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Abstract 

Cancer is an evolutionary disease, reliant on genetic diversity and sculpted by 

selective forces from the immune microenvironment. Here, I use genomics data to 

decipher the tumor’s evolutionary trajectory and corresponding shifts in the immune 

contexture to elucidate the events governing tumor immunogenicity and the immune 

evasive mechanisms evolved by the tumor. 

To better understand the mutational processes contributing to intratumor 

heterogeneity in individual tumors, a method to quantify the activity of mutational 

processes in a single tumor sample was developed and applied to temporally 

dissected mutations. 

The clinical relevance of intratumor heterogeneity was examined in the context of 

immune recognition and modulation. Increased clonal neoantigen burden and 

minimal neoantigen intratumor heterogeneity were found to associate with improved 

patient outcome, both in the treatment-naïve and immunotherapy-treated setting. 

The identification of T-cells recognizing clonal neoantigens further supported the 

clinical importance of targeting neoantigens present in every cancer cell. 

Mechanisms of immune evasion were considered through the development of a 

method to identify loss-of-heterozygosity at the HLA locus, overcoming the 

challenges posed by the polymorphic nature of the locus. HLA loss-of-

heterozygosity was found to be a frequent subclonal event in NSCLC, under strong 

selective pressure  and associated with increased subclonal neoantigen burden. 

Finally, the immune microenvironment was examined through multi-region RNAseq, 

permitting the quantification of immune infiltration and allowing for the identification 

of heterogeneously immune infiltrated tumors. Supporting the interplay between 

genetic events and the immune contexture, a relationship between the genomic 

features of the tumor and immune infiltration was observed, with HLA loss-of-

heterozygosity specifically identified as occurring within a highly active immune 

microenvironment.  

This thesis shows how an improved understanding of the relationship between the 

tumor and the immune system can illuminate features dictating immune recognition 

and evasion and how that knowledge may inform the development and 

implementation of successful immunotherapy.  
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Impact statement 

Cancer affects the lives of millions of people around the world. One of the largest 

barriers to the successful management of the disease is the development of 

treatment resistance, often due to the outgrowth of a resilient subclonal population 

of cells from the heterogeneous tumor. Over the last few decades, the realization 

that the patient’s immune system is capable of targeting and eliminating tumor cells 

has led to a number of promising advances in cancer treatment. This observation 

has been exploited through therapies such as immune checkpoint blockade, 

adoptive T-cell therapy, and cancer vaccines, all of which aim to generate or 

enhance an immune response specifically against the patient’s tumor. My research 

has focused on understanding the interaction between the tumor and the immune 

system, with particular emphasis on elucidating the factors that result in tumor 

immunogenicity and on the mechanisms a tumor may use to evade immune 

predation. A better understanding of the interplay between the tumor and the 

immune microenvironment can help identify which patients are more likely to 

respond to immunotherapy interventions and help select the most potent targets for 

developing such interventions in a patient-specific manner. Furthermore, learning 

the various avenues a tumor may take on the path to eventual immune evasion will 

help to   combat resistance mechanisms that may arise. 
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Chapter 1 Introduction 

A developing tumor is subject to ongoing pressure from selective forces from the 

local microenvironment and immune predation. As cells stochastically acquire new 

alterations, these selective forces dynamically sculpt the tumor and shape the way 

in which it evolves, either by pruning away less fit or more immunogenic cells or by 

enabling cells with beneficial traits to succeed. A record of the tumor’s evolutionary 

trajectory and the contributing mutagenic processes can be unearthed by studying 

the genetic make-up of the tumor, allowing for the elucidation of events that 

supported tumor diversification and escape from immune predation. Furthermore by 

considering the interaction of the tumor with the immune microenvironment, it is 

possible to understand the factors governing tumor immunogenicity and the evasive 

mechanisms utilized by the tumor to escape immune recognition. 

Historically, cancer studies have focused on mutations in genes thought to drive 

tumorigenesis, presumably under strong positive selection. Often overlooked is 

what information the passenger events may contain. It is only via the abundance of 

passenger mutations that it is feasible to understand which mutational processes 

are active during tumor evolution, and it is frequently these mutations that are 

recognized as non-self by the immune system. 

Over the last decade next-generation sequencing (NGS) technology has developed 

to the point where sequencing a tumor’s genetic material is no longer reserved for a 

few select samples. Alongside the improvements in technology, comprehensive and 

coordinated sequencing studies (for instance, The Cancer Genome Atlas [TCGA]) 

have allowed for the incorporation of data across multiple –omics platforms to 

generate an unparalleled understanding of a wide range of cancer types. Together, 

such studies have allowed for greater insight into the processes involved in 

generating mutations (Alexandrov et al., 2013a, Helleday et al., 2014, Segovia et 

al., 2015, Lawrence et al., 2013), the dynamics of tumor clones during the disease 

course and through treatment (Marusyk and Polyak, 2010, Calbo et al., 2011, 

Landau et al., 2013, Keats et al., 2012, Murtaza et al., 2013), and have begun to 

illuminate the tumor immune microenvironment (Rooney et al., 2015, Li et al., 2016, 

Davoli et al., 2017). 
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In this thesis, I apply bioinformatics approaches to the wealth of NGS data available 

to understand the processes that generate mutations contributing to intratumor 

heterogeneity, the factors determining whether the immune system recognizes such 

mutations, and the mechanisms through which the tumor may evade detection. 

Improved understanding of the interplay between the tumor and the immune system 

may inform the development and implementation of successful immunotherapy.  

1.1 Tumor evolution and selection 

For decades, tumor progression has been perceived as an evolutionary process 

reliant on clonal diversity and subsequent selection of subpopulations endowed with 

a relative fitness advantage (Nowell, 1976, Fidler, 1978, Greaves and Maley, 2012, 

Gerlinger and Swanton, 2010). At the time of clinical detection, a tumor will have 

undergone many rounds of cell division, with each generation of cells stochastically 

acquiring novel somatic alterations (Gerlinger et al., 2014b, Stratton et al., 2009). 

Selective pressures in the tumor’s environment, such as immune activity, therapy, 

and subclonal interactions actively sculpt the tumor, shaping the way it evolves 

(Merlo et al., 2006). 

The generation of new mutations during each cell cycle continually gives the tumor 

a chance to adapt to its environment. While the vast majority of the mutations 

arising have little impact on the overall fitness of the cell (Martincorena et al., 2017, 

Greenman et al., 2006), a subset of these mutations (known as driver events) will 

endow a cell with an evolutionary advantage, allowing that cell and its progeny to 

flourish and outcompete others. From NGS data, it is possible to identify the 

somatic alterations acquired during the path to tumorigenesis. Analysis of 

sequencing data provides a historical record of mutational events, including single 

base substitutions, insertions, and deletions (Koboldt et al., 2012, Cibulskis et al., 

2013, Gerlinger et al., 2012b), and copy number alterations, such as amplifications, 

deletions, and areas where a single parental chromosome has been lost, resulting 

in loss-of-heterozygosity at the locus (Van Loo et al., 2010, Zack et al., 2013, 

Favero et al., 2015).  

Combined, the evolutionary processes of somatic alteration accumulation and 

selection acting on the cell may result in the outgrowth of multiple subclones, often 

with their own distinct driver events, leading to the branched evolutionary phylogeny 

that has been observed across many cancer types (Gerlinger et al., 2012a, de Bruin 

et al., 2014, Gundem et al., 2015, Sottoriva et al., 2013, Nik-Zainal et al., 2012b). 
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By calculating the frequency of somatic events it is also possible to infer when in the 

life history of the tumor the mutation occurred. This requires incorporating the 

frequency of the somatic event with overall tumor purity, representing the fraction of 

cells sequenced that came from the tumor rather than stroma, and ploidy, referring 

to the number of haploid sets of chromosomes in the cell. (Landau et al., 2015). 

Clonal events are those found in every cancer cell, indicating they arose early in 

tumor evolution or after a selective sweep. Subclonal events are only found in a 

fraction of the cancer cells, suggesting they were later evolutionary events. 

Most driver events established to date have been classified as clonal, but 

increasingly subclonal driver events have been identified across many cancers. An 

increased power to detect subclonal drivers has been generated through the 

sequencing of samples at a greater depth, as well as the sequencing of multiple 

regions per sample and samples at more than one time point. Subclonal drivers 

likely aid in maintaining the tumor and potentially lead to tumor progression, 

subclonal expansions and/or the acquisition of drug resistance (McGranahan et al., 

2015). Even the most common driver events may occur early in some tumors and 

late in others (McGranahan et al., 2015, Yates et al., 2015). The delineation 

between driver and passenger mutations is likely context and tissue dependent, for 

as selective pressures and the tumor microenvironment change, so do the 

requirements for tumor survival. For instance, in most cancer types TP53 mutations 

are almost uniformly clonal (de Bruin et al., 2014, Zhang et al., 2014, Bashashati et 

al., 2013), but in a minority of cancers, such as chronic lymphocytic leukemia and 

clear cell renal carcinoma (Landau et al., 2013, Gerlinger et al., 2014a), they are 

frequently subclonal.  

Therapy can also act to alter the dynamics of selection in the tumor. For instance, 

JAK1/2 loss of function mutations, which are often early drivers in hematological 

cancers but considerably rarer in melanoma, can undergo clonal selection in 

melanoma patients upon treatment with immunotherapy, and have been observed 

in cases with acquired resistance to anti-PD1 therapy (Zaretsky et al., 2016). 

Similarly, colorectal cancer patients treated with anti-EGFR therapy can develop de 

novo KRAS mutations, which have been shown to drive acquired resistance to the 

therapy (Misale et al., 2012). 

Finally, even the order in which mutations arise can influence the outcome of 

subsequent selective pressures, restrict evolutionary paths (Papaemmanuil et al., 
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2013), and affect the clinical behavior of disease presentation, as well as response 

to therapy (Ortmann et al., 2015). 

The detection of subclonal mutations (and thus subclonal drivers) is also limited by 

the resolution of bulk tumor sequencing. A mutation may be found in every cancer 

cell from a single tumor region, but if that region does not accurately reflect the 

entire tumor, then the mutation may truly be subclonal within the tumor as a whole, 

thus artificially inflating the number of observed clonal drivers. Examining multiple 

regions from the same tumor, or even single cells, is one way to improve resolution 

and more accurately determine the clonal architecture of the tumor (Navin et al., 

2011, Tirosh et al., 2016, de Bruin et al., 2014).  

In addition to positive selection resulting in the outgrowth of clones with an 

evolutionary advantage, negative selection also likely impacts the evolution of the 

tumor by pruning away cells harboring deleterious mutations, resulting in the end of 

that cell’s lineage. As the absence of particular mutations is more challenging to 

identify, there are few current estimates of how much of an evolutionary force 

negative selection represents (Martincorena et al., 2017). However, given the 

increasing recognition of the immune system’s role in tumor control, it is 

conceivable that purifying selection plays a large part in removing clones with 

immunogenic mutations (Rooney et al., 2015, Rajasagi et al., 2014).  

1.2 Intratumor heterogeneity as substrate for selection 

1.2.1 Scale and extent of heterogeneity in cancer 

Individual cells in a tumor, which may subsequently expand to form subclones, are 

subject to the activity of mutational processes. Thus the generation of new 

mutations leads to a heterogeneous cell population. It is this diversity upon which 

selective pressures may act. Macroscopic ITH has been observed for millennia 

(Mukherjee, 2011) and microscopic morphological differences between tumor cells 

were identified as early as the 1800s (Balkwill and Mantovani). As technology has 

advanced, the scale of heterogeneity observable in tumors has become more finely 

resolved. Beginning with the observation of differently sized nuclei, improved 

technology has eventually allowing for characterizations at the karyotypic level 

(Szollosi et al., 1995) to the gene level and ultimately resulting in the ability to detect 

single nucleotide differences between single cells (Roth et al., 2016).  



 26 

Alongside advances in technology, improved bioinformatics methods have also 

allowed for further dissection of the clonal architecture of the tumor by clustering 

somatic alterations into tumor subclones (Nik-Zainal et al., 2012b, Shah et al., 2012, 

Roth et al., 2014, Deshwar et al., 2015). Somatic alterations are grouped by their 

frequency in the tumor; however, it is possible that distinct events have occurred in 

separate subclones and present at similar frequencies, potentially hampering clonal 

reconstruction. Understanding the clonal structure of a tumor is important as it 

permits the deciphering of its phylogenetic history, providing insight into how it 

evolved. 

Recent studies of single tumor samples, as well as multiple and serial sampling 

techniques have revealed considerable variability in the extent of diversity both 

between patients and within individual tumors. Genetic ITH has been  identified and 

characterized across a wide range of cancer types including breast carcinomas 

(Navin et al., 2011, Nik-Zainal et al., 2012b), clear-cell renal carcinomas (Gerlinger 

et al., 2012a, Gerlinger et al., 2014a), glioblastomas (Sottoriva et al., 2013), gliomas 

(Johnson et al., 2014), prostate cancers (Haffner et al., 2013, Gundem et al., 2015), 

non-small cell lung cancers (de Bruin et al., 2014, Zhang et al., 2014), head and 

neck squamous cell carcinomas (Mroz et al., 2015), squamous cell melanomas 

(Ding et al., 2014), high-grade serous ovarian cancer (Schwarz et al., 2015), 

chronic lymphocytic leukemia (Landau et al., 2013), acute myeloid leukemia (Klco 

et al., 2014, Ding et al., 2012), and multiple myeloma (Lohr et al., 2014, Bolli et al., 

2014).  

On the whole, these studies have demonstrated that heterogeneity is observed to 

varying extents across a wide variety of cancers, with both clonal and subclonal 

driver mutations identified. However, the majority of studies considering 

heterogeneity in detail have either been limited to a small number of patients, or 

have only investigated heterogeneity based on a single sample from each tumor, 

thereby potentially underestimating the true extent of diversity within tumors. 

1.2.2 Mutational processes contributing to ITH 

During the evolution of a tumor, mutational processes leave evidence of their 

activity via the somatic alterations they cause. These somatic alterations can be 

cataloged and tracked, providing a record of mutational activity and allowing for 

insights into the routes taken to carcinogenesis (Alexandrov et al., 2013a, Nik-

Zainal et al., 2012a). Broadly, mutational processes may be categorized as arising 
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from an exogenous or an endogenous source. Exogenous mutagens may include 

tobacco smoke and ultraviolet light, commonly observed in lung and skin cancers, 

respectively, while endogenous processes encompass defective DNA repair, such 

as mismatch repair deficiency in colorectal cancers, and the enzymatic modification 

of DNA, such as APOBEC family activity commonly identified across many cancers 

(Pfeifer et al., 2002, Pfeifer, 2010, Boland and Goel, 2010, Bhattacharyya et al., 

1994, Alexandrov et al., 2013a, McGranahan et al., 2015, Nik-Zainal et al., 2012a). 

Regardless of the source, these aberrant processes result in characteristic patterns 

of mutation.  

Different periods of a tumor’s evolutionary history are associated with the activity of 

distinct mutational processes (McGranahan et al., 2015, Nik-Zainal et al., 2012b). 

