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The high degree of endemism on Sulawesi has previously

been suggested to have vicariant origins, dating back

to 40 Ma. Recent studies, however, suggest that much of

Sulawesi’s fauna assembled over the last 15 Myr. Here, we

test the hypothesis that more recent uplift of previously

submerged portions of land on Sulawesi promoted diversifi-

cation and that much of its faunal assemblage is much

younger than the island itself. To do so, we combined palaeo-

geographical reconstructions with genetic and morphometric

datasets derived from Sulawesi’s three largest mammals: the

babirusa, anoa and Sulawesi warty pig. Our results indicate

that although these species most likely colonized the area

that is now Sulawesi at different times (14 Ma to 2–3 Ma),

they experienced an almost synchronous expansion from

the central part of the island. Geological reconstructions

indicate that this area was above sea level for most of the

last 4 Myr, unlike most parts of the island. We conclude

that emergence of land on Sulawesi (approx. 1–2 Myr) may

have allowed species to expand synchronously. Altogether,

our results indicate that the establishment of the highly ende-

mic faunal assemblage on Sulawesi was driven by geological

events over the last few million years.
1. Introduction
Alfred Russel Wallace was the first to document the ‘anoma-

lous’ biogeographic region in Island Southeast Asia (ISEA)

now known as Wallacea [1,2]. This biodiversity hotspot [3] is

bounded by Wallace’s Line in the west and Lydekker’s Line

in the east [4]. It consists of numerous islands in the Indonesian

Archipelago, all of which boast a high degree of endemism. For

example, on Sulawesi, the largest island in the region, at least

61 of the 63 non-volant mammalian species are endemic [5]

and this figure is likely to be an underestimate.
The geological origins of Wallacea are as complex as its bio-

geography. Until recently, Sulawesi had been regarded as the

product of multiple collisions of continental fragments from

the Late Cretaceous [6–9]. This assumption has been chal-

lenged and a recent reinterpretation suggests instead that the

island began to form as the result of continental collisions

during the Cretaceous, which were then followed by Eocene

rifting of the Makassar Strait. This process led to the isolation

of small land areas in western Sulawesi from Sundaland. In

the Early Miocene (approx. 23 Ma), a collision between the

Sula Spur (a promontory of the Australian continent) and

north Sulawesi led to uplift and emergence of land [10–12].

Later tectonic movements led to the present-day configuration

of islands between Borneo and Australia [13,14].

A previous interpretation, involving the assembly of mul-

tiple terranes by collision, was used to suggest that Sulawesi’s

peculiar species richness resulted from vicariance and amalga-

mation over long geological time periods [10,15,16]. However,

recent molecular-clock analyses suggest that a dispersal, start-

ing in the Middle Miocene (approx. 15 Ma) from both Sunda

and Sahul, is a more plausible explanation [17–19]. These con-

clusions suggest a limited potential for animal dispersal to

Sulawesi prior to approximately 15 Ma. Rapid tectonic changes,

coupled with the dramatic sea-level fluctuations over the past

5 Myr [20] might also have affected land availability and influ-

enced patterns of species dispersal to Sulawesi, intra-island

species expansion and speciation.

The hypothesis of a recent increase in land area [19] can

be tested by comparing the population histories of multiple

species on the island. Analyses of genetic and morphometric

variability can be used to infer the timing and trajectories of

dispersal, and the geographical and temporal origins of

expansion. For example, if land area had increased from a

single smaller island, extant species now living on Sulawesi

would all have expanded from the same area. In addition,

under this assumption, within the same geographical

region their respective diversifications would be expected to

have been roughly simultaneous.

