at price S (the

store salvage value, hereafter).

Figure 4.1 illustrates consumers’ decision tree. Note that I have simplified the deci-

sions by removing branches that can never be reached. For example, although physical-store

consumers have the option to buy an unfit product, they never choose it since the corre-

sponding utility (i.e., v−P1−K) is lower than that of not buying (i.e., −K). Moreover, they

prefer buying a fitting product than leaving the market without a purchase: If they do not

buy, their expected utility is −K so they should not visit the physical store in the first place.

Third, online-store consumers never return a fitting product: Otherwise, they also return

an unfit product, so their expected utility is −t and the consumers should not buy from the

online store in the first place. Lastly, online-store consumers never salvage a fitting product:

Otherwise, their expected utility (α2(d−P2)+ (1−α2)max{−t,d−P2}) is non-positive

so they should not buy from the online store in the first place. Note that d−P2 6 0 by
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Figure 4.1: Consumers’ Decision Tree
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return −t
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d 6 S6 c2 6 P2 (see Assumption 3 for details), where the last inequality holds because oth-

erwise the online store obtains negative profit and thus should not participate in the market.

The MBG Framework. I incorporate the online store’s MBGs by assuming that

consumers can return a product back to the store at hassle t and get full money back. The

online store chooses t to allocate the return hassle between the consumers and the store.

This framework is consistent with the return policy of many online retailers (e.g., Amazon,

RueLaLa, Zappos), and it is flexible enough to include many return policies studied in the

literature as special cases. For example, the MBGs in Davis et al. (1998) and Hsiao and

Chen (2014) correspond to the t = T1 case, the restocking fee policy in Shulman et al.

(2011) is a special case of my framework with T1 = 0, and the hassle-free policy in Hsiao

and Chen (2014) is equivalent to the t = 0 case in my model.

Consistent with the MBG literature (see, e.g., Moorthy and Srinivasan 1995,

McWilliams 2012), I assume that consumers who receive the refund through MBGs do

not buy the same product (maybe with a different color, size, shape, etc.) again from the

online store. This is a good approximation for most experience goods I consider (e.g.,

clothes, shoes), where consumers usually buy the good elsewhere after returning it online.

Also note that I purposely abstract away from the physical store’s return policies: Physical-

store consumers never return a product because they can fully resolve the fitting uncertainty

by trying the product before purchase, i.e., consumers who return a product should not

choose to buy it in the first place. This simplification allows me to draw sharper insight

and I conjecture that incorporating the physical store’s return policy does not change major
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insights qualitatively. Lastly, as a break-even rule, I assume that each store chooses to leave

the market when staying in it leads to the same expected profit, and the online store offers

MBGs when she is indifferent between offering and not offering it.

Apart from the above assumptions on the MBG framework, I also adopt the following

set of assumptions throughout this chapter.

Assumption 3. 0 < α2 < α1 < 1, d 6 S6 c2, c1 <
α1−K

α1
, c2 < α2+(1−α2)min{d,S−T1}.

I assume that the online store can salvage the unfit product in the secondary market

with at least the same price as consumers. This is because the store is usually better at

repackaging the product and has more resell channels than consumers. I also assume that

the online store’s marginal cost exceeds the store salvage value. This rules out uninterest-

ing cases where the online store earns infinite profits by producing and salvaging as many

products as possible. The last two inequalities in Assumption 3 guarantee that neither store

is driven out of market because of inefficient operations. If either inequality fails, the cor-

responding store earns negative profits even without the competitor.

4.4 Analysis
In this section, I characterise all pure-strategy subgame-perfect Nash equilibria and investi-

gate the online store’s optimal return policy. To this end, I examine consumers’ decisions in

§4.4.1 and the stores’ decisions in §4.4.2. Then I characterise the equilibrium outcome and

derive insights into the online store’s optimal return policy and the impact of service quality

on each store’s optimal profit, as shown in §4.4.3.

4.4.1 Consumers’ Decisions

To characterise the pure strategy equilibrium, I first develop the consumers’ purchase be-

haviour for any given pricing and return policy decisions. According to Figure 4.1, a

physical-store consumer’s expected net benefit is NB1 = α1v−α1P1−K, while an online-

store consumer’s expected net benefit is

NB2 =

 α2v+(1−α2)d−P2, without MBG,

α2(v−P2)+(1−α2)t, with MBG.

Denote P̃1 ≡ α1P1 +K and

P̃2 ≡

 P2− (1−α2)d, without MBG,

α2P2 +(1−α2)t, with MBG
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Figure 4.2: The Consumer’s Store Visit Decision

v

Net Benefit
NB1

NB2

Leave Market Online Store Physical Store
v1v2 v∗ 1

as consumers’ expected payment per visit (certainty equivalent price, hereafter) to the phys-

ical store and the online store respectively. Then NB1 = α1v− P̃1 and NB2 = α2v− P̃2.

Consumers visit the physical store if NB1 > max{NB2,0}, visit the online store if NB2 >

max{NB1,0}, and leave the market without a purchase if max{NB1,NB2} < 0. Since

α1 > α2, this suggests that high-valuation-consumers (i.e., v > max{ P̃1
α1
, P̃1−P̃2

α1−α2
}) visit the

physical store, intermediate-valuation (i.e., P̃2
α2

< v < P̃1−P̃2
α1−α2

) consumers visit the online

store, and low-valuation (i.e., v < min{ P̃1
α1
, P̃2

α2
}) consumers do not purchase. I illustrate

the consumer’s purchase decision in Figure 4.2, where I denote v1 ≡ P̃1/α1, v2 = P̃2/α2,

and v∗ = (P̃1− P̃2)/(α1−α2).

4.4.2 The Stores’ Decisions

Fully aware of consumers’ decisions, each store maximises her profit by setting the certainty

equivalent price as a function of the other store’s certainty equivalent price. Note that the

online store’s MBG decisions (i.e., offering MBGs or not, and the return hassle allocation

if she offers MBGs) have been internalised into her certainty equivalent price and thus will

not be treated as explicit decisions.

First consider the online store. For any P̃1, the online store’s profit is:

Π2(P̃2) =


(1− P̃2

α2
)(P̃2− c̃2), if P̃1−P̃2

α1−α2
> 1,

( P̃1−P̃2
α1−α2

− P̃2
α2
)(P̃2− c̃2), if P̃1

α1
< P̃1−P̃2

α1−α2
< 1,

0, if P̃1−P̃2
α1−α2

6 P̃1
α1
,

(4.1)

where

c̃2 ≡

 c2− (1−α2)d, without MBG,

c2− (1−α2)(S−T1), with MBG.

The expression of Π2(P̃2) suggests that the online store has two pricing strategies. First,

she prices low (i.e., P̃2 6 P̃1− (α1−α2) or P̃1−P̃2
α1−α2

> 1) to drive the physical store out of the
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market (the aggressive pricing strategy, hereafter). Here the best response is

P̃2(P̃1) = min{α2 + c̃2

2
, P̃1− (α1−α2)},

and the interior optimal profit is

Π2(
α2 + c̃2

2
) =

(α2− c̃2)
2

4α2
.

Second, she prices high (i.e., P̃1− (α1−α2)< P̃2 <
α2
α1

P̃1 or P̃1
α1

< P̃1−P̃2
α1−α2

< 1) so both stores

obtain positive profit (the moderate pricing strategy, hereafter). Here the best response is

P̃2(P̃1) = min{max{α2P̃1 +α1c̃2

2α1
, P̃1− (α1−α2)},

α2

α1
P̃1},

and the interior optimal profit is

Π2(
α2P̃1 +α1c̃2

2α1
) =

(α2P̃1−α1c̃2)
2

4α1α2(α1−α2)
.

By comparing the online store’s profits under aggressive and moderate pricing for any given

P̃1 (see Appendix C.1 for the technical details), I derive the online store’s best response as

follows:

P̃2(P̃1) =



N/A, if P̃1 6
α1
α2

c̃2,

α2P̃1+α1c̃2
2α1

, if α1
α2

c̃2 < P̃1 <
2α1(α1−α2)+α1c̃2

2α1−α2
,

P̃1−α1 +α2, if 2α1(α1−α2)+α1c̃2
2α1−α2

6 P̃1 6 α1− α2−c̃2
2 ,

α2+c̃2
2 , otherwise,

(4.2)

where “N/A” represents leaving the market.

Following the same procedure (see Appendix C.1 for the technical details), I derive the

physical store’s best response as follows:

P̃1(P̃2) =



N/A, if P̃2 6 c̃1−α1 +α2,

α1−α2+c̃1+P̃2
2 , if c̃1−α1 +α2 < P̃2 <

α2(α1−α2)+α2c̃1
2α1−α2

,

α1
α2

P̃2, if α2(α1−α2)+α2c̃1
2α1−α2

6 P̃2 6
α2(α1+c̃1)

2α1
,

α1+c̃1
2 , otherwise,

(4.3)

where c̃1 ≡ α1c1 +K.

According to (4.2)-(4.3), each store prices more aggressively when the competitor

prices higher: (i) When the competitor’s price is low (i.e., P̃1 6
α1
α2

c̃2 or P̃2 6 c̃1−α1 +α2),

the store does not participate in the market. (ii) When the competitor’s price is moderate
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(i.e., α1
α2

c̃2 < P̃1 <
2α1(α1−α2)+α1c̃2

2α1−α2
or c̃1−α1 +α2 < P̃2 <

α2(α1−α2)+α2c̃1
2α1−α2

), the store uses the

moderate pricing strategy such that both stores obtain positive profits. (iii) When the com-

petitor’s price is high (i.e., P̃1 >
2α1(α1−α2)+α1c̃2

2α1−α2
or P̃2 >

α2(α1−α2)+α2c̃1
2α1−α2

), the store uses the

aggressive pricing strategy to drive the competitor out of the market.

4.4.3 Equilibria

Next we derive all pure-strategy Nash equilibria using the expressions of both stores’ best-

response functions, as given by (4.2)-(4.3). We find three types of equilibria. First, both

stores adopt moderate pricing and thus earn positive profits (denoted by B). Second, the

physical store adopts aggressive pricing to drive the online store out of market (denoted by

P). Third, the online store adopts aggressive pricing to drive the physical store out of market

(denoted by O). The next proposition characterises these equilibria.

Proposition 12. (i) When c̃1 6
−α1α2+2α1c̃2

α2
, only Equilibrium P exists.

(ii) When −α2(α1−α2)+(2α1−α2)c̃2
α2

< c̃1 <
2α1(α1−α2)+α1c̃2

2α1−α2
, only Equilibrium B exists.

(iii) When c̃1 >
2α1−α2+c̃2

2 , only Equilibrium O exists.

Moreover, whenever the online store participates in the market, she offers MBGs and

is indifferent between any return hassle allocation if S−T1 > d, and does not offer MBGs

otherwise.

I illustrate Proposition 12 in Figure 4.3. Intuitively, when one store is much more

cost-efficient than the competitor (i.e., c̃1 6
−α1α2+2α1c̃2

α2
) or c̃1 >

2α1−α2+c̃2
2 ), the competitor

does not participate in the market and that store acts as the monopolist. However, when the

stores’ equivalent costs are close (i.e., −α2(α1−α2)+(2α1−α2)c̃2
α2

< c̃1 <
2α1(α1−α2)+α1c̃2

2α1−α2
), both

stores participate in the market and a duopoly equilibrium emerges.

The optimal return hassle allocation. Proposition 12 shows that when choosing to

offer MBGs, the online store is indifferent between any return hassle allocation. This result

is in sharp contrast to the MBG literature that shows the existence of a unique optimal return

hassle (e.g., Davis et al. 1998, Hsiao and Chen 2014). To fully understand this difference,

first recall that Davis et al. (1998) and Hsiao and Chen (2014) incorporate consumers’ val-

uation uncertainty, i.e., they cannot perfectly estimate the benefit of a fitting product before

purchase. Therefore, they may buy a product that turns out to be not valuable after purchase

and thus is returned even if it fits. This suggests that the store can adjust the size of product

returns by the return hassle allocation: When consumers face high (low) return hassle, they

will return the fitting product only (even) if its benefit is low (high), so the return volume
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Figure 4.3: Equilibrium Outcomes*

c̃2

c̃1

l2
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l4l3

Both stores participate
(Equilibrium B)
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Only the physical
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N/A

N/A

*l1 : c̃1 =
2α1−α2+c̃2

2

l2 : 2α1(α1−α2)+α1 c̃2
2α1−α2

l3 : −α2(α1−α2)+(2α1−α2)c̃2
α2

l4 : c̃1 =
−α1α2+2α1 c̃2

α2
N/A: No pure-strategy equilibrium exists

is low (high). As a result, the store sets the consumer return hassle to trade off between

purchase volume (note that lower consumer return hassle leads to higher purchase volume

and thus increases profits) and return volume (note that higher consumer return hassle leads

to lower return volume and thus increases profits ), so a unique optimal return hassle exists.

In my setting, however, the online store is indifferent between any return hassle allo-

cation. This is because I focus on settings where valuation uncertainty is not salient: Since

consumers can perfectly estimate the benefit of a fitting product before purchase, they never

return a fitting product (otherwise, they will not buy it in the first place) and always return an

unfit product, i.e., the return hassle allocation cannot adjust the return volume. Therefore,

the aforementioned trade-off between purchase volume and return volume no longer holds.

In fact, the consumer return hassle t has the same function as the price P2: Both change only

the money transfer between the consumer and the online store. In other words, the online

store chooses t and P2 to make the expected money transfer P̃2 = α2P2 +(1−α2)t the best

response to the physical store’s certainty equivalent price P̃1, as given by Equation (4.2).
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Note that this best response is unchanged by t because it does not influence consumers’

benefit from visiting the physical store. Therefore, when t increases, the online store should

maintain the same certainty equivalent price by decreasing P2.

However, this result does not suggest the online store to allocate return hassle arbitrar-

ily. In practice, the return hassle allocation usually influences the total return hassle, i.e., T1

depends on t. Since the online store’s optimal profit strictly decreases in T1, she should allo-

cate return hassle in the socially efficient way, i.e., assigning to each agent that is less costly

for her than for the other agent. For example, the online store should take the responsibility

of return shipment if she has extensive distribution network.

The optimal return policy. Proposition 12 also suggests that the online store should

offer MBGs if the net social benefit of transferring an unfit product back to the online

store (i.e., S− T1) exceeds the benefit of leaving it to the consumer (i.e., d). This result

is somewhat surprising because of its simplicity: The MBG decision is independent of the

competitor and the online store’s key operational parameters (i.e., the production cost and

the fitting probability). The key insight is that offering MBGs is equivalent to changing the

online store’s operational cost of dealing with an unfit product. To illustrate this point with

analytical precision, suppose that the online store switches to offering MBG with t = −d

and maintains the same price (recall that t does not influence her profit, so the result also

holds for other t values). Online-store consumers do not change their purchase decision

because they obtain the same benefit (i.e., v−P2 when the product fit and d−P2 when it

does not). Therefore, the MBG policy does not influence the online store’s profit except

that she pays c2 +T1 + d− S for an unfit product instead of c2. To minimise this cost, the

store offers MBGs when S− T1− d > 0 and does not offer MBGs otherwise. Note that

the online store is always incentivised to reduce the operational cost regardless of the com-

petitor. Moreover, the cost change due to the return policy is influenced only by the unfit

product’s salvage value and total return hassle. Therefore, the return policy is independent

of the physical store and the online store’s production cost and fitting probability.

The literature has shown a similar MBG decision rule in the monopoly setting with

homogeneous consumers (Davis et al. 1995). This chapter extends the literature by show-

ing that the decision rule also holds in the duopoly setting with physical and online stores

competing on heterogeneous consumers. Note that the MBG decision in this chapter is

consistent with the branch of literature (McWilliams 2012, Xu et al. 2015) where offering
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MBGs dominates because consumers obtain no salvage value from the unfit product (i.e.,

d = 0), or obtain less value than the store and the total return hassle is zero (i.e., S > d and

T1 = 0).

Comparative statics. Next I examine the impact of the stores’ service quality on their

equilibrium profits. When one store is much more cost-efficient than the competitor and

thus drives it out of the market, the monopolistic store always benefits from improving her

own service quality. Therefore, I will focus on the duopoly case. Conventional wisdom

would suggest that improving service quality benefits the store and harms her competitor.

However, Proposition 13 shows that this conjecture fails to hold for the online store, where

I refer to the physical and online stores’ profits under Equilibrium B as Π∗1B and Π∗2B re-

spectively.

Proposition 13. There exists c̄, such that for c1 < c̄ and c2 < c̄,

(i) Π∗1B strictly increases in α1 and strictly decreases in α2.

(ii) Π∗2B strictly decreases in α2 for α2 ∈ (α, ᾱ) and strictly increases in α2 for α2 ∈

(ᾱ,α1), where a unique pair of α, ᾱ ∈ (0,α1) exist and α < ᾱ .

(iii) When (4−2α2 +α2
2 )(1−α2)max{d,S−T1}+(8−4α2−α2

2 )K < (2+α2)(1−

α2)α2, Π∗2B strictly decreases in α1 for α1 ∈ (α2, α̃) and strictly increases in α1 for α1 ∈

(α̃,1), where a unique α̃ < 1 determined by (4α̃2−2α̃α2 +α2
2 )(1−α2)max{d,S−T1}+

(8α̃2− 4α̃α2−α2
2 )K = (2α̃ +α2)(α̃ −α2)α2 exists; otherwise Π∗2B strictly decreases in

α1.

Perhaps unexpectedly, Proposition 13 shows that the online store may lose profits from

improving her service quality. This is because quality improvement intensifies market com-

petition (note that higher α2 reduces the quality differentiation between the two stores)

and thus lowers both stores’ prices. When the online store is not sufficiently competitive

(α2 ∈ (α, ᾱ)), she has to lower the price significantly such that the resulting profit loss

outweighs the profit increase due to higher service quality (i.e., higher demand of the on-

line store). Managerially, this result shows that high product return rate due to misfit may

benefit the online retailer by softening the competition with the brick-and-mortar retailer.

Therefore, widely-applied misfit reduction strategies (e.g., stronger technical service (Law-

ton 2008) and displaying purchase history reminders (Kim 2013)) should be implemented

only if the online retailer’s return rate is sufficiently low.

Another interesting result from Proposition 13 is that improving the service quality
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of the physical store may increase the online store’s profit. The intuition is that the quality

improvement (i.e., higher α1) softens market competition by increasing the quality differen-

tiation. This softened competition allows both stores to raise the price. When the physical

store is much more competitive than the online store (i.e., α1 > α̃ , K, d, and S− T1 are

small), the physical store raises price dramatically; it allows the online store to charge a

much higher price. Therefore, the resulting profit increase of the online store outweighs the

profit loss due to higher α1 (i.e., lower demand of the online store), and the online store ben-

efits on aggregate. From a managerial perspective, this result suggests that “reverse show-

rooming” or “webrooming” (i.e., searching online and buying in a brick-and-mortar store)

benefits the online store if she competes with a sufficiently competitive physical store. As

a result, the online store should embrace reverse showrooming by providing accurate and

extensive product descriptions to divert high-valuation consumers to the physical store and

benefit from a higher price in the physical store.

4.5 Conclusions

In this chapter, I studied how an online store should design the product return policy when

competing with a physical store. I constructed a game-theoretical model in which a phys-

ical store and an online store sell one product to consumers who are ex ante unsure about

whether the product fits their need or not. I characterised the stores’ optimal pricing de-

cisions and the online store’s optimal product return policy. I found that she should offer

MBGs only if they are socially efficient, and she should allocate product return cost to min-

imise the total return cost. In addition, I studied the impact of the stores’ service quality

on their optimal profits. I found that the online store may lose profit from improving her

service, whereas she may benefit from a better service from the physical store.

The model proposed in this chapter can serve as the foundation for future modelling

research that examines the impact of several important factors on an online store’s product

return policy when competing with a physical store. For example, physical-store consumers

who have found that the product fits their need may choose to buy in the online store instead

of in the physical store. In other words, some consumers may use the physical store as a

showroom instead of a place to make the purchase. It would be interesting to consider the

impact of consumers’ showrooming behaviour on the online store’s product return policy

and online-offline competition. Another research direction is to consider consumers’ free-

riding behaviour on MBGs in the sense that they may buy a product only to return it after
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using it for some time. This extension introduces a new consumer segment (i.e., the free-

riders) for the online store and thus may radically change her optimal product return policy.

Finally, future research can extend MBGs by considering the policy of exchanging an unfit

product for another type of the same product or merchandise credit.



Chapter 5

Conclusions

In this thesis, I use game-theoretical models to investigate the impact of three consumer

behaviours for the operations of service systems. In Chapter 2, I consider service sys-

tems with boundedly rational customers who infer service quality based on anecdotes. I

characterise their equilibrium joining behaviour and the service provider’s pricing, quality,

and information disclosure decisions. This work not only provides specific policy recom-

mendations for operations managers in practice, it also builds the modelling framework for

incorporating customer anecdotal reasoning in estimating service quality. This can serve as

the foundation for future research that also considers this type of bounded rationality. In

Chapter 3, I compare the performance of last-minute selling with that of opaque selling,

which is widely used by travel service companies to cope with consumers’ strategy waiting.

This chapter contributes to the literature by showing that the mechanism of opaque selling

under horizontally differentiated markets is radically from its mechanism under vertically

differentiated markets, and this can lead to opposite policy recommendations across the two

cases. Managerially, Chapter 3 provides insights for practitioners about whether to adopt

opaque selling or not, and how this decision depends on their operational and marketing

factors, including demand uncertainty, consumer valuations, and market competition. In

Chapter 4, I examine the impact of consumers’ ex ante uncertainty about product fit on the

competition between an online store and a physical store. This research generates manage-

rial implications about how an online store should design her return policy to compete with

a physical store, and when the stores should not improve service quality as it intensifies

competition.

I hope that this thesis can motivate future research to further investigate the impact of

consumer behaviour in service operations. The specific research questions have been elabo-
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rated in the conclusion section in each chapter, and here I highlight several research themes

that recur in all chapters. First, it is critical to empirically quantify the magnitude of con-

sumers’ specific behavioural elements in practice. As demonstrated in this thesis, consumer

behaviour can have a significant impact on a firm’s operations and marketing decisions.

Therefore, a better understanding about the magnitude of these behaviour elements will en-

able firms to refine their decision-makings. Second, consumer behaviours may evolve over

time as they have more interactions with the market. Therefore, it would be interesting

to consider how this behavioural evolution interacts with the dynamics of service systems.