For instance, smoking mutations in NSCLC and UV-induced mutations in 

melanoma largely predate tumorigenesis, meaning they are present in the tumor 

initiating cell and in every subsequent daughter cell. In contrast, therapy-related 

mutation processes are, by definition, observable only after tumor detection 

(Johnson et al., 2014). 

Thus some mutational processes, which are active later during tumor evolution, 

disproportionately contribute to an increased level of ITH. This has been observed 

in NSCLC and bladder cancers, where large numbers of subclonal mutations often 

reflect activity of the APOBEC family of cytidine deaminases (de Bruin et al., 2014, 

McGranahan et al., 2015). Similarly, some mutational processes are capable of 

generating large numbers of mutations both early and late during cancer. In 

colorectal and prostate cancers, as well as some breast cancers, mismatch repair 

deficiencies lead to an increased mutational burden, but alterations to the proof-

reading machinery can occur early or late in tumor evolution (Kumar et al., 2016a, 

Uchi et al., 2016, Davies et al., 2017a). 

Therapy itself may also directly act as a mutagenic agent, increasing genetic ITH 

and influencing the evolutionary path of the tumor (Sveen et al., 2016, Murugaesu 

et al., 2015). The genotoxic effects of chemotherapy are often observable as 

distinct mutational processes, reflected by changes to the mutational landscape and 

spectra of the tumor.  

In two multi-region exome sequencing analyses of patients with esophageal 

adenocarcinoma taken before and after treatment with a platinum-containing 

chemotherapy, an increase in C>A transversions at CpC sites has been identified 



 28 

among the post-chemotherapy samples of patients with residual disease 

(Murugaesu et al., 2015, Findlay et al., 2016). Mutations in this particular context 

have been previously identified in C. elegans treated with cisplatin, a platinum 

based chemotherapeutic (Meier et al., 2014). The majority of the mutations 

observed in the platinum-associated mutational context were subclonal, consistent 

with those mutations occurring late in tumor evolution, as would be expected for 

chemotherapy-induced mutagenesis.  

Conceivably, therapy-associated mutational processes may not only leave scars in 

the genome but also may directly contribute to disease progression. A number of 

tumors from patients with melanoma and from low-grade glioma that transformed to 

glioblastomas at recurrence have been found with enormous subclonal mutation 

burden due to treatment with the alkylating agent temozolomide, selecting for 

resistant subclones with defective mismatch repair (Johnson et al., 2014, Chan et 

al., 2015, Alexandrov et al., 2013a, Hunter et al., 2006). Additionally, in the 

recurrent glioblastomas, novel driver mutations were identified in the RB and Akt-

mTOR pathways within the temozolomide associated mutational context, 

highlighting how chemotherapy-induced mutagenesis is not limited to driving 

genetic diversification, but can also influence the evolutionary path taken by the 

tumor (Johnson et al., 2014). 

1.2.3 Clinical implications of ITH 

Longitudinal analyses of tumor samples have consistently identified shifts in the 

genomes of samples taken before and after treatment with chemotherapeutics 

(Johnson et al., 2014, Murugaesu et al., 2015, Mullighan et al., 2008, Landau et al., 

2013, Ding et al., 2012, Schuh et al., 2012, Keats et al., 2012, Weston-Bell et al., 

2013), indicating that the genomic landscape of a tumor changes in response to 

cancer therapy. 

Even without directly inducing novel mutations as discussed above, cancer therapy 

results in new selective pressures, which can impact evolutionary trajectories reliant 

on the genetic variation that existed prior to the start of treatment. Within a 

heterogeneous tumor, some subclones may be present that originally had no 

obvious fitness advantage but impart a resistance to therapy and are subsequently 

selected for. Indeed, there have been numerous reports detailing the outgrowth of 

resistant subclonal populations in response to therapy across many cancer types 

including colorectal (Kreso et al., 2013, Diaz et al., 2012), glioblastoma (Cahill et al., 
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2007, Yip et al., 2009), melanoma (Wagle et al., 2011, Shi et al., 2014), non-small 

cell lung cancer (Kosaka et al., 2006, Turke et al., 2010), and CML (Shah et al., 

2002). The presence of subclonal drivers has also been associated with poorer 

outcome and response to therapy (Landau et al., 2013, Landau et al., 2015) in CLL. 

Thus extensive ITH is likely to limit the impact therapy, with a particularly strong 

effect on precision medicine approaches and targeted therapeutics (Gerlinger et al., 

2014b). 

Accordingly, there is some evidence that measures of ITH may be useful as a 

prognostic biomarker. Patients with low copy number ITH are more likely to respond 

well to chemotherapy (Marusyk et al., 2014) and, in early stage surgically resected 

NSCLC, exhibit longer recurrence-free survival (Jamal-Hanjani et al., 2017). 

Furthermore, increased ITH and clonal expansions have been shown to correlate 

with disease progression and poor prognosis in multiple cancer types (Mroz and 

Rocco, 2013, Schwarz et al., 2015, Sveen et al., 2016, Maley et al., 2006).  

1.3 Tumor and immune interaction 

By recognizing antigenic components of the tumor cell and influencing the local 

microenvironment, the immune system may exert an evolutionary pressure, shaping 

the antigenicity of the tumor and its diversity as it evolves. Specifically, immune 

editing, which describes the interaction between the tumor and immune system 

wherein the immune system plays the dual role of protecting the host and sculpting 

the tumor, can impact tumor evolution. Driven by the immune editing process, 

subclonal populations of tumor cells either lacking immunogenic antigens or able to 

withstand an immune response may be selected for (Schreiber et al., 2011, 

Matsushita et al., 2012, DuPage et al., 2012).  

1.3.1 History of immune surveillance and immune editing 

The immune system has long been thought of being capable of eliminating nascent 

cancer cells in humans, providing effective protection from tumor development 

(Schreiber et al., 2011). As early as the 1950s, donor T-cells were observed to 

recognize antigens on the surface of tumor cells (Barnes et al., 1956). This 

identification of tumor specific antigens, along with the formal demonstration of 

immune control and a more thorough understanding of the immune system over the 

coming decades, eventually led to the formalization of the cancer immune 

surveillance hypothesis, wherein the role of the adaptive immune response in 
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preventing tumor development was acknowledged (Burnet, 1957, Thomas, 1982). 

However, much debate ensued over whether the immune system could effectively 

curtail tumor growth as critics pointed to experiments showing the growth promoting 

nature of the pro-inflammatory immune response (Balkwill and Mantovani, 2001, 

Karin et al., 2002) and argued that tumor cells would be subject to immune 

tolerance, as they were so closely related to self (Pardoll, 2003). 

Throughout the 1990s, mouse studies continued to show that the immune system 

could mediate tumor rejection and that mice with defective immune responses or 

lacking functional lymphocytes were more susceptible to tumor formation (Dighe et 

al., 1994, Kaplan et al., 1998, Street et al., 2001, van den Broek et al., 1996). 

Furthermore, experiments comparing the immunogenicity of tumors formed in mice 

without an intact immune system to those formed under immune surveillance led to 

the realization that the immune system could sculpt tumors as they developed in 

addition to eliminating them (Shankaran et al., 2001, Dunn et al., 2002), eventually 

resulting in the immune editing hypothesis.  

Subsequently, three phases of tumor/immune interaction have been proposed 

(Dunn et al., 2002) (Figure 1-1):  

 

Figure 1-1: Immune elimination, tumor/immune equilibrium, and tumor escape. 
Three phases of the tumor/immune interaction are displayed. In the immune elimination phase, the 
immune system recognizes and destroys tumors cells. Eventually immune pressure can lead to some 
tumor cells developing ways to avoid recognition (equilibrium). Finally those immune resistant tumor 
cells can escape immune detection. 
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1) Elimination: During immune elimination, the immune system is surveilling and 

destroying transformed cells. 

2) Equilibrium: Repeated pressure from the immune system results in the tumor 

evolving non-antigenic variants to avoid immune detection and/or evasive 

mechanisms to withstand immune attack. During this phase, genetic instability likely 

contributes to the ability of the tumor to withstand and respond to immune pressure.  

3) Escape: The tumor which has now been sculpted by the immune system 

eventually escapes and grows unchecked by immune activity. 

1.3.2 Tumor antigens 

In order for the immune system to actively destroy nascent tumor cells and shape 

tumor development, it must be capable of recognizing the tumor as distinct from the 

non-transformed self. Tumor-specific antigens were first inferred to exist after 

studies in mice showed that T-cells could eliminate cancer cells and again after the 

realization that mice could not be successfully challenged with the same chemically 

induced tumor twice, suggesting an immunological memory of the first tumor 

challenge (Barnes et al., 1956, Old and Boyse, 1964).  

In humans, studies have also shown that tumor cells express antigens that are 

recognizable by T-cells from the same patient. Autologous tumor infiltrating 

lymphocytes (TILs) from patients with metastatic melanoma have been expanded 

ex vivo and re-administered, resulting in tumor regression (Dudley et al., 2002b), 

indicating that there are T-cells present capable of recognizing tumor cells and 

mounting an immune response against them (Dudley et al., 2002b, Rosenberg, 

2012). 

This response has been exploited therapeutically with adoptive cell therapy (ACT), 

which allows for the administration of T-cells that have been selected as highly 

tumor-reactive (Dudley et al., 2002a). If a specific antigen on the tumor cell is 

known, such as CD19 in lymphoma, CLL, and ALL, then the cells may be 

genetically engineered to contain specific T-cell receptors (TCRs) or chimeric 

antigen receptors (CARs). Serving to highlight the potential of T-cell elimination of 

cancer cells, treatment with ACT can result in long-term remission from disease 

(Tran et al., 2014, Rosenberg and Restifo, 2015). 
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A T-cell mediated immune response occurs either from the recognition of self-

antigens when T-cell tolerance is incomplete or through recognition of a peptide that 

is not present in the normal human peptidome (Hacohen et al., 2013, Schumacher 

and Schreiber, 2015) due to the activity of ongoing mutational processes in a 

cancer cell (Vogelstein et al.). Self-antigens can arise from genes that are 

aberrantly expressed in cancer, such as MAGE-1 (van der Bruggen et al., 1991, 

Chomez et al., 2001, Sahin et al., 1995), which is normally restricted to male 

germline cells, or from proteins such as Her-2/Neu that are normally expressed in 

healthy tissue but overexpressed in tumors (Fisk et al., 1995).  

While self-antigens were historically easier to identify as they were frequently 

shared between tumors, targeting them through T-cells engineered to express 

tumor reactive T-cell receptors can result in significant toxicity since healthy tissue 

also expresses the same antigen (Johnson et al., 2009, Morgan et al., 2006). Thus 

in recent years, non-self tumor antigens have been the focus of much study as they 

may represent a novel class of potent immunotherapy targets. 

1.3.3 Neoantigens 

Non-self tumor antigens, more commonly referred to as neoantigens, are generated 

from the multitude of somatic mutations present in a cancer cell (Alexandrov et al., 

2013a, Vogelstein et al., 2013, Stratton, 2011). Point mutations that occur in the 

protein coding regions of the genome (exonic mutations) can either be classified as 

synonymous, if they do not result in an amino acid change, or non-synonymous, if 

the mutation results in a new amino acid. In the case of non-synonymous 

mutations, the immune system may be capable of recognizing the altered peptide 

sequence as foreign and mounting an immune response against it. Neoantigens 

represent an interesting potential therapeutic target, as they are tumor specific by 

definition, yet they are not self-antigens and thus are not limited by central tolerance 

or treatment associated toxicity.  

The first evidence highlighting importance of neoantigenic epitopes mediating a 

cancer immune response was again found through the use of mouse studies. In 

1995 an amino acid substitution from a UV-induced tumor was found to act as a 

tumor specific antigen capable of being recognized by T-cells, whereas its wildtype 

counterpart was not (Monach et al., 1995). Shortly thereafter, T-cells from a human 

patient with metastatic melanoma were also found to recognize a peptide arising 

from a point mutation (Coulie et al., 1995). These studies, among many others 
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(Sensi and Anichini, 2006), showed that T-cell responses could be mounted against 

somatically mutated antigens in both mouse and human. Additionally, cytolytic 

activity of T-cells against mutated peptides has been observed in patients exhibiting 

long-term survival (Novellino et al., 2003, Lennerz et al., 2005). 

Bioinformatics advances allow the prediction of neoantigens using in silico 

approaches. In a landmark mouse study, potentially immunogenic epitopes arising 

from a murine melanoma tumor model were predicted from exome sequencing 

data. When mice were immunized with two of the identified neoantigens, tumor 

growth was inhibited and a protective immune response was observed (Castle et 

al., 2012). In a separate study using a mouse tumor cell line, a dominant 

neoantigen was identified that was recognized by CD8+ T-cells in mice that rejected 

the tumor when challenged. Additionally, it was shown that tumor cell clones lacking 

the antigenic mutations were selected for growth in an illustration of tumor 

immunoediting, where the immune response shapes tumor development towards 

an immune-resistant direction (Matsushita et al., 2012). 

Neoantigens arising from human tumors have also been predicted and confirmed in 

vitro, highlighting their potential benefit in a clinical setting. Segal and colleagues 

identified potentially immunogenic epitopes in a cohort of breast and colorectal 

tumor samples (Segal et al., 2008). Putative tumor specific neoantigens have also 

been identified in CLL (Rajasagi et al., 2014). In a seminal study, van Rooij and 

colleagues predicted potential neoantigens for a patient with stage IV melanoma 

that exhibited a response to immunotherapy treatment. They then advanced from 

the sole use of in silico techniques to the screening of TILs obtained from the 

patient for reactivity against the predicted neoantigens and identified two 

neoantigens that caused T-cell reactivity in vitro (van Rooij et al., 2013). Pan-cancer 

analyses of large tumor cohorts have identified a link between predicted 

neoantigenic load, enhanced cytolytic activity, and improved prognosis (Brown et 

al., 2014, Rooney et al., 2015). 

However, due in large part to the heterogeneous composition of many tumors and 

the polymorphic nature of the HLA locus (discussed below), the number of recurrent 

neoantigens is astonishingly low. Indeed, an analysis of the predicted neoantigens 

resulting from a cohort of over 60,000 patients found that each set of neoantigens 

would be relevant to less than ~0.3% of the population (Hartmaier et al., 2017). 
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1.3.4 HLA presentation 

In order for an antigenic peptide to induce an immune response, it must be 

presented on the cell surface via major histocompatibility complex (MHC) molecules 

for potential recognition by T-cells (Neefjes et al., 2011).  

There are two primary classes of MHC molecules, known as human leukocyte 

antigen (HLA) in humans. Class I molecules are expressed by all nucleated cells 

and present intracellular antigenic peptides that have been degraded by the 

proteasome to CD8+ T-cells (Figure 1-2A-B). The MHC molecule is a heterodimer, 

formed by a highly polymorphic heavy and light chain, which is then stabilized by 

B2M. In humans, the classical class I molecules are encoded by HLA-A, HLA-B, 

and HLA-C genes on chromosome 6, which show great diversity among the general 

population. The polymorphisms in the HLA genes result in different peptide binding 

grooves, such that different HLA alleles bind a diverse set of peptides (The, 1999). 