Here, we focus on three large mammals endemic to

Sulawesi: the babirusa (Babyrousa spp.), the Sulawesi warty

pig (SWP, Sus celebensis) and the anoa, a dwarf buffalo (Bubalus
spp.). The babirusa is a suid characterized by wrinkled skin

and two extraordinary curved upper canine tusks displayed

by males [21–23]. It represents a ‘ghost lineage’, because

there are no closely related extant species outside Sulawesi

(e.g. African suids are more closely related to all other Asian

suids than to the babirusa) and the babirusa is unknown in

the fossil record outside Sulawesi [24]. Three extant species

of babirusa (distributed primarily in the interior of Sulawesi

and on surrounding islands [21–23] have been described:

Babyrousa babyrussa (Buru and Sulu Islands), Babyrousa celeben-
sis (mainland Sulawesi) and Babyrousa togeanensis (Togian

Island) [25].

The anoa is an endemic ‘miniature buffalo’ related to

indigenous bovids in the Philippines and East Asia [26,27].

It stands approximately 1 m tall, weighs 150–200 kg and

mostly inhabits pristine rainforest [28]. Although the subgenus

Anoa has been divided into two species, the lowland anoa

(Bubalus depressicornis) and the highland anoa (Bubalus
quarlesi) [29], this classification is still contentious [27]. In con-

trast with anoa and babirusa, the SWP occupies a wide range

of habitats, from swamps to rainforests. This species is closely

related to the Eurasian wild pig (Sus scrofa), from which it
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diverged during the Early Pleistocene (approx. 2 Ma) [24,30].

The SWP has been found on numerous islands throughout

ISEA, probably as the result of human-mediated dispersal

[31]. As its name implies, male SWPs develop facial warts.

These cultural icons (e.g. SWP/babirusa and anoa are rep-

resented in the oldest prehistoric cave paintings [32,33]) have

undergone recent and significant population reduction and

range contraction due to overhunting and conversion of

natural habitat for agricultural use.

Here, we establish when Sulawesi gained its modern

shape and size, including connectivity between its constituent

peninsulae, and assessed the impact of island formation on the

evolution of Sulawesi’s biodiversity. To do so, we used new

reconstructions of the island’s palaeogeography that allowed

us to interpret the distribution of land and sea over the last

8 Myr at 1 Myr intervals. To determine the timings of diversi-

fication of the three largest endemic mammals on the island,

we generated and analysed genetic and/or morphometric

data from a total of 1289 samples of the SWP, anoa and babir-

usa obtained from museums, zoos and wild populations (456,

520 and 313 samples, respectively; electronic supplementary

material, table S1). More specifically, we measured a total of

356 teeth from 227 specimens (357 babirusa and 191 SWP)

using a geometric morphometric approach. In addition, we

sequenced mitochondrial loci (cytb and/or control region)

from 142 anoas, 213 babirusa and 230 SWP. Lastly, we typed

13 microsatellite loci from 163 anoa, 14 loci from 238 SWP

and 13 from 182 babirusa (see the electronic supplementary

material for more information). Although these taxa have

been divided into multiple species (see taxonomic notes in

the electronic supplementary material), for the purpose of

this study, we treated SWP, anoa and babirusa as single

taxonomic units.
2. Results and discussion
(a) Contemporaneous divergence
We generated mitochondrial DNA (mtDNA) sequences and/or

microsatellite data from 230 SWPs, 155 anoas and 213 babirusa

sampled across Sulawesi and the neighbouring islands (elec-

tronic supplementary material, figure S1 and table S1). Using

a molecular-clock analysis, we inferred the time to the most

recent common ancestor (TMRCA) of each species. The esti-

mates from this method represent coalescence times, which

provide a reflection of the crown age of each taxon. The closer

relationship between babirusa and SWP (approx. 13 Ma) [34],

compared with the divergence of either species from the anoa

(approx. 58 Ma) [35] allowed us to align sequences from babir-

usa and SWP alongside one another, and jointly infer their

relative TMRCAs. Separate analyses were performed for the

anoa. The inferred TMRCA of SWP was 2.19 Myr (95%

credibility interval (CI) 1.19–3.41 Myr; electronic supple-

mentary material, figure S2) and of babirusa was 2.49 Myr

(95% CI 1.33–3.61 Myr) (figure 1; electronic supplementary

material, figure S2). The inferred TMRCA of anoa was younger

(1.06 Myr; figure 1; electronic supplementary material,

figure S3), though its 95% CI (0.81–1.96 Myr) overlapped

substantially with the TMRCAs of the other two species.