For example, one can extend Chapter 2 by considering the interplay between customers’

information acquisition with queueing dynamics. This may fit into observable queueing

settings in which customers learn word-of-mouth information from other joining customers

while they wait in line for service. Similarly, Chapter 3 can be extended to a multi-period

game with customers becoming more strategic over time. This can provide policy recom-

mendations for firms that serve regular customers. Finally, future research can apply the

modelling framework in this thesis to address new research questions in service operations.

The anecdotal reasoning framework in Chapter 2 can be utilised to study competing service

providers’ quality improvement and quality information disclosure decisions. Chapter 3 can

serve as a benchmark for future research that incorporates customer bounded rationality that

is relevant to opaque selling, e.g., loss aversion or post-purchase regret. The online-offline

competition model in Chapter 5 allows researchers to consider the impact of consumers’

showrooming behaviour on the firms’ pricing competition and the online store’s product

return policy.



Appendix A

Appendix to “Managing Service Systems

with Unknown Quality and Customer

Anecdotal Reasoning”

This appendix includes three sections. §A.1 provides the technical proofs to the lemmas

and propositions in Chapter 2. §A.2 includes supplemental discussions of the base model

in Chapter 2.3 and additional analysis for Chapter 2.4. In §A.3, I show that major insights

from the base model continue to hold for a more general set of service quality distributions

and customer heterogeneity in the sample size.

A.1 Proofs

This section provides the proofs of all lemmas and propositions in the paper. Note that

Equation (2.1) is well-defined as long as k is a positive real number (not only an integer). For

technical convenience, I will adopt this generalisation throughout the proof. I will also abuse

notations by writing λ k
a (p,R) as λa, Φ

(√
k

σ
(p+ c

µ−λa
−R)

)
as Φ, Φ′

(√
k

σ
(p+ c

µ−λa
−R)

)
as Φ′, Π∗r as Π∗(+∞), and will denote

√
k

σ

[
p+ c

µ−λa
−R
]

as y, ∂y
∂ p as y′, and

√
k

σ
as s when

there is no confusion.

Proof of Lemma 1. Define F(x)≡ λ

[
1−Φ

(√
k

p+ c
(µ−x)+

−R

σ

)]
−x. F(0)> 0,F(λ )<

0,F(µ) < 0. Moreover, F(x) is continuous and strictly decreasing in x. Therefore, there

exists a unique solution to F(x) = 0 for x ∈ (0,min{λ ,µ}), i.e., λ k
a (p) ∈ (0,min{λ ,µ})

exists and is unique.

Differentiating both sides of Equation (2.1) with respect to p and rearranging the terms,

I have
∂λ k

a (p)
∂ p

=− λ sΦ′

1+λ sΦ′c/[µ−λ k
a (p)]2

. (A-1)
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Since ∂λ k
a (p)
∂ p < 0, λ k

a (p) strictly decreases in p.

To see how λ k
a (p) is influenced by k, I differentiate both sides of Equation (2.1) with

respect to k, which leads to

∂λ k
a (p)
∂k

=− λyΦ′/2k
1+λ sΦ′c/[µ−λ k

a (p)]2
. (A-2)

By (A-2), ∂λ k
a (p)
∂k > 0 iff R > p+ c

µ−λ k
a (p) , which is equivalent to λ k

a (p)> 0.5λ by Equation

(2.1). Since F(x) strictly decreases in x, λ k
a (p)> 0.5λ iff F(0.5λ )> F(λ k

a (p)) = 0. By the

definition of F(x), I can simplify F(0.5λ )> 0 into R > p+ c
(µ−0.5λ )+ . Similarly, ∂λ k

a (p)
∂k < 0

iff R < p+ c
(µ−0.5λ )+ and ∂λ k

a (p)
∂k = 0 iff R = p+ c

(µ−0.5λ )+ .

Next I will show lim
k→+∞

λ k
a (p) = λr(p) by enumerating all possible cases.

Case 1: 06 µ− c
R−p 6 λ and R > p

First, p+ c
[µ− lim

k→+∞
λ k

a (p)]+ −R 6 0 because otherwise lim
k→+∞

Φ

(√
k

p+ c
[µ−λk

a (p)]+
−R

σ

)
= 1

and lim
k→+∞

λ k
a (p) = 0. This suggests that p+ c

µ
> R, which violates the assumption that

µ− c
R−p > 0.

Second, p+ c
[µ− lim

k→+∞
λ k

a (p)]+ −R> 0, because otherwise lim
k→+∞

Φ

(√
k

p+ c
[µ−λ̄k

a (p)]+
−R

σ

)
=

0, and lim
k→+∞

λ k
a (p) = λ . This suggests that p+ c

(µ−λ )+ < R, which violates the assumption

that µ− c
R−p 6 λ .

Consequently, p+ c
[µ− lim

k→+∞
λ k

a (p)]+ −R = 0, i.e., lim
k→+∞

λ k
a (p) = µ− c

R−p = λr(p)

Case 2: λ < µ− c
R−p and R > p

In this case, p+ c
µ−λ
−R < 0. By λ k

a (p)6 λ , p+ c
µ−λ k

a (p) −R6 p+ c
µ−λ
−R < 0, so

lim
k→+∞

Φ

(√
k

p+ c
µ−λk

a (p)
−R

σ

)
= 0, thus lim

k→+∞

λ k
a (p) = λ = λr(p).

Case 3: µ− c
R−p < 0 and R > p

In this case, p+ c
µ−λ k

a (p)−R> p+ c
µ−λ
−R > 0, so lim

k→+∞

Φ

(√
k

p+ c
µ−λk

a (p)
−R

σ

)
= 1 and

lim
k→+∞

λ k
a (p) = 0 = λr(p).

Case 4: R6 p

In this case, p+ c
µ−λ k

a (p) −R > 0, so lim
k→+∞

Φ

(√
k

p+ c
µ−λk

a (p)
−R

σ

)
= 1 and lim

k→+∞

λ k
a (p) =

0 = λr(p). �

Proof of Proposition 1. Proof of Proposition 1(i). The first-order condition (FOC) of

Π(p,k) with respect to p is

λ
k
a (p∗(k))+ p∗

∂λ k
a (p∗(k))

∂ p
= 0.
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Denoting Φ′
(√

k
p+ c

µ−λk
a (p∗(k))

−R

σ

)
as Φ′∗, Φ

(√
k

p+ c
µ−λk

a (p∗(k))
−R

σ

)
as Φ∗, and substituting

(A-1) into the FOC, I have:

p∗(k) =
{

σ

Φ′∗λ
√

k
+

c
[µ−λ k

a (p∗(k)]2

}
λ

k
a (p∗(k))

=

{
σ

Φ′∗
√

k
+

cλ

[µ−λ k
a (p∗(k)]2

}
(1−Φ

∗).

Define

H(x)≡

 σ

√
kΦ′(
√

k
x+ c

µ−λk
a (x)
−R

σ
)

+
cλ

[µ−λ k
a (x)]2


[

1−Φ(
√

k
x+ c

µ−λ k
a (x)
−R

σ
)

]
− x.

Therefore H(p∗(k)) = 0. To show that p∗(k) uniquely exists, it suffices to show that H(0)>

0, H(+∞) = −∞, H(x) is continuous, and H ′(x) < 0. The first three conditions can be

verified easily, and I will focus on the last one. When k = 0, H ′(x)< 0 immediately holds.

Therefore, I will focus on the k > 0 case. By (A-1) and Equation (2.1), λ k
a (x) strictly

decreases in x and x+ c
µ−λ k

a (x)
−R strictly increases in x. As a result, in order to prove

H(x) strictly decreases in x, it suffices to prove
1−Φ

(√
k

σ
(x+ c

µ−λk
a (x)
−R)

)
Φ′
(√

k
σ
(x+ c

µ−λk
a (x)
−R)

) decreases in x. Since

y strictly increases in x, it suffices to prove that 1−Φ(y)
Φ′(y) strictly decreases in y.[

1−Φ(y)
Φ′(y)

]′
=
−Φ′(y)2−Φ′′(y)[1−Φ(y)]

Φ′(y)2 .

Therefore
[

1−Φ(y)
Φ′(y)

]′
< 0 iff −Φ′(y)2−Φ′′(y)[1−Φ(y)] < 0. Since Φ(y) is the cumulative

distribution function of the standard normal distribution, Φ′′(y) =−yΦ′(y), so it suffices to

prove that Φ′(y)− y[1−Φ(y)] > 0. The inequality holds because the left-hand side (LHS)

strictly decreases in y and tends to zero from above as y→ +∞. lim
k→+∞

p∗(k) = p∗r follows

from Lemma 1(ii).

Proof of Proposition 1(ii). I apply the Envelope Theorem by extending the definitions

of λ k
a (p) and p∗(k) such that k can be non-integer. I replace k by l > 0 and p∗(k) by ṗ(l).

The extension preserves all previous results.

Π
∗′(l) =

∂Π(ṗ(l), l)
∂ p

ṗ′(l)+
∂Π(ṗ(l), l)

∂ l
=

∂Π(ṗ(l), l)
∂ l

= p
∂λ l

a(p)
∂ l

∣∣∣∣
p=ṗ(l)

= −p
Φ′
(√

l
p+ c

µ−λ l
a
−R

σ

)
p+ c

µ−λ l
a
−R

2
√

lσ
λ

1+Φ′
(√

l
p+ c

µ−λ l
a
−R

σ

)
c
√

l
σ(µ−λ l

a)
2 λ

∣∣∣∣∣∣∣∣
p=ṗ(l)
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Π∗
′
(l) > 0 if ṗ(l)+ c

µ−λ l
a(

˙p(l))
−R < 0, i.e., ṗ(l) < R− c

(µ−0.5λ )+ by Lemma 1. The last

inequality is equivalent to H
(

R− c
(µ−0.5λ )+

)
< 0, which yields R > R1(k) after rearranging

the terms. Similarly, Π∗
′
(l)< 0 iff R < R1(k), and Π∗

′
(l) = 0 iff R = R1(k).

Proof of Proposition 1(iii). I will show ∂ 2Π

∂ p∂k < 0 when y > y1 and ∂ 2Π

∂ p∂k > 0 when

y < y1, where y1 < 0 determines R2(k) by H
(

σ√
k
y1 +R− c

µ−λa

)
< 0. After rearranging the

terms, I have R2(k)> R1(k). Denote λ ′a ≡ ∂λa
∂ p and λ ′′a ≡ ∂ 2λa

∂ 2 p .

∂Π(p,k)
∂k

=
p∂λ k

a (p)
∂k

=− pλyΦ′/2k
1+λ sΦ′c/[µ−λ k

a (p)]2
=

σ py
2k1.5 λ

′
a

When λ → 0, λa → 0, λ ′a → −λ sΦ′, y′ → s, λ ′′a → λ sΦ′yy′ = λ s3Φ′
(

p+ c
µ
−R
)

. De-

fine V (p) ≡ ∂ (pyλ ′a)
∂ p = yλ ′a + py′λ ′a + pyλ ′′a . When λ → 0, V (p) ≈ −λ s2Φ′(p+ c

µ
−R)−

λ s2 pΦ′+λ s4 pΦ′
(

p+ c
µ
−R
)2

=−λ s2Φ′
[
2p+ c

µ
−R− s2 p(p+ c

µ
−R)2

]
.

V ′(p)
∣∣
V (p)=0 =− λ s2

Φ
′

[
2− s2

(
p+

c
µ
−R
)2

−2s2 p
(

p+
c
µ
−R
)]∣∣∣∣∣

s2(p+ c
µ
−R)2=2−(R− c

µ
)/p

=− λ s2
Φ
′

[
R− c

µ

p
+2s2 p

(
R− p− c

µ

)]∣∣∣∣∣
s2(p+ c

µ
−R)2=2−(R− c

µ
)/p

=− λ s2
Φ
′

R− c
µ

p
+

4p−2
(

R− c
µ

)
R− p− c

µ

∣∣∣∣∣∣
s2(p+ c

µ
−R)2=2−(R− c

µ
)/p

=− λ s2
Φ
′


(

R− c
µ

)2

p −
(

R− c
µ

)
+4p−2

(
R− c

µ

)
R− p− c

µ


∣∣∣∣∣∣∣∣
s2(p+ c

µ
−R)2=2−(R− c

µ
)/p

=− λ s2
Φ
′


(

R− c
µ

)2

p −3
(

R− c
µ

)
+4p

R− p− c
µ


∣∣∣∣∣∣∣∣
s2(p+ c

µ
−R)2=2−(R− c

µ
)/p

First suppose R− c
µ
> 0. Since

(
R− c

µ

)2

p − 3
(

R− c
µ

)
+ 4p > 0, V ′(p)|V (p)=0 < 0 for p <

R− c
µ

and V ′(p)|V (p)=0 > 0 for p > R− c
µ

. By V (0) > 0 and V
(

R− c
µ

)
< 0, V (p) = 0

has a unique solution for p ∈
(

0,R− c
µ

)
; by V (+∞) < 015 and V (R− c

µ
) < 0, V (p) < 0

for p > R− c
µ

. As a result, V (p) = 0 has a unique solution for p ∈
(

0,R− c
µ

)
. Denote

the solution as p1 and set y1 = s
[

p1 +
c

µ−λ k
a (p1)
−R
]
. y1 → s

[
p1 +

c
µ
−R
]
< 0 as λ → 0.

Therefore, I have shown that ∂ 2Π

∂ p∂k < 0 when y > y1 and ∂ 2Π

∂ p∂k > 0 when y < y1.

15 Since p ≈ 1−Φ(y)
sΦ′(y) and 1−Φ(y)

Φ′(y) strictly decreases in y, sp 6 0.5
Φ′(0) ≈ 1.2533. Therefore, When p→ +∞,

2p+ c
µ
−R− s2 p

(
p+ c

µ
−R
)2
→ 2p+ c

µ
−R−1.2533p≈+∞ and thus V (+∞)< 0.
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Now suppose R− c
µ
6 0. Since

(
R− c

µ

)2

p − 3
(

R− c
µ

)
+ 4p > 0 and R− p− c

µ
< 0,

V ′(p)|V (p)=0 > 0. By V (0)6 0 and V (+∞)< 0, V (p)< 0 for p > 0, thus ∂ 2Π

∂ p∂k < 0. Since
c
µ
< R2(k), I can combine this case into the case where R > c

µ
.

In order to prove that R2(k) strictly decreases in k, it suffices to prove that p1

strictly increases in k. Since V
(

1
2

(
R− c

µ

))
< 0, p1 < 1

2

(
R− c

µ

)
. By definition,

2p1 +
c
µ
−R− s2 p1

(
p1 +

c
µ
−R
)
=
(

p1 +
c
µ
−R
)
+ p1− k

σ2 p1

(
p1 +

c
µ
−R
)2

= 0, which

yields k =σ2

[
1

p1

(
p1+

c
µ
−R
) + 1(

p1+
c
µ
−R
)2

]
. When k increases, p1 increases because the RHS

strictly increases in p1 for p1 ∈
(

0, 1
2

(
R− c

µ

))
. �

Proof of Lemma 2. I will apply the supermodularity argument to show that ∂ 2Π

∂λ k
a ∂ s <

(>,=)0 when R < (>,=) cµ

[µ−Φ̄(C)λ ]2
, where Π = pλ k

a (p) is the server’s revenue. To this

end, I treat λ k
a instead of p as the service provider’s sole decision variable and denote it by

x. I also denote p(x) as the inverse function of λ k
a (p). Therefore, Equation (2.1) can be

rewritten into

x = λ Φ̄

(
s
[

p(x)+
c

µ− x
−R
])

.

Differentiating both sides with respect to x, I have

1 =−λ s
[

p′(x)+
c

(µ− x)2

]
Φ
′,

which further implies

p′(x) =− 1
λ sΦ′

− c
(µ− x)2 .

Substituting the above expression of p′(x) into the FOC of the server’s revenue function

(i.e., p′(x)x+ p(x) = 0), I have

p(x) =
x

λ sΦ′
+

cx
(µ− x)2 .

Denote H̃(x)≡ x
λ sΦ′ +

cx
(µ−x)2 − p(x). Therefore, λ k

a (p∗(k)) satisfies H̃(λ k
a (p∗(k))) = 0. The

existence and uniqueness of λ k
a (p∗(k)) follow from H̃ ′(x)> 0, H̃ ′(0)< 0, H̃ ′(min{µ,λ})>

0.

Next, I will show that ∂ 2Π

∂λ k
a ∂ s < (>,=)0 when R < (>,=) cµ

{[µ−Φ̄(C)λ ]+}2 .

∂Π

∂ s
=

∂ p
∂ s

x =−xy/s,

where ∂ p
∂ s =−y/s follows by definition of p(x). As a result,

∂ 2Π

∂λ k
a ∂ s

=−
{

y/s+ x
[

p′(x)+
c

(µ− x)2

]}
=−

[
y− x

λΦ′

]
/s =

[
Φ̄(y)
Φ′(y)

− y
]
/s,
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where the second equality follows from the FOC of Π and the last equality follows from

x = λ Φ̄(y).

Since Φ and Φ′ are the cumulative and density functions of the standard normal distri-

bution, y > (<,=) Φ̄(y)
Φ′(y) and thus ∂ 2Π

∂λ k
a ∂ s < (>,=)0 if y > (<,=)C. Therefore, to complete

the proof, it suffices to show that R < (>,=) cµ

{[µ−Φ̄(C)λ ]+}2 when y > (<,=)C. To show this,

note that y > (<,=)C iff x < (>,=)Φ̄(C)λ . By monotonicity of H̃(x), x < (>,=)Φ̄(C)λ

iff H̃(Φ̄(C)λ )> (<,=)0. Since

H̃(Φ̄(C)λ ) =
Φ̄(C)

sΦ′(C)
+

cΦ̄(C)λ

[µ− Φ̄(C)λ ]2
−C

s
−R+

c
µ− Φ̄(C)λ

=
Φ̄(C)

sΦ′(C)
+

cµ

[µ− Φ̄(C)λ ]2
−C

s
−R

=
cµ

[µ− Φ̄(C)λ ]2
−R,

H̃(Φ̄(C)λ )> (<,=)0 iff R < (>,=) cµ

{[µ−Φ̄(C)λ ]+}2 . �

Proof of Proposition 2. Part (i) is immediate from Lemma 2 and the equivalence

between revenue and welfare maximisations in the fully-rational benchmark (see Hassin

and Haviv 2003). Therefore, I will focus on part (ii). Since the R < R1(k) case follows from

Proposition 1(i) and Lemma 2, I will only consider the sufficiently high R case. Denote

z≡ p∗+ c
µ−λ k

a (p∗) −R. According to the proof of Lemma 2, z is determined by

Φ̄(sz)
sΦ′(sz)

+
cµ

[µ− Φ̄(sz)λ ]2
− z−R = 0.

Since the LHS strictly decreases in z and R, lim
R→+∞

z =−∞.

The consumer surplus under the revenue-maximising price p∗ is given by:

CS =−λ Φ̄(sz)z.

Therefore,

∂CS
∂ s

=−λ [−(z+ sz′)zΦ
′+ z′Φ̄] =−λ [−z2

Φ
′+ z′(Φ̄− szΦ

′)].

When z→−∞,
∂CS
∂ s
→−λ z′(Φ̄− szΦ

′).

Therefore, to show ∂CS
∂ s < 0, it suffices to show that z′ > 0. By definition,

z′ =
∂ p∗

∂ s
+

c
[µ−λ k

a (p∗(k))]2
∂λ k

a (p∗(k))
∂ s

.
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By Lemma 2, ∂λ k
a (p∗(k))

∂ s > 0. Therefore, to complete the proof, it suffices to show that
∂ p∗
∂ s > 0 when R is sufficiently large. Similar to the proof of Lemma 2, I treat z instead of p

as the service provider’s sole decision variable. Then Equation (2.1) can be rewritten as

µ− c
R+ z− p(z)

= λ Φ̄(sz).

Therefore,
∂ p(z)

∂ z
= 1+

sλ (R+ z− p)2Φ′

c
,

∂ p(z)
∂ s

=
λ z(R+ z− p)2Φ′

c
.

To prove ∂ p∗
∂ s > 0, I will invoke the supermodularity argument by showing that ∂ 2Π

∂ z∂ s > 0.

Since Π = pλ k
a (p) = p

(
µ− c

R+z−p

)
,

∂Π

∂ s
=

∂ p
∂ s

(
µ− c

R+ z− p

)
− pc

(R+ z− p)2
∂ p
∂ s

=
∂ p
∂ s

[
µ− c(R+ z)

(R+ z− p)2

]
=

λ zΦ′

c
[µ(R+ z− p)2− c(R+ z)].

Therefore,

∂ 2Π

∂ z∂ s
=

λ

c
(1− s2z2)Φ′[µ(R+ z− p)2− c(R+ z)]

+
λ

c
zΦ
′
[

2µ (R+ z− p)
(

1− ∂ p
∂ z

)
− c
]
.

By the expression of ∂ p
∂ z , 1− ∂ p

∂ z < 0. Since R+ z− p = c
µ−λ k

a (p) and z→−∞ as R→ +∞,

zΦ′
[
2µ(R+ z− p)

(
1− ∂ p

∂ z

)
− c
]
> 0. Therefore, to prove ∂ 2Π

∂ z∂ s > 0, it suffices to show that

µ(R+z− p)2 < c(R+z), i.e., cµ

[µ−λ k
a (p)]2 < p+ c

µ−λ k
a (p) or p > cλ k

a (p)
[µ−λ k

a (p)]2 . The last inequality

holds by the proof of Proposition 1(i). �

Proof of Proposition 3. Proof of Proposition 3(i). We can think of the revenue max-

imisation problem as a 2-stage optimisation problem: In Stage 1, the server chooses the

optimal price p̂ for any given quality R. In Stage 2, the server optimises over R for the

optimal price obtained in Stage 1, i.e., R(p) is a function of the optimal price.

First consider the server’s pricing decision. The optimal price satisfies the FOC:

λ
k
a (p,R)+ p

∂λ k
a (p,R)
∂ p

+ p
∂λ k

a (p,R)
∂R

∂R
∂ p

= 2aR
∂R
∂ p

. (A-3)

Now return to the quality decision. The optimal quality satisfies the FOC:

p̂
∂λ k

a (p̂,R)
∂R

= 2aR. (A-4)
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The solution pair (R̂, p̂) satisfies Equation (A-3)-(A-4), which yields

λ
k
a (p̂, R̂) = 2aR̂.

By Proposition 1, a unique positive optimal price p̂ exists for any positive quality.