Class II molecules are also encoded by a set of highly polymorphic genes on 

chromosome 6 (HLA-DP, HLA-DQ, HLA-DR) and present peptides derived from 

extracellular proteins (The, 1999). Whereas class I MHC molecules are presented 

by nearly all cells, class II MHC molecule expression is generally restricted to 

professional antigen presenting cells, such as dendritic cells and B cells (Neefjes et 

al., 2011) (Figure 1-2C). However, interferon gamma signaling can induce class II 

expression in many cell types, including tumor cells (Collins et al., 1984, Park et al., 

2017). In the MHC class II presentation pathway, a protein is endocytosed and 

degraded by proteases before being presented to CD4+ T-cells by MHC class II 

molecules.  

One possible way for a neoantigenic peptide to induce a novel immune response is 

if the mutation affects an amino acid that results in strong peptide binding to the 

MHC molecule. In such a scenario, if the wildtype peptide was not capable of 

binding an MHC molecule, T-cell clones recognizing it would not have been subject 

to removal during the development of central tolerance. If a mutation results in 

peptide-MHC binding and the mutant peptide is recognized as foreign by T-cells, 

then it could induce an immune response. Alternatively, if the wildtype peptide is 

also presented by MHC molecules, then the neoantigenic peptide may be 

recognized as foreign by T-cells due to a mutation that changes the T-cell receptor 

exposed area (Fritsch et al., 2014) (Figure 1-2D).   
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Figure 1-2: Antigen presentation pathways. 
A schematic of MHC class I (A) and class II antigen presentation (C). This thesis mainly focuses on 
MHC class I antigen presentation, so a schematic is also given detailing how mutations present in a 
tumor cell are processed and eventually presented on the cell surface for potential recognition by 
CD8+ T-cells (B). Scenarios that could generate an antigenic mutation (D). 

1.3.5 Disentangling the immune contexture 

Effective tumor recognition requires both the presentation of tumor-specific antigens 

and a functional immune environment, replete with cells capable of eliciting and 

sustaining an immune response. The analysis of the different immune cell 

subpopulations present in and around the tumor, as well as the specific location and 

proportions of these cells, across a wide range of tumors has allowed for the 

elucidation of both beneficial and detrimental aspects of immune infiltration 

(Fridman et al., 2012). 
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Generally infiltration of cytotoxic T-cells and dendritic cells has been shown to 

confer favorable prognosis across a variety of cancer types (Clemente et al., 1996, 

Fridman et al., 2012, Gentles et al., 2015, Roberts et al., 2016). However, in some 

instances, the association with patient survival has been proven be dependent on 

the location of cells in the microenvironment, with only the infiltration of CD8+ T-

cells within the tumor, rather than at the tumor margin, improving patient survival 

(Naito et al., 1998).  

Other immune cells are associated with poor prognosis, such as myeloid-derived 

suppressor cells and tumor-associated macrophages (Kumar et al., 2016b, Guo et 

al., 2016) indicating that understanding the composition of the tumor 

microenvironment, rather than using an estimate of tumor purity as a proxy for the 

total level of immune infiltration is key to predicting patient outcome (Racle et al., 

2017). 

Finally some immune cell subpopulations have a less clear relationship with patient 

prognosis, owing either to imperfect quantification due to poor cell type markers, 

unique host microenvironments, tissue type of tumor origin, or factors that remain 

undetermined. For instance in different cancer types, regulatory T-cells have been 

found to be associated with worse overall survival (breast, hepatocellular 

carcinoma) (Bates et al., 2006, Fu et al., 2007), an improved overall survival 

(colorectal, follicular lymphoma) (Frey et al., 2010, Carreras et al., 2006), or have 

no relationship at all with survival (breast, brain) (Mahmoud et al., 2011, Jacobs et 

al., 2010). There have also been inconsistent reports on whether B cell infiltration is 

associated with improved overall survival (DiLillo et al., 2010, Qin et al., 1998, 

Schultz et al., 1990). 

Estimates of immune infiltration have been developed and applied to large-scale 

cancer transcriptomics datasets to better understand the relationship between 

immune infiltration and survival, as well as to identify potential targets for 

immunotherapy (Gentles et al., 2015, Li et al., 2016, Davoli et al., 2017, Angelova et 

al., 2015, Danaher et al., 2017). Furthermore, to better stratify tumors based on the 

activity of the immune cells found in immune microenvironment rather than just 

quantifying their presence, a number of additional measures have been proposed 

such as the immune score (Galon et al., 2012), a score of cytolytic activity (Rooney 

et al., 2015), and the immunophenoscore (Charoentong et al., 2017). Such scores 

have also been used to predict metastatic potential and response to immunotherapy 

(Mlecnik et al., 2016, Charoentong et al., 2017).  
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1.3.6 Promise of immunotherapy and resistance 

Recent clinical trials have shown that modulation of the immune system through the 

blockade of immune checkpoint molecules such as anti-cytotoxic T lymphocyte 

antigen-4 (CTLA-4), programmed cell death-1 (PD-1), or programmed cell death 

ligand-1 (PD-L1) results in improved antitumor responses and clinical benefit in a 

variety of cancers (Hodi et al., 2010, Brahmer et al., 2012, Topalian et al., 2012a, 

Wolchok et al., 2013). These antibodies function by inhibiting two of the pathways 

regulating T-cell activation (Figure 1-3). The co-inhibitory receptor CTLA-4 prevents 

the initial activation of T-cells in lymph nodes by competing with CD28 for binding of 

shared ligands (Pardoll, 2012). The PD-1 pathway limits T-cell activity in the 

peripheral tissues as a way to prevent prolonged inflammatory responses and limit 

autoimmunity (Pardoll, 2012).  

 

Figure 1-3: CTLA-4 and PD-1 regulatory pathways. 
The  inhibitory receptors CTLA-4 (A) and PD-1 (B) which act to down-regulate T-cell activation are 
shown. Antibodies targeting these receptors allow for an increase in T-cell activity by removing the 
negative signal dampening T-cell response.   

Genetic analyses of tumors from patients with malignant melanoma and non-small 

cell lung cancer (NSCLC) treated with immune checkpoint inhibitors have revealed 

a relationship between the number of mutations the tumor harbors, its neoantigenic 

burden, and clinical response, with improved response observed among those 

patients with a higher mutation/neoantigen burden (Snyder et al., 2014, Rizvi et al., 

2015, Van Allen et al., 2015). While cancer immunotherapy has resulted in durable 

antitumor responses in a subset of patients treated (Hodi et al., 2010, Wolchok et 
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al., 2013, Topalian et al., 2012b), current genomic and molecular biomarkers 

predicting response fail to perfectly stratify groups of patients into those that will 

benefit from immunotherapy and those who will show no clinical benefit, with 

frequent overlap between responding patients and non-responders for a given 

biomarker (Hong et al., 2015). Moreover, even among those patients originally 

improving while on therapy, the mechanisms through which a tumor develops 

resistance remain incompletely cataloged (Rizvi et al., 2015, Snyder et al., 2014, 

Roh et al., 2017, Chen et al., 2016).  

1.3.6.1 Tumor-intrinsic immune escape mechanisms 

Thus far, many tumor-intrinsic mechanisms of immunotherapy resistance have 

been identified (Figure 1-4). The presence of inhibitory immune checkpoint 

molecules, such as PD-L1, LAG-3, and TIM-3 down-regulate T-cell activity, usually 

as a way to maintain immune homeostasis and prevent uncontrolled immune 

responses. However tumors may overexpress these negative regulatory molecules, 

providing an avenue for immune escape (Tumeh et al., 2014, Matsuzaki et al., 

2010, Sakuishi et al., 2010, Woo et al., 2002, Powles et al., 2014, Herbst et al., 

2014). Additionally, oncogenic events themselves, such as increased ß-catenin 

signaling and PTEN loss have been shown to inhibit T-cell mediated killing 

(Spranger et al., 2015, Peng et al., 2016). Even in the presence of capable T-cells, 

lack of tumor antigen recognition due to defects in antigen presentation (Tran et al., 

2016, Zaretsky et al., 2016, Zhao et al., 2016) and insensitivity to T-cell effector 

molecules such as IFN-y signaling (Zaretsky et al., 2016, Minn and Wherry, 2016, 

Benci et al., 2016, Gao et al., 2016, Sucker et al., 2017) can result in resistance. 

Additional evidence is emerging that transcriptomic re-programming can lead to 

immunotherapy resistance as well (Hugo et al., 2016). 

1.3.6.2 Tumor-extrinsic immune escape mechanisms 

Tumor-extrinsic mechanisms of immunotherapy resistance include immune 

checkpoints, such as PD-1 and CTLA-4, infiltration of immunosuppressive cell 

populations, and T-cell exhaustion. Finally, there may be additional characteristics 

associated with resistance that are not yet well understood, such as the 

composition of the gut microbiome (Sivan et al., 2015, Vetizou et al., 2015, Routy et 

al., 2017, Gopalakrishnan et al., 2017).  
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Figure 1-4: Tumor-intrinsic mechanisms of immunotherapy resistance. 
 

1.4 Tools for understanding the tumor-immune interaction 

Neoantigen predictions can be generated using the known non-synonymous 

mutations present in a tumor. Furthermore, the tumor microenvironment can also be 

investigated to understand the prevalence of infiltrating immune cells and their 

composition. In combination, these tools allow for a thorough profiling of the 

components and targets of the immune system, shedding light on the factors that 

contribute to anti-tumor immunity, response to immunotherapy, and mechanisms of 

immune evasion. 

In order to filter the list of all non-synonymous mutations present in the tumor down 

to those likely to induce an immune response, the likelihood of a peptide containing 

the mutation being presented to a T-cell must be considered. There are many steps 

from mutation generation to class I antigen presentation, broadly classified as 

proteasomal cleavage, TAP transport, and MHC binding, with tools available to 

generate predictions at each step (Figure 1-5).  
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1.4.1 HLA typing 

Generally considered the most selective step in antigen presentation, the binding of 

a mutant peptide to the cell’s HLA molecules for presentation is determined by what 

specific HLA alleles are present in the cell. Thus determining the HLA type of a 

patient is essential for predicting neoantigenic mutations. This task has proven to be 

a challenging one, as the HLA locus is highly polymorphic. High-resolution HLA 

typing was once only achievable at low-throughput via serotyping, but recent 

algorithms are now capable of using short read DNA or RNA sequence data 

(Szolek et al., 2014, Shukla et al., 2015, Liu et al., 2013, Boegel et al., 2012, 

Warren et al., 2012).  

Most of these approaches rely on an extensive database of known HLA alleles 

maintained by international ImMunoGeneTics project (IMGT) (Lefranc et al., 2009). 

Sequencing reads that may contain HLA sequence information are extracted and 

mapped to the known alleles from the IMGT database. The allelic combination 

which maximizes the number of reads explained is then chosen as the individual’s 

likely HLA type (Szolek et al., 2014, Shukla et al., 2015). Alternatively, the 

sequencing reads may be assembled into contigs and matched to the HLA allele 

pairs that are nearest to the contig sequence (Warren et al., 2012, Liu et al., 2013).  

It is also possible to identify somatic mutations affecting the HLA locus by using the 

sequence of patient’s inferred HLA alleles as the reference and comparing that 

reference to what was obtained after the re-alignment of the extracted HLA 

sequencing reads (Shukla et al., 2015). Somatic HLA mutations acquired by the 

tumor have the potential to disrupt tumor antigen presentation, possibly allowing an 

avenue for the tumor to escape immune predation (Shukla et al., 2015). 

1.4.2 Class I neoantigen predictions 

From a given mutation, multiple possible peptides may arise. The exact peptide 

sequence which may be generated is determined by what sites are cleaved by the 

proteome, which is responsible for most intra-cellular protein degradation. Large 

polypeptides are degraded into smaller peptide fragments, usually of length 8-11 

amino acids. Neural network based prediction methods exist that allow for the 

prediction of proteasome cleavage sites to identify what peptides are likely to arise 

from a given mutation (Nielsen et al., 2005, Kesmir et al., 2002). 
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Once a mutant peptide has been generated, it may be transported to the 

endoplasmic reticulum where the association between the peptides and the MHC 

molecules can occur. Thus prediction methods also exist to determine whether a 

peptide is likely to bind to the TAP transporter (Bhasin et al., 2007, Diez-Rivero et 

al., 2010). 

After transport of the peptide to the ER, the crucial step of peptide-MHC binding 

may occur. Arguably, this step is the most important for predicting the 

immunogenicity of a peptide, (Sette et al., 1994) and correspondingly, the largest 

number of tools are available to make predictions of this interaction (Hoof et al., 

2009, Nielsen and Andreatta, 2016, Andreatta and Nielsen, 2016, O'Donnell et al., 

2017, Moutaftsi et al., 2006, Kim et al., 2009). Most tools have been extensively 

trained on data deposited in the Immune Epitope Database (IEDB) (Vita et al., 

2015). For instance, the NetMHC family of tools uses artificial neural networks to 

predict peptide binding to any input MHC molecule, regardless of the extent of 

available training data or whether it has even been identified in IMGT (Nielsen and 

Andreatta, 2016, Andreatta and Nielsen, 2016). Additionally the most recent version 

of the tools also estimate the likelihood of a peptide naturally occurring as a ligand 

(Jurtz et al., 2017). 
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Figure 1-5: Schematic of HLA class I presentation and predictive tools available. 
The general steps that occur in order for a mutation to be presented for possible recognition by CD8+ 
T-cells are depicted. Commonly used bioinformatics methods are provided at each step of the 
presentation pathway.  

In theory, predictions can be made for all the steps comprising class I antigen 

processing, and prediction software now exists to incorporate all aspects of antigen 

processing (Larsen et al., 2007). Frequently, however, all possible peptides arising 

from a given mutation are considered as possible neoantigens and the most 

emphasis is placed on predicting the peptide-MHC interaction. 

1.4.3 Class II neoantigen predictions 

Neoantigen predictions can also be made for epitopes presented on professional 

antigen presenting cells via the class II antigen processing pathway; however, the 

steps involved in this pathway are more complex, and the epitopes themselves are 

longer with more flexible MHC binding positions, rendering results less accurate 

(Roche and Furuta, 2015). Tools are available for predicting the class II 

MHC/peptide interaction, but fewer benchmarking studies have been performed to 

determine appropriate thresholds for classification of peptides as weak or strong 

binders (Nielsen et al., 2008, Nielsen et al., 2010, Lund et al., 2013).  
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1.4.4 Immune microenvironment 

While historically, deciphering the quantity and composition of TILs relied on flow 

cytometry and immunohistochemcial approaches, it is now possible to use bulk 

tissue sequencing data to identify different immune cell subpopulations infiltrating 

the tumor. To achieve this, a number of deconvolution methods have been 

developed that rely on the expression profiles of different immune cell types to 

estimate the composition of infiltrating cells resulting in the bulk tumor gene 

expression values observed (Newman et al., 2015, Li et al., 2016, Becht et al., 

2016, Racle et al., 2017). These approaches can use linear regression or quadratic 

programming and a reference expression matrix generated from sorted immune 

cells to computationally work backwards to decipher the immune cell subtype 

fractions (Hackl et al., 2016).  