The relatively recent divergence between babirusa and

SWP also allowed us to compare their TMRCAs using identical

microsatellite loci. To do so, we computed the average square

distance (ASD) [36,37] between every pair of individuals
within each species at the same 13 microsatellite loci. Although

such an analysis might be affected by population structure (see

below), we found that the distributions of ASD values were not

significantly different between these two species (Wilcoxon

signed-rank test, p ¼ 0.492). This is consistent with the mito-

chondrial evidence for the nearly identical TMRCAs in the

two species.

Recent molecular analyses have indicated that babirusa may

have colonized Wallacea as early as 13 Ma, whereas SWP and

anoas appear to have only colonized Sulawesi within the last

2–4 Myr [17,30,32,34]. An early dispersal of babirusa to Sula-

wesi (Late Palaeogene) has also been suggested on the basis

of palaeontological evidence [19]. In addition, our data corrobo-

rate previous studies in indicating that both SWP and babirusa

are monophyletic with respect to their most closely related taxa

on neighbouring islands (e.g. Borneo), which is consistent with

only one colonization of Sulawesi (electronic supplementary

material, figure S4–S6) [30].

We then examined whether patterns of morphological

diversity in these taxa are consistent with the molecular

date estimates. To do so, we obtained measurements of 356

second and third lower molars (M2 and M3) from 95 babirusa

and 132 SWPs. SWP and babirusa do not overlap morphologi-

cally (figure 2a), and we were thus able to assign each specimen

to its correct species with success rates of 94.3% (CI: 92.7%–

95.5%, distribution of leave-one-out cross validation of a discri-

minant analysis based on a balanced sample design) [38]

and 94.7% (CI: 93.8%–96.7%) based on their M2 and M3,

respectively. Our results also indicate that babirusa did not

accumulate more tooth shape variation within Sulawesi

(Fligner–Killeen test x2 ¼ 1.04, p ¼ 0.3 for M2, x2 ¼ 3.45, p ¼
0.06 for M3). The data instead suggest that SWP has greater

variance in the size of its M3 (x2 ¼ 4.52, p ¼ 0.03, but not in

the size of the M2, x2 ¼ 3.44, p ¼ 0.06), and that the population

from west central Sulawesi has an overall smaller tooth size

than the two populations from northwest and northeast Sula-

wesi (figure 2b; electronic supplementary material, table S2).

While these results may result from different selective con-

straints, they indicate that babirusa did not accumulate

greater morphological variation in tooth shape than did the

SWP, despite arriving on Sulawesi up to 10 Myr earlier.

Altogether our analyses suggest that although the three

species are believed to have colonized the island at different

http://rspb.royalsocietypublishing.org/
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times, their similar degrees of morphological diversity and their

nearly synchronous TMRCAs raise the possibility that they (and

possibly other species) responded to a common mechanism that

triggered their contemporaneous diversification.

(b) Past land availability correlates with the expansion
origins

Increasing land area may have promoted a simultaneous diver-

sification and range expansion in babirusa, SWPs and anoas. To

test this hypothesis, we used a new reconstruction that depicts
land area in the Sulawesi region through time using information

from the geological record. The reconstructions in 1 Myr incre-

ments (figure 3a; electronic supplementary material, figure S7)

[39] support a scenario in which most of Sulawesi was sub-

merged until the Late Pliocene to Early Pleistocene (2–3 Ma).

Large-scale uplifts over the last 2–3 Myr would have rapidly

and significantly increased land area, making it possible for

non-volant species to expand their ranges.

To further assess whether these Plio-Pleistocene uplifts were

responsible for a synchronous expansion, we inferred the most

likely geographical origin of expansion using microsatellite

http://rspb.royalsocietypublishing.org/
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data under a model of spatial loss of diversity with distance

from expansion origin (electronic supplementary material).