Proof of Proposition 3(ii). By Equation (A-4), ΠR(p,R)= pλ k
a (p,R)−a

[
p ∂λ k

a (p,R)
∂R /2a

]2
=

pλ k
a (p,R)− p2{[λ k

a (p,R)]′}2

4a , where [λ k
a (p,R)]′ ≡ ∂λ k

a (p,R)
∂ p and ∂λ k

a (p,R)
∂R =− ∂λ k

a (p,R)
∂ p by the fol-

lowing equation.
∂λa

∂R
=

λ sΦ′

1+λ sΦ′ c
(µ−λa)2

I will prove p̂′ < 0 using the submodularity argument.

∂ΠR(p,R)
∂k

= p
∂λa

∂k
− p2λ ′a

2a
∂ 2λa

∂k∂ p

Since ∂λa
∂k = σy

2k1.5 λ ′a and ∂ 2λa
∂k∂ p = ∂ 2λa

∂ p∂k =
σ

2k1.5 (y′λa + yλ ′a),

∂ΠR(p,R)
∂k

=
σ py
2k1.5 λ

′
a−

p2λ ′a
2a

σ

2k1.5 (y
′
λa + yλ

′
a)

When λ → 0, λa → 0, λ ′a → −λ sΦ′, y → s
(

p+ c
µ

)
, y′ → s, λ ′′a → λ sΦ′yy′ =

λ s3Φ′
(

p+ c
µ

)
. As a result, ∂Π(p,R)

∂k = σ py
2k1.5 λ ′a and

∂ 2ΠR(p,R)
∂ p∂k

≈ σ

2k1.5 [yλ
′
a + py′λ ′a + pyλ

′′
a ]

≈ σ

2k1.5

[
−λ s2

Φ
′
(

p+
c
µ

)
−λ s2 pΦ

′+λ s4 pΦ
′
(

p+
c
µ

)2
]

=−σλ s2Φ′

2k1.5

[
2p+

c
µ
− s2 p

(
p+

c
µ

)2
]
.

When σ is sufficiently high, s→ 0 and p→ λa
Φ′λ s , so ∂ 2ΠR(p,R)

∂ p∂k ≈ −σλ s2Φ′

2k1.5

(
2p+ c

µ

)
< 0.

When σ is sufficiently low, p≈ σ(1−Φ)

Φ′
√

k
→ 0, thus ∂ 2ΠR(p,R)

∂ p∂k ≈−σλ s2Φ′

2k1.5
c
µ
< 0. As a result, p̂

strictly decreases in k when σ is sufficiently high or sufficiently low.

Next I will characterises how k influences R̂. By Equation (A-4), ∂λa
∂k = − σy

2k1.5
∂λa
∂R =

−aσyR
pk1.5 . As a result, ∂ΠR(p,R)

∂k = p ∂λa
∂k = −aσyR

k1.5 . ∂ 2ΠR(p,R)
∂R∂k = − aσ

k1.5

[
∂y
∂R R+ y

]
< 0 because

y→ s
(

p+ c
µ

)
> 0, R→ 0, and ∂y

∂R →−s when λ → 0.

Proof of Proposition 3(iii). When λ →+∞, y→+∞, 1−Φ

Φ′ = λa
λΦ′ → 0, so λΦ′→+∞.

As a result, λ ′a →−
(µ−λa)

2

c , λ ′′a →−
2(µ−λa)

3

c2 , and y′ → 0. By the expression of ∂ΠR(p,R)
∂k ,

∂ΠR(p,R)
∂k ≈ σ py

2k1.5 λ ′a and

∂ 2ΠR(p,R)
∂ p∂k

≈ σ

2k1.5 [yλ
′
a + py′λ ′a + pyλ

′′
a ]

≈− σy
2k1.5

[
(µ−λa)

2

c
+ p

(µ−λa)
3

c2

]
< 0.
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Since ∂ 2ΠR(p,R)
∂ p∂k < 0, p̂ strictly decreases in k.

Next I characterise how k influences R̂. ∂ΠR(p,R)
∂k = p ∂λa

∂k = −aσyR
k1.5 . Thus ∂ 2ΠR(p,R)

∂R∂k =

− aσ

k1.5

(
∂y
∂R R+ y

)
= − aσ

k1.5 (Ry′+ y)→ −aσy
k1.5 < 0. Note that R is finite when λ → +∞ by

λ k
a (p̂, R̂) = 2aR̂. As a result, R̂ strictly strictly decreases in k.

Proof of Proposition 3(iv).

∂ΠR(p̂, R̂)
∂k

=
∂ΠR(p,R)

∂k

∣∣∣∣
p=p̂,R=R̂

= p
∂λ k

a (p,R)
∂k

∣∣∣∣
p=p̂,R=R̂

< 0.

The last inequality follows by p̂+ c
µ−λ k

a (p̂,R̂)
− R̂ > 0 when λ is sufficiently high or low:

(i) When λ → +∞, p̂+ c
µ−λ k

a (p̂,R̂)
− R̂→ +∞ by Equation (2.1). (ii) When λ → 0, R̂ =

2aλ k
a (p̂, R̂)→ 0, thus p̂+ c

µ−λ k
a (p̂,R̂)

− R̂→ p̂+ c
µ
> 0. �

Proof of Proposition 4. By Proposition 1(ii), Π∗(k)> Π∗(+∞) for all k if R6 R, and

Π∗(k)< Π∗(+∞) for all k if R> R1(1). Therefore, I will focus on the R < R < R1(1) case.

When R1(k)6 R < R1(1), Π∗(k)< Π∗(+∞) always holds because Π∗(k) is U-shaped, so I

will further restrict the attention to the R < R < R1(k) case. Denote Q(k,R) ≡ Π∗(k,R)−

Π∗(+∞,R) as the optimal revenue benefit compared to the fully-rational benchmark, where

Π
∗(+∞,R) =

 (
√

Rµ−
√

c)2, if λ > µ−
√

cµ

R ,

Rλ − cλ

µ−λ
, if λ < µ−

√
cµ

R .

Next I will show that Q(k,R) strictly decreases in k for R < R < R1(k). To this end, I first

denote λ ∗a (k)≡ λ k
a (p∗(k)) as the optimal arrival rate. According to the FOC of the revenue

maximisation problem, λ ∗a (k) = p∗(k) ∂λ ∗a (k)
∂R . Moreover, λ ∗a (k)< 0.5 for R < R < R1(k) by

the proof of Proposition 1(ii).

∂Q(k,R)
∂R

=
∂Π∗(k,R)

∂R
− ∂Π∗(+∞,R)

∂R

= p∗(k)
∂λ ∗a (k)

∂R
− ∂Π∗(+∞,R)

∂R

= λ
∗
a (k)−

∂Π∗(+∞,R)
∂R

< 0.5λ − ∂Π∗(+∞,R)
∂R

.

When λ < µ −
√

cµ

R , Π∗(+∞,R) = Rλ − cλ

µ−λ
so ∂Π∗(+∞,R)

∂R = λ . ∂Q(k,R)
∂R < 0.5λ −

∂Π∗(+∞,R)
∂R =−0.5λ < 0.

When λ > µ −
√

cµ

R , Π∗(+∞,R) = (
√

Rµ −
√

c)2 so ∂Π∗(+∞,R)
∂R = µ −

√
cµ

R 6 µ −
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cµ

R̄ .

∂Q(k,R)
∂R

< 0.5λ − ∂Π∗(+∞,R)
∂R

6 0.5λ −µ +

√
cµ

cµ

[(µ−0.5λ )+]2
+ σ

2Φ′(0)

< 0.5λ −µ +

√
cµ

cµ

[(µ−0.5λ )+]2
6 0

Therefore, Q(k,R) strictly decreases in R. Based on this, I will prove Proposition 4 for

the R < R < R1(k) case. When R̃ < R < R1(k), Π∗(1) < Π∗(+∞), so the server discloses

information. When R < R 6 R̃, k̃ = {k > 1|Π∗(k) = Π∗(+∞)} uniquely exists because

Q(1,R)> 0, Q(+∞,R)< 0, and Q(k,R) is U-shaped in k. Moreover, k̃ strictly decreases in

R because Q(k,R) strictly decreases in R and strictly increases in k for R < R6 R̃. �

Proof of Corollary 1. By the proof of Proposition 4, in order to show that k̃ strictly

decreases in µ , it suffices to prove that Q(k,R) strictly decreases in µ for R < R < R1(k).

∂λ k
a

∂ µ
=

λ sΦ′ c
(µ−λ k

a )
2

1+λ sΦ′ c
(µ−λ k

a )
2

=− c
(µ−λa)2

∂λ k
a

∂ p
.

By the Envelope Theorem,

∂Q(k,R)
∂ µ

= p∗(k)
∂λ k

a (p∗(k))
∂ µ

− ∂Π∗r
∂ µ

=− c
[µ−λ k

a (p∗(k))]2
p∗(k)

∂λ k
a (p∗(k))

∂ p
− ∂Π∗r

∂ µ

=
cλ k

a (p∗(k))
[µ−λ k

a (p∗(k))]2
− ∂Π∗r

∂ µ
<

0.5cλ

(µ−0.5λ )2 −
∂Π∗r
∂ µ

,

where λ k
a (p∗(k)) < 0.5λ by R < R1(k). According to the traditional queueing economics

(e.g., Hassin and Haviv 2003),

Π
∗
r =

 (
√

Rµ−
√

c)2, if λ > µ−
√

cµ

R ,

Rλ − cλ

µ−λ
, if λ < µ−

√
cµ

R .

Therefore,

∂Π∗r
∂ µ

=

 R−
√

cR
µ

, if λ > µ−
√

cµ

R ,

cλ

(µ−λ )2 , if λ < µ−
√

cµ

R .

When λ > µ−
√

cµ

R ,

∂Q(k,R)
∂ µ

<
0.5cλ

(µ−0.5λ )2 −R+

√
cR
µ
.
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Since R−
√

cR
µ

strictly decreases in R for R > R,

∂Q(k,R)
∂ µ

<
0.5cλ

(µ−0.5λ )2 −
cµ

(µ−0.5λ )2 +

√
c
µ

cµ

(µ−0.5λ )2 =− c
µ−0.5λ

+
c

µ−0.5λ
= 0.

When λ < µ−
√

cµ

R ,

∂Q(k,R)
∂ µ

=
cλ k

a (p∗(k))
[µ−λ k

a (p∗(k))]2
− ∂Π∗r

∂ µ
<

cλ

(µ−λ )2 −
cλ

(µ−λ )2 = 0.

In order to prove that k̃ strictly increases in c, it suffices to prove that Q(k,R) strictly

increases in c for R < R < R1(k). By the Envelope Theorem,

∂Q(k,R)
∂c

= p∗(k)
∂λ k

a (p∗(k))
∂c

− ∂Π∗r
∂c

=
p∗(k) ∂λ k

a (p∗(k))
∂ p

µ−λa(p∗(k))
− ∂Π∗r

∂c

=− λa(p∗(k))
µ−λa(p∗(k))

− ∂Π∗r
∂c

>− 0.5λ

µ−0.5λ
− ∂Π∗r

∂c
,

where

∂Π∗r
∂c

=

 1−
√

Rµ

c , if λ > µ−
√

cµ

R ,

− λ

µ−λ
, if λ < µ−

√
cµ

R .

When λ > µ−
√

cµ

R ,

∂Q(k,R)
∂λ

>− 0.5λ

µ−0.5λ
+

λ

µ−λ
> 0.

When λ < µ−
√

cµ

R ,

∂Q(k,R)
∂λ

>− 0.5λ

µ−0.5λ
−1+

√
Rµ

c
=

√
Rµ

c
− µ

µ−0.5λ
> 0.

The last inequality follows from R > R.

In order to prove that k̃ strictly increases in λ , it suffices to prove that Q(k,R) strictly

increases in λ for λ > µ−
√

cµ

R and R < R < R1(k). Note that

∂λ k
a

∂λ
=

1−Φ

1+λ sΦ′ c
(µ−λ k

a )
2

=−1−Φ

Φ′sλ

∂λ k
a

∂ p
.

By the Envelope Theorem,

∂Q(k,R)
∂λ

= p∗(k)
∂λ k

a (p∗(k))
∂λ

− ∂Π∗r
∂λ

=−(1−Φ)

Φ′sλ
p∗(k)

∂λ k
a (p∗(k))

∂ p
− ∂Π∗r

∂λ

=
(1−Φ)λ k

a (p∗(k))
Φ′sλ

− ∂Π∗r
∂λ

,
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where

∂Π∗r
∂λ

=

 0, if λ > µ−
√

cµ

R ,

R− cµ

(µ−λ )2 , if λ < µ−
√

cµ

R ,

Therefore when λ > µ−
√

cµ

R ,

∂Q(k,R)
∂λ

=
(1−Φ)λ k

a (p∗(k))
Φ′sλ

> 0. �

Proof of Proposition 5. According to the FOC of W (λ k
a (p)) with respect to λ k

a (p), I

can obtain the socially optimal joining rate λ ∗w as:

λ
∗
w =


0, if R6 c

µ
,

µ−
√

cµ

R , if c
µ
< R < cµ

[(µ−λ )+]2
,

λ , if R> cµ

[(µ−λ )+]2
.

Let p̆w(k) denote the price such that λ k
a (p̆w(k)) = µ−

√
cµ

R . By Equation (2.1), I have

p̆w(k) = R−

√
cR
µ

+

σΦ−1
(

1− µ−
√

cµ

R
λ

)
√

k
.

When R < R < cµ

[(µ−λ )+]2
and k < k̂w, the socially optimal joining rate is µ −

√
cµ

R and

p̆w(k) < 0. Therefore, the social planner should price at 0. When R > cµ

[(µ−λ )+]2
, the op-

timal joining rate is λ . Since λ k
a (p) strictly decreases in p, the social planner should price

at 0. Note that k̂w = +∞ when R > cµ

[(µ−λ )+]2
, thus I can merge the above two cases, i.e.,

when R > R and k < k̂w, p∗w = 0. Otherwise the server should price at p̆w(k) and no welfare

loss exists because λ ∗w = µ−
√

cµ

R can be induced. �

Proof of Proposition 6. Proof of Proposition 6(i). Similar to the proof of Proposition

3, we can think of the social welfare maximisation problem as a 2-stage optimisation prob-

lem: In Stage 1, the social planner chooses the optimal price p̂w for any given quality R. In

Stage 2, the server optimises over R given he prices at p̂w, i.e., Rw(p) is a function of the

optimal price.

First consider the social planner’s pricing decision. The optimal price satisfies the

FOC:

λa
∂R
∂ p

+

[
R− cµ

(µ−λa)2

](
∂λa

∂ p
+

∂λa

∂R
∂R
∂ p

)
= 2aR

∂R
∂ p

. (A-5)

Now return to the quality decision. The optimal quality satisfies the FOC:

λa +R
∂λa

∂R
− cµ

(µ−λa)2
∂λa

∂R
= 2aR. (A-6)
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The solution pair (R̂w, p̂w) satisfies Equation (A-5) - (A-6), which yields

R̂w =
cµ

[µ−λa(p̂w, R̂w)]2
.

When R6 c
µ

, Equation (A-5)-(A-6) suggest that the optimal social welfare strictly decreases

in p, so p̂w =+∞. When R> cµ

[(µ−λ )+]2
, Equation (A-5)-(A-6) suggest that the optimal social

welfare strictly increases in p, so p̂w = 0. When c
µ
< R < cµ

[(µ−λ )+]2
, the optimal price p̂w

is determined by λa(p̂w,R) = µ −
√

cµ

R . The optimal price exists and is unique for any

positive quality by the proof of Proposition 5.

Proof of Proposition 6(ii). By Proposition 5, the social planner chooses price to induce

joining rate closest to the optimal value µ−
√

cµ

R . Suppose there exists p such that λa(p) =

µ−
√

cµ

R . After pricing at p, the social planner chooses quality to maximise social welfare:

max
R>0

(
√

µR−
√

c)2−aR2.

The FOC is:

2aR+

√
cµ

R
= µ. (A-7)

Since the optimal quality is independent of λ , λ < µ−
√

cµ

R when λ → 0, thus λa(p)< µ−√
cµ

R . The social planner should price at p̂w = 0 to induce joining rate closest to µ−
√

cµ

R .

I abuse notation and write λa(0) as λa. After pricing at 0, the social planner optimises over

R:

max
R>0

WR(0,R) = Rλa−
cλa

µ−λa
−aR2.

∂WR(0,R)
∂R = λa +

[
R− cµ

(µ−λa)2

]
∂λa
∂R − 2aR ≈ λa +

(
R− c

µ

)
λ sΦ′− 2aR < 0 because λa→ 0

and ∂λa
∂R → λ sΦ′ when λ → 0. Therefore, ∂ 2WR(0,R)

∂R2 →−2a < 0. I will show R̂w < c
µ

and

thus operating the queue leads to negative social welfare. Since ∂ 2WR(0,R)
∂R2 < 0, it suffices to

show ∂WR(0,R)
∂R < 0 when R = c

µ
. The last inequality holds because ∂WR(0,R)

∂R →−2ac
µ

< 0.

When λ is sufficiently high, λa
λ
→ 0 so p+ c

µ−λa
−R→+∞. When p = 0, this implies

λa(0)→ µ . As a result, λa(0) > µ −
√

cµ

R when λ is sufficiently large. Since λa(p) <

µ−
√

cµ

R for sufficiently large p and λa(p) is continuous and strictly decreases in p, there

exists a positive price such that λa(p) = µ−
√

cµ

R , i.e., the price induces the socially optimal

joining rate by Proposition 5. Since the cost for improving service quality is independent

of price, the price (attainable when λ is sufficiently high, as argued above) remains optimal

when the social planner can control quality, i.e., p̂w is determined by:

λa(p̂w) = µ−
√

cµ

R
.
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p̂w strictly decreases in k because when λ > 2µ , λa < µ < 0.5λ and thus λa strictly de-

creases in k.

After pricing at p̂w, the social planner chooses quality to maximise social welfare, and

the FOC is given by Equation (A-7). Define m(R)≡ 2aR+
√

cµ

R . By its FOC and second-

order condition, the unique minimiser R∗m = (cµ)1/3

(4a)2/3 and m(R∗m) =
(

27acµ

2

)1/3
.

When a > 2µ2

27c , m(R) > µ for R 6= R∗m and m(R∗m) > µ . Thus R̂w = 0 and the social

planner should not offer service.

When a < 2µ2

27c , Equation (A-7) has two positive solutions, and R̂w is the larger one

because the smaller solution is less than c
µ

. According to Equation (A-7), R̂w is independent

of k. To complete the proof, I will show that the optimal social welfare is positive when a is

sufficiently small, and the optimal social welfare strictly decreases in a. The first claim holds

because the optimal social welfare function
[√

µR̂w(a)−
√

c
]2

−aR̂2
w(a) is continuous in a

and is positive when a→ 0+ (note that by Equation (A-7), R̂w(a)> c
µ

when a→ 0+). Next,

I will prove that the second claim also holds. Define n(a) ≡
[√

µR̂w(a)−
√

c
]2

−aR̂2
w(a)

where R̂w depends on a by Equation (A-7). Denote ∂ R̂w
∂a as (R̂w)

′.

n′(a) = µ(R̂w)
′−
√

cµ

R̂w
(R̂w)

′− (R̂w)
2−2aR̂w(R̂w)

′ =−(R̂w)
2 < 0,

where the last equality holds by Equation (A-7). �

Proof of Lemma 3. Define D(x) ≡ λ
+∞

∑
i=1

fiΦ̄(
√

i(p + c
µ−x − R)/σ)− x. D(0) > 0,

D(min{λ ,µ}) < 0. Since D(x) is continuous and D(x) strictly decreasing in x, D(x) = 0

has a unique solution λ n
P ∈ (0,min{λ ,µ}).

To show that ∂λ n
P

∂ p < 0, I differentiating both sides of Equation (2.5) with respect to p,

which yields
∂λ n

P
∂ p

=−λ

+∞

∑
i=1

fiΦ
′√i
[

1+
c

(µ−λ n
P)

2
∂λ n

P
∂ p

]
/σ .

Reorganising the terms leads to

∂λ n
P

∂ p
=−

λ
+∞

∑
i=1

fiΦ
′√i/σ

1+λ
+∞

∑
i=1

fiΦ
′
√

i c
(µ−λ n

P)
2 /σ

< 0.

To show the comparative statics with respect to n, first note that Equation (2.5) can be

rewritten as

λ
n
P = λE

[
Φ̄

(√
K(p+

c
µ−λ n

P
−R)/σ

)]
≡ d(n,λ n

P),
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where E denotes the expectation on the random variable K ∼ Poisson(n). For any n1 > 0

and n2 > n1, denote Ki ∼ Poisson(ni). Therefore K2 has strictly first-order stochas-

tic dominance over K1, which I denote by K2 �FSD K1. When p + c
µ−λ n

P
− R < 0, d

strictly increases in K and thus the RHS of Equation (2.5) is higher for n = n2 than

n = n1 for a fixed λ n
P . This further suggests that λ

n2
P > λ

n1
P : If λ

n2
P 6 λ

n1
P , λ

n2
P =

λd(n2,λ
n2
P ) > λd(n1,λ

n2
P ) > λd(n1,λ

n1
P ) = λ

n1
P , which contradicts λ

n2
P 6 λ

n1
P . Therefore,

λ n
P strictly increases in n if p + c

µ−λ n
P
− R < 0. Moreover, p + c

µ−λ n
P
− R < 0 is equiv-

alent to λ n
P > 0.5λ by Equation (2.5), which is further equivalent to D(0.5λ ) > 0 or

+∞

∑
i=1

fiΦ̄

(√
i
(

p+ c
(µ−0.5λ )+ −R

)
/σ

)
> 0.5. Since the LHS strictly increases in R, this in-

equality is equivalent to R > RP, where RP strictly increases in p,c and strictly decreases

in µ because
+∞

∑
i=1

fiΦ̄

(√
i
(

p+ c
(µ−0.5λ )+ −R

)
/σ

)
strictly increases in p,c and strictly de-

creases in µ . By mimicking this proof, I can show that λ n
P strictly decreases in n when

R < RP. When R = RP, λ n
P = λE[Φ̄(0)] = 0.5λ , which is invariant in n.

To prove lim
n→+∞

λ n
P(p) = λr(p), first note that as n→+∞, K converges in distribution to

infinity. Therefore, the RHS of Equation (2.5) is equal to lim
k→+∞

λ Φ̄

(√
k
(

p+ c
µ−λ n

P
−R
)
/σ

)
.