A second class of methods relies on an enrichment based approach to either 

determine which cell populations are enriched in a subset of patients (GSEA), or 

which gene sets are coordinately up- or down-regulated in a single tumor sample 

(ssGSEA) (Hackl et al., 2016, Angelova et al., 2015, Senbabaoglu et al., 2016). 

These methods provide an estimate of which immune cell subtypes are statistically 

enriched in the samples considered. 

Finally, a number of marker gene enrichment methods have been defined which are 

based simply on the combination of reference gene expression values (Danaher et 

al., 2017, Rooney et al., 2015, Davoli et al., 2017, Bindea et al., 2013). 

The different methods make various assumptions to determine which genes are 

best suited to make up the reference immune cell gene sets. For instance, TIMER 

assumes that the expression of true immune genes must negatively correlate with 

purity, as purity is the measure of tumor content, and thus this method removes any 

genes that do not show a strong negative correlation with tumor purity (Li et al., 

2016). Alternatively, some immune cell measures assume that gene sets that define 

the same cell population must strongly correlate with one another (Danaher et al., 

2017), and others remove any genes that have been found in the definition of 

multiple immune cell subtypes or positively select for exclusively expressed genes, 

leaving only genes unique to a particular immune subtype (Davoli et al., 2017, 

Rooney et al., 2015). Importantly, creating a reference signature matrix that 

accurately and specifically identifies the different immune cell subtypes has proven 

to be challenging, and ultimately, the reference signature matrix can alter output 
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results drastically. Furthermore, it remains to be determined if tumor specific 

expression matrices are required, or if the immune cell expression profiles remain 

consistent across tumor types and cancer in general.   
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Chapter 2 Data and Methods 

2.1 Data 

2.1.1 TRACERx multi-region sequencing pilot data 

Samples from the TRACERx pilot study (L001, L002, L003, L004, L008, L011 and 

L012) were obtained from patients diagnosed with non-small cell lung cancer 

(NSCLC) who underwent definitive surgical resection prior to receiving any form of 

adjuvant therapy, such as chemotherapy or radiotherapy. Informed consent 

allowing for genome sequencing had been obtained. All samples were collected 

from University College London Hospital, London (UCLHRTB 10/H1306/42). Tumor 

samples were subjected to pathology review to establish the histological subtype: 

five tumors were classified with CK7+/TTF1+ adenocarcinoma (L001, L003, L008 

and L011) or poorly-differentiated CK7+ carcinoma (L004) histology, one tumor 

(L012) with squamous cell carcinoma histology and one tumor (L002) with 

adenosquamous histology. Two patients presented with disease in two separate 

lobes of the lung (L003 and L008). Detailed clinical characteristics are provided in 

Table 4-2. 

Multiple regions (up to five from a single tumor) were taken, separated by 1cm 

intervals. Peripheral blood was also collected at time of surgery from all patients.  

2.1.2 TRACERx multi-region sequencing data 

The TRACERx 100 cohort comprises the first 100 patients prospectively analyzed 

by the lung TRACERx main study (https://clinicaltrials.gov/ct2/show/NCT01888601, 

approved by an independent Research Ethics Committee, 13/LO/1546) and mirrors 

the prospective 100 patient cohort described in (Jamal-Hanjani et al., 2017). 

All surgically resected tumor samples were macroscopically reviewed by a 

pathologist. Spatially separated tumor regions, documented by photography, were 

collected and snap frozen in liquid nitrogen for subsequent DNA extraction. At least 

two regions from each tumor, separated by at least 3mm, were collected. The 

samples were taken as to maximize tumor cellularity (areas that were obviously 

necrotic, fibrotic, or hemorrhagic were avoided) and to reflect the observed 

macroscopic morphological heterogeneity of the tumor. Peripheral blood was also 

obtained at time of surgery. 
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Diagnostic tumor sections from lung adenocarcinoma and lung squamous cell 

carcinoma cases were subject to histopathological grading. 

For analysis using the tool LOHHLA, four patients were excluded due to 

homozygosity at all three HLA loci or too few mismatch positions between HLA 

alleles. Lung adenocarcinoma and lung squamous cell carcinoma tumors were 

considered for downstream analyses. Seven tumors were classified as having a 

separate histology. Of these, one carcinosarcoma exhibited HLA LOH and three 

adenosquamous carcinomas, one carcinosarcoma, one large cell carcinoma, and 

one large cell neuroendocrine tumor did not.  

2.1.3 The Cancer Genome Atlas (TCGA) data 

Some analysis presented in this thesis was based upon data generated by the 

TCGA Research Network. Information about TCGA and the investigators and 

institutions that constitute the TCGA Research Network can be found at 

http://cancergenome.nih.gov/. 

2.1.3.1 TCGA (processed mutational data) 

TCGA mutation data for mutational signatures analysis was obtained from Broad 

Institute MAF dashboard as detailed: 

Urothelial bladder carcinoma (BLCA): 

• PR_TCGA_BLCA_PAIR_Capture_All_Pairs_QCPASS_v3.aggregated.captu
re.tcga.uuid.somatic.maf (center: broad.mit.edu, archive version: 0.3.0) 

Breast invasive carcinoma (BRCA): 

• genome.wustl.edu_BRCA.IlluminaGA_DNASeq.Level_2.1.1.0.curated.soma
tic.maf (center: genome.wustl.edu, archive version: 1.1.0) 

Colon adenocarcinoma (COAD): 

• hgsc.bcm.edu_COAD.IlluminaGA_DNASeq.1.somatic.maf (center: 
hgsc.bcm.edu, archive version: 1.5.0) 

Esophageal carcinoma (ESCA): 

• An_TCGA_ESCA_External_capture_All_Pairs.aggregated.capture.tcga.uuid
.automated.somatic.maf (center: broad.mit.edu, archive version: 1.0.0) 
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Glioblastoma multiforme (GBM): 

• step4_gbm_liftover.aggregated.capture.tcga.uuid.maf2.4.migrated.somatic.
maf (center: broad.mit.edu, archive version: 1.4.0) 

Head and neck squamous cell carcinoma (HNSC): 

• PR_TCGA_HNSC_PAIR_Capture_All_Pairs_QCPASS_v2.aggregated.capt
ure.tcga.uuid.somatic.maf (center: broad.mit.edu, archive version: 0.2.0) 

Lung adenocarcinoma (LUAD): 

• PR_TCGA_LUAD_PAIR_Capture_All_Pairs_QCPASS_v4.aggregated.captu
re.tcga.uuid.automated.somatic.maf (center: broad.mit.edu, archive version: 
1.5.0) 

Lung squamous cell carcinoma (LUSC): 

• LUSC_Paper_v8.aggregated.tcga.somatic.maf (center: broad.mit.edu, 
archive version: 1.5.0) 

Skin cutaneous melanoma (SKCM): 

• PR_TCGA_SKCM_PAIR_Capture_All_Pairs_QCPASS_v4.aggregated.capt
ure.tcga.uuid.automated.somatic.maf (center: broad.mit.edu, archive 
version: 1.4.0) 

One lung adenocarcinoma patient, TCGA-05-4396, was excluded for having over 

7000 low quality mutations called, mostly in a C[C>G]G context. A lung squamous 

cell carcinoma patient, TCGA-18-3409, was excluded for bearing a strong UV 

signature, uncharacteristic of a LUSC tumor. 

These cancer types were chosen as they had available mutation tables with VAFs 

calculated and been previously analyzed for mutational timing (McGranahan et al., 

2015). 

2.1.3.2 TCGA (processed RNAseq data) 

Processed RNA-sequencing data was downloaded from the TCGA data portal. For 

each lung adenocarcinoma and lung squamous cell sample, all available ‘Level_3’ 

gene-level data was obtained. This data had been quantified using RSEM. Gene-

level data reflecting either raw counts, for use in differential expression analyses, or 

TPM was considered. 

2.1.3.3 TCGA (raw data) 

Tumor and matched germline exome sequencing BAM files for both lung 

adenocarcinoma (n = 397) and lung squamous cell carcinoma (n = 350), were 
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obtained from TCGA (http://cancergenome.nih.gov/) via https://cghub.ucsc.edu. The 

BAM files were converted to FASTQ using bedtools bamtofastq (v2.25). The 

resulting sequence files were processed as described for the TRACERx cohort, with 

a set of annotated variants being generated as the output.  

2.1.3.4 TCGA (clinical data) 

Clinical data for TCGA patients was accessed through the TCGA data portal. 

Patients were first grouped according to quartile of the variable being considered. 

Survival analyses were then performed in R using the survival package. Complete 

survival data was available for 139/150 lung adenocarcinoma patients and 122/124 

lung squamous cell carcinoma patients. 

2.1.4 Pembrolizumab treated NSCLC patient data 

A patient cohort of stage IV NSCLC was obtained from (Rizvi et al., 2015). A 

detailed description of this patient cohort, including tumor processing, can be found 

in supplementary material of (Rizvi et al., 2015). 

2.1.5 Ipilimumab treated melanoma patient data 

Samples obtained from (Snyder et al., 2014) reflected a patient cohort of late stage 

melanoma, and a detailed description of this patient cohort, including tumor 

processing, can be found in supplementary material of (Snyder et al., 2014). 

2.2 Methods 

2.2.1 Whole exome sequencing 

2.2.1.1 TRACERx multi-region sequencing pilot  

Exome capture was performed on 1-2µg of DNA from each tumor and matched 

germline sample, using the Agilent Human All Exome V4 kit according to 

manufacturer’s protocol. The samples were paired-end multiplex sequenced on the 

Illumina GAII or HiSeq2500 at the Advanced Sequencing Facility at the London 

Research Institute (LRI). The desired sequencing depth was 100x.  

2.2.1.2 TRACERx multi-region sequencing 

Exome capture was performed on 1-2µg of DNA isolated from genomic libraries 

with median insert size of 190bp for each tumor and matched germline sample. A 
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customized Agilent Human All Exome V5 kit was used according to the 

manufacturer’s protocol. Samples were 100bp paired-end multiplex sequenced on 

the Illumina HiSeq 2500 and HiSeq 4000 at the Advanced Sequencing Facility at 

The Francis Crick Institute. The median sequencing depth was 431 (range 83-986) 

for tumor regions and 415 (range 107-765) for matched germline. To prevent inter-

patient sample swaps, germline SNP profiles were compared, as they should be 

highly similar between all tumor regions and associated germline sample. 

2.2.2 Whole genome sequencing 

2.2.2.1 TRACERx multi-region sequencing pilot  

Paired-end whole genome sequencing was performed on 1µg of DNA four tumor 

regions (L002:R1, L002:R3, L008:R1, L008:R3) and matched blood by Illumina 

Cambridge LTD. The desired sequencing depth was 100x for tumor, 40x for 

germline. 

2.2.3 Multi-region somatic alteration calling 

All somatic alteration calling was performed using either the pilot version or the 

main study version of the TRACERx pipeline designed by Gareth Wilson and 

Richard Mitter. Full details of the pipelines can be found in (de Bruin et al., 2014) 

and (Jamal-Hanjani et al., 2017). 

2.2.3.1 TRACERx multi-region pilot mutation calling 

Raw paired-end sequencing reads were aligned to hg19, including all contigs, 

obtained from the GATK bundle (v2.8) using bwa mem (bwa-0.5.9). Up to 3-4 

mismatches were allowed per read for the GAII or HiSeq, respectively. Files from 

the same patient region were cleaned, sorted, merged, and duplicate reads 

removed using Picard tools (v1.8). 

SAMtools mpileup (0.1.19) was used to find non-reference positions in tumor and 

germline samples. Bases with low phred score (<20) or reads with low mapping 

quality scores (<20) were removed. Somatic variants were identified using 

VarScan2 somatic (v2.3.6) and extracted using VarScan2 processSomatic (Koboldt 

et al., 2012). All single nucleotide variant (SNV) calls were filtered for false positives 

using VarScan2’s fpfilter.pl script. Variants were only kept if it was present in >=5% 
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sequencing reads in one tumor region and present with <=2 reads in germline and 

>=2 reads in the tumor region. 

Small insertions and deletions (indels) were identified using Pindel (v0.2.4) (Ye et 

al., 2009). 

All variants were annotated using ANNOVAR (Wang et al., 2010) and dbNSFP (Liu 

et al., 2011). All non-silent variants were manually reviewed using Integrated 

Genomics Viewer (IGV v38).  

2.2.3.2 TRACERx multi-region study mutation calling 

Raw paired-end sequencing reads were aligned to hg19, including all contigs, 

obtained from the GATK bundle (v2.8) using bwa mem (bwa-0.7.8). Files from the 

same patient region were cleaned, sorted, merged, and duplicate reads removed 

using Picard tools (v1.107). 

SAMtools mpileup (0.1.19) was used to find non-reference positions in tumor and 

germline samples. Bases with low phred score (<20) or reads with low mapping 

quality scores (<20) were removed. Somatic variants were identified using 

VarScan2 somatic (v2.3.6) and extracted using VarScan2 processSomatic (Koboldt 

et al., 2012). All SNV calls were filtered for false positives using VarScan2’s 

fpfilter.pl script. All indel calls in reads classified by VarScan2 as “high confidence” 

were kept for downstream filtering. Additionally, MuTect (v1.1.4) was used to 

identify SNVs (Cibulskis et al., 2013). These variants were filtered according to the 

filter parameter “PASS”. 

To avoid false positive variant calls, additional filter steps were taken. Variants 

called by both VarScan2 and MutTect were considered true positives if the variant 

allele frequency (VAF) was >2%. If the variant was only identified by VarScan2, a 

VAF of >5% was required. Furthermore, the sequencing depth in each region was 

required to be >=30 and >=5 sequence reads had to support the call. To ensure the 

variant was not a germline event, the number of reads containing the variant in the 

germline data had to be <5 and VAF <=1%.  

To utilize the multi-region sequencing aspect of the cohort, individual mutations 

called across each region from the same tumor were compared. The threshold for 

detection of a somatic variant in one tumor region was reduced to VAF >=1% if the 
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same variant had been detected at the VAF>=5% in another tumor region from the 

same tumor.  

Indels were filtered using the same parameters as SNVs, except >=10 reads had to 

support the variant call and the region had to have a sequencing depth >=50.  

All variants were annotated using Annovar (Wang et al., 2010) and COSMIC (v75).  

2.2.4 Copy number analysis 

Varscan2 copynumber was run to generate copy number data from paired tumor-

normal samples, which produced per-region logR values, that were subsequently 

GC corrected (Koboldt et al., 2012). Homozygous and heterozygous single 

nucleotide polymorphisms (SNPs) were identified from the germline sample using 

Platypus (v0.8.1) (Rimmer et al., 2014). The B-allele frequency (BAF) of each SNP 

was calculated as the proportion of the reads at that position that contained the 

variant base. 