These estimates were obtained independently of, and unin-

formed by, either the geological reconstructions or modern

phylogeographical boundaries inferred from other species.

We deduced that the most likely origin for both SWP and babir-

usa was in the east central region of Sulawesi (figure 3c,d), and

the most likely origin of anoa was in the west central region

(figure 3b).

The origins of the population expansions of both SWP and

babirusa occurred in an area of Sulawesi that only emerged

during the Late Pliocene to Early Pleistocene (figure 3a; elec-

tronic supplementary material, figure S7). On the other hand,

the anoa’s most likely origin of diversification lies in a region

that was submerged until the Pleistocene, consistent with

palaeontological evidence [32] and with the slightly more

recent TMRCA inferred for this species (figure 1). Thus, for

all three species, the inferred geographical origins of their

range expansions match the land availability derived from

our geological reconstruction of Sulawesi.

(c) Geological history of past land isolation correlates
with zones of endemism

Previous studies have identified endemic zones that are

common to macaques, toads [18,40], tarsiers [41–44] and

lizards [45]. We tested whether the same areas of endemism

are linked to the population structure in our three species by

generating a phylogenetic tree for each species using mtDNA

and defined five to six haplogroups per species based on

well-supported clades (figure 4a–c; electronic supplementary
material, figure S4–6). We found that haplogroup pro-

portions were significantly different between previously

defined areas of endemism in all three species (Pearson’s

x2-test; p , 0.001), suggesting population substructure.

We also used STRUCTURE [46] to infer population

structure from microsatellite data. The optimum numbers of

populations (K) were 5, 6 and 5 for anoa, babirusa and SWP,

respectively (electronic supplementary material, figure S8;

figure 4b). Plotting the proportion of membership of each

sample onto a map revealed a strong correspondence with

the previously described zones of endemism (figure 4b).

Using an analysis of molecular variance (AMOVA), we found

that these areas of endemism explained approximately 17%,

27% and 5% of the variance in allele frequencies in anoa, babir-

usa and SWP, respectively (electronic supplementary material,

table S5). Populations of babirusa and SWP in these zones of

endemism were also strongly morphologically differentiated

(figure 2).

Altogether, these data and analyses indicate that, despite

some differences, the zones of endemism identified in tar-

siers, macaques, toads and lizards [18,40–45,47] are largely

consistent with the population structure and morphological

differentiation in the three species studied here. This is par-

ticularly striking for the north arm of Sulawesi (NW, NC

and NE in figure 4), where we identify two highly differen-

tiated populations (reflected in both mtDNA and nuclear

datasets) in all three taxa. This pattern could result from

either adaptation to local environments or from isolation

due to the particular geological history associated with the

northern arm. Geological reconstructions (figure 3a) indicate

that although land was present in this region during the past
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4 Myr, it was often isolated from the rest of Sulawesi until the

mid-Pleistocene. Thus, the combined geological and biologi-

cal evidence presented here indicate that the high degree of

divergence observed in the northern-arm populations in a

multitude of species (e.g. three ungulates, macaques and tar-

siers) might have been shaped by isolation from the rest of

the island until the last 1 million years (figure 3a).

(d) Recent and contemporary land isolation also
affected morphological evolution including
dwarfism

Similar isolation is likely to have influenced the populations

inhabiting the smaller islands adjacent to Sulawesi, including

the Banggai Archipelago, Buru, Togian and Sula Islands.

Interestingly, our geometric morphometric analyses demon-

strated that these island populations of SWP and babirusa

are the most morphologically divergent (figure 2a). For

example, the insular populations from the Togian Islands

(babirusa) and the Banggai Archipelago (SWP) were found

to have much smaller tooth sizes than their counterparts on

the mainland (figure 2b).