According to Lemma 1, the unique solution that satisfies Equation (2.5) is λr(p). Therefore,

lim
n→+∞

λ n
P(p) = λr(p). �

A.2 Supplemental Discussions and Analysis

In this section, I propose three repeated-generation models to incorporate customers’ anec-

dotes acquisition process in the base model and provide supplemental analysis that focuses

on the no-congestion setting, the server’s information disclosure with quality control, and

his joint information disclosure decision on both public and private anecdotes.

A.2.1 Repeated-Generation Models

Here I introduce three repeated-generation models (dubbed as M1, M2, M3) to endogenise

customers’ anecdotes acquisition process and the server’s dynamic pricing and quality de-

cisions in Chapter 2.4.1. These models not only provide a rigorous formulation of service

systems with growing popularity over time, they also illustrate the generality of my anec-

dotal reasoning framework in capturing different types of anecdotes acquisition processes.

First, consider the following repeated-generation model (i.e., M1). In period 0,

generation-0 customers arrive and join at any positive rate. In period i (i> 1), generation-i

customers arrive and make the join-or-balk decision based on k anecdotes. Each anecdote
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is a service quality realisation experienced by a customer from any of the previous genera-

tions. In addition, I assume that: (i) Each generation is long enough for the system to reach

steady state. (ii) All anecdotes acquired by customers of the same generation are indepen-

dent draws from the service quality distribution. The former assumption has been widely

adopted in the existing multi-period queueing models (Huang and Chen 2015, Cui and Veer-

araghavan 2016, and references therein), and the latter one is a standard assumption in the

anecdotal reasoning literature (Spiegler 2006b, Szech 2011, Huang and Yu 2014). Notably,

Huang and Chen (2015) adopt both assumptions in a similar repeated-generation model.

Consistent with Huang and Chen (2015), I will implicitly adopt both assumptions for all

repeated-generation models in this section.

It can be verified that in each period, customers apply the anecdotal reasoning frame-

work described in Chapter 2.3.1. In other words, M1 generalises the base model by incor-

porating an anecdotes acquisition process, which is general in the following aspects. First,

customers across different generations can be different customers or the same customers

that visit the service system repeatedly. Second, a generation-i customer’s anecdotes may

come from earlier customers or her own past service experiences, and I do not impose any

assumption regarding the distribution of anecdotes from different generations (e.g., recent

generations are sampled more often, as assumed by Huang and Chen 2015).

Building on M1, the next repeated-generation model (i.e., M2) incorporates the

server’s dynamic pricing decision in Chapter 2.4.1. In period 0, generation-0 customers

arrive and join at any positive rate. Then in period i (i = 1, . . . , k̄), the service provider sets

price pi and generation-i customers arrive and make the join-or-balk decision based on ki

anecdotes, where ki > 0 and increases in i. Each anecdote is a service quality realisation

experienced by a customer from any of the first i+1 period.

M2 inherits the general anecdotes acquisition process from M1. In addition, M2 endo-

genises the growing popularity of the service system (i.e., ki increases in i) and the service

provider’s dynamic pricing decision (i.e., pi may depend on i). Since customers’ join-or-

balk decision is independent of prices in earlier generations, the multi-period optimisation

problem underlying M2 can be decoupled into k̄ single-period revenue maximisation prob-

lems defined by (2.2), where k = k1, . . . ,kk̄. As a result, studying the evolution of the optimal

price, revenue, social welfare, and consumer surplus boils down to investigating the impact

of k on p∗(k), Π∗(k), W ∗(k), and CS∗(k), as given by Proposition 1-2.



A.2. Supplemental Discussions and Analysis 100

Next I introduce a new repeated-generation model (i.e., M3) based on M2 to capture

the server’s dynamic joint pricing and quality decisions in Chapter 2.4.1.2. In period 0,

generation-0 customers arrive and join at any positive rate. In period i (i = 1, . . . , k̄), the

service provider sets price pi and quality Ri at cost aR2
i . Then generation-i customers arrive

and make the join-or-balk decision based on ki anecdotes, where ki > 0 and increases in

i. Generation-i customers’ anecdotes are service quality realisations experienced by cus-

tomers from an earlier generation Ai, where Ai 6 i and increases in i. Note that M3 captures

a more restrictive set of anecdotes acquisition processes than M2: Customers within a gen-

eration cannot acquire anecdotes from different earlier generations. This assumption is for

analytical tractability, and it has also been adopted by the literature (Huang and Chen 2015,

and references therein).

Similar to M2, it can be verified that the multi-period pricing and quality optimisa-

tion problem underlying M3 can be decoupled into k̄ single-period revenue maximisation

problems defined by (2.3), where k = k1, . . . ,kk̄. As a result, studying the evolution of the

optimal price and quality boils down to investigating the impact of k on p̂ and R̂, as given

by Proposition 3.

A.2.2 The No-Congestion Setting

In this section, I characterise customers’ joining rate and the server’s pricing, quality, and

information disclosure decisions in the no-congestion setting, i.e., c = 0. For expositional

convenience, I focus on the underloaded case in which µ > λ . Notably, all insights continue

to hold for the overloaded case (i.e., µ < λ ).

Following the formulation of Equation (2.1), I can derive the equilibrium joining rate

as

λ
k
a (p) = λ Φ̄

(√
k

σ
(p−R)

)
.

Consistent with the congestion setting (see Lemma 1), the above expression shows that

a larger sample size increases the demand of a high-quality (i.e., R > p) service system

and decreases the demand of a low-quality (i.e., R < p) service system. Based on this,

I characterise the service provider’s pricing, quality, and information disclosure decisions

under revenue and welfare maximisations.

Revenue maximisation. Similar to the congestion setting, the revenue maximisation
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problem is given by:

max
p>0

λ pΦ̄

(√
k

σ
(p−R)

)
.

The next proposition characterises the optimal price p∗(k) and revenue Π∗(k).

Proposition A-1. (i) A unique p∗(k)> 0 exists and lim
k→+∞

p∗(k) = p∗r .

(ii) The optimal revenue Π∗(k) strictly decreases (increases) in k for R < (>) 0.5σ√
kΦ′(0)

,

and is invariant in k for R = 0.5σ√
kΦ′(0)

.

(iii) There exists a unique quality threshold R̄2(k), which strictly decreases in k, such

that p∗(k) strictly decreases (increases) in k for R < (>)R̄2(k), and is invariant in k for

R = R̄2(k).

Proof. Proof of Proposition A-1(i). The FOC of revenue is

Φ̄(s(p−R)) = spΦ
′(s(p−R)),

where I denote s≡
√

k
σ

. Therefore,

p∗ =
Φ̄(s(p∗−R))

sΦ′(s(p∗−R))
.

The existence and uniqueness of p∗(k) can be established following the proof of Proposition

1(i).

Next, I will prove lim
s→+∞

p∗(k) = p∗r = R by contradiction. First, suppose lim
k→+∞

p∗(k)<

R.

p∗ =
Φ̄(s(p∗−R))

sΦ′(s(p∗−R))
=

1
sΦ′(s(p∗−R))

.

Since lim
s→+∞

Φ′(s(p∗−R)) = 0, lim
k→+∞

p∗(k) = +∞ > R.

Second, suppose lim
k→+∞

p∗(k)> R.

p∗ =
(p∗−R)Φ̄(s(p∗−R))

s(p∗−R)Φ′(s(p∗−R))
.

Since

lim
s→+∞

Φ̄(s(p∗−R))
s(p∗−R)Φ′(s(p∗−R))

= 0,

lim
k→+∞

p∗(k) = 0 < R.

Proof of Proposition A-1(ii). By the Envelope Theorem,

∂Π∗

∂ s
= −p(p−R)Φ′(s(p−R))

∣∣
p=p∗ .
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Therefore, ∂Π∗

∂ s > 0 iff p∗ < R, which holds iff

Φ̄(s(x−R))
sΦ′(s(x−R))

− x
∣∣∣∣
x=R

=
0.5

sΦ′(0)
−R < 0.

Proof of Proposition A-1(iii). The proof is identical to the proof of Proposition 1(iii),

except that here λ ′a =−λ sΦ′, y′ = s, λ ′′a = λ sΦ′yy′ = λ s3Φ′(p−R) always hold. �

Proposition A-1 shows that without congestion, targeting the mass customers instead

of exclusively the niche customers dominates for a larger range of parameter values. This

is an intuitive result since the advantage of the former strategy is to increase demand and it

is strengthened when there is no congestion: In this case, a higher demand no longer poses

the negative externality of congestion on other joining customers.

Next I study the welfare implications of the service provider’s optimal pricing strategy.

As in Chapter 2.4.1.1, I derive the expressions of social welfare and consumer surplus as

follows:
W (p,k) = Rλ

k
a (p),

CS(p,k) = (R− p)λ k
a (p).

I denote the social welfare and consumer surplus under the optimal price p∗(k) as W ∗(k) and

CS∗(k) respectively. By definition, I have W ∗(k) =W (p∗(k),k) and CS∗(k) =CS(p∗(k),k).

The next proposition characterises the impact of k on W ∗(k) and CS∗(k).

Proposition A-2. Social welfare W ∗(k) and consumer surplus CS∗(k) strictly increase in k

for R 6= 0 and are invariant of k for R = 0.

Proof. The comparative statics of W ∗(k) is a special case of Proposition 2(i) with c = 0.

Therefore, I will only prove the comparative statics of CS∗(k). According to Lemma 2 and

the proof of Proposition 1(ii), I have:

1. If R < 0, p∗(k)> R and λ k
a (p∗(k)) strictly decreases in k.

2. If R = 0, p∗(k) = R and λ k
a (p∗(k)) is invariant of k.

3. If R > 0, p∗(k)< R and λ k
a (p∗(k)) strictly increases in k.

The proposition follows by noting that CS∗(k) = [R− p∗(k)]λ k
a (p∗(k)). �

Proposition A-2 shows that a large sample size never harms social welfare or consumer

surplus. This is in sharp contrast to the congestion setting, in which a large sample size

decreases consumer surplus when R is large enough (see Proposition 2(ii)). This contrast

highlights the role of congestion in the welfare impact of customer bounded rationality.

Specifically, as customers become more rational, they join a high-quality service system
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more. Therefore, consumer surplus increases in the absence of congestion. The opposite is

true with congestion since the increase in demand also implies longer waits for all joining

customers.

Now I investigate the service provider’s decision of disclosing quality information or

not. The next corollary, which follows immediately from Proposition A-1, fully charac-

terises this information disclosure decision in the no-congestion setting.

Corollary A-1. (i) When R6 R, the service provider does not disclose information.

(ii)When R < R < R̃, the service provider does not disclose information for k < k̃,

discloses information for k > k̃, and is indifferent between the two for k = k̃.

(iii) When R> R̃, the service provider discloses information.

Corollary A-1 shows that the server’s information disclosure decision in the congestion

setting continues to hold in the no-congestion setting. Moreover, incorporating congestion

leads the server not to disclose information for a larger range of parameter values (see

Corollary 1). This highlights the importance of incorporating customer bounded rationality

in the congested setting.

Next I examine the server’s quality control problem as defined in (2.3).

Proposition A-3. A unique p̂ > 0 determined by 2aR̂ = λa(p̂, R̂) exists. Moreover, when

market potential λ is sufficiently low, the optimal quality R̂ strictly decreases in k and the

optimal revenue strictly decreases in k. If, in addition, the standard deviation of service

quality σ is sufficiently high, the optimal price p̂ strictly decreases in k.

I omit the proof because it follows immediately from the proof of Proposition 3. Simi-

lar to the congestion setting, a larger sample size leads the server to lower price and quality

under low market potential. Under high market potential, however, the congestion and

no-congestion settings may lead to opposite pricing and quality recommendations. In the

congestion setting, the server sets a low quality to target exclusively the niche customers.

With more anecdotes, customers join less and the server reduces both price and quality. In

the no-congestion setting, however, I numerically find that the server increases both price

and quality, as illustrated in Figure A-1.

Welfare maximisation. Now I characterise a social planner’s pricing, quality, and
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Figure A-1: The Impact of k on p̂ and R̂ with No Congestion and High Market Potential (µ = 2,

λ = 100,a = 1,σ = 1)
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information disclosure decisions, as given by:

W = Rλ Φ̄

(√
k

σ
(p−R)

)
.

Since W strictly decreases in p, the optimal price p∗w and social welfare W ∗w are given by:

p∗w = 0,

W ∗w = Rλ Φ̄

(
−
√

k
σ

R

)
.

Intuitively, the social planner prices at zero because joining always improves social welfare

in the absence of congestion. Since bounded rationality leads a portion of customers to

considerably underestimate service quality and thus choose to balk, it always reduces social

welfare. Therefore, the social planner should disclose quality information for all positive

quality levels (i.e., R > 0).

Next, I consider the quality control problem, as given by:

max
R>0

Rλ Φ̄

(
−
√

k
σ

R

)
−aR2.

The following proposition characterises the optimal quality R̂∗w and how it depends on the

sample size k.

Proposition A-4. A unique R̂w exists and strictly increases in k.
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Proof.

W ′ = λ [Φ̄(−sR)+ sRΦ
′(−sR)−2aR/λ ].

Define Z(x) ≡ x+ xΦ′(−x)− Φ̄(−x). It can be shown that Z(x) strictly increases in x and

Z(x) = 0 has a unique solution. Therefore, R̂w exists and is unique. I will show ∂ R̂w
∂ s > 0

using the supermodularity argument.

∂ 2W
∂ s∂R

= λ [2RΦ
′(−sR)− sR2

Φ
′′(−sR)]

= λR[2+ s2R2]Φ(−sR)> 0 �

Proposition A-4 shows that as customers share more quality information over time, the

social planner always improve service quality. Intuitively, as sample size increases, more

customers join the free service system. This strengthens the social benefit of service and

thus induces the social planner to improve quality.

A.2.3 Information Disclosure with Quality Control

To complement Chapter 2.4.2, I incorporate the service provider’s quality decision and char-

acterise his information disclosure decision in this setting, as shown below.

Corollary A-2. When market potential λ is sufficiently high or sufficiently low, the service

provider does not disclose quality information.

Corollary A-2 follows immediately from Proposition 3. Intuitively, the service

provider chooses not to disclose information because he targets exclusively the niche cus-

tomers. Targeting the mass customers leads to a lower revenue since: (i) It cannot increase

demand considerably when market potential is sufficiently low. (ii) It significantly intensi-

fies congestion and thus lowers demand when market potential is sufficiently high.

I complement Corollary A-2 by a numerical study to examine intermediate market

potential case, as illustrated in Figure A-2. In line with Proposition 4 and Corollary 1, the

server switches from not disclosing to disclosing quality information at a larger sample size

or a lower unit waiting cost. Interestingly, I also find that a higher a makes information non-

disclosure more attractive. This is because as quality improvement becomes more costly,

the server sets a lower quality and targets exclusively the niche customers.

A.2.4 Ratings/Reviews from Third-Party Review Websites

Throughout the paper, I focus on word of mouth from acquaintances as customers’ only

source of service quality information. In practice, however, they may acquire information
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Figure A-2: The Impact of c and a on the Information Disclosure Decision under Intermediate Mar-

ket Potential with Quality Control (µ = 2,λ = 2,σ = 10)
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also from ratings/reviews on third-party review websites. I will refer to this type of anec-

dotes as public anecdotes since they are publicly available to all customers. Moreover, I

will refer to word of mouth from acquaintances as private anecdotes because they are pri-

vate information to each customer. The terminology highlights the key difference between

the two types of anecdotes: Public anecdotes can target a much larger audience and thus

are more correlated among customers than private anecdotes. This observation implies that

the service provider may adopt different information disclosure strategies in public and pri-

vate channels. As a result, instead of choosing between informing customers of the mean

service quality or not, the service provider now has four information disclosure strategies,

i.e., informing customers in the private/public channel only, in both channels, or in neither

one. In practice, restaurants usually give away free desserts/drinks to customers who upload

food photos on social media, and/or remind them to write Yelp ratings/reviews by posting

a “Review Us on Yelp” sign on the door front (Marrs 2013). In the hotel industry, Marriott

rewards 25 membership points to guests who share content about Marriott hotels on their

own social media, and 250 points to guests who “like” a Marriott hotel’s Facebook page or

follow a Marriott property on Twitter (Nayer 2014).

In what follows, I will incorporate public anecdotes in customers’ service quality es-

timation and examine its impact on the server’s pricing, quality control, and information

disclosure decisions. I will first characterise customers’ equilibrium joining rate and show

that the server’s decisions in the base model are qualitatively preserved. Then I will focus



A.2. Supplemental Discussions and Analysis 107

on the server’s joint information disclosure decision on both public and private anecdotes.

Model and preliminaries. To introduce public anecdotes in customers’ join-or-balk

decision, I assume that they estimate service quality as the weighted average of k1 public

anecdotes and k2 private anecdotes. Let θ denote the mental weight on public anecdotes and

θ̄ ≡ 1−θ . Then a customer’s service quality estimate R = θr+ θ̄

(
k2

∑
i=1

Ri

)
/k2, where r is

the average of k1 public anecdotes (e.g., the overall star rating of a restaurant on Yelp), and

Ri (i = 1, . . . ,k2) are private anecdotes. To capture the aforementioned difference between

private and public anecdotes, I assume that r is the same for all customers and Ri∼N(R,σ2)

is independent across customers for all i.

Although public anecdotes are the same for all customers, they may still exhibit differ-

ent joining behaviours because private anecdotes are different across them. As in Chapter

2.3.2, customers adopt the pure threshold strategy of joining the queue iff the service qual-

ity estimate exceeds price and the expected waiting cost. Therefore, the joining rate for any

given r, which I denote by λp(r), is given by:

λp(r) = λP
(

R > p+
c

µ−λp(r)

)
= λP

(
θr+ θ̄

(
k2

∑
i=1

Ri

)
/k2 > p+

c
µ−λp(r)

)
.

Since each private anecdote is an independent draw from the service quality distribution, I

have
(

k2

∑
i=1

Ri

)
/k2 ∼ N(R,σ2/k2). Therefore, I can simplify the expression of λp(r) into

λp(r) = λ Φ̄

(√
k2

θ̄σ

[
p+

c
µ−λp(r)

−θr− θ̄R
])

.

Note that this equation can be derived by replacing σ and R in Equation (2.1) by θ̄σ and

θr+ θ̄R respectively. Intuitively, relying on both private and public anecdotes reduces the

dispersion of customers’ service quality estimates by θ (recall that public anecdotes are the

same for all customers) and changes the average service quality estimate from R to θr+ θ̄R.

This observation suggests that a unique positive joining rate exists (see Lemma 1) and its

impact by k2 is qualitatively the same as the impact of k in the base model. Specifically, a

larger sample size decreases the joining rate of a low-quality service system and increases

the joining rate of a high-quality service system.

Next I study the server’s pricing decision. There are two cases to consider depending

on whether he makes the decision contingent on public anecdotes realisations. If he does,

the server maximises revenue pλp(r) for a given r; otherwise, he maximises the expected
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revenue pλa(p,k1,k2), where λa(p,k1,k2) ≡
∫ +∞

−∞
λp(r) f (r)dr is the expected joining rate

and f (x) denotes the probability density function of r. I will focus on the latter case be-

cause: (i) All results in the main body of the paper continue to hold for the former case

because λp(r) can be derived directly from Equation (2.1). (ii) The latter case reflects the

common practice in many service systems. For example, restaurants usually cannot change

price frequently because it requires redesigning and reproducing the menu, brochures, and

websites, all of which are costly and take time.

To investigate the server’s pricing decision in the latter case, I first characterise

λa(p,k1,k2) and then examine how it depends on k1 and k2. Since public anecdotes are

independent draws (i.e., independent from other public anecdotes but are the same across

customers) from the service quality distribution, I have r ∼ N(R,σ2/k1). Therefore,

λa(p,k1,k2) =

√
k1λ

σ

∫ +∞

−∞

λp(s)φ
(√

k1(s−R)
σ

)
ds. (A-8)

The next lemma shows that λa(p,k1,k2) uniquely exists.

Lemma A-1. For any p > 0 and k1,k2 > 1, a unique λa(p,k1,k2) ∈ (0,min{λ ,µ}) exists

and strictly decreases in p. Moreover, lim
k1,k2→+∞

λa(p,k1,k2) = λr(p).

The proof of Lemma A-1 is similar to that of Lemma 1 and thus is omitted.

Next I study the impact of sample sizes (i.e., k1 and k2) on the expected joining rate.

Since an analytical characterisation is prohibitively difficult, I examine it numerically, as

illustrated in Figure A-3. As in the base model, a smaller sample size in either channel leads

customers to join a low-quality service system more and a high-quality service system less.

However, the intuitions for the two channels are strikingly different. Specifically, fewer

private anecdotes lead customers’ service quality estimates to be more dispersed, whereas

fewer public anecdotes do not because they are the same for all customers. Instead, fewer

public anecdotes increase the likelihood for the sample average in the public channel to

be considerably inaccurate, thereby shifting all customers’ service quality estimates (either

up or down) by the same magnitude. As a result, the ex ante (before public anecdotes are

realised) expected size of the niche customers increases and the ex ante expected size of

the mass customers decreases. This induces a higher joining rate in a low-quality service

system and a lower joining rate in a high-quality service system.

Now I will examine the server’s pricing decision, as given by:

max
p>0

pλa(p,k1,k2).
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Figure A-3: The Impact of k1 and k2 on λa(p,k1,k2) (µ = 2,λ = 2,c = 1, p = 1,σ = 2,θ = 0.5)
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Denote the optimal price by p∗(k1,k2) and the optimal revenue by Π∗(k1,k2). The next

lemma shows that this revenue maximisation problem is well-defined.

Lemma A-2. For any k1,k2 > 1, the optimal price p∗(k1,k2)> 0 exists and is unique.

Proof. Denote E[ f (x)]≡
√

k1λ

σ

∫ +∞

−∞
f (x)φ

(√
k1(x−R)

σ

)
dx as the expectation of function f (x)

with respect to x with x∼N(R,σ2/k1). I will abuse the notation by writing p∗(k1,k2) as p∗.

The FOC of Π(p,k1,k2) with respect to p is

E[λp∗(r)]+ p∗E

[
∂λp(s)

∂ p

∣∣∣∣
p=p∗

]
= 0.

By the definition of λ r
p,

∂λp(r)
∂ p

=−
λ

√
k2

θ̄σ
Φ′
(√

k2
p+ c

µ−λp(r)
−θx−θ̄R

θ̄σ

)
1+λ

√
k2

θ̄σ
Φ′
(√

k2
p+ c

µ−λp(r)
−θx−θ̄R

θ̄σ

)
c

[µ−λp(r)]2

.