The logR and BAF values were used with ASCAT (v2.3) (Van Loo et al., 2010) in 

order to generate segmented allele-specific copy number data, purity, and ploidy 

estimates. 

Gene-level amplifications were called if the log2(mean gene copy number/ploidy) 

was >1. Gene-level deletions were called if the log2(mean gene copy 

number/ploidy) was <-1. 

To compare LOHHLA to additional tools, Sequenza (Favero et al., 2015), and 

TITAN (Ha et al., 2014) were also implemented. In both cases, default settings were 

used. For TITAN, the purity estimates from ASCAT were used as input.  

2.2.5 Timing of somatic events 

2.2.5.1 TRACERx multi-region pilot timing 

Clusters of mutations were identified using a Dirichilet process. Ubiquitous clonal 

mutations, which were identified in every tumor region, were considered events on 

the trunk of the phylogenetic tree. Heterogeneous mutations were considered 

events on the branch of the phylogenetic tree.  
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2.2.5.2 TRACERx multi-region timing 

To estimate whether mutations were clonal or subclonal, a modified version of 

PyClone was used (Roth et al., 2014). For each mutation, an observed CCF 

(obsCCF)  and a phylogenetic CCF (phyloCCF), which took into consideration any 

subclonal copy number events potentially altering the CCF, was calculated. 

Mutations were clustered using PyClone Dirichlet process clustering. 

2.2.6 Phylogenetic tree construction 

Phylogenetic trees for the TRACERx study were constructed using CITUP (v0.1.0) 

(Malikic et al., 2015), which takes as input mutation clusters and their mean cancer 

cell fraction. TRACERx tumors with phyloCCF Pyclone output from at least two 

tumor regions and containing at least two mutation clusters were included. Mutation 

cluster trees were filtered to include those that contained at least five mutations and 

adhered with evolutionary principles (Jamal-Hanjani et al., 2017). For six tumors, 

manual tree construction was required (CRUK0004, CRUK0017, CRUK0032, 

CRUK0062, CRUK0065, CRUK0069). 

2.2.7 Checkpoint blockade clinical efficacy analysis 

For each sample cohort obtained from previously published work, clinical efficacy 

analysis was kept consistent with the original publication.  

Rizvi cohort (Rizvi et al., 2015): Objective response to pembrolizumab was 

assessed by investigator-assessed immune-related response criteria (irRC) by a 

study radiologist. As outlined in protocol, CT scans were performed every nine 

weeks. Partial and complete responses were confirmed by repeat imaging occurring 

a minimum of 4 weeks after the initial identification of response; unconfirmed 

responses were considered stable or progressive disease dependent on results of 

the second CT scan. Durable clinical benefit (DCB) was defined as stable disease 

or partial response lasting longer than 6 months (week 27, the time of third protocol-

scheduled response assessment). No durable benefit (NDB) was defined as 

progression of disease ≤ 6 months following commencement of therapy. For 

patients with ongoing response to study therapy, progression-free survival was 

censored at the date of the most recent imaging evaluation. For ‘alive’ patients, 

overall survival was censored at the date of last known contact.  
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Snyder cohort (Snyder et al., 2014): Long-term clinical benefit was defined by 

radiographic evidence of freedom from disease or decreased volume of disease for 

> 6 months. Conversely, lack of long-term benefit was defined by tumor growth on 

every computed tomographic scan after the initial treatment (no benefit) or a clinical 

benefit lasting 6 months or less (minimal benefit).   

2.2.8 Comparison of ASCAT and LOHHLA 

In order to compare ASCAT and LOHHLA, each tumor region was treated as a 

separate sample. It was then run it through the LOHHLA pipeline with default 

settings. All samples were included in this validation analysis, regardless of whether 

they were subsequently included in downstream LOHHLA analyses. 

As there was too little coverage of the HLA alleles to accurately infer the copy 

number at these loci using ASCAT, the segment overlapping the HLA locus was 

used as a proxy for the HLA locus. If no segment overlapped the HLA locus, as was 

the case for 25 tumor regions from seven tumors, the closest genomic segment was 

used instead. 

LOHHLA outputs an allelic imbalance estimate, as well HLA allele specific copy 

number estimates. Tumor regions were considered to be concordant if ASCAT 

predicted allelic imbalance across the locus and at least one HLA gene was found 

to harbor allelic imbalance using LOHHLA. Similarly, for LOH estimates, ASCAT 

and LOHHLA were considered to be concordant if ASCAT predicted a minor allele 

of 0 and this was also predicted for at least one HLA gene by LOHHLA. 

Conversely, allelic imbalance estimates were classified as discordant if allelic 

imbalance was predicted in any HLA gene using LOHHA and not with ASCAT or 

vice versa. Similarly, for LOH was classified as discordant if any HLA gene using 

LOHHLA was classified as exhibiting a minor allele of 0 and no LOH was identified 

using ASCAT or vice versa.  

2.2.9 HLA Type and HLA Mutations 

2.2.9.1 TCGA cohorts 

All TCGA patients were HLA typed using Polysolver (POLYmorphic loci reSOLVER) 

(Shukla et al., 2015), using default settings, as described in (Shukla et al., 2015). 
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Polysolver uses a normal tissue BAM file as input and employs a Bayesian 

classifier to determine HLA genotype. 

2.2.9.2 TRACERx cohorts 

Pilot patients L011 and L012 were serotyped and simultaneously genotyped using 

Optitype (Szolek et al., 2014) and Polysolver (Shukla et al., 2015), which all 

produced concordant results. The remaining pilot patients (L001, L002, L004, and 

L008) were genotyped using Optitype. 

Patients from the TRACERx main study were genotyped using both Optitype and 

Polysolver. When discordant results were given, the Polysolver output was used. 

Additional details can be found in section 4.2.2. HLA mutations in each tumor region 

were also assessed using Polysolver.  

2.2.10 Predicted neoantigen binders 

2.2.10.1 TCGA cohorts, checkpoint blockade treated cohorts, and TRACERx 

pilot study neoantigen prediction 

Novel 9-11mer peptides that could arise from identified non-silent mutations present 

in the sample (Jamal-Hanjani et al., 2017) were determined. The predicted IC50 

binding affinities and rank percentage scores, representing the rank of the predicted 

affinity compared to a set of 400,000 random natural peptides, were calculated for 

all peptides binding to each of the patient’s HLA alleles using netMHCpan-2.8 

(Andreatta and Nielsen, 2016, Nielsen et al., 2003, Hoof et al., 2009). Putative 

neoantigen binders were those peptides with a predicted binding affinity <500nM.  

2.2.10.2 TRACERx main study neoantigen prediction 

Neoantigen predictions were made as above, with the exception that netMHC-4.0 

was also run for each peptide (Andreatta and Nielsen, 2016, Nielsen et al., 2003). 

Predicted binders were considered those peptides that had a predicted binding 

affinity <500nM or rank percentage score <2% by either tool. 

When RNAseq data was available, a neoantigen was considered to be expressed if 

at least five RNAseq reads mapped to the mutation position, and at least three 

contained the mutated base. 
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2.2.11 Mapping HLA LOH to phylogenetic trees  

LOH events detected in every tumor region tested were considered to be clonal 

events and mapped to the trunk of the phylogenetic tree. For heterogeneous LOH 

events, the regional copy number of the HLA allele lost was used in conjunction 

with the patient tree structure and subclone cancer cell fractions in a quadratic 

programming approach, using the R package “quadprog”, to determine the best 

placement of the LOH event.  

This was achieved by solving a quadratic programming equation: 

min(-d^T b + 1/2 b^T D b)  

with the constraints: 

 A^T b >= bvec 

The LOH event was tested at each branch. For each possibility, the phylogenetic 

tree was broken into two, one containing all clones after the query branch and the 

other consisting of the remainder of the tree. A 2xn matrix, where n is the number of 

regions sampled, was constructed containing the regional sum of the cancer cell 

fractions for each subclone in the subtree and the regional sum of cancer cell 

fractions from subclones in the remaining tree. The regional cancer cell fraction 

matrix was multiplied by the transpose of itself to generate a 2x2 matrix for input 

(Dmat) into the quadprog function, solve.QP. The vector to be minimized (dvec) 

was obtained by multiplying the LOHHLA calculated HLA allele copy number for 

each region by the transpose of the regional cancer cell fraction matrix. Finally, the 

solve.QP function was called with Dmat and dvec, using a constraint matrix, Amat, 

such that all results had to be positive and a constraint vector, bvec, such that the 

estimated copy number of HLA allele for the remaining tree was at least 0.5. The 

errors between observed and predicted copy number values from placing LOH 

event on each branch were output and the solution providing the least error was 

selected.  

Each mapped event was inspected and events that did not fit the phylogenetic tree 

or had large error values, either indicating the presence of an additional subclone or 

multiple independent HLA LOH events, were manually adjusted. Patients 

CRUK0013, CRUK0061, CRUK0082, and CRUK0084 had HLA LOH events that did 

not fit the current phylogenetic tree, so additional nodes (indicated in grey) were 
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included to contain the HLA LOH event. Patients CRUK003, CRUK0032, 

CRUK0051, and CRUK0062 had multiple independent HLA LOH events which were 

manually mapped. 

2.2.12 Assessing significance of focal and arm-level LOH 

In order to assess whether HLA LOH occurred more than expected by chance, LOH 

events were first described as either being focal or arm-level in nature. To classify 

LOH as arm-level or focal, the minor allele frequency across the genome was 

considered. First, any segments (as predicted by ASCAT) with identical minor allele 

copy numbers were merged. Subsequently, segments that spanned >=75% the 

length of a given chromosome arm, were classified as ‘arm-level’, while segments 

that were <75% were considered focal.  

To assess the significance of focal events, for each tumor, the proportion of the 

genome subject to focal minor allele loss was determined. This value was assumed 

to reflect the probability for focal minor allele loss in each tumor. Based on this 

probability, an aberration state (loss or no loss) for each sample was generated and 

the proportion of samples exhibiting loss was determined. This process was 

repeated 10,000 times to obtain a background distribution reflecting the likelihood of 

observing losses given the probability of loss in each sample. A p-value reflecting 

the likelihood of observing the level of minor allele loss seen at the HLA locus was 

determined by counting the percentage of simulations showing a higher proportion 

loss than that observed.  

The same procedure was conducted for arm-level events, using the observed 

frequency of arm-level allele specific loss in each tumor.  

2.2.13 Survival analyses 

All survival analyses were then performed in R using the survival package. Patients 

were first grouped according to quartile of the variable (i.e. fraction subclonal 

neoantigens, number of clonal neoantigens) being considered. 

2.2.13.1 Checkpoint blockade treated cohort survival data 

Clinical data for the checkpoint blockade treated cohorts was downloaded from the 

original publications. 
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2.2.14 RNAseq expression analysis of immune infiltration 

Previously defined measures of immune infiltration and activity were used to 

classify the immune microenvironment of all tumors (and tumor regions) with 

RNAseq data available (Rooney et al., 2015, Li et al., 2016, Davoli et al., 2017, 

Racle et al., 2017, Danaher et al., 2017, Newman et al., 2015). 

2.2.14.1 Association with HLA LOH 

Immune measures were compared between tumors exhibiting HLA LOH at all HLA 

loci and those without any evidence for HLA LOH. Additionally the expression level 

of PD-L1, CTLA4, and an IFN score were compared (Tumeh et al., 2014, Herbst et 

al., 2014, Ribas et al., 2015, Piha-Paul et al., 2016). Significance was determined 

using a Wilcoxon test and FDR correction. To determine the degree of change 

between the HLA LOH groups, a ratio of the medians was calculated. 

2.2.15 RNAseq differential expression analysis 

For differential expression analysis using TCGA data, the raw RNAseq read counts 

were used as input into the R package DESeq2 for analysis. An FDR cutoff of 0.05 

was used to determine genes significantly differentially expressed. 

2.2.16 Association of gene expression and copy number 

For every gene used in an immune subset definition and the randomly selected 

genes, the copy number status (deletion, shallow loss, neutral, shallow gain, 

amplification)  and RNA expression value was determined in each tumor region. 

The correlation between these two variables was determined by the Kendall’s test, 

using copy number status as an ordinal variable. All p-values were FDR adjusted. 

2.2.17 Calculation of Shannon entropy 

For each tumor region, the Shannon entropy was estimated using the command 

“entropy.empirical” from the “entropy” R package. This was calculated based on the 

number and prevalence of different tumor subclones found in that region, such that 

a tumor region containing only one subclone was assigned a value of 0. 
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2.2.18 Distance measures 

2.2.18.1 Immune distance 

The immune distance was determined by taking the Euclidean distance of immune 

infiltrate estimates (of the Danaher method, as described in Chapter 6) between 

tumor regions. 

2.2.18.2 Genomic distance 

The genomic distance was calculated by taking the Euclidean distance of the 

mutations present between tumor regions. All mutations present in any region from 

a tumor were turned into a binary matrix, where the rows were mutations and 

columns tumor regions. This matrix was clustered and the pair-wise distance 

between any two tumor regions was determined. 

2.3 Experimental methods 

All experimental and validation results presented in the thesis were performed or 

provided by: Andrew Furness, Crispin Hiley, Andrew Rowan, and Roberto Salgado. 

2.3.1 Isolation of TILs for L011 and L012 

Tumors were taken directly from the operating theatre to the department of 

pathology where the sample was divided into regions. Samples were subsequently 

minced under sterile conditions followed by enzymatic digestion (RPMI-1640 

(Sigma) with Liberase TL research grade (Roche) and DNAse I (Roche)) at 37°C for 

30 minutes before mechanical dissociation using gentleMACS (Miltenyi Biotech). 

Resulting single cell suspensions were filtered and enriched for leukocytes by 

passage through a Ficoll-paque (GE Healthcare) gradient. Live cells were counted 

and frozen in human AB serum (Sigma) with 10% dimethyl sulfoxide at -80°C 

before transfer to liquid nitrogen.  

2.3.2 In-vitro expansion of TILs for L011 and L012 

TILs were expanded using a rapid expansion protocol (REP) in T25 flasks 

containing EX-VIVO media (Lonza) supplemented with 10% human AB serum 

(Sigma), soluble anti-CD3 (OKT3, BioXCell), 6000IU/mL recombinant human (rhIL-

2, PeproTech) and 2x107 irradiated PBMCs (30Gy) pooled from 3 allogeneic 

healthy donors. Fresh media containing rhIL-2 at 6000IU/mL was added every three 
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days as required. Following 2 weeks of expansion, TILs were counted, phenotyped 

by flow cytometry and frozen in human AB serum (Sigma) at -80°C before use in 

relevant assays or long-term storage in liquid nitrogen. 