The significant morphometric divergences between popu-

lations on various islands are consistent with the genetic

differentiation between babirusa/SWP on Togian, Sula and

Buru (figure 4; electronic supplementary material, figure S9

and figure S10) and between island populations of SWP on

Banggai Archipelago, Buton and Buru (figure 4; electronic

supplementary material, figure S9 and figure S10).

Together, these results show that while suture zones

between tectonic fragments are consistent with genetic and

morphometric differentiation within Sulawesi, isolation on

remote islands is likely to have had a much greater effect on

morphological distinctiveness. Rapid evolution on islands

has been described in many species (e.g. [48]), including in

pigs [49] where island populations are known to have smaller

tooth sizes than their mainland counterparts [50,51].

(e) Demographic history
Isolation of subpopulations across Sulawesi might also be

linked to recent anthropogenic disturbances, especially for

anoa and babirusa that occupy pristine forest or swamps

[21,28]. In order to assess the impact of recent anthropogenic

changes on the three species, we inferred their demographic his-

tory using approximate Bayesian computation (ABC). We fitted

various demographic models to the genetic data (combining

both mtDNA and microsatellite data; electronic supplemen-

tary material; figure S11). The best-supported demographic

model involved a long-term expansion followed by a recent bot-

tleneck in all three species (electronic supplementary material,

table S3), corroborating the results of recent analyses of the

SWP genome [30].

While our ABC analysis had insufficient power to retrieve

the time of expansion (electronic supplementary material,

table S4), it provided relatively narrow estimates of the current

effective population sizes (figure 5; electronic supplementary

material, table S4). We inferred a larger effective population

size in SWP (83 021; 95% CI 46 287–161 457) than in babirusa

(30 895; 95% CI 17 522–54 954) or anoa (27 504; 95% CI 13

680–54 056). Sulawesi warty pig occupies a wide range of habi-

tats, including agricultural areas [52]. Thus, this species is likely

to be less affected by continuing deforestation than babirusa or
anoa, which is typically restricted to less disturbed forest and

swamps [21,26]. Phylogenetic analyses of microsatellite data

indicate more geographical structuring in babirusa and anoa

than in SWP (electronic supplementary material, figure S12

and table S5). Altogether, these results are consistent with

species-specific responses to habitat loss.
3. Conclusion
Our results indicate that, while the different geological com-

ponents of Sulawesi were assembled at about 23 Ma, the

island only acquired its distinctive modern form in the last

few million years. By 3 Ma there was a large single island at

its modern centre, but the complete connection between the

arms was established more recently. The increasing land area

associated with Plio-Pleistocene tectonic activity is likely to

have provided the opportunity for a synchronous expansion

in the three endemic mammal species in this study, as well as

numerous other species. Interestingly, both our Pleistocene geo-

logical reconstruction and our proposed origins of expansion in

the centre of the island closely resemble maps inferred from a

study of tarsier species distribution on Sulawesi [42].

Furthermore, the recent emergence of connections between

Sulawesi’s arms coincides with a faunal turnover on the island

and the extinction of multiple species. The geological recon-

struction, and in particular, the recent elimination of the

marine barrier at the Tempe depression separating the south-

west and central regions, fits well with suggested replacement

in tarsier species that occurred in the last approximately 1

million years [41]. The dispersal of our three species from the

central region of Sulawesi may therefore have played a role in

other local extinctions, such as the extinct suid known from

southwest Sulawesi, Celebochoerus.
Sulawesi’s development by emergence and coalescence of

islands had a significant impact on the population structure

and intraspecific morphological differentiation of Sulawesi’s

three largest mammals and many other endemic taxa. Thus,

while most of Sulawesi’s extant fauna arrived relatively

recently, the more ancient geological history of the island (col-

lision of multiple fragments) might have also affected patterns

of endemism. Many aspects of Sulawesi’s interconnected natu-

ral and geological histories remain unresolved. Integrative

approaches that combine biological and geological datasets

are therefore essential for reconstructing a comprehensive

evolutionary history of Wallace’s most anomalous island.
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