Denoting Φ′
(√

k2
p+ c

µ−λp(r)
−θx−θ̄R

θ̄σ

)
and Φ

(√
k2

p+ c
µ−λp(r)

−θx−θ̄R

θ̄σ

)
as Φ′ and Φ,

Φ′
(√

k2
p∗+ c

µ−λp∗ (r)
−θx−θ̄R

θ̄σ

)
and Φ

(√
k2

p∗+ c
µ−λp∗ (r)

−θx−θ̄R

θ̄σ

)
as Φ′∗ and Φ∗, and substitut-

ing the above equation into the FOC, I have:

p∗ = E
[{

θ̄σ

Φ′∗λ
√

k2
+

c
[µ−λp∗(r)]2

}
λp∗(r)

]
.

Similar to the proof of Proposition 1, I can show that for any given r,{
θ̄σ

Φ′λ
√

k2
+

c
[µ−λp(r)]2

}
λp(r)− p
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strictly decreases in p and is positive (negative) when p→ 0(+∞). Therefore,

p < (>)E
[{

θ̄σ

Φ′λ
√

k2
+

c
[µ−λp(r)]2

}
λp(r)

]
for p < (>)p∗, and thus the optimal price p∗ exists and is unique. �

As in the base model, Lemma A-2 implies that the server’s pricing, quality, and in-

formation disclosure decisions are well-defined. Next I will derive insights regarding the

impact of k1 and k2 on these decisions. To this end, first recall from Figure A-3 that k1 and

k2 influence customers’ joining behaviour in the same way as k in the base model. Based on

this, I have numerically verified that the impact of the sample size on the server’s decisions

are also qualitatively preserved. Specifically, for a given k1 (k2), the impact of k2 (k1) on the

server’s optimal price, quality, and information disclosure decision in the private (public)

channel are qualitatively the same as the impact of k on the corresponding decisions in the

base model. For brevity I have omitted the presentation of the numerical study.

The joint information disclosure decision. The preceding discussion shows that for

a fixed sample size in the private/public channel, the server’s information disclosure de-

cision in the other channel is qualitatively the same as the base model. In this section,

I will examine his joint information disclosure decision, i.e., informing customers of the

mean service quality in one channel only, in both channels, or in neither one. Notably, I

focus on the k1� k2 case because it reflects general observations where the size of online

ratings/reviews usually far exceeds the size of word of mouth from acquaintances.

Due to analytical difficulties, I examine the joint information disclosure through an ex-

tensive numerical study, as illustrated in Figure A-4. Intuitively, a high-quality (i.e., R> R̃2)

service provider informs customers of the mean service quality in both channels, while a

low-quality (i.e., R < R̃1) service provider does not inform in either channel. Somewhat

surprisingly, an intermediate-quality (i.e., R̃1 < R < R̃2) service provider informs customers

in the public channel only. According to the interpretation of Proposition 4, choosing not

to inform them in the private channel implies that the server sets a high price to target ex-

clusively the niche customers. Since information disclosure in the public channel lowers

their size, I would expect the service provider not to do so. However, my numerical study

points to just the opposite. The key insight is that information disclosure in the public

channel improves the efficiency of the pricing strategy (the pricing efficiency advantage,

hereafter): More public anecdotes lead customers’ average service quality estimate to devi-

ate less from the actual mean service quality, so the server is more likely to target the most
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profitable customer segment by the price which he sets without observing the anecdotes

realisations. Managerially, this result suggests that compared to customers’ social media

posts, their online ratings/reviews are the more effective medium in disclosing service qual-

ity information: Even if the service quality is low such that the service provider prices high

to target exclusively the niche customers, he may still inform them of the mean service

quality in the public channel due to the pricing efficiency advantage.

Figure A-4: The Impact of R and θ on the Joint Information Disclosure Decision (k1 = 5,k2 =

1,µ = 2,λ = 2,c = 1,σ = 3)
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Figure A-4 also illustrates the impact of θ on the service provider’s information dis-

closure decision. Intuitively, as customers rely more on public anecdotes (i.e., θ increases),

their quality estimates become less dispersed. Therefore, the size of the niche (mass) cus-

tomers decreases (increases) and the server switches from targeting exclusively the niche

customers to targeting the mass customers. This implies that the server discloses informa-

tion in both channels for sufficiently high θ and discloses no information in both channels

for sufficiently low θ .

Interestingly, when θ is intermediate, the server discloses information in the public

channel only. To fully understand this result, note that this strategy is less efficient in in-

creasing demand compared with the others: A high (low)-quality service provider targets

the mass (niche) customers and can increase demand more effectively by disclosing (not dis-

closing) information in both channels. When customers rely predominantly on one channel,

this disadvantage is amplified and information disclosure only in the public channel be-

comes less attractive. In contrast, under intermediate service quality, the pricing efficiency



A.3. Robustness Check 112

advantage dominates. Therefore, information disclosure exclusively in the public channel

becomes more attractive.

This result leads to the following managerial implications. If customers come from

centralised communities (e.g., residents in close neighborhood) and thus estimate service

quality mainly by word of mouth from acquaintances, the service provider should encour-

age neither public nor private platform posts. However, if they come from dispersed loca-

tions (e.g., travelers) and thus estimate service quality mainly by online ratings/reviews, the

service provider should encourage both public and private platforms posts. Moreover, if

customers are loosely connected with each other (e.g., frequent visitors of a shopping mall)

and thus attach similar mental weights to online ratings/reviews and word of mouth from

acquaintances, the service provider should encourage only public platform posts.

A.3 Robustness Check

In this section, I will relax several assumptions in Chapter 2.3 and show that major insights

of the paper continue to hold.

A.3.1 Uncertain Service Quality with a Logconcave Density Function

In the base model, I assumed that each anecdote is an independent and identical draw from

a normal distribution. In this section, I will generalise the model by considering all contin-

uous distributions with a symmetric and logconcave density function, where logconcavity

is defined as follows.

Definition A-1 (Boyd and Vandenberghe 2004). A function f (x) : R→ R is logconcave if

f (x)> 0 for all x ∈ dom f and log( f (x)) is concave, i.e.,

f (θx1 + θ̄x2)> f (x1)
θ f (x2)

θ̄

for any x1,x2 ∈ dom f , θ ∈ [0,1], and θ̄ ≡ 1−θ .

Note that this generalisation not only extends the set of service quality distributions,

it also allows me to consider anecdotes that are biased draws from the service quality

distribution. For example, suppose that the service quality is normally distributed, i.e.,

R ∼ N(R,σ2). Moreover, each anecdote Ai (i = 1, . . . ,k) is an independent logistic per-

turbation of service quality, i.e., Ai = LiR, where Li (i = 1, . . . ,k) are independent and

identically draws from a logistic distribution with mean R. My generalised model can cap-

ture this situation because the distribution of each anecdote, i.e., a logistic perturbation of
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normal distribution, is continuous and has a symmetric and log-concave density function.

Below I summarise several important properties of logconcavity, which I will invoke

later.

Lemma A-3 (Boyd and Vandenberghe 2004). (i) Logconcavity is closed under convolution.

(ii) Random variables with logconcave density functions have an increasing failure

rate.

Next I characterise customers’ equilibrium joining rate λ k
L(p). Let Bk(x), B̄k(x), and

bk(x) denote the cumulative, inverse cumulative, and density functions of customers’ service

quality estimate Rk =

(
k
∑

i=1
Ri

)
/k. According to the analysis in Chapter 2.3.2, λ k

L(p) is

given by:

λ
k
L(p) = λ B̄k

(
p+

c
[µ−λ k

L(p)]+

)
.

The next lemma, which can be proven by mimicking the proof of Lemma 1, shows that

λ k
L(p) is well-defined.

Lemma A-4. For any p> 0, a unique λ k
L(p) ∈ [0,min{λ ,µ}] exists and strictly decreases

in p. Moreover, lim
k→+∞

λ k
L(p) = λr(p).

Note that when the service quality distribution has a finite support, customers may all

join or all balk: Since each anecdote cannot be higher (lower) than the upper (lower) bound

of service quality, all customers will balk (join) the queue if price is sufficiently high (low).

As in Lemma 1, I will examine the impact of k on λ k
L(p). To this end, I apply the

stochastic comparison technique by comparing Rk and Rk−1 in the peakness order, which

is defined as follows.

Definition A-2 (Shaked and Shanthikumar 2007). Let X and Y be two random variables

with the same mean and different distribution functions. Suppose that the distribution func-

tions F and G, of X and Y respectively, are symmetric about the common mean. Then X

is smaller than Y in the peakness order (denoted by X 6peak Y ) iff G crosses F only once

from above.

The lemma below presents an important property of the peakness order.

Lemma A-5 (Shaked and Shanthikumar 2007). If X1,X2, . . . are independently and iden-

tically distributed random variables, having a common logconcave density function that is
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symmetric about a common value, then for each n > 2, one has X̄n 6peak X̄n−1, where

X̄i ≡ (X1 + · · ·+Xi)/i.

Based on Lemma A-5, the next proposition characterises the impact of sample size k

on customers’ equilibrium joining behaviour.

Proposition A-5. The equilibrium joining rate λ k
L(p) strictly decreases in k if R < p+

c
(µ−0.5λ )+ , strictly increases in k if R > p + c

(µ−0.5λ )+ , and is invariant in k if R = p +

c
(µ−0.5λ )+ .

Proof. To prove this proposition, it suffices to show that for any integer k > 1, λ k
L(p) <

λ
k−1
L (p) when R < p+ c

(µ−0.5λ )+ , λ k
L(p)> λ

k−1
L (p) when R > p+ c

(µ−0.5λ )+ , and λ k
L(p) =

λ
k−1
L (p) when R = p+ c

(µ−0.5λ )+ . I will prove the R < p+ c
(µ−0.5λ )+ case, and the other two

cases can be proven in the same way.

Since R1,R2, . . . are i.i.d. random variables with a common logconcave density func-

tion that is symmetric about x = R, Rk 6peak Rk−1 for k> 2 by Lemma A-5. This suggests

that Bk(x) crosses Bk−1(x) only once from below at x = R (see Definition A-2). By mim-

icking the proof of Lemma 1, I can show that both λ k
L(p) and λ

k−1
L (p) are below 0.5λ

when R < p+ c
(µ−0.5λ )+ . I will show λ k

L(p)< λ
k−1
L (p) by proof of contradiction. Suppose

λ k
L(p)> λ

k−1
L (p). Then by definition

λ
k
L(p) = λ B̄k

(
p+

c
µ−λ k

L(p)

)
< λ B̄k−1

(
p+

c
µ−λ k

L(p)

)
6 λ B̄k−1

(
p+

c
µ−λ

k−1
L (p)

)
= λ

k−1
L (p),

which contradicts the assumption that λ k
L(p)> λ

k−1
L (p). �

Proposition A-5 shows that the impact of customer bounded rationality on their joining

behaviour, as characterised in Lemma 1, continues to hold in the generalised setting. Based

on this, I have verified that the impact of customer bounded rationality on the server’s pric-

ing, quality control, and information disclosure decisions are also qualitatively preserved,

as presented for the rest of this section.

Pricing and quality control. As in the base model, I will examine how the sample

size influences the service provider’s pricing and quality decisions, as given respectively by:

max
p>0

pλ
k
L(p),

max
p,R>0

pλ
k
L(p,R)−aR2.
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The next proposition characterises the server’s revenue maximisation problem without qual-

ity control, where p∗L(k) and Π∗L(k) denote the optimal price and revenue.

Proposition A-6. (i) For any k > 0, a unique p∗L(k)> 0 exists and lim
k→+∞

p∗L(k) = p∗r .

(ii) The optimal revenue Π∗L(k) strictly decreases in k for R < R1L(k) and increases in

k for R > R1L(k), where R1L(k) ≡ cµ

[(µ−0.5λ )+]2
+ 1

2bk(R)
is the mean service quality at which

λ k
L(p∗L(k)) = 0.5λ . R1L(k) strictly decreases in k.

Proof. I will abuse the notation by writing p∗L(k) as p∗L and Π∗L(k) as Π∗L. Moreover, I

extend the definition of λ k
L to incorporate non-integer rationality levels. In particular, for

any non-negative real number k, define

b̃k(x)≡ [bbkc(x)]
(k−bkc)[bdke(x)]

(dke−k)

as the probability density function of Rk, where bxc and dxe denote the floor and ceiling

functions respectively. Let B̃k(x) denote the corresponding probability cumulative function

and ¯̃Bk(x) the inverse cumulative function. Therefore, λ k
L(p) is given by:

λ
k
L(p) = λ

¯̃Bk

(
p+

c
µ−λ k

L(p)

)
.

I will adopt this extension throughout this appendix.

Proof of Proposition A-6(i). The FOC of pλ k
L(p) with respect to p is

λ
k
L(p∗L)+ p∗

∂λ k
L(p∗L)
∂ p

= 0.

Differentiating both sides of the defining equation of λ k
L(p) with respect to p, I have

∂λ k
L(p)

∂ p
=−

λ b̃k

(
p+ c

µ−λ k
L(p)

)
1+ b̃k

(
p+ c

µ−λ k
L(p)

)
cλ

[µ−λ k
L(p)]

2

.

Therefore,

p∗L =

 1

λ b̃k

(
p+ c

µ−λ k
L(p∗L)

) +
c

[µ−λ k
L(p∗L)]2

λ
k
L(p∗L).

Denote

HL(x)≡

 1

b̃k

(
x+ c

µ−λ k
L(x)

) +
cλ

[µ−λ k
L(x)]2

 ¯̃Bk

(
x+

c
µ−λ k

L(x)

)
− x.

Therefore, HL(p∗L) = 0. To show that p∗L uniquely exists, it suffices to show that HL(0)> 0,

HL(+∞) = −∞, HL(x) is continuous, and H ′L(x) < 0. The first three conditions can be



A.3. Robustness Check 116

verified easily, and I will focus on the last one. Similar to the proof of Proposition 1(i),

to complete the proof, it suffices to show that
¯̃Bk(x)
b̃k(x)

strictly decreases in x, i.e., b̃k(x) has

an increasing failure rate. According to Lemma A-3, bbkc(x) and bdke(x) are logconcave

and thus have an increasing failure rate. Therefore, b̃k(x) is also logconcave and has an

increasing failure rate. lim
k→+∞

p∗(k) = p∗r follows from Lemma 3.

Proof of Proposition A-6(ii). According to the envelop theorem,

Π
∗′
L (k) = p

∂λ k
L(p)
∂k

∣∣∣∣
p=p∗L(k)

By the proof of Proposition A-5, ∂λ k
L(p)
∂k > 0 if p∗L+

c
µ−λ k

L(p∗L)
−R< 0, i.e., p∗L <R− c

(µ−0.5λ )+ .

The last inequality is equivalent to HL(R− c
(µ−0.5λ )+ ) < 0, which yields R > R1L(k) after

rearranging the terms. The R< R1L(k) and R= R1L(k) cases follow by mimicking the above

proof. R′1L(k) < 0 holds because by Lemma A-5, Bdke(x) crosses Bbkc(x) only once from

below at x = R, i.e., bdke(R)> bbkc(R). �

Proposition A-6 extends Proposition 1 by showing that the impact of sample size on

the server’s optimal revenue continues to hold with general service quality distributions.

Numerically, I find that the server’s optimal pricing strategy is also qualitatively preserved,

as illustrated in Figure A-5.

Figure A-5: The Impact of k on p∗L and Π∗L (µ = 1, λ = 1, c = 0.1, the service quality is uniformly

distributed with support [R−0.5,R+0.5])
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Next, I examine the server’s quality control decision. Denote p̂L, R̂L, and Π̂L as the

optimal price, quality, and revenue respectively. Due to analytical difficulties, I characterise
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the impact of sample size on p̂L, R̂L, and Π̂L numerically, as illustrated in Figure A-6.

Notably, all results in the base model (see Proposition 3 and the following numerical study)

continue to hold. Specifically, when market potential is sufficiently low or high, a larger

sample size leads the service provider to lower price and quality, and his optimal revenue

decreases. When market potential is intermediate, a larger sample size leads to a higher

quality, and both the optimal price and revenue are U-shaped in k.

Quality information disclosure. In this section I consider the service provider’s deci-

sion to inform customers of the mean service quality. The next proposition, which follows

by mimicking the proof of Proposition 4 and Corollary 1, characterises this information

disclosure decision, where k̃L ≡ {k|Π∗L(k) = Π∗L(+∞)} and R̃L is the service quality level at

which k̃L = 1.16

Proposition A-7. (i) When R6 R, the service provider does not disclose information.

(ii)When R < R < R̃L, the service provider does not disclose information for k < k̃L,

discloses information for k > k̃L, and is indifferent between the two for k = k̃L, where k̃L

strictly decreases in R.

(iii) When R> R̃L, the service provider discloses information.

(iv) When λ < 2µ , k̃L strictly decreases in µ and strictly increases in c. When µ −√
cµ

R 6 λ < 2µ , k̃L strictly increases in λ .

Proposition A-7 shows that the server’s information disclosure decision is robust to

the assumption that each anecdote is normally distributed. In particular, I find that an

intermediate-quality service provider chooses to inform customers of the mean service qual-

ity when they are sufficiently rational, and chooses not to inform when they are sufficiently

boundedly rational. Moreover, information non-disclosure is optimal for a larger range of

parameter values when the expected waiting cost increases (i.e., higher c, λ , or lower µ).

Next, I numerically investigate the information disclosure decision with quality con-

trol. As shown in Figure A-6, the server chooses not to inform customers when market po-

tential is sufficiently high or low. Under intermediate market potential, the service provider

chooses to inform iff the unit waiting cost is low, quality investment is not too costly, and

customers are sufficiently rational. A numerical example is presented in Figure A-7. No-

tably, all results are consistent with the base model (see A.2.3).

16As in Proposition 4, I can show that R̃L uniquely exists, and k̃L ∈ [1,+∞) uniquely exists for R < R 6 R̃L

and does not exist otherwise.
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Figure A-6: The Impact of k on p̂L, R̂L, and Π̂L (µ = 1, c = 0.1, the service quality is uniformly

distributed with support [R−0.5,R+0.5])
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(b) Π̂L under Low Market Potential (λ =
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(d) Π̂L under Intermediate Market Potential

(λ = 0.06, a = 0.05)
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Figure A-7: The Impact of c and a on the Information Disclosure Decision under Intermediate Mar-

ket Potential with Quality Control (µ = 1, λ = 1, the service quality is uniformly dis-

tributed with support [R−0.5,R+0.5])
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A.3.2 Customer Heterogeneity in the Sample Size

This section complements Chapter 2.5.2 by numerically verifying that the impact of sample

size on the server’s pricing, quality control, and information disclosure decisions, as charac-

terised in the main body of the paper, continues to hold when customers are heterogeneous

in the sample size.

Pricing and quality control. In this section, I examine the impact of the average

sample size n on the service provider’s pricing and quality control decisions, as given re-

spectively by:

max
p>0

pλ
n
P(p), (A-9)

max
p,R>0

pλ
n
P(p,R)−aR2. (A-10)

First, I consider the pricing decision characterised by Equation (A-9). Let p∗P(n) and Π∗P(n)

denote the optimal price and revenue for a given n. Numerically, I find that the impact of

the average sample size n on the optimal price and revenue are qualitatively the same as the

impact of sample size n in the base model (see Figure A-8 for an example).

Next I consider the quality control problem given by Equation (A-10). Let p̂P(n),

R̂P(n), and Π̂P(n) denote respectively the optimal price, quality, and revenue for a given

n. Recall that in the homogeneous-k setting, a larger sample size lowers the optimal price,

quality, and revenue when market potential is sufficiently low or high, and induces a higher

quality and U-shaped price and revenue when market potential is intermediate. Numerically,
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Figure A-8: The Impact of n on p∗P and Π∗P (µ = 2, λ = 2, c = 1, σ = 1)
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I have verified that these results continue to hold qualitatively in the heterogeneous-k setting,

and Figure A-9 presents an example.

Information disclosure. Next I investigate the service provider’s decision to inform

customers of the mean service quality, i.e., n→+∞. In the homogeneous-k setting, Propo-

sition 1 shows that a high (low)-quality service provider discloses (does not disclose) in-

formation, and an intermediate-quality service provider discloses information iff customers

are sufficiently rational. Through an extensive numerical study (see Figure A-10 for an il-

lustrative example), I have verified that these results continue to hold in the heterogeneous-k

setting.

As in §A.2.3, I also numerically investigate the server’s information disclosure decision

with quality control, as illustrated in Figure A-11. In line with the homogeneous-k model,

the server discloses (does not disclose) information when market potential is sufficiently

high (low); when market potential is intermediate, disclosing information is optimal when

c,a are low and n is high.

Joint information disclosure. Now I consider the service provider’s joint information

disclosure decision on both public and private anecdotes, the sizes of which (i.e., k1 and k2

respectively) are heterogeneous among customers. Consistent with Chapter 2.5.2, I assume

that the joint distribution of k1 and k2 has zero-truncated Poisson marginal distributions, i.e.,

+∞

∑
k2=1

fk1k2 =
nk1

1 e−n1

k1!(1− e−n1)
,
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Figure A-9: The Impact of n on p̂P, R̂P, and Π̂P (µ = 2, c = 1, σ = 1)
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Figure A-10: The Impact of n and R on the Quality Information Disclosure Decision (µ = 2, λ = 2,

c = 1, σ = 1)
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Figure A-11: The Impact of c and a on the Information Disclosure Decision under Intermediate

Market Potential with Quality Control (µ = 2,λ = 0.53,σ = 1)
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+∞

∑
k1=1

fk1k2 =
nk2

2 e−n2

k2!(1− e−n2)
,

where fk1k2 is the probability mass function of k1 and k2, n1 is the Poisson rate of the

marginal distributions of k1, and n2 is the corresponding Poisson rate for k2. By defini-

tion, n1 and n2 measure customers’ overall rationality levels regarding public and private

anecdotes respectively.

Similar to the derivation of λp(r), I can show that for a given set of public anecdotes

realisations Rl = xl (l = 1, . . .), the joining rate of customers with k1 = i and k2 = j, which

I denote as λ
i j
P , is given by:

λ
i j
P = λ Φ̄

(√
j

θ̄σ

[
p+

c
µ−λ l

P
−θ

(
i

∑
h=1

xh

)
/i− θ̄R

])
,

where λ l
P ≡∑

i
∑
j

fi jλ
i j
P is the total joining rate for all customers. Summing up the expression

of λ
i j
P with respect to i and j, I have

λ
l
P = ∑

i
∑

j
fi jλ Φ̄

(√
j

θ̄σ

[
p+

c
µ−λ l

P
−θ(

i

∑
h=1

xh)/i− θ̄R

])
.