2.3.3 MHC multimer generation and flow cytometry analysis 

MHC-multimers holding the predicted neoepitopes were produced in-house 

(Technical University of Denmark, laboratory of SRH). Synthetic peptides were 

purchased at Pepscan Presto, NL. HLA molecules matching the HLA-expression of 

L011 (HLA-A1101, A2402, and B3501) and L012 (HLA-A1101, A2402, and B0702) 

were refolded with a UV-sensitive peptide, and exchanged to peptides of interest 

following UV exposure (Toebes et al., 2006, Bakker et al., 2008, Frosig et al., 

2015). Briefly, HLA complexes loaded with UV-sensitive peptide were subjected to 

366-nm UV light (CAMAG) for one hour at 4°C in the presence of candidate 

neoantigen peptide in a 384-well plate. Peptide-MHC multimers were generated 

using a total of 9 different fluorescent streptavidin (SA) conjugates: PE, APC, PE-

Cy7, PE-CF594, Brilliant Violet (BV)421, BV510, BV605, BV650, Brilliant Ultraviolet 

(BUV)395 (BioLegend). MHC-multimers were generated with two different 

streptavidin-conjugates for each peptide-specificity to allow a combinatorial 

encoding of each antigen responsive T-cell, enabling analyzes for reactivity against 

up to 36 different peptides in parallel (Andersen et al., 2012). 

2.3.4 Identification of neoantigen-reactive CD8+ T-cells 

MHC-multimer analysis was performed on in-vitro expanded CD8+ T lymphocytes 

isolated from region-specific lung cancer samples and adjacent normal lung tissue. 

288 and 354 candidate mutant peptides (with predicted HLA binding affinity 

<500nM, including multiple potential peptide variations from the same missense 

mutation) were synthesized and used to screen expanded L011 and L012 TILs 

respectively. Simultaneously, TIL responses to HLA-matched viral peptides were 

assessed, demonstrating functionality of the employed MHC-multimer technology. 

Viral peptides for L011 included A11 EBV-EBNA4 (AVFDRKSDAK), A11 HCMV 

pp65 (GPISGHVLK), A24 EBV LMP-2 419-427 (TYGPVMCL), A3 EBV EBNA 3A 

RLR (RLRAEAQVK), A24 HCMV 248-256 (AYAQKIFKIL), B35 Flu Matrix 

(ASCMGLIY), B35 ENV EBNA 3B (AVLLHEESM), EBV EBNA-3 114-121 

(RYSIFFDY) and EBV BZLF1 (APENAYQAY). For L012, these consisted of A11 

EBV EBNA4 (AVFDRKSDAK), A11 HCMV pp65 (GPISGHVLK), A24 EBV EBNA-3 

114-121 (RYSIFFDY), A24 EBV LMP-2 419-427 (TYGPVFMCL), A24 EBV RTA 28-
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37 (DYCNVLNKEF), A24 HCMV 248-256 (AYAQKIFKIL), B7 CMV pp65 RPH-L 

(RPHERNGFTV), B7 CMV pp65 TPR (TPRVTGGGAM) and B7 EBV EBNA RPP 

(RPPIFIRLL). Finally, reactivity of healthy donor CD8+ PBMC’s against the same 

peptides was assessed, demonstrating a lack of background/non-specific staining. 

Response of HD PBMCs was not performed for HLA B35 restricted peptides. 

For staining of expanded CD8+ T lymphocytes, samples were thawed, treated with 

DNAse for 10 minutes, washed and stained with MHC multimer panels for 15 

minutes at 37°C. Subsequently, cells were stained with LIVE/DEAD® Fixable Near-

IR Dead Cell Stain Kit for 633 or 635 nm excitation (Invitrogen, Life Technologies), 

CD8-PerCP (Invitrogen, Life Technologies) and FITC coupled antibodies to a panel 

of CD4, CD14, CD16, CD19 (all from BD Pharmingen) and CD40 (AbD Serotec) for 

an additional 20 minutes at 4°C. Data acquisition was performed on an LSR II flow 

cytometer (Becton Dickinson) with FACSDiva 6 software. Cutoff values for the 

definition of positive responses were ≥0.005% of total CD8+ cells and ≥10 events.  

For patient L011, HLA-B3501 MTFR2D326Y -derived multimers were found to bind 

the mutated sequence FAFQEYDSF (netMHC binding score: 22) but not the wild 

type sequence FAFQEDDSF (netMHC binding score: 10). No responses were 

found against overlapping peptides AFQEYDSFEK and KFAFQEYDSF. For patient 

L012, HLA-A1101 CHTF18L769V -derived multimers bound the mutated sequence 

LLLDIVAPK (netMHC binding score: 37) but not the wild type sequence: 

LLLDILAPK (netMHC binding score: 41). No responses were found against 

overlapping peptides CLLLDIVAPK and IVAPKLRPV. Finally, HLA-B0702 

MYADMR30W-derived multimers bound the mutated sequence SPMIVGSPW 

(netMHC binding score: 15) as well as the wild type sequence SPMIVGSPR 

(netMHC binding score: 1329). No responses were found against overlapping 

peptides SPMIVGSPWA, SPMIVGSPWAL, SPWALTQPLGL and SPWALTQPL. 

2.3.5 MHC-multimer analysis and phenotyping of non-expanded samples 

Tumor samples were thawed, washed and first stained with custom-made MHC-

multimers for 10-15 minutes at 37°C in the dark. Cells were thereafter transferred 

onto wet ice and stained for 30 minutes, in the dark, with a panel of surface 

antibodies used at the manufacturer’s recommended dilution: CD8-V500, SK1 clone 

(BD Biosciences), PD-1-BV605, EH12.2H7 clone (Biolegend), CD3-BV785, OKT3 

clone (Biolegend), LAG-3-PE, 3DS223H clone (eBioscience). A fixable viability dye 

(eFlour780, eBioscience) was included the surface mastermix. Cells were 



 61 

permeablized for 20 minutes with use of an intracellular fixation and 

permeabilization buffer set from eBioscience. An intracellular staining panel was 

applied for 30 minutes, on ice, in the dark, and consisted of the following antibodies 

used at the manufacturer’s recommended dilution: granzyme B-V450, GB11 clone 

(BD Biosciences), FoxP3-PerCP-Cy5.5, PCH101 clone (eBioscience), Ki67-FITC, 

clone B56 (BD Biosciences) and CTLA-4 – APC, L3D10 clone (Biolegend). Data 

acquisition was performed on a BD FACSAria III flow cytometer (BD Biosciences) 

and analyzed in Flowjo version 10.0.8 (Tree Star Inc.). 

2.3.6 Fragment analysis validation of LOHHLA results 

Allelic imbalance was validated using four polymorphic Sequence-Tagged Site 

(STR) markers located on the short arm of chromosome 6, close to the HLA locus - 

(D6S2852, D6S2872, D6S248 and D6S1022). 20ng of patient germline and tumor 

region DNA was amplified using the PCR. The PCR was comprised of 35 cycles of 

denaturing at 95C for 45 seconds, followed by an annealing temperature of 55C for 

45 seconds and then a PCR extension at 720C for 45 seconds. PCR products were 

separated on the ABI 3730xl DNA analyzer. Fragment length and area under the 

curve of each allele was determined using the Applied Biosystems software 

GeneMapper v5. When two separate alleles were identified for a particular marker, 

the fragments could be analyzed for allelic imbalance using the formula 

(Atumor/Btumor)/(Anormal/Bnormal). The output of this formula was defined as the 

normalized allelic ratio. 

2.3.7 PD-L1 immunohistochemistry 

Formalin-fixed, paraffin-embedded (FFPE) tissue sections of 4-um thickness were 

stained for PD-L1 with an anti-human PD-L1 rabbit monoclonal antibody (clone 

SP142; Ventana, Tucson, AZ) on an automated staining platform (Benchmark; 

Ventana) with the OptiView DAB IHC Detection Kit and the OptiView Amplification 

Kit (Ventana Medical Systems Inc.) in a GCP-compliant central laboratory (Targos 

Molecular Pathology GmbH). PD-L1 expression was evaluated on tumor cells and 

tumor-infiltrating immune cells. For tumor cells the proportion of PD-L1-positive cells 

was estimated as the percentage of total tumor cells. For tumor-infiltrating immune 

cells, the percentage of PD-L1-positive tumor-infiltrating immune cells occupying 

the tumor was recorded. Scoring was performed by a trained histopathologist 

(according to previously published scoring criteria (Herbst et al., 2014)).  



 62 

2.3.8 Pathology TIL estimation 

From the pathology slide of a given tumor region, the relative proportion stromal 

area to tumor area was determined. The percent of TILs identified in the stroma 

was determined and multiplied that value by the proportion of stromal area. The 

percent of TILs identified in the tumor was determined and multiplied that value by 

the proportion of tumor area. Finally to obtain the TILs present on the total slide 

these two values were summed.  
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Chapter 3 Identifying mutational processes active 
during cancer evolution 

3.1 Introduction 

The generation of novel mutations is key to introducing the genetic diversity upon 

which selective pressures may act. Mutational processes active in the cell 

contribute to this ongoing generation of somatic mutational diversity. Some 

mutational events have known sources, such as exogenous mutagens from tobacco 

smoke and ultraviolet light, while others are associated with endogenous processes 

like mismatch repair deficiency (Pfeifer et al., 2002, Pfeifer, 2010, Boland and Goel, 

2010, Bhattacharyya et al., 1994, Alexandrov et al., 2013a, McGranahan et al., 

2015, Nik-Zainal et al., 2012a). Regardless of the source of mutation generation, 

these aberrant processes often lead to characteristic patterns of mutation. 

By analyzing the composition of mutations and the context they arise in, processes 

shaping the cancer genome as it evolves can be delineated, allowing for insights 

into the route the tumor has taken to carcinogenesis and the contributors to 

subclonal diversity. This could have great impact on understanding the 

pathophysiology of a cancer type and could help inform patient-specific therapeutic 

approaches. For instance, the identification of specific defective DNA repair 

mechanisms may suggest a patient has a favorable chance of positive response to 

immunotherapy (Le et al., 2015) or PARP inhibition (Farmer et al., 2005, Rottenberg 

et al., 2008, Alexandrov et al., 2015). Determining the cause of novel signatures 

identified can shed light on previously overlooked carcinogens, such as aristolochic 

acid  (Poon et al., 2013, Hoang et al., 2013), and can confirm environmental factors 

implicated by epidemiological studies, such as the contribution of alcohol intake to 

esophageal squamous cell carcinoma and hepatocellular carcinoma (Chang et al., 

2017, Schulze et al., 2015). 

Of particular importance is understanding the temporal change in mutational 

processes, across each stage of tumor evolution, in order to characterize the 

signatures of clonal mutations, which is further explored in Chapter 4. 
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3.1.1 Mutational context and signature extraction 

Large-scale delineation of mutational signatures was first performed by Alexandrov, 

Nik-Zainal, and colleagues using a published algorithm (Alexandrov et al., 2013a, 

Nik-Zainal et al., 2012a). Their Wellcome Trust Sanger Institute (WTSI) mutational 

signatures framework utilizes non-negative matrix factorization (NMF) followed by 

model selection to extract the signatures of mutational processes active in a set of 

cancer genomes (Alexandrov et al., 2013a, Alexandrov et al., 2013b, Nik-Zainal et 

al., 2012a). 

3.1.1.1 Trinucleotide contexts 

Specific mutational signatures are defined by considering the substitution type of 

the mutated base, as well as the context immediately upstream and downstream to 

the altered base. If strand is ignored the mutated base can be collapsed to one of 

two possibilities, either C and T (or G and A if the paired base is used as default). 

This results in six substitution classes (C>A, C>G, C>T, T>A, T>C, and T>G) 

representing all possible single nucleotide substitutions. Beyond the base pair 

substitution itself, information about the context in which the mutation occurred can 

also be included. When the substitution classes are coupled with the information 

from the bases immediately 5’ and 3’ to each mutated base, there are 96 possible 

mutational contexts (4 possible 5’ bases * 6 possible substitution classes * 4 

possible 3’ bases). A mutational signature can then be characterized by the 

distribution of single nucleotide substitutions at each of 96 trinucleotide contexts. 

After a signature has been extracted, additional mutation features such as a high 

frequency of insertions and deletions, dinucleotide mutations, or transcriptional 

strand bias could also be included in the final definition. Furthermore, the most 

recent iteration of signature analysis in breast cancer has expanded signature 

definitions to include structural variation (Nik-Zainal et al., 2016). 

3.1.1.2 Signature extraction 

The original study performed by Alexandrov and colleagues analyzed over 7,000 

cancer genomes and exomes with a total of five million mutations. From this data 

set, they defined a catalog of twenty-one signatures that contributed to over 30 

tumor types (Alexandrov et al., 2013a). About half of these signatures were 

associated with known mutational processes previously defined in the literature, 

including tobacco smoke, exposure to ultraviolet light, the APOBEC family of 
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cytidine deaminases activity, DNA mismatch repair deficiencies, or mutations in 

POLE. Tumor types were first analyzed independently and all mutational signatures 

extracted were clustered to identify signatures present across different cancer 

types. Indeed, many signatures were found to be active in a wide variety of tumor 

types. Since the original report, the current set of mutational signatures has been 

refined and expanded to include 30 distinct mutational signatures based on the 

analysis of nearly 11,000 exomes and 1,100 genomes across over 40 cancer types 

in order to provide an extensive catalog of mutational processes active during 

cancer development and evolution. 

3.1.1.3 Limitations of NMF 

The originally published WTSI mutational signatures framework offers an elegant 

approach to firstly identify the distinct mutational processes active in a set of tumor 

samples. Once the active signatures have been established, they are then applied 

to the individual samples in order to quantify the contribution of every mutational 

process to each sample in the set. However, the extraction step of the NMF-based 

algorithm was designed to make full use of the abundance of sequencing data 

currently available in order to identify and define novel mutational signatures. 

Consequently, to use the tool, it is necessary to begin with a sufficient number of 

tumor samples for adequate power to accurately deconvolute signatures. In 

simulations, Alexandrov et al. found that the number of cancer genomes required 

increased exponentially with the number of active signatures. Indeed, they 

calculated that in order to accurately identify the signatures of 20 mutational 

processes, they required at least 200 whole genome samples (Alexandrov et al., 

2013b). As exome sequencing only covers ~1% of the human genome, there are 

fewer mutations available per sample, thus less resolution per sample is gained. 

After considering these factors, Alexandrov et al. estimated that it would take 

thousands of exome samples to extract the majority of mutational processes 

functional over the evolutionary course of a tumor.  

Due to the frequency at which many of the identified mutational signatures occur 

across multiple cancer types as well as the potential for therapeutic intervention 

based on signature activity, it would be useful to analyze signature prevalence and 

contributions across additional tumor samples. However, under the current 

mutational framework, this was not feasible without first acquiring a large enough 

sample set. In order to address this challenge, I developed a method that uses the 
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established mutational signatures to circumvent the extraction step and determine 

the contributions of each mutational process in a single tumor sample. 

The work presented in this chapter was published as a first-author paper, 

(Rosenthal et al., 2016). Additionally, some of the work appears in a review.  

3.2 deconstructSigs method 

3.2.1 Overview of the tool 

The tool for determining the contributions of a set of mutational processes in a 

single tumor sample was designed as an R package, deconstructSigs, accessible 

both through the CRAN package webpage (https://cran.r-project.org/) and GitHub 

site (https://github.com/raerose01/deconstructSigs). Hosting the tool on GitHub in 

addition to CRAN allows for convenient user feedback and issue reporting, as well 

as faster access to updated versions.  

Briefly, deconstructSigs works by determining the linear combination of a user-

provided set of signatures that is capable of most accurately reconstructing the 

observed mutation profile of a single tumor sample. As the tool begins with a set of 

pre-defined signatures, it is not necessary to first extract signatures present in the 

tumor sample(s) being analyzed, thus avoiding the issue of inaccurate 

deconvolution from a sample set limited by small numbers. The package consists of 

data processing functions, including those to reshape and normalize the data if 

required, and the key function to determine relative signature contributions to the 

sample. This function assigns signature weights by using a multiple linear 

regression model with the constraint that all coefficients must be greater than 0, as 

negative contributions of a mutational process do not make biological sense.   

3.2.2 Using deconstructSigs 

3.2.2.1 Input data 

At a minimum in order to run, deconstructSigs requires a data frame containing 

mutational data for a set of tumors to be analyzed and a reference signatures 

matrix. As two default options for the reference signatures exist within the package 

data, the only requisite user input is the list of mutations from the samples to be 

analyzed.  

The mutational data frame must contain: 
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• Sample identifier 

• Chromosome of the mutation 

• Base position of the mutation 

• Reference base pair 

• Alternate base pair 

The input mutational data is then converted to an n-row and 96-columns data frame 

where n is the number of unique samples present. This step is performed using the 

command “mut.to.sigs.input”, as shown below. 

sigs.input <- mut.to.sigs.input(mut.ref = sample.mut.ref, sample.id 

= "Sample", chr = "chr", pos = "pos", ref = "ref", alt = "alt") 

The output “sigs.input” represents the number of mutations found at that particular 

trinucleotide context (column) in that particular sample (row). 

3.2.2.2 Key variables 

T : n-row x 96-column matrix, where n is the number of samples,  corresponding to 

either the number of mutations found in a particular trinucleotide context for a 

particular tumor sample or the fraction of mutations found in each of the possible 96 

trinucleotide contexts for each tumor sample. 

S : k-row x 96-column matrix, where k is the number of supplied signatures, 

containing the fraction of times a mutation is seen in each of the 96-trinucleotide 

contexts for a signature k. 

W : vector of length k, where each entry is the weight of one of the supplied 

signatures.  

R : n-row x 96-column matrix, representing the reconstructed tumor sample matrix 

obtained by the matrix multiplication WS. 

e : error threshold, beyond which deconstructSigs determines it has converged on 

the best solution. 

3.2.2.3 Data normalization 

The example output “sigs.input” described above can be used directly as input into 

deconstructSigs. deconstructSigs begins with an input data frame T, which contains 

the per sample counts of each mutation at each trinucleotide context. By default, 
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the only normalization performed is standardizing T such that it contains the fraction 

of mutations found in each of the possible 96 trinucleotide contexts for each tumor 

sample (i.e. dividing each row in “sigs.input” by the sum of the row). 

When T contains only the counts of each mutation in each trinucleotide context, as 

is the case for the output from “mut.to.sigs.input”, the user may optionally choose 

to apply an additional normalization step, as some of the published mutational 

signatures were reported based on the observed trinucleotide frequency of the 

human exome/genome. To do this, the parameters “contexts.needed” and 

“tri.counts.method” are set, which act to normalize T by the number of times each 

trinucleotide context is observed in the portion of the genome sequenced.  

Trinucleotide counts for exome and genome data are provided in the package for 

this normalization, but depending on the sequencing design, a user may also create 

their own counts file. Alternatively, a user may bypass any data cleaning or 

normalization steps and generate their own T data frame to use as input into 

deconstructSigs, with the stipulation that the input data frame must already be 

standardized (i.e. the rows must sum to 1).  

3.2.2.4 Signature deconvolution 

The signatures matrix S of k rows and 96 columns is either obtained from published 

data or provided by the user, where k is the number of supplied signatures.  Each 

entry in S represents the fraction of times a mutation is seen in each of the 96-

trinucleotide contexts (columns) for a signature k (rows). In theory, if a user has 

generated their own mutational signatures, they could provide both T and S with a 

different number of mutational categories (for instance, 192 if DNA strand was 

considered, or 6 if trinucleotide context was ignored). However, in the package, only 

signatures based on a 96 trinucleotide context are provided. Given the two inputs, T 

and S, deconstructSigs computes weights Wi (for each signature i from 1 to k) such 

that each signature is assigned a weight. Signature weights are determined such 

that a reconstructed tumor sample matrix R, which is computed as T-(WS), 

minimizes the sum-squared error (SSE). 

This step is called with the function “whichSignatures” as shown below. 

output.sigs <- whichSignatures(tumor.ref = 

randomly.generated.tumors, signatures.ref = signatures.nature2013, 

sample.id = "1") 
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To determine the weights for each mutational signature, W, that will best recreate T, 

an iterative approach is taken. First, any signatures containing a single trinucleotide 

context making up more than 20% of the signature definition which is not present at 

all in T is excluded. This step is performed to account for the fact that some 

signatures have mutational profiles where only a few specific trinucleotide contexts 

dominate (for instance, the signature associated with some mutations in POLE). 

Thus, in samples without any mutations found in those contexts, it is unlikely that 

that signature is active.  

From the remaining signatures, an initial mutational signature is chosen that most 

closely reflects the mutational profile of the given tumor sample. This signature is 

chosen by minimizing the SSE between the mutational profile of the tumor sample, 

T and the mutational signature Si. The weights, W, are initialized such that the initial 

signature chosen, Si is the only signature contributing to the reconstructed tumor 

mutational profile, thus being assigned a normalized weight of 1.  

Next a forward selection process is employed. For each signature, an optimal 

weight that minimizes the SSE between the given tumor sample and the 

reconstructed tumor profile is determined. From this set of all possible weights, only 

the weight corresponding to the signature that results in the overall lowest SSE is 

next included in W. This iterative process repeats until the difference between the 

SSE before and after the alteration of the weights matrix is less than error 

threshold, e (set to 0.001 by default). The output weights, W, are normalized 

between 0 and 1. A schematic of deconstructSigs is outlined in Figure 3-1. 
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Figure 3-1: Schematic of deconstructSigs workflow. 
deconstructSigs requires an input tumor profile and reference input signatures. The tool iteratively 
infers the contributions of each reference signature by updating the weight of each reference signature 
until the SSE converges below an empirically chosen error threshold. 

3.2.2.5 Filtering signature output 

 When reporting the output signature weights, any signature with Wi < 6% is 

excluded (the 6% threshold value is further justified below). A weight threshold was 

implemented to combat over-fitting of signatures to a tumor sample in an aim to 

reduce false positives. To determine a suitable threshold, tumors were randomly 

generated in silico using signatures from the published set (Alexandrov et al., 

2013a). Five-hundred tumors were simulated with each containing a random 

combination of up to 10 different mutational processes. An additional perturbation 

factor was then added, as the original signatures were combined from multiple runs 

of the WTSI mutational signatures framework algorithm and real-world tumor data 

will never reflect a perfect combination of mutational signatures. To more accurately 

reflect the noise in actual data, the simulated tumors were perturbed by randomly 

altering the assigned value at each trinucleotide context by up to +/- 5%.  

These randomly generated tumor samples were analyzed with deconstructSigs and 

the calculated weights were compared to the known weights used to generate the 

set of simulated tumors. A false positive was called if deconstructSigs included a 



 71 

signature that was not used in generating the random tumor sample; a false 

negative was called if deconstructSigs missed a signature that was used in 

generating the random tumor sample. Analysis of the false positives revealed that 

they almost uniformly had weights less than 6% (Figure 3-2A). Additionally, when 

the 6% cutoff was applied to the randomly generated tumor samples, it only 

resulted in 38 instances where a signature was incorrectly excluded, leading to a 

false negative rate of 1.4% (Figure 3-2B).  

 

Figure 3-2: False positive and false negative weights in randomly generated tumor cohort.  
A randomly generated tumor cohort was constructed consisting of 500 tumors comprised of 2646 
signatures of known weights. The frequency of trinucleotide contexts in each tumor was subjected to 
up to ±5% random perturbations to more accurately reflect “non-ideal” theoretical tumor samples. The 
false positives, where a signature was erroneously identified as contributing to the samples (A), and 
false negatives, where a signature was erroneously assigned a weight of 0 (B), were analyzed after 
inferring signature weights with deconstructSigs. Only three weights assigned to false negatives fell 
above 0.06, and false negatives using this threshold only occurred at a rate of 1.4% (38/2646). 

3.3 Validation of deconstructSigs 

3.3.1 Comparison of deconstructSigs to previous analyses 

To validate the output generated by deconstructSigs, a comparison was made to 

the standard mutational signatures algorithm, WTSI mutational signature 

framework. Publicly available TCGA data was re-analyzed with both signature 

approaches from bladder urothelial carcinoma (BLCA), breast invasive carcinoma 

(BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and 

neck squamous cell carcinoma (HNSC), lung adenocarcinoma (LUAD), lung 

squamous cell carcinoma (LUSC), and skin cutaneous melanoma (SKCM) cancers 

(https://tcga-data.nci.nih.gov/tcga). 
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The WTSI mutational signature framework had already been implemented to extract 

signatures active in each TCGA cancer type, resulting in the extraction of  twenty-

six mutational signatures as was previously described (McGranahan et al., 2015). 

As discussed earlier, one limitation of extraction methods is the requisite adequate 

sample size. Thus some of the TCGA cancer types, which had fewer available 

samples, lacked the resolution required to extract the full list of signatures originally 

associated with the cancer type. However, when a signature was successfully 

extracted from a sample set, it was consistent in profile to those published by 

Alexandrov et al. (Alexandrov et al., 2013a). Indeed 20/26 of the newly extracted 

signatures from TCGA could be identified as a previously identified mutational 

signature (McGranahan et al., 2015). In 2/6 instances where the re-extracted 

signatures did not match one of the original signatures, they appeared to consist of 

two or three signatures, again reiterating the importance of adequate sample size 

for accurate deconvolution of mutational signatures.  

To directly compare deconstructSigs to WTSI mutational signature framework, the 

re-extracted signatures were used as the signatures matrix in deconstructSigs, and 

the same cohort of TCGA samples was analyzed. Supporting the utility of 

deconstructSigs to accurately infer mutational signature contribution to a single 

sample, each signature identified in a given sample showed a highly significant 

correlation between the contributions of that signature assigned by the two methods 

(Figure 3-3). These results indicated that by using deconstructSigs it was possible 

to consistently quantify which signatures were active in an individual tumor sample. 

 

Figure 3-3: Comparison of signature contributions identified between methods. 
For each set of tumors in a given TCGA cancer type, the relationship between the weights calculated 
using the WTSI Mutational Signature Framework and those inferred with deconstructSigs is shown. 
Each point plotted represents the weights assigned, by both methods, to one signature detected in a 
patient. 
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To directly compare the reconstruction error between the two approaches, the SSE 

was calculated between the reconstructed mutational profile and the observed one 

by taking the sum-squared difference between the input and reconstructed 

mutational profiles at each trinucleotide context. The SSE was consistent between 

the two approaches, and showed a strong correlation, with slope near 1 (Figure 

3-4A). The concordance of errors between methods indicates that samples with a 

poorly reconstructed tumor profile may not be suitable to this type of signature 

analysis, rather than one method being inherently more capable.  

Further supporting the notion that a high SSE may represent a reconstruction issue 

intrinsic to the tumor sample itself, SSEs calculated from both methods generally 

decreased as mutation count increased. This trend is indicative of a better fit at 

higher mutation count (Figure 3-4B). Indeed, the samples with the largest SSE all 

had very few mutations, highlighting the importance of having a large enough 

number of mutations to identify and assign signatures when using ones defined by 

96-substitution classifications. Attempting to distribute data into more bins than data 

points will always result in large errors, regardless of the approach that is being 

used. This is especially critical when the mutational profiles considered are flat, 

such that each of the 96-trinucleotide contexts is similarly likely to be affected. In 

these cases the mutational process may be equally likely to affect a greater number 

of trinucleotide contexts, so the profile would only be observable if there were 

enough mutations to fully recapitulate the extracted signature. Consequently, 

deconstructSigs includes a warning for any samples containing fewer than 50 

mutations. 

 

Figure 3-4: Comparison of SSEs using deconstructSigs and WTSI Mutational Signatures Framework. 
For each tumor, the SSE was calculated to quantify the difference between the input tumor mutational 
profile and the reconstructed mutational profile. The calculated SSEs from using the WTSI Mutational 
Signatures Framework were compared with those from using deconstructSigs (A) and the relationship 
between the SSE and overall mutation count was compared (B). As the mutation count in the tumor 
increases, the calculated SSE decreases. 
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3.3.2 Using deconstructSigs with previously defined signatures 

As the deconstructSigs package would most likely be used to infer the contributions 

of mutational processes in a single sample without the need for signature 

deconvolution, the tool was next tested using an expanded signature search space. 

In this case, the TCGA tumors were re-analyzed using deconstructSigs, but 

allowing the tool to search from the set of the originally published signatures 

(Alexandrov et al., 2013a). To ensure an accurate comparison, cancer types were 

only included in this analysis if the number of samples was sufficiently large. Thus 

cohorts that yielded inconclusive composites of multiple published signatures in the 

McGranahan et al. (McGranahan et al., 2015) study were excluded. In these 

instances, there would be no signature in the reference set that matched the 

“mixed” signature obtained, so it would be impossible to accurately judge if 

deconstructSigs had correctly inferred the signature composition in the samples 

from those cancer types. The cancer types excluded due to incomplete signature 

extraction were BLCA, COAD, GBM, and SKCM.  

One limitation to this analysis is that re-extracting signatures through a separate 

iteration of the WTSI mutational signature framework on a different subset of TCGA 

samples will result in the generation of signatures with slight differences to the 

originally published ones. This is in part due to the published signatures 

representing a consensus signature across the multiple cancer types it was 

identified in. The specific version of the signature extracted from each tissue type 

likely varies slightly, but for the original publication, the signatures identified across 

multiple cancer types were combined. While some mutational signatures would 

likely be identical across all tissue types, that may not be true for all mutational 

signatures (Nik-Zainal and Morganella, 2017), so combining some signatures may 

result in ones slightly less robust than their cancer-specific versions. Another 

reason for observed differences between re-extracted signatures and the originally 

published ones is that when a subset of samples are used in the analysis, as is the 

case for the re-analyzed TCGA samples (McGranahan et al., 2015), each signature 

has a lower level of resolution.  