Denote the joint distribution of xl (l = 1, . . .) by g(x1,x2,x3, . . .), I can derive the expression

of the expected joining rate λ het
P as follows:

λ
het
P =

∫
· · ·
∫

x1,x2,...

λ
l
P(x1,x2, . . .)g(x1,x2, . . .)dx1dx2 . . .

The next lemma shows that λ het
P is well-defined.

Lemma A-6. For any p > 0, a unique λ het
P ∈ (0,min{λ ,µ}) exists and strictly decreases

in p. Moreover, lim
n1,n2→+∞

λ het
P = λr(p).

Proof. Denote Fhet(x) ≡ ∑
i

∑
j

fi jλ Φ̄

(√
j

θ̄σ

[
p+ c

µ−x −θ(
i

∑
h=1

xh)/i− θ̄R
])
− x. Therefore,

λ l
P is defined by Fhet(λ

l
P) = 0. To prove the existence and uniqueness of λ het

P ∈

(0,min{λ ,µ}), it suffices to show that: (i) Fhet(x) strictly decreases in x; (ii) Fhet(0) > 0;

(iii) lim
x→min{λ ,µ}−

Fhet(x) 6 0, where the superscript “−” denotes x approaching min{λ ,µ}

from the left/below. Part (i) holds because Φ̄

(√
j

θ̄σ

[
p+ c

µ−x −θ(
i

∑
h=1

xh)/i− θ̄R
])

strictly

decreases in x and Part (ii) follows by Φ̄(x)> 0 for all x <+∞. To show Part (iii), I consider

the following cases. First, when µ > λ ,

Fhet(min{λ ,µ}) = Fhet(λ )

= λ

{
∑

i
∑

j
fi jΦ̄

(√
j

θ̄σ

[
p+

c
µ−λ

−θ(
i

∑
h=1

xh)/i− θ̄R

])
−1

}
< 0.
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since p+ c
µ−λ
−θ(

i
∑

h=1
xh)/i− θ̄R >−∞. Second, when µ 6 λ ,

lim
x→min{λ ,µ}−

Fhet(x) = 0−µ < 0.

To show that λ het
P strictly decreases in p, it suffices to show that λ l

P strictly decreases in

p. This holds because Fhet(x) strictly decreases in p for any x. lim
n1,n2→+∞

λ het
P = λr(p) follows

by mimicking the proof of Lemma 1. �

Next, I examine the server’s joint information disclosure decision. Since an analytical

characterisation is prohibitively difficult, I turn to a numerical study, as illustrated in Figure

A-12. I construct the joint distribution of k1 and k2 using the Frank’s copula. This approach

has been widely adopted in the economics, finance, and statistics literature (see, e.g., Genest

et al. 2003, Cameron et al. 2004, Chavez-Demoulin et al. 2006, McHale and Scarf 2007). I

find that the joint information disclosure decision in the homogeneous-k1&k2 setting con-

tinue to hold qualitatively. In particular, the service provider discloses (does not disclose)

information in both channels when R and θ are high (low), and discloses information only in

the public channel when R and θ are intermediate. Interestingly, the correlation between k1

and k2 may significantly influence the server’s joint information disclosure decision: As k1

and k2 become more positively correlated, the server chooses to disclose information in the

public channel instead of information non-disclosure for a larger range of parameter values.

To fully understand this result, first recall that compared to information non-disclosure, dis-

closing information exclusively in the public channel benefits the server by increasing the

efficiency of the pricing strategy at the cost of lower demand (i.e., the niche customers).

When k1 and k2 are more positively correlated, the expected demand increases, so the dis-

advantage of information disclosure (i.e., reducing demand) leads to a lower profit loss. As

a result, information disclosure exclusively in the public channel becomes more attractive.
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Figure A-12: The Impact of R and θ on the Joint Information Disclosure Decision with Customers
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Appendix B

Appendix to “Opaque Selling and

Last-Minute Selling: Revenue Management

in Vertically Differentiated Markets”

B.1 Proofs
In this section I prove all lemmas and propositions in Chapter 3. For expositional conve-

nience, we denote p j
i as the price of the type-i product in period j, where i ∈ {H,L} and

j ∈ {1,2}.

Proof of Lemma 4. Other selling strategies are:

1. In period 1, the firm targets the low-type consumers by the high-type product and do

not sell the low-type product. The high-type consumers do not buy in period 1.

2. In period 1, the firm targets the high-type consumers by the low-type product and the

low-type consumers by the high-type product.

3. In period 1, the firm targets both types of consumers by the high-type product and

does not sell the low-type product.

4. In period 1, the firm targets the high-type consumers by the high-type product and the

low-type consumers by both types of products.

5. In period 1, the firm targets the high-type consumers by both types of products and

does not sells to the low-type consumers.

For the rest of this proof, I will show that the above selling strategies cannot emerge in

equilibrium.
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First, I will rule out Case 1. Since the low-type consumers buy the high-type products

in period 1, I have

VlH − p1
H > 0.

To incentivise the high-type consumers to buy in period 2 instead of period 1, I need

VhH − p1
H < θ1(VhH − p2

H)+θ2(VhL− p2
L),

where θ1 (θ2) is the probability of receiving a high (low)-type product in period 2, and p2
H

(p2
L) is the expected price of the high (low)-type product in period 2. By subgame perfection,

p2
H >VlH and p2

L >VlL. Therefore, I need

VhH − p1
H < θ1(VhH −VlH)+θ2(VhL−VlL).

This inequality does not hold because VlH− p1
H > 0 = θ1(VlH−VlH)+θ2(VlL−VlL), VhH−

VhL >VlH −VlL, and θ1 +θ2 6 1.

Next, I will rule out Case 2. By incentive compatibility, I have VhL− p1
L >VhH − p1

H ,

VlH − p1
H >VlL− p1

L

The above equations cannot hold simultaneously because VhH −VhL >VlH −VlL.

Now, I will rule out Case 3 by showing that the firm’s equilibrium expected profit is

lower than ΠO. In this case with a low demand realisation in period 2, the firm has N low-

type products and the market has nh +nl−M low-type consumers. By subgame perfection,

she should price at VlL and all remaining consumers will buy. If demand turns out to be

high, the firm has N low-type products and the market has Nh−M high- and Nl low-type

consumers. The firm prices either at VhL to target the high-type consumers only, or at VlL to

target both types of consumers. Therefore the optimal period-2 profit under high-demand

realisation is Π2 = max{(Nh−M)VhL,NVlL}.

Next I calculate the period-1 profit. To incentivise both types of consumers to buy in

period 1, the firm should price the high-type product at most at VhL. Therefore, the period-1

profit is no larger than MVlH and the total expected profit is no larger than Π3, as given by:

Π3 ≡ (1−α)[MVlH +(nh+nl−M)VlL]+α[MVlH +(Nh−M)VhL]} if (Nh−M)VhL > NVlL,

and Π3 ≡ (1−α)[MVlH +(nh +nl−M)VlL]+α(MVlH +NVlL) otherwise.

By the expressions of ΠL and and ΠO,

ΠO−Π3 > ΠL−Π3 = K[α ′VhH +(1−α
′)VlH ]+ (1−α)(M−nh)VlH −MVlH

= K[α ′VhH +(1−α
′)VlH ]−KVlH > 0.
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Next, I will show that the firm’s equilibrium expected profit under Case 4 (denoted by

Π4) is weakly lower than Π3. In Case 4, the high-type consumers buy the high-type product

and the low-type consumers buy both types of products in period 1. Therefore, if demand

turns out to be low, the market has no consumers in period 2. If demand turns out to be

high, the firm has no remaining products. Consequently, I have:

Π4 = (1−α)[MVlH +(nh +nl−M)VlL]+α(MVlH +NVlL)6Π3.

Last, I will show that Case 5 cannot be an equilibrium. When demand turns out to be

high in period 2, the firm has M +N−Nh low-type products and N low-type consumers.

Therefore, the firm prices at VlL and sells all of them to the consumers. When a high-type

consumer finds only low-type products in stock in period 1, he rationally infers that the

demand is high. Therefore, by delaying his purchase to period 2, he can obtain surplus

VhL−VlL. To incentivise him not to delay the purchase, the firm should price the low-type

product at VhL−VhL +VlL = VlL in period 1. This indicates that the low-type consumers

should buy in period 1 and thus Case 5 cannot be an equilibrium. �

Proof of Proposition 7. ΠO > ΠL by definition.

When (Nh−M)VhL > NVlL, ΠO−ΠT = K[α ′(VhL−VlL)− (1−α ′)(∆h−∆l)]+ (1−

α)(M−nh)∆l +α[(Nh−M)VhL−NVlL]+(1−α ′)nl+nh−M
nl

K(∆h−∆l). Therefore, ΠO >ΠT

if and only if:

∆h <

[
1+

(1−α)nl

(1−α ′)K

]
∆l +

α ′nl

(1−α ′)(M−nh)
(VhL−VlL)

+
αnl

(1−α ′)(M−nh)

[
Nh−M

K
VhL−

N
K

VlL

]
.

When (Nh−M)VhL6NVlL, ΠO−ΠT =−(1−α ′)K(∆h−∆l)+(1−α)(M−nh)(VlH−

VlL)+(1−α ′)nl+nh−M
nl

K(∆h−∆l). Therefore, ΠO > ΠT if and only if

∆h <

[
1+

(1−α)nl

(1−α ′)K

]
∆l. �

Proof of Proposition 8. When VhL 6
N

Nh−MVlL, the firm should use opaque selling

when ∆h < [1 + (1−α)nl
(1−α ′)K ]∆l and traditional selling otherwise. Part (i) holds because the

right-hand side (RHS) strictly decreases in α due to

(1−α)nl

(1−α ′)K
=

(1−α +αM/Nh)nl

(1−α)nh +αM
=

nl

Nh

(1−α)Nh +αM
(1−α)nh +αM

=
nl

nhNh

[
Nh−

M(Nh−nh)
(1−α)nh

α
+M

]
.



B.1. Proofs 129

When VhL >
N

Nh−MVlL, the firm should use opaque selling when ∆h < [1+ (1−α)nl
(1−α ′)K ]∆l +

α ′nl
(1−α ′)(M−nh)

(VhL−VlL)+
αnl

(1−α ′)(M−nh)
[Nh−M

K VhL− N
KVlL]. Let F(α) denote the RHS, ∆ ≡

VhL−VlL, R≡ (Nh−M)VhL−NVlL, and T (α)≡ α

(1−α ′)K . By definition, I have

F ′(α) =−nlM(Nh−nh)

NhK2 ∆l +
nlM

(M−nh)Nh(1−α)2 ∆+
nlRT ′

M−nh
.

Since

T (α) =
α(1−α +αM/Nh)

(1−α)[(1−α)nh +αM]
=

1
nh

(
1

1−α
−1)

[
1−

M( 1
nh
− 1

Nh
)

(1−α)/α +M/nh

]
,

I have

nhT ′ =
1

(1−α)2

1−α

α
+M/Nh

1−α

α
+M/nh

− 1
(1−α)α

M( 1
nh
− 1

Nh
)

[(1−α)/α +M/nh]2

=
1

(1−α)2α

α(1−α

α
+ M

Nh
)(1−α

α
+ M

nh
)− (1−α)(M

nh
− M

Nh
)

[(1−α)/α +M/nh]2

=
1

(1−α)2α

(1−α)2

α
+(1−α)(M

nh
+ M

Nh
)+ αM2

nhNh
− (1−α)(M

nh
− M

Nh
)

[(1−α)/α +M/nh]2
> 0.

Therefore, when nlM(Nh−nh)
NhK2 VlH 6

nlM(Nh−nh)
NhK2 VlL +

nlM
(M−nh)Nh(1−α)2 ∆+ nlRT ′

M−nh
, F ′(α) > 0 and

thus opaque selling becomes more preferable as α increases. Otherwise, F ′(α) 6 0 and

thus opaque selling becomes less preferable as α increases. �

Proof of Lemma 5. I will enumerate all other possible selling strategies and show that

they cannot emerge in equilibrium.

Case 1: Suppose that the firm sells the high-type products to the high- and

intermediate-type consumers in period 1. When demand turns out to be high in period

2, the firm has N low-type products, and the market has Nh−M high-type consumers, Nm

intermediate-type consumers and Nl low-type consumers. When demand turns out to be

low, the firm has N low-type products, and the market has nh + nm−M intermediate-type

consumers and nl low-type consumers. There are two subcases depending on the firm’s

selling strategy under low demand in period 2.

1. When (nh +nm−M)VmL > (nh +nm +nl−M)VlL, the firm sells the low-type prod-

ucts exclusively to the intermediate-type consumers. I denote this equilibrium by L3a and

derive the firm’s expected profit as:

ΠL3a≡


MVmH +(1−α)(nh +nm−M)VmL +α(Nh−M)VhL, if (Nh−M)VhL > NVmL,

MVmH +(1−α)(nh +nm−M)VmL +αNVmL, if (Nh−M)VhL 6 NVmL.
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L3a cannot emerge in equilibrium since ΠL3a < ΠO1m and O1m exists whenever L3a does.

2. When (nh +nm−M)VmL 6 (nh +nm +nl−M)VlL, the firm sells the low-type prod-

ucts to the intermediate- and low-type consumers. I denote this equilibrium by L3b and

derive the firm’s expected profit as:

ΠL3b≡



M(VmH −VmL +VlL)+(1−α)(nh +nm +nl−M)VlL

+α(Nh−M)VhL, if (Nh−M)VhL > NVmL,

M(VmH −VmL +VlL)+(1−α)(nh +nm +nl−M)VlL

+αNVmL, if (Nh−M)VhL 6 NVmL.

Note that the period-1 price is VmH −VmL +VlL because intermediate-type consumers who

find the high-type products in stock in period 1 rationally infer that the demand realisation

is low.

When nmVmL > (nm +nl)VlL, O1m exists and ΠO1m > ΠL3b since

ΠO1m−ΠL3b >[(1−α)nh +αM][VmH + θ̄(∆h−∆m)]+(1−α)(M−nh)VmH

− (1−α)[(nh +nm +nl−M)VlL− (nh +nm−M)VmL]−M(VmH −VmL +VlL)

=[(1−α)nh +αM]θ̄(∆h−∆m)+M(VmL−VlL)

− (1−α)[(nh +nm +nl−M)VlL− (nh +nm−M)VmL]> 0

for (nh +nm)VmL > (nh +nm +nl)VlL.

When nmVmL 6 (nm+nl)VlL, it can be verified that ΠL1m > ΠL3b. Since L1m is strictly

dominated for all parameter values (see the proof of Proposition 9), L3b cannot emerge in

equilibrium.

Case 2: Suppose that the firm sells the high-type products to all three types of con-

sumers in period 1. When demand turns out to be high in period 2, the firm has N low-

type products, and the market has Nh−M high-type consumers, Nm intermediate-type con-

sumers, and Nl low-type consumers. When demand turns out to be low, the firm has N

low-type products, and the market has nh + nm−M intermediate-type consumers and nl

low-type consumers. Therefore, Case 2 is identical to Case 1 expect that the period-1 price

in Case 2 is lower. Case 2 cannot emerge in equilibrium since Case 1 cannot.

Case 3: Now consider all other selling strategies in which the firm sells only the high-

type product in period 1. Similar to the proof of Lemma 4, I can show that whenever the

low-type consumers are willing to buy in period 1, both the high- and intermediate-type
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consumers are also willing to buy. Therefore, the only remaining strategy is that the firm

sells the high-type product exclusively to the intermediate-type consumers in period 1. I

will rule out this strategy by enumerating all possible subcases.

First, suppose that M 6 nm < Nm. When demand turns out to be high in period 2,

the firm has N low-type products, and the market has Nh high-type consumers, Nm−M

intermediate-type consumers, and Nl low-type consumers. When demand turns out to be

low, the firm has N low-type products, and the market has nh high-type consumers, nm−M

intermediate-type consumers, and nl low-type consumers. Note that under both demand

realisations, when an intermediate-type consumer delays his purchase to period 2, he is as-

sured to receive the low-type products. I will show that the strategy does not emerge in

equilibrium because the high-type consumers are incentivised to buy in period 1. When the

firm prices the low-type product above VlL under both demand realisations in period 2, it

can be verified that the high-type consumers benefit more by buying in period 1. Therefore,

I only need to consider the strategies in which the firm prices the low-type products at VlL

under either demand realisation. Notice that she cannot price at VlL due to Nh+Nm >M+N.

Consequently, the only remaining case is that the firm prices at VlL under the low demand

realisation.

First, suppose that the firm prices the low-type product at VhL under the high de-

mand realisation in period 2. Here a high-type consumer’s expected surplus of buy-

ing in period 2 is (1 − α)(VhL −VlL), whereas his surplus of buying in period 1 is

VhH−VmH +(1−α)(VmL−VlL). Since VhH−VmH +(1−α)(VmL−VlL)> (1−α)(VhL−VlL),

the consumer should not buy in period 2 and the strategy does not emerge in equilibrium.

Second, suppose that the firm prices the low-type product at VmL under the high

demand realisation in period 2. Here a high-type consumer’s expected surplus of buy-

ing in period 2 is (1− α)(VhL −VlL) + α(VhL −VmL), whereas his surplus of buying in

period 1 is VhH −VmH + (1− α)(VmL −VlL). Since VhH −VmH + (1− α)(VmL −VlL) >

(1−α)(VhL−VlL)+α(VhL−VmL), the consumer should not buy in period 2 and the strategy

does not emerge in equilibrium.

Next suppose that nm < M < Nm. When demand turns out to be high in period 2,

the firm has N low-type products, and the market has Nh high-type consumers, Nm−M

intermediate-type consumers, and Nl low-type consumers. When demand turns out to be

low, the firm has M− nm high-type products and N low-type products, and the market has
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nh high-type consumers and nl low-type consumers. Note that under the high demand re-

alisation, the firm targets either exclusively the high-type consumers or both the high- and

intermediate-type consumers. Therefore, the intermediate-type consumers who delay their

purchase to period 2 obtain null surplus under the high demand realisation.

As the first subcase, suppose that the firm targets exclusively the high-type consumers

under high demand in period 2. Therefore, the highest period-1 price is VmH . First, suppose

that the firm targets exclusively the high-type consumers under low demand in period 2,

i.e., (M−nm)VhH +(nh+nm−M)VhL > (M−nm)(VhH−VhL+VlL)+(nh+nm+nl−M)VlL.

Since the high-type consumers’ expected surplus of buying in period 2 is zero, they should

switch to buying in period 1. Second, suppose that the firm targets both the high- and low-

type consumers under low demand in period 2, i.e., (M− nm)VhH +(nh + nm−M)VhL 6

(M−nm)(VhH −VhL +VlL)+(nh +nm +nl−M)VlL. Here a high-type consumer’s expected

surplus of buying in period 2 is (1−α)(VhL−VlL) and his surplus of buying in period 1 is

VhH −VmH +(1−α)(VmL−VlL). As a result, they should buy in period 1 and the strategy

cannot exist in equilibrium.

As the second subcase, suppose that the firm targets both the high- and intermediate-

type consumers under high demand in period 2. First, suppose that the firm targets exclu-

sively the high-type consumers under low demand in period 2, i.e., (M− nm)VhH +(nh +

nm−M)VhL > (M−nm)(VhH −VhL +VlL)+ (nh +nm +nl−M)VlL. Therefore, a high-type

consumer’s expected surplus of buying in period 2 is α(VhL−VmL) and his surplus of buy-

ing in period 1 is VhH −VmH . As a result, they should buy in period 1 and the strategy

cannot exist in equilibrium. Second, suppose that the firm targets both the high- and low-

type consumers under low demand in period 2, i.e., (M− nm)VhH +(nh + nm−M)VhL 6

(M−nm)(VhH −VhL +VlL)+(nh +nm +nl−M)VlL. Here a high-type consumer’s expected

surplus of buying in period 2 is (1−α)(VhL−VlL)+α(VhL−VmL) and his surplus of buying

in period 1 is VhH−VmH +(1−α)(VmL−VlL). As a result, the high-type consumers should

buy in period 1 and the strategy cannot exist in equilibrium.

Last suppose that M > Nm. When demand turns out to be high in period 2, the firm

has M−Nm high-type products and N low-type products, and the market has Nh high-type

consumers and Nl low-type consumers. Since Nh+Nm > M+N, the firm should target only

the high-type consumers. When demand turns out to be low, the firm has M−nm high-type

products and N low-type products, and the market has nh high-type consumers and nl low-
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type consumers. Following the same line of reasoning as the nm < M < Nm case, I can show

that the high-type consumers obtain higher surplus by buying in period 1, so the strategy

does not exist in equilibrium.

Case 4: Suppose that the firm sells both types of products exclusively to the high-

type consumers in period 1. When demand turns out to be high in period 2, the firm has

M+N−Nh low-type products and the market has Nm intermediate-type consumers and Nl

low-type consumers. Suppose that the firm targets only the intermediate-type consumers in

this scenario. Since the high-type consumers who find the high-type product out of stock in

period 1 rationally infer that the demand is high, the firm has to lower the regular price of the

low-type product to VhL−VhL+VmL =VmL to incentivise the high-type consumers to buy the

low-type product in period 1. However, this implies that the intermediate-type consumers

should deviate to buying in period 1. Therefore, the strategy cannot exist in equilibrium. By

the same reasoning, the firm cannot target both the intermediate- and low-type consumers

under high demand in period 2. Consequently, Case 4 cannot exist in equilibrium.

The above reasoning also indicates that the strategy in which the firm sells both types

of products exclusively to the intermediate-type consumers in period 1 cannot exist in equi-

librium. Moreover, the strategy in which the firm sells both types of products exclusively

to the low-type consumers in period 1 cannot exist in equilibrium by the proof of Lemma

4. Therefore, I only need to consider strategies in which the firm sells different types of

products to different types of consumers in period 1. By the proof of Lemma 4, the type(s)

of consumers that buy the high-type product in period 1 is(are) higher than the type(s) of

consumers that buy the low-type product in period 1. As a result, we can further restrict our

attention to the following strategies.

Case 5: Suppose that the firm sells the high-type product to the high-type consumers

and the low-type product to the intermediate-type consumers (and also the high-type con-

sumers if the high-type product stocks out) in period 1. As the first subcase, suppose that

Nh +Nm > M+N. When demand turns out to be high in period 1, M high-type consumers

buy the high-type product, the remaining high-type consumers buy the low-type prod-

uct,17 and the intermediate-type consumers buy the leftover low-type products. Therefore,

under high demand in period 2, the firm has no remaining products and the market has

17They prefer buying the low-type product in period 1 to delaying the purchase to period 2 because they

rationally infer from the stockout of the high-type products that the demand is high, in which case their expected

surplus of waiting is zero.
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Nh +Nm−M−N intermediate-type consumers and Nl low-type consumers. Under low

demand in period 2, the firm has M−nh high-type products and N−nm low-type products,

and the market has nl low-type consumers. In this scenario, the firm should mix all high-

type products and nh + nl −M low-type products and sell them to the low-type consumers

as the opaque product at price β1VlH + β̄1VlL, where β1 ≡ (M−nh)/nl and β̄1 ≡ 1−β1.

Now I characterise the period-1 prices of both types of products. Since the

intermediate-type consumers who find the high-type product out to stock in period 1 ratio-

nally infer that the demand is low, they anticipate surplus β1(VmH −VlH)+ β̄1(VmL−VlL)

when delaying their purchase to period 2. To incentivise them to buy in period 1, the firm

should lower the regular price of low-type products to VmL− β1(VmH −VlH) + β̄1(VmL−

VlL)<VlL. Therefore, the low-type consumers are also incentivised to buy in period 1, and

the strategy fails to exist in equilibrium.

As the second subcase, suppose that Nh+Nm 6M+N. The analysis is the same as the

previous case under low demand in period 2. Under high demand in period 2, there are two

cases. First, the high-type consumers who find the high-type product out of stock in period

1 buy the low-type product in period 1 instead of waiting for period 2. Therefore, there

are M+N−Nh−Nm low-type products and Nl low-type consumers under high demand in

period 2. By subgame perfection, the firm should price these products at VlL. Similar to the

analysis of the previous case, it can be easily verified that the regular price of the low-type

products is below VlL to prevent the intermediate-type consumers from waiting for the sales.

Therefore, this strategy cannot exist in equilibrium. Second, the high-type consumers who

find the high-type products out of stock in period 1 wait for period 2 instead of buying

the low-type product in period 1. This choice indicates that the sales price of the low-type

products is VlL instead of VhH (recall that only high- and low-type consumers remain in the

market under high demand in period 2). Similar to the first case, I can show that the regular

price of the low-type products is below VlL. Therefore, this strategy equilibrium cannot

exist in equilibrium.

Case 6: Suppose that the firm sells the high-type product to the high- and intermediate-

type consumers and sells the low-type product to the low-type consumers in period 1. Under

high demand in period 1, M high-type consumers buy the high-type product, the remaining

high-type consumers buy the low-type product, and the remaining low-type products are
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purchased by the intermediate-type consumers.18 Therefore, the firm has no leftover prod-

ucts in period 2. Under low demand in period 1, all high-type consumers buy the high-type

product, M− nm intermediate-type consumers buy the remaining high-type product, the

remaining intermediate-type consumers buy the low-type product, and all low-type con-

sumers buy the low-type product. Therefore, the firm has no remaining consumer in period

2 and the firm’s expected profit is:

ΠT 2m =(1−α)[(VmH−VmL+VlL)M+VlL(nh+nm+nl−M)]+α[(VmH−VmL+VlL)M+VlLN],

where the subscript T2m denotes this type of strategy. Next I will show that ΠT 2m < ΠO1m

whenever O1m exists and ΠT 2m < ΠL2m whenever L1m exists.

First, suppose nmVmL > (nm +nl)VlL and O1m exists.

ΠO1m−ΠT 2m > MVmH +(1−α)(nh +nm−M)VmL +αNVmL

−M(VmH −VmL +VlL)− (1−α)(nh +nm +nl−M)VlL−αNVlL

= [M+(1−α)(nh +nm−M)+αN](VmL−VlL)− (1−α)nlVlL

Therefore, ΠO1m > ΠT 2m if

VmL >
(1−α)(nm +nl)+M− (1−α)(M−nh)+αN

(1−α)nm +M− (1−α)(M−nh)+αN
VlL.

This inequality holds because nmVmL > (nm +nl)VlL and M− (1−α)(M−nh)+αN > 0.

Second, suppose nmVmL 6 (nm +nl)VlL and L2m exists.

ΠL2m−ΠT 2m > M(VmH −VmL +VlL)+(1−α)(nh +nm +nl−M)VlL +αNVmL

−M(VmH −VmL +VlL)− (1−α)(nh +nm +nl−M)VlL−αNVlL > 0

Therefore, Case 6 cannot exist in equilibrium. �

Proof of Proposition 9. By Lemma 5, I only need to consider Tm, L1m, L2m, O1m,

and O2m. Moreover, L1m can be ruled out because it is strictly dominated by O1m (note

that ΠL1m < ΠO1m and O1m exists whenever L1m exists). Since

ΠO2m−ΠL2m =[(1−α)nh +αM](1−α
′)[∆h−∆m−φ(∆h−∆l)]

− (1−α)(M−nh)(∆m−∆l),

ΠO2m > ΠL2m if and only if:

∆h >
1
φ̄
[1+

(1−α)(M−nh)

(1−α ′)K
]∆m−

1
φ̄
[φ +

(1−α)(M−nh)

(1−α ′)K
]∆l.

18As in Case 5, I can show that the high-type consumers prefer buying the low-type product in period 1 to

buying in period 2.
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If (Nh−M)VhL > NVmL,

ΠO1m−ΠT m =[(1−α)nh +αM]{VhL−VlL− (1−α
′)[θ(∆h−∆m)+VhL−VmL]}

+(1−α)(M−nh)∆m +(1−α)[nmVmL− (nm +nl)VlL]

+α[(Nh−M)VhL−NVlL].

Therefore, ΠO1m > ΠT m if and only if:

∆h <[1+
(1−α)(M−nh)

(1−α ′)θK
]∆m +

VhL−VlL− (1−α ′)(VhL−VmL)

(1−α ′)θ

+
(1−α)[nmVmL− (nm +nl)VlL]+α[(Nh−M)VhL−NVlL]

(1−α ′)θK
.

Since

ΠL2m−ΠT m =[(1−α)nh +αM][α ′(VhL−VlL)− (1−α
′)(∆h−∆m)]

+(1−α)(M−nh)∆m +α[(Nh−M)VhL−NVlL],

ΠL2m > ΠT m if and only if:

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

α ′

1−α ′
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)K
.

Since

ΠO2m−ΠT m =[(1−α)nh +αM][α ′(VhL−VlL)− (1−α
′)φ(∆h−∆l)]

+(1−α)(M−nh)∆l +α[(Nh−M)VhL−NVlL],

ΠO2m > ΠT m if and only if:

∆h < [1+
(1−α)(M−nh)

(1−α ′)φK
]∆l +

α ′

(1−α ′)φ
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)φK
.

Since ΠO1m −ΠL2m = (1− α ′)[(1− α)nh + αM][θ̄(∆h − ∆m) +VmL −VlL]− (1−

α)[(nm +nl)VlL−nmVmL], ΠO1m > ΠL2m if and only if

∆h > ∆m +
(1−α)[(nm +nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh +αM]
− VmL−VlL

θ̄
.

If (Nh−M)VhL 6 NVmL,

ΠO1m−ΠT m =− [(1−α)nh +αM](1−α
′)θ(∆h−∆m)+(1−α)(M−nh)∆m

+(1−α)[nmVmL− (nm +nl)VlL]+αN(VmL−VlL).

Therefore, ΠO1m > ΠT m if and only if:

∆h <[1+
(1−α)(M−nh)

(1−α ′)θK
]∆m +

(1−α)[nmVmL− (nm +nl)VlL]+αN(VmL−VlL)

(1−α ′)θK
.
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Since

ΠL2m−ΠT m =− [(1−α)nh +αM](1−α
′)(∆h−∆m)

+(1−α)(M−nh)∆m +αN(VhL−VlL),

ΠL2m > ΠT m if and only if:

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

αN(VhL−VlL)

(1−α ′)K
.

Since

ΠO2m−ΠT m =− [(1−α)nh +αM](1−α
′)φ(∆h−∆m)

+(1−α)(M−nh)∆l +αN(VhL−VlL),

ΠO2m > ΠT m if and only if:

∆h < [1+
(1−α)(M−nh)

(1−α ′)φK
]∆l +

αN(VhL−VlL)

(1−α ′)φK
.

Since

ΠO1m−ΠL2m = (1−α
′)[(1−α)nh +αM]θ̄(∆h−∆m)− (1−α)[(nm +nl)VlL−nmVmL],

ΠO1m > ΠL2m if and only if

∆h > ∆m +
(1−α)[(nm +nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh +αM]
.

Organising the above inequalities for all possible cases (i.e., (nm + nl)VlL− nmVmL <

0, 0 6 (nm + nl)VlL − nmVmL < (M − nh)(∆m − ∆l), and (nm + nl)VlL − nmVmL > (M −

nh)(∆m−∆l)) leads to the proposition. Specifically, when (nm + nl)VlL− nmVmL < 0 and

(Nh−M)VhL > NVmL, the firm should use traditional selling if

∆h >[1+
(1−α)(M−nh)

(1−α ′)θK
]∆m +

VhL−VlL− (1−α ′)(VhL−VmL)

(1−α ′)θ

+
(1−α)[nmVmL− (nm +nl)VlL]+α[(Nh−M)VhL−NVlL]

(1−α ′)θK

and use opaque selling otherwise.

When (nm + nl)VlL− nmVmL < 0 and (Nh−M)VhL 6 NVmL, the firm should use tradi-

tional selling if

∆h >[1+
(1−α)(M−nh)

(1−α ′)θK
]∆m +

(1−α)[nmVmL− (nm +nl)VlL]+αN(VmL−VlL)

(1−α ′)θK
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and use opaque selling otherwise.

When 0 6 (nm + nl)VlL− nmVmL < (M− nh)(∆m−∆l) and (Nh−M)VhL > NVmL, the

firm should use traditional selling if

∆h > [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

α ′

1−α ′
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)K

and

∆h > [1+
(1−α)(M−nh)

(1−α ′)φK
]∆l +

α ′

(1−α ′)φ
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)φK
,

use opaque selling if

∆h > ∆m +
(1−α)[(nm +nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh +αM]
− VmL−VlL

θ̄

and

∆h <[1+
(1−α)(M−nh)

(1−α ′)θK
]∆m +

VhL−VlL− (1−α ′)(VhL−VmL)

(1−α ′)θ

+
(1−α)[nmVmL− (nm +nl)VlL]+α[(Nh−M)VhL−NVlL]

(1−α ′)θK
,

and use last-minute selling if

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

α ′

1−α ′
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)K

and

∆h < ∆m +
(1−α)[(nm +nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh +αM]
− VmL−VlL

θ̄
.

When 0 6 (nm + nl)VlL− nmVmL < (M− nh)(∆m−∆l) and (Nh−M)VhL 6 NVmL, the

firm should use traditional selling if

∆h >[1+
(1−α)(M−nh)

(1−α ′)θK
]∆m +

(1−α)[nmVmL− (nm +nl)VlL]+αN(VmL−VlL)

(1−α ′)θK

and

∆h > [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

αN(VhL−VlL)

(1−α ′)K
,

opaque selling if

∆h <[1+
(1−α)(M−nh)

(1−α ′)θK
]∆m +

(1−α)[nmVmL− (nm +nl)VlL]+αN(VmL−VlL)

(1−α ′)θK
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and

∆h > ∆m +
(1−α)[(nm +nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh +αM]
,

and last-minute selling if

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

αN(VhL−VlL)

(1−α ′)K

and

∆h < ∆m +
(1−α)[(nm +nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh +αM]
.

When (nm + nl)VlL− nmVmL > (M− nh)(∆m−∆l) and (Nh−M)VhL > NVmL, the firm

should use traditional selling if

∆h > [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

α ′

1−α ′
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)K

and

∆h > [1+
(1−α)(M−nh)

(1−α ′)φK
]∆l +

α ′

(1−α ′)φ
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)φK
,

opaque selling if

∆h >
1
φ̄
[1+

(1−α)(M−nh)

(1−α ′)K
]∆m−

1
φ̄
[φ +

(1−α)(M−nh)

(1−α ′)K
]∆l

and

∆h < [1+
(1−α)(M−nh)

(1−α ′)φK
]∆l +

α ′

(1−α ′)φ
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)φK
,

and last-minute selling if

∆h <
1
φ̄
[1+

(1−α)(M−nh)

(1−α ′)K
]∆m−

1
φ̄
[φ +

(1−α)(M−nh)

(1−α ′)K
]∆l

and

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

α ′

1−α ′
(VhL−VlL)+

α[(Nh−M)VhL−NVlL]

(1−α ′)K
.

When (nm + nl)VlL− nmVmL > (M− nh)(∆m−∆l) and (Nh−M)VhL 6 NVmL, the firm

should use traditional selling if

∆h > [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

αN(VhL−VlL)

(1−α ′)K
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and

∆h > [1+
(1−α)(M−nh)

(1−α ′)φK
]∆l +

αN(VhL−VlL)

(1−α ′)φK
,

opaque selling if

∆h >
1
φ̄
[1+

(1−α)(M−nh)

(1−α ′)K
]∆m−

1
φ̄
[φ +

(1−α)(M−nh)

(1−α ′)K
]∆l

and

∆h < [1+
(1−α)(M−nh)

(1−α ′)φK
]∆l +

αN(VhL−VlL)

(1−α ′)φK
,

and last-minute selling if

∆h <
1
φ̄
[1+

(1−α)(M−nh)

(1−α ′)K
]∆m−

1
φ̄
[φ +

(1−α)(M−nh)

(1−α ′)K
]∆l

and

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆m +

αN(VhL−VlL)

(1−α ′)K
.

The above analysis yields Proposition 9, which I illustrate in Figure 3.3 and provide

the expressions of l1-l5 are given as follows.

l1 : ∆h = {1 + (1 − α)(M − nh)/[(1 − α ′)θK]}∆m + [VhL − VlL − (1 − α ′)(VhL −

VmL)]/[(1 − α ′)θ ] + {(1 − α)[nmVmL − (nm + nl)VlL] + α[(Nh − M)VhL − NVlL]}/[(1 −

α ′)θK] when (Nh−M)VhL > NVmL and ∆h = {1+(1−α)(M− nh)/[(1−α ′)θK]}∆m +

{(1−α)[nmVmL−(nm+nl)VlL]+αN(VmL−VlL)}/[(1−α ′)θK when (Nh−M)VhL 6NVmL.

l2 : ∆h = [1 + (1−α)(M−nh)
(1−α ′)φK ]∆l +

α ′

(1−α ′)φ (VhL −VlL) +
α[(Nh−M)VhL−NVlL]

(1−α ′)φK when (Nh −

M)VhL > NVmL and ∆h = [1+ (1−α)(M−nh)
(1−α ′)φK ]∆l +

αN(VhL−VlL)
(1−α ′)φK when (Nh−M)VhL 6 NVmL.

l3 : ∆h =
1
φ̄
[1+ (1−α)(M−nh)

(1−α ′)K ]∆m− 1
φ̄
[φ + (1−α)(M−nh)

(1−α ′)K ]∆l .

l4 : ∆h = ∆m + (1−α)[(nm+nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh+αM]
− VmL−VlL

θ̄
when (Nh−M)VhL > NVmL and ∆h =

∆m + (1−α)[(nm+nl)VlL−nmVmL]

(1−α ′)θ̄ [(1−α)nh+αM]
when (Nh−M)VhL 6 NVmL.

l5 : ∆m = ∆l +
(nm+nl)VlL−nmVmL

M−nh
. �

Proof of Proposition 10. First, consider the case where (nm +nl)VlL−nmVmL < (M−

nh)(∆m−∆l). By Proposition 9, only Tm, O1m, and L2m may exist in equilibrium. As the

first subcase, suppose (Nh−M)VhL > NVmL. Denote g1(α)≡ΠO1m−ΠL2m = (1−α ′)[(1−
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α)nh +αM][θ̄(∆h−∆m)+VmL−VlL]− (1−α)[(nm +nl)VlL−nmVmL].

g′1(α) =

{
(M−nh)(1−α

′)−MNh[(1−α)nh +αM]

[αM+(1−α)Nh]2

}
[θ̄(∆h−∆m)

+VmL−VlL]+ (nm +nl)VlL−nmVmL

=
(M−nh)(1−α)Nh[αM+(1−α)Nh]−MNh[(1−α)nh +αM]

[αM+(1−α)Nh]2
[θ̄(∆h−∆m)

+VmL−VlL]+ (nm +nl)VlL−nmVmL

=
(M−nh)(1−α)2N2

h −MNh[(1−α2)nh +α2M]

[αM+(1−α)Nh]2
[θ̄(∆h−∆m)+VmL−VlL]

+ (nm +nl)VlL−nmVmL.

Since

(M−nh)(1−α)Nh[αM+(1−α)Nh]−MNh[(1−α)nh +αM]

=− (M−nh)(M+Nh)Nhα
2−2(M−nh)N2

h α +Nh(MNh−nhNh−Mnh),

this expression is negative if α > ᾱ , where ᾱ ≡ −∞ if N2
h + (M + Nh)(MNh − nhNh −

Mnh)/(M−nh)< 0, and ᾱ ≡
√

N2
h+(M+Nh)(MNh−nhNh−Mnh)/(M−nh)−2Nh

M+Nh
otherwise.

Assume that α > ᾱ , then g′1(α)< 0 iff

(M−nh)(1−α)2N2
h −MNh[(1−α2)nh +α2M]

[αM+(1−α)Nh]2
[θ̄(∆h−∆m)+VmL−VlL]

+ (nm +nl)VlL−nmVmL < 0,

or

VhH −VmH >VhL−VmL

+
1
θ̄

{
− [(nm +nl)VlL−nmVmL][αM+(1−α)Nh]

2

(M−nh)(1−α)2N2
h −MNh[(1−α2)nh +α2M]

−VmL +VlL

}
.

As the second subcase, suppose (Nh−M)VhL6NVmL. Denote g2(α)≡ΠO1m−ΠL2m =

(1−α ′)[(1−α)nh +αM]θ̄(∆h−∆m)− (1−α)[(nm +nl)VlL−nmVmL].

g′2(α) =
(M−nh)(1−α)2N2

h −MNh[(1−α2)nh +α2M]

[αM+(1−α)Nh]2
θ̄(∆h−∆m)+(nm +nl)VlL−nmVmL.

Similar to the first subcase, it can be verified that g′2(α)< 0 when α > ᾱ and

VhH −VmH >VhL−VmL−
[(nm +nl)VlL−nmVmL][αM+(1−α)Nh]

2

θ̄{(M−nh)(1−α)2N2
h −MNh[(1−α2)nh +α2M]}

.

Second, consider the case where (nm + nl)VlL− nmVmL > (M− nh)(∆m−∆l). Denote

g3(α)≡ ΠO2m−ΠL2m = [(1−α)nh +αM](1−α ′)[∆h−∆m−φ(∆h−∆l)]− (1−α)(M−
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nh)(∆m−∆l).

g′3(α) =
(M−nh)(1−α)2N2

h −MNh[(1−α2)nh +α2M]

[αM+(1−α)Nh]2
[∆h−∆m−φ(∆h−∆l)]

+(M−nh)(∆m−∆l).

Similar to the first case, I can show that g′3(α)< 0 when α > ᾱ and

VhH −
M−nh−A
−φ̄A

VmH >
M−nh +φA

Aφ̄
∆l +VhL−

M−nh−A
−φ̄A

VmL,

where A≡ (M−nh)(1−α)2N2
h−MNh[(1−α2)nh+α2M]

[αM+(1−α)Nh]2
< 0. �

Proof of Lemma 6. ΠOd−ΠO = (1−α ′)(1− δ )[K(∆h−∆l +VhL−VlL)− θ̄K(∆h−

∆l)− 1−α

1−α ′ (M−nh)∆l− 1−α

1−α ′ nlVlL]. Therefore product damage increases profits if

∆h >
[ 1−α

1−α ′ (M−nh)+θK]∆l−KVhL +( 1−α

1−α ′ nl +K)VlL

θK

and decreases profits otherwise. �

Proof of Proposition 11. Similar to the proof of Lemma 4, I can show that selling

strategies other than traditional selling, last-minute selling, and opaque selling cannot exist

in equilibrium. Therefore, I will focus on T, L, and Od for the rest of the proof.

ΠOd −ΠL = (1−α ′)(1− δ )K(∆h−∆l +VhL−VlL)+ (1−α ′)δ θ̄K(∆h−∆l)− (1−

α)(1−δ )[(M−nh)∆l +nlVlL]. Thus ΠOd > ΠL if and only if

∆h > [1+
(1−α)(1−δ )(M−nh)

(1−α ′)(1−δθ)K
]∆l +

(1−δ )[(K + 1−α

1−α ′ nl)VlL−KVhL]

(1−δθ)K
.

I will denote the RHS by x1.

When (Nh−M)VhL > NVlL, ΠOd−ΠT = K[(VhL−VlL)−(1−α ′)δ (VhH−VlH)]+(1−

α)[δ (M− nh)∆l − (1− δ )nlVlL] +α[(Nh−M)VhL−NVlL] + (1−α ′)δ θ̄K(∆h−∆l). Thus

ΠOd > ΠT if and only if:

∆h <[1+
(1−α)(M−nh)

(1−α ′)θK
]∆l

+
[1− (1−α ′)δ ]K(VhL−VlL)+α[(Nh−M)VhL−NVlL]− (1−α)(1−δ )nlVlL

(1−α ′)δθK
.

I will denote the RHS by x2.

By the proof of Proposition 7, ΠL > ΠT if and only if

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆l +

α ′

1−α ′
(VhL−VlL)+

α

1−α ′
[
Nh−M

K
VhL−

N
K

VlL].
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I will denote the RHS by x3. To summarise, the firm should use last-minute selling when

∆h < min{x1,x3}, opaque selling when x1 < ∆h < x2, and traditional selling when ∆h >

max{x2,x3}.

When (Nh−M)VhL 6NVlL, ΠOd−ΠT = (1−α ′)K[(VhL−VlL)−δ (VhH−VlH)]+(1−

α ′)δ θ̄K(∆h−∆l)+(1−α)[δ (M−nh)∆l− (1−δ )nlVlL]. Thus ΠOd > ΠT if and only if:

∆h < [1+
(1−α)(M−nh)

(1−α ′)θK
]∆l +

(1−δ )[K(VhL−VlL)− 1−α

1−α ′ nlVlL]

δθK
.

I will denote the RHS by x4.

By Proposition 7, ΠL > ΠT if and only if:

∆h < [1+
(1−α)(M−nh)

(1−α ′)K
]∆l.

I will denote the RHS by x5.

To summarise, the firm should use last-minute selling when ∆h < min{x1,x5}, opaque

selling when x1 < ∆h < x4, and traditional selling when ∆h > max{x4,x5}.

The above analysis yields Proposition 11, which I illustrate in Figure 3.4. The ex-

pressions corresponding to l1-l5 are given as follows, where θ ≡ M−nh
nl

, ∆ ≡ VhL−VlL, and

R≡ (Nh−M)VhL−NVlL.

l1 : ∆h = [1+ (1−α)(1−δ )(M−nh)
(1−α ′)(1−δθ)K ]∆l +

(1−δ )[(K+ 1−α

1−α ′ nl)VlL−KVhL]

(1−δθ)K .

l2 : ∆h = [1+ (1−α)(M−nh)
(1−α ′)θK ]∆l +{[1−(1−α ′)δ ]K(VhL−VlL)+α[(Nh−M)VhL−NVlL]−

(1−α)(1−δ )nlVlL}/[(1−α ′)δθK].

l3 : ∆h = [1+ (1−α)(M−nh)
(1−α ′)K ]∆l +

α ′

1−α ′ (VhL−VlL)+
α

1−α ′ [
Nh−M

K VhL− N
KVlL].

l4 : ∆h = [1+ (1−α)(M−nh)
(1−α ′)θK ]∆l +

(1−δ )[K(VhL−VlL)− 1−α

1−α ′ nlVlL]

δθK .

l5 : ∆h = [1+ (1−α)(M−nh)
(1−α ′)K ]∆l . �

B.2 Deterministic Demand
In this section, I consider the deterministic demand setting in which I denote the numbers

of the high- and low-type consumers by Dh and Dl respectively. I adopt all assumptions in

the base model except those on the demand distribution. In addition, I assume that Dh <

M < Dh + Dl to rule out the obvious cases where opaque selling is unfeasible because

of insufficient high-type leftover products (Dh > M) or insufficient remaining consumers

(Dh +Dl 6M).

First, consider the strategies in which the firm sells the high-type products to the high-

type consumers and does not sell the low-type products in period 1. At the beginning
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of period 2, the firm has M−Dh high-type products and N low-type products, and the

market has Dl low-type consumers. When the firm uses last-minute selling (denoted by

subscript L1), she targets them by the high and low-type products. To prevent the high-type

consumers from delaying their purchase to period 2, the firm should price the high-type

product at VlH in period 1. Therefore, her total profit is:

ΠL1 ≡MVlH +min{Dh +Dl−M,N}VlL.

If the firm uses opaque selling (denoted by subscript O1), the high-type consumers’

delaying surplus becomes γ(VhH −VlH) + γ̄(VhL −VlL), where γ ≡ M−Dh
min{Dl ,M−Dh+N} and

γ̄ ≡ 1− γ . Therefore, the regular price of the high-type products increases to VlH +

Dh+Dl−M
Dl

(∆h−∆l). The firm’s total profit under O1 is:

ΠO1 ≡ Dh[VlH + γ̄(∆h−∆l)]+(M−Dh)VlH +min{Dh +Dl−M,N}VlL.

Second, consider the strategies in which the firm sells the high-type products to the

high-type consumers and the low-type products to the low-type consumers in period 1.

When Dl 6N, the market has no remaining consumers in period 2, so the firm does not sell.

I denote this strategy by subscript T 1. The firm’s total profit under T1 is:

ΠT 1 ≡ Dh(VhH −VhL +VlL)+DlVlL.

When Dl > N, the firm has M−Dh high-type products and the market has Dl−N low-

type consumers at the beginning of period 2. Therefore, the firm sells all products at price

VlH . I denote this strategy by subscript L2. The firm’s total profit under L2 is:

ΠL2 ≡ DhVlH +NVlL +min{M−Dh,Dl−N}VlH .

Third, consider the strategies in which the firm sells the high-type product to both types

of consumers in period 1. At the beginning of period 2, she has N low-type products and

the market has Dh +Dl−M low-type consumers. . Therefore, the firm sells all products at

price VlL. I denote this strategy by subscript L3. The firm’s total profit under L3 is:

ΠL3 ≡MVlH +min{Dh +Dl−M,N}VlL.

It can be verified that no other strategy exists in equilibrium. Therefore, characterising

the optimal strategy boils down to comparing the profit expressions of L1, O1, T1, L2, and

L3, as given by the proposition below.
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Proposition A-8. Opaque selling strictly dominates last-minute selling, and

(i) when Dl > N, the firm should use opaque selling;

(ii) when Dl 6 N, the firm should use opaque selling if ∆h < (1+ M−Dh
γDh

)∆l , and use

traditional selling otherwise.

Proof. Opaque selling strictly dominates last-minute selling since ΠO1 >ΠL1 =ΠL3>ΠL2.

Therefore, the firm should use O1 if ΠO1 > ΠT 1 and use T1 otherwise. Simplifying this

inequality yields the proposition. �

Proposition A-8 shows that opaque selling strictly dominates last-minute selling due

to its choice-deprivation advantage. Compared to traditional selling, opaque selling leads to

a higher profit if the low-type consumers can generate sufficiently high sales profit due to a

large volume or a high valuation for the high-type product. These results are the consistent

with those of the base model, which indicates that the mechanism of opaque selling is

preserved without demand uncertainty.



Appendix C

Appendix to “Money Back Guarantee with

Competing Physical and On-line Stores”

C.1 Best Responses
First I characterise the online store’s best response for any given P̃1. As the first case,

suppose P̃1 6
α1
α2

c̃2 (i.e., α2
α1

P̃1 6
α2P̃1+α1c̃2

2α1
) so the online store’s profit is 0 under moderate

pricing. Under aggressive pricing, she sets P̃2 = P̃1−α1 +α2 (note that α2+c̃2
2 > P̃1− (α1−

α2) when P̃1 6
α1
α2

c̃2 because c̃2 6 −α2). Since Π2(P̃1− (α1−α2)) < Π2(
α2
α1

P̃1) = 0, the

online store does not use the aggressive pricing strategy either.

Second, suppose P̃1>
2α1(α1−α2)+α1c̃2

2α1−α2
(i.e., α2P̃1+α1c̃2

2α1
6 P̃1−α1+α2) so the online store

sets P̃2 = P̃1−α1 +α2 under the moderate pricing strategy. Since this is the boundary price

of the aggressive pricing strategy, I will only need to consider the aggressive pricing strategy.

Since 2α1(α1−α2)+α1c̃2
2α1−α2

6 α1−α2+
α2+c̃2

2 , there are two subcases: (i) when 2α1(α1−α2)+α1c̃2
2α1−α2

6

P̃1 6 α1− α2−c̃2
2 , the online store sets P̃2 = P̃1−α1 +α2 and her profit is

Π2(P̃1−α1 +α2) =
(α1− P̃1)(P̃1−α1 +α2− c̃2)

α2
> 0.

The last inequality follows from P̃1 6 α1 (otherwise no consumer visits the physical store)

and α1−α2+ c̃2 6
2α1(α1−α2)+α1c̃2

2α1−α2
(by c̃2 6α2). (ii) When P̃1 > α1− α2−c̃2

2 , the online store

sets P̃2 =
α2+c̃2

2 and her profit is

Π2(
α2 + c̃2

2
) =

(α2− c̃2)
2

4α2
.

Lastly, suppose α1
α2

c̃2 < P̃1 <
2α1(α1−α2)+α1c̃2

2α1−α2
(i.e., P̃1−α1 +α2 <

α2P̃1+α1c̃2
2α1

< α2
α1

P̃1) so

the online store sets P̃2 =
α2P̃1+α1c̃2

2α1
under the moderate pricing strategy and her profit is

Π2(
α2P̃1 +α1c̃2

2α1
) =

(α2P̃1−α1c̃2)
2

4α1α2(α1−α2)
.
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Now consider the aggressive pricing strategy. Since P̃1 <
2α1(α1−α2)+α1c̃2

2α1−α2
6α1−α2+

α2+c̃2
2 ,

the online store sets P̃2 = P̃1−α1 +α2, which coincides with her boundary price under the

moderate pricing strategy. Since the optimal moderate price is interior, the online store

should not use the aggressive pricing strategy.

Summarising the above results lead to the online store’s best response, as given by

(4.2).

Next consider the physical store. For any P̃2, the physical store’s profit is:

Π1(P̃2) =


0, if P̃1−P̃2

α1−α2
> 1,

(1− P̃1−P̃2
α1−α2

)(P̃1− c̃1), if P̃1
α1

< P̃1−P̃2
α1−α2

< 1,

(1− P̃1
α1
)(P̃1− c̃1), if P̃1−P̃2

α1−α2
6 P̃1

α1
.

Similar to the online store, the physical store also has two pricing strategies. First, she

prices low (i.e., P̃1−P̃2
α1−α2

6 P̃1
α1

or P̃1 6
α1
α2

P̃2) to drive the online store out of the market (the

aggressive pricing strategy, hereafter). Here the best-response is

P̃1(P̃2) = min{α1 + c̃1

2
,
α1

α2
P̃2}

and the interior optimal profit is

Π1(
α1 + c̃1

2
) =

(α1− c̃1)
2

4α1
.

Second, she prices high (i.e., P̃1
α1

< P̃1−P̃2
α1−α2

< 1 or α1
α2

P̃2 < P̃1 < P̃2 +α1−α2) so both stores

obtain positive profit (the moderate pricing strategy, hereafter). Here the best-response is

P̃1(P̃2) = min{max{α1−α2 + c̃1 + P̃2

2
,
α1

α2
P̃2}, P̃2 +α1−α2}

and the interior optimal profit is

Π1(
α1−α2 + c̃1 + P̃2

2
) =

(α1−α2− c̃1 + P̃2)
2

4(α1−α2)
.

Now I characterise the physical store’s best response for any given P̃2. As the first

case, suppose P̃2 6 c̃1−α1 +α2 (i.e., α1−α2+c̃1+P̃2
2 > P̃2 +α1−α2) so the physical store’s

profit is 0 under moderate pricing, Under aggressive pricing, she sets P̃1 =
α1
α2

P̃2 (note that
α1
α2

P̃2 6
α1+c̃1

2 when P̃2 6 c̃1−α1 +α2 by c̃1 6 α1). Since this is the boundary price of

moderate pricing, the physical store cannot obtain positive profit under aggressive pricing.

Second, suppose P̃2 >
α2(α1−α2)+α2c̃1

2α1−α2
(i.e., α1−α2+c̃1+P̃2

2 6 α1
α2

P̃2) so the physical store

sets P̃1 = α1
α2

P̃2 under moderating pricing. Since this is the boundary price of aggressive
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pricing, we will only need to consider the aggressive pricing strategy. Since α2(α1+c̃1)
2α1

>
α2(α1−α2)+α2c̃1

2α1−α2
by c̃1 6 α1, there are two subcases: (i) when α2(α1−α2)+α2c̃1

2α1−α2
6 P̃2 6

α2(α1+c̃1)
2α1

,

the physical store sets P̃1 =
α1
α2

P̃2 and her profit is

Π1(
α1

α2
P̃2) =

(α2− P̃2)(α1P̃2−α2c̃1)

α2
2

> 0.

The last inequality follows from P̃2 6 α2 (otherwise no consumer visits the online store)

and α2
α1

c̃1 6
α2(α1−α2)+α2c̃1

2α1−α2
. (ii) When P̃2 >

α2(α1+c̃1)
2α1

, the physical store sets P̃1 =
α1+c̃1

2 and

her profit is

Π1(
α1 + c̃1

2
) =

(α1− c̃1)
2

4α1
.

Lastly, suppose c̃1−α1 +α2 < P̃2 <
α2(α1−α2)+α2c̃1

2α1−α2
(i.e., α1

α2
P̃2 <

α1−α2+c̃1+P̃2
2 < P̃2 +

α1−α2) so the physical store sets P̃1 =
α1−α2+c̃1+P̃2

2 under moderate pricing and her profit

is

Π1(
α1−α2 + c̃1 + P̃2

2
) =

(α1−α2− c̃1 + P̃2)
2

4(α1−α2)
.

Now consider the aggressive pricing strategy. Since P̃2 < α2(α1−α2)+α2c̃1
2α1−α2

6 α2(α1+c̃1)
2α1

, the

physical store sets P̃1 =
α1
α2

P̃2, which coincides with her boundary price under the moderate

pricing strategy. Since the optimal moderate price is interior, the physical store should not

use the aggressive pricing strategy.

Summarising the above results lead to the online store’s best response, as given by

(4.3).

C.2 Proofs

Proof of Proposition 12. First I characterise the online store’s optimal return policy. Since

Π2 is invariant of t (I will verify that consumers are willing to return unfit product instead

of salving them even at the highest return hassle T1) for any given P̃2, the online store

is indifferent between any return hassle allocation under MBG. Moreover, ∂Π2
∂ c̃2

> 0 when
P̃1−P̃2
α1−α2

6 P̃1
α1

. Therefore, according to the expression of c̃2, the online store offers MBG when

S−T1 > d and does not offer MBG otherwise. Note that when she offers MBG, consumers

choose to return unfit products at even the highest return hassle T1: consumers’ benefit of

returning the product (i.e., −T1) is higher than the benefit of salvaging the product (i.e.,

d−P2) because P2 > c1 > S> d +T1.

Next I will characterise all equilibria. First consider Equilibrium B where both stores

obtain positive profit in equilibrium. According to each store’s best response in (4.2)-
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(4.3), this equilibrium is supported only when both stores use the moderate pricing strategy.

Therefore,  P̃2 = α2P̃1+α1c̃2
2α1

,

P̃1 = α1−α2+c̃1+P̃2
2 .

Solving the simultaneous equations leads to the interior optimal prices, as given by:

P̃∗1B =
2α1(α1−α2)+2α1c̃1 +α1c̃2

4α1−α2
,

P̃∗2B =
α2(α1−α2)+α2c̃1 +2α1c̃2

4α1−α2
.

The expressions of equilibrium demand are:

D∗1B =
2α1(α1−α2)− (2α1−α2)c̃1 +α1c̃2

(α1−α2)(4α1−α2)
,

D∗2B =
α1[α2(α1−α2)+α2c̃1− (2α1−α2)c̃2]

α2(α1−α2)(4α1−α2)
.

By Π∗1B = (P̃∗1B− c̃1)D∗1B and Π∗2B = (P̃∗2B− c̃2)D∗2B, I can derive the equilibrium profits, as

given by:

Π
∗
1B =

[2α1(α1−α2)− (2α1−α2)c̃1 +α1c̃2]
2

(α1−α2)(4α1−α2)2 ,

Π
∗
2B =

α1[α2(α1−α2)+α2c̃1− (2α1−α2)c̃2]
2

α2(α1−α2)(4α1−α2)2 .

Note that Equilibrium B exists when D∗1B > 0 and D∗2B > 0, i.e.,

−α2(α1−α2)+(2α1−α2)c̃2

α2
< c̃1 <

2α1(α1−α2)+α1c̃2

2α1−α2
.

Moreover, under this condition, no store has any profitable deviation (e.g., aggressive pric-

ing or leaving the market) from P̃∗1B and P̃∗2B because

α1

α2
c̃2 < P̃∗1B <

2α1(α1−α2)+α1c̃2

2α1−α2
,

c̃1−α1 +α2 < P̃∗2B <
α2(α1−α2)+α2c̃1

2α1−α2
.

Second, consider Equilibrium P where only the physical store participates in the

market. According to Equation (4.3), there are two subcases. First, α2(α1−α2)+α2c̃1
2α1−α2

6

P̃2 6
α2(α1+c̃1)

2α1
and the physical store sets P̃2 = α1

α2
P̃2. This cannot constitute an equi-

librium because by Equation (4.2), the online store leaves the market instead of setting

P̃2 >
α2(α1−α2)+α2c̃1

2α1−α2
. Second, the physical store sets

P̃∗1P =
α1 + c̃1

2
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and the online store leaves the market. Therefore, the demand and expected profit of the

physical store are

D∗1P = 1− P̃∗1P
α1

=
α1− c̃1

2α1
,

Π
∗
1P = (P̃∗1P− c̃1)D∗1P =

(α1− c̃1)
2

4α1
.

Note that D∗1P > 0 (i.e., c̃1 < α1) according to Assumption 3. Next I verify that no store

has any profitable deviation when c̃1 6
−α1α2+2α1c̃2

α2
. The physical store has no profitable

deviation because by (4.3), P̃∗1 = α1+c̃1
2 is her best response when the online store is out

of market. The online store has no profitable deviation because when c̃1 6
−α1α2+2α1c̃2

α2
,

P̃∗1P = α1+c̃1
2 6 α1

α2
c̃2 so the online store should leave the market according to (4.2).

Finally, consider Equilibrium O where only the online store participates in the market.

As in the analysis of Equilibrium P, I can derive the equilibrium price, demand, and profit

of the online store as follows:

P̃∗2O =
α2 + c̃2

2
,

D∗2O = 1−
P̃∗2O
α2

=
α2− c̃2

2α2
,

Π
∗
2O = (P̃∗2O− c̃2)D∗2O =

(α2− c̃2)
2

4α2
.

It can be verified that both stores have no profitable deviation when c̃1 >
2α1−α2+c̃2

2 . �

Proof of Proposition 13. Since Π∗1B and Π∗2B are continuous in c1 and c2, I will proceed

by treating c1 = c2 = 0. Note that the comparative statics continue to hold if c1 and c2 are

positive yet sufficiently low.

Denote W ≡max{d,S−T1}. Naturally W > 0.

∂Π∗1B
∂α1

=[2α1(α1−α2)−α1(1−α2)W − (2α1−α2)K][2(α1−α2)(4α
2
1 −3α1α2 +2α

2
2 )

+(4α
2
1 +α1α2−2α

2
2 )(1−α2)W +(8α

2
1 −10α1α2 +5α

2
2 )K]

/[(α1−α2)
2(4α1−α2)

3].

Since the denominator is positive, in order to prove Proposition 13(i) it suffices to prove that

the nominator is positive, which holds since 2α1(α1−α2)−α1(1−α2)W −(2α1−α2)K >

0 by D∗1B > 0 and 2(α1 − α2)(4α2
1 − 3α1α2 + 2α2

2 ) + (4α2
1 + α1α2 − 2α2

2 )(1− α2)W +

(8α2
1 −10α1α2 +5α2

2 )K > 0 by α1 > α2.
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∂Π∗1B
∂α2

=− [2α1(α1−α2)−α1(1−α2)W − (2α1−α2)K][2α1(α1−α2)(2α1 +α2)−

α1(8α
2
1 −4α1α2−6α1−α

2
2 +3α2)W +(4α

2
1 −2α1α2 +α

2
2 )K]

/[(α1−α2)
2(4α1−α2)

3].

In order to prove that Π∗1B strictly decreases in α2, it suffices to show that 2α1(α1 −

α2)(2α1 + α2)− α1(8α2
1 − 4α1α2 − 6α1 − α2

2 + 3α2)W > 0. This inequality holds by

2α1(α1 − α2)(2α1 + α2)− α1(8α2
1 − 4α1α2 − 6α1 − α2

2 + 3α2)W > α1(1− α2)(2α1 +

α2)W −α1(8α2
1 −4α1α2−6α1−α2

2 +3α2)W = 2α1(1−α1)(4α1−α2)W > 0.

∂Π∗2B
∂α2

=
α1{[α2(α1−α2)+(2α1−α2)(1−α2)W +α2K][E−FW +GK]}

α2
2 (α1−α2)2(4α1−α2)3 ,

where E ≡ α1α2(4α1− 7α2)(α1−α2), F ≡ 8α3
1 − 2α3

2 − 10α2
1 α2

2 + 9α1α2
2 − 18α2

1 α2 +

5α1α3
2 + 8α3

1 α2 and G ≡ α2(4α2
1 +α1α2 − 2α2

2 ). Since α2(α1 −α2) + (2α1 −α2)(1−

α2)W +α2K by D∗1B > 0, the sign of ∂Π∗2B
∂α2

is the same as E−FW +GK. Define f (α2)≡E−

FW +GK = [7α1− 5Wα1 + 2W − 2K]α3
2 − [11α2

1 −Kα1− 10Wα2
1 + 9Wα1]α

2
2 + [4α3

1 +

4Kα2
1 + 18Wα2

1 − 8Wα3
1 ]α2− 8Wα3

1 . f (α2) is in a cubic form and 7α1− 5Wα1 + 2W −

2K > 0. As a result, in order to prove that there exists 0 < α < ᾱ < α1 such that Π∗2B

strictly decreases in α2 when α < α2 < ᾱ and strictly increases in α2 when ᾱ < α2 < α1, it

suffices to prove that f (0) < 0 and f (α1) > 0. f (0) = −8Wα3
1 < 0 and f (α1) = 3α3

1 [K +

(1−α1)W ]> 0, so both inequalities hold.

∂Π∗2B
∂α1

=[α2(α1−α2)+(2α1−α2)(1−α2)W +α2K][α2(2α1 +α2)(α1−α2)−

(4α
2
1 −2α1α2 +α

2
2 )(1−α2)W − (8α

2
1 −4α1α2−α

2
2 )K]/[(α1−α2)

2(4α1−α2)
3].

Therefore, ∂Π∗2B
∂α1

> 0 if and only if (4α2
1−2α1α2+α2

2 )(1−α2)W +(8α2
1−4α1α2−α2

2 )K <

α2(2α1+α2)(α1−α2). Define G(α1) =α2(2α1+α2)(α1−α2)−(4α2
1−2α1α2+α2

2 )(1−

α2)W − (8α2
1 −4α1α2−α2

2 )K. G′(α1) = (4α1−α2)[α2−2(1−α2)W −4K]. When (4−

2α2 +α2
2 )(1−α2)W +(8−4α2−α2

2 )K < (2+α2)(1−α2)α2, G(1)> 0, G(α2)< 0, and

α2− 2(1−α2)W − 4K > 0 so G′(α1) > 0. As a result, the first part of Proposition 13(iii)

holds. When (4−2α2 +α2
2 )(1−α2)W +(8−4α2−α2

2 )K > (2+α2)(1−α2)α2 and α2−

2(1−α2)W−4K > 0, G(α1) strictly increases in α1 and G(1)< 0, so Π∗2B strictly decreases

in α1. When (4−2α2 +α2
2 )(1−α2)W +(8−4α2−α2

2 )K > (2+α2)(1−α2)α2 and α2−
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2(1−α2)W−4K6 0, G′(α1)6 0 and G(α2)< 0, so Π∗2B strictly decreases in α1. Therefore,

the second part of Proposition 13(iii) holds. �
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