Thus it would have been surprising if the weights assigned by deconstructSigs 

correlated nearly perfectly with the contributions found using WTSI mutational 

signature framework (as was found in Figure 3-3). Nevertheless, when the 

signature contributions assigned by the two methods were compared, a strong 

positive and statistically significant correlation for nearly all signatures was 
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observed (Figure 3-5). Two signatures (Signature 3 and Signature 5) which had a 

weak correlation between the two approaches had flat mutational profiles, exhibiting 

few distinguishing patterns of trinucleotide context, which render them more 

susceptible to subtle changes in the signature definition between the originally 

published signatures and the ones re-extracted from TCGA samples using the 

same method. 

 

Figure 3-5: Comparison of signature contributions between deconstructSigs and WTSI Mutational 
Signature Framework using reference signatures as input. 
For each TCGA cancer types that contained only unambiguous signatures extracted using WTSI 
Mutational Signatures Framework, a comparison between the weights assigned to the tumor by 
deconstructSigs and those calculated by WTSI Mutational Signatures Framework is plotted. 

3.3.3 Outlier samples identified with deconstructSigs 

Sometimes a signature is found in only a small subset of the total samples 

analyzed; in extreme cases, a signature may just contribute to a single patient’s 

tumor (Nik-Zainal et al., 2016). With sufficient sample size, these signatures may be 

extracted successfully; however, often the signal can be diluted to beyond the point 

of recognition. By using deconstructSigs with an expanded signature set, it was also 

possible to identify outlier samples, whose tumor profiles had resulted in a distinct 

set of mutational processes as compared to the rest of the cancer type they were 

analyzed with. 

Because the WTSI mutational signature framework algorithm first extracts 

signatures from a given set of tumors (broken down by cancer type in the case of 

the original publication) and then assigned weights using only the extracted set of 

signatures, contributions would be missed if the signature was not prevalent enough 

in the sample set to be extracted as a separate entity. For instance, if a signature 

was only active in a small number of tumors of the cancer type being analyzed, then 

it may not be extracted, and thus could not later be said to contribute to any tumor 

sample from that cancer type.  
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One example of such a false negative was observed in the lung adenocarcinoma 

sample TCGA-67-6215, which had clear signs of Signature 17 contribution, a 

signature with a currently unknown etiology (Figure 3-6). However, owing to the fact 

that Signature 17 was a rare event in the lung adenocarcinoma samples analyzed 

using  the WTSI mutational signature framework, it was not one of the signatures 

extracted. Thus Signature 17 could not be identified as active in any lung 

adenocarcinoma sample, resulting in the signature being missed in TCGA-67-6215.   

 

Figure 3-6: Mutational profile exhibiting Signature 17. 
The mutational profile of patient TCGA-67-6215 shows activity of Signature 17. The top panel is the 
tumor mutational profile displaying the fraction of mutations found in each trinucleotide context. The 
middle panels show the reconstructed mutational profiles generated by multiplying the calculated 
weights by the input signatures with the contributing signatures annotated. The bottom panels show 
the error between the tumor mutational profile and the reconstructed mutational profile, with SSE 
annotated. As Signature 17 was not considered a possible signature extracted in the first step of the 
WTSI Mutational Signature Framework output, it was only called with deconstructSigs (signature 
weight = 0.634). 

Similarly, a DNA mismatch (MMR) repair deficiency associated signature (Signature 

6) was also identified by deconstructSigs in multiple breast cancer samples: TCGA-

A8-A08F, TCGA-A8-A09Z, and TCGA-AN-A0AK (Figure 3-7). However, the re-

implementation of the WTSI mutational signature framework did not extract 

Signature 6, nor was this signature originally associated with breast cancer in the 

first iteration of the pan-cancer signature analysis (Alexandrov et al., 2013a). 

Supporting the utility of considering a wider set of signatures that may be active in a 

sample, two of the breast cancer tumors showing evidence of Signature 6 activity, 

TCGA-A8-A09Z and TCGA-AN-A0AK, had somatic alterations affecting MMR 

genes (https://tcga-data.nci.nih.gov/tcga/), which have been previously associated 

with this defect (Boland and Goel, 2010, Pena-Diaz et al., 2012). TCGA-A8-A09Z 
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harbored an MLH1 nonstop mutation, accompanied by separate MLH1 missense 

and splice site mutations. In TCGA-AN-A0AK there was an MSH6 frameshift 

mutation. Beyond showing the characteristic mutational profile of Signature 6, these 

two breast cancer tumors also had a higher than average number of mutations and 

small indels, another characteristic of an microsatellite instability-high (MSI-H) 

phenotype. While the median number of mutations found in the breast cancer 

cohort overall was 38, and the median number of indels was 4, both TCGA-A8-

A09Z and TCGA-AN-A0AK had substantially higher numbers of SNVs and indels, 

harboring 1438 mutations with 253 small indels and 1317 mutations with 352 small 

indels, respectively, providing further evidence for defective mismatch repair. 

 

Figure 3-7: Mutational profile exhibiting Signature 6. 
The mutational profile and reconstructed mutational profiles are plotted for a TCGA breast cancer 
patient (TCGA-AN-A0AK). One signature associated with DNA mismatch repair deficiency (Signature 
6) identified by deconstructSigs (signature weight = 0.481) in patient, but was not identified by WTSI 
Mutational Signature Framework. An MSH6 frameshift mutation was identified in this patient, and the 
tumor had far more mutations and indels than the cohort median. 

Thus by considering tumors on an individual basis, it is possible to accurately detect 

contributions from mutational processes that are active in only a small number of 

the samples being considered, allowing for the identification of mutational 

signatures that may have been overlooked if the samples were only considered as 

part of a larger group. Indeed a recent analysis of breast cancer whole genomes, 

where the increased number of samples and greater genome capture provided 

improved signature extraction resolution, has revealed that the MMR associated 

signatures can be detected in a small fraction of patients (approximately 2%) 

(Davies et al., 2017b).  
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Having validated the deconstructSigs method on single samples, it was also 

possible to investigate the contribution of mutational processes over the life history 

of a tumor.  

3.4 Using deconstructSigs to refine tumor evolution analyses 

3.4.1 Quantifying mutational signatures from multi-region tumor samples 

One benefit of analyzing mutational signatures at the single sample level is that it 

allows for the quantification of differences of signature activity over the evolutionary 

history of a tumor. Examining how mutational signatures vary over evolutionary time 

may facilitate the understanding of what processes play a role in tumor initiation 

(early in evolutionary time) versus tumor propagation and variation (later in 

evolutionary time). Signatures present late in evolutionary time are also responsible 

for increasing subclonal genetic diversity of the tumor. 

To determine if it was possible to time the activity of specific mutational processes 

using deconstructSigs, a cohort of 19 tumors with multi-region sequencing available 

was analyzed (described in the Data and Methods). These samples had been 

obtained from five patients diagnosed with either lung adenocarcinoma (n=3) or 

lung squamous cell carcinoma (n=1), with one tumor exhibiting a mixed 

adenosquamous histological subtype. Multi-region whole-exome and/or genome 

sequencing had been previously performed in these patients (de Bruin et al., 2014), 

allowing for temporal dissection (e.g. clonal versus subclonal) of the mutations 

present. Mutations were annotated as occurring early in the tumor’s evolutionary 

history, along the tumor’s trunk, or late in evolutionary time, present only in the 

tumor’s branches.  

Given the small number of tumor samples, it had not been feasible to analyze the 

cohort using the WTSI mutational signature framework. However, the samples 

could now be considered on an individual basis and were analyzed using 

deconstructSigs to establish how mutational signatures contributing to the samples 

mutational catalogs varied with time.  

The original analysis of this cohort (de Bruin et al., 2014) had used C>A mutations 

as a proxy for the smoking signature resulting from tobacco exposure (Pfeifer et al., 

2002). However deconstructSigs enabled this analysis to be refined, as specific 

signature contributions could now be determined, potentially distinguishing C>A 

mutations in a tobacco exposure context from those arising due to other mutational 
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processes. The contribution of Signature 4, known to be associated with the 

number of smoking pack years (Pfeifer, 2010, Alexandrov et al., 2013a) was 

quantified, rather than relying on the more general C>A mutation class.  

Supporting prior analyses and the knowledge that lung cancer may develop after 

years of cigarette smoking, resulting in a long trunk (Jamal-Hanjani et al., 2017), the 

smoking associated signature (Signature 4) contributed to a greater extent among 

the clonal mutations found in the phylogenetic trunk of the tumor and less among 

the subclonal mutations from the tumor’s phylogenetic branches (Figure 3-8A). In 

these patients, the smoking signature dominated the trunk of the phylogenetic tree, 

accounting for over 30% of the signature weights in every tumor, with mutations 

occurring from age-associated signatures (Signature 1, Signature 5) contributing 

most of the rest. Furthermore, three of the five patients analyzed (L001, L004, and 

L008) showed no evidence of activity of the smoking associated signature among 

the branch mutations at all. 

 

Figure 3-8: Temporal dissection of mutational processes.  
The contributions of the smoking associated signature (A) and APOBEC associated signature (B) 
identified in the individual regions of a multi-region sequencing cohort are displayed. Lung 
adenocarcinoma regions are shown as circles; lung squamous cell carcinoma regions are shown as 
triangles. The mutations were temporally dissected into early (trunk, blue) and late (branch, red) 
mutations prior to signature analysis. The smoking associated signature was seen at higher fractions 
among early mutations, whereas the signature associated with APOBEC activity was seen to 
contribute more to late mutations in lung adenocarcinoma as compared to the early mutations. 

Another frequent mutational process in NSCLC, expected to contribute to subclonal 

diversification and expansion, is the activity of the APOBEC family of cytosine 

deaminases. To determine how APOBEC activity varied over the tumor’s life 

history, the contributions of the APOBEC associated signatures (Signature 2 and 

Signature 13) were compared in the tumors’ trunk and branches. Consistent with 
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previously published observations, lung adenocarcinoma tumors exhibited far 

greater APOBEC activity in the branches as compared to the trunk (Figure 3-8B). 

Thus, investigating single samples allowed for the tracking of changes in mutational 

dynamics over time. For instance, in patient L008, the APOBEC-associated 

signatures increase in prevalence among the late mutations (Figure 3-9). However, 

it is also clear that different regions from the same patient’s tumor evolve differently 

over time. Two distinct regions show completely different mutational profiles. 

Region 3 from patient L008 (Figure 3-9C) has a decrease in smoking signature 

contribution as compared to the early mutations (Figure 3-9A), but still appears 

similar in profile to the early mutations. Whereas branch mutations present in region 

1 from the same patient seem to have been almost entirely driven by APOBEC 

activity (Figure 3-9B). 

 

Figure 3-9: Dynamics of mutational signatures in patient L008. 
The mutational signatures are shown obtained from considering the early (truncal) mutations (A) or 
from only considering the mutations specific to a particular region (B, C).  

These results demonstrate how it is possible to use deconstructSigs to understand 

how well-established mutational processes vary over a tumor’s lifetime. Importantly, 

with a more refined analysis of tumor phylogeny, it is also possible to consider what 

mutational processes are contributing to individual cancer subclones, which will be 

explored in greater detail below, and in subsequent chapters. 
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3.4.2 APOBEC associated driver mutations 

Multiple groups have identified APOBEC activity as a significant contributor to 

branched evolution and the acquisition of subclonal mutations (de Bruin et al., 2014, 

Starrett et al., 2016). A recent analysis of 100 patients with untreated, surgically 

resected primary NSCLC, enrolled in the TRACERx study has begun to shed light 

on the extent of ITH present in early-stage disease (Jamal-Hanjani et al., 2017). 

One key observation is that the overall number of subclonal mutations strongly 

correlated with the APOBEC-associated signatures, which is consistent with 

APOBEC being active late in cancer evolution. Furthermore, in 19 patients with an 

APOBEC signature, subclonal driver events were detected as occurring in the 

APOBEC mutational context (Figure 3-10).  

 

Figure 3-10: TRACERx patients harboring a subclonal driver mutation in an APOBEC preferred motif.  
The mutation is indicated near the clone in which it occurs. Clonal clusters are shown in blue, 
subclonal clusters are shown in red, and subclonal clusters containing the driver mutation in a 
preferred APOBEC motif are shown in yellow. Instances where a mutation could have arisen in 
multiple possible clones are circled in yellow. 

Taken together, this suggests that APOBEC activity is a strong mutagenic force late 

in cancer evolution. APOBEC activity could drive cancer evolution by permitting the 

acquisition of late driver mutations. This is further supported by evidence for driver 

mutations in preferred APOBEC motifs observed across multiple cancer types 

(Roberts et al., 2012, Henderson et al., 2014, Jamal-Hanjani et al., 2017, 
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McGranahan and Swanton, 2015, Nik-Zainal et al., 2016). The most striking 

examples of functional APOBEC driven mutagenesis are two helical domain hot 

spot mutations in PIK3CA commonly observed in human papillomavirus-positive 

head and neck squamous cell carcinomas (E542K and E545K) (Henderson et al., 

2014). 

3.5 Conclusions 

The identification of mutational signatures active over the life history of a tumor can 

further the understanding of how distinct mutational processes contribute to a 

tumor’s initiation, subsequent diversification, and progression.  

Furthermore, by determining the signatures present in samples with temporally 

dissected mutations, it is possible to quantify which mutational signatures are active 

early and late during tumor development, allowing for a deeper understanding of 

how cancer evolves and how factors such as APOBEC activity, or mutagenic 

chemotherapeutic agents (Johnson et al., 2014, Murugaesu et al., 2015, Meier et 

al., 2014, Findlay et al., 2016), may act to alter the evolutionary path of a tumor. A 

more thorough understanding of cancer etiology has great implications for 

prevention, as well as for informing the best patient-specific therapeutic choices (Le 

et al., 2015, Alexandrov et al., 2015).  

Different mutational signatures may also affect the local tumor microenvironment to 

varying extents. Recent reports have shown an association between immune 

activity, as measured by the activity of cytotoxic T-cells, and mutational load 

(Rooney et al., 2015). As some mutational signatures, such as those resulting from 

mismatch repair deficiencies or APOBEC activity, are associated with higher overall 

mutational loads, they may have a more substantial impact on tumor 

microenvironment. Indeed, early reports indicate that mismatch repair, double 

strand break repair, and APOBEC driven mutational landscapes have a significant 

increase in TIL infiltrate and overall cytolytic activity as compared to tumors where 

other mutational processes predominate (Connor et al., 2017, Smid et al., 2016).  

Alexandrov, Nik-Zainal, and colleagues were first to robustly examine how all 

mutations, not just the functional drivers of tumorigenesis, could provide insight into 

what has occurred during the development of a tumor. Their comprehensive 

analysis of publicly available exomes and genomes resulted in a curated list of 

mutational signatures recurrent across multiple cancer types (Alexandrov et al., 
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2013a, Alexandrov et al., 2013b, Nik-Zainal et al., 2012a). This chapter outlines a 

computational approach, deconstructSigs, that complements the work already 

performed to determine what mutational signatures are active in individual tumor 

specimens from a set of pre-defined input signatures, circumventing the need for 

large sample sets before signature analysis is viable. Through the use of 

deconstructSigs, it is possible to consistently identify the same mutational 

processes active in individual tumor samples as when a similar analysis is 

performed using the WTSI mutational signature framework (Alexandrov et al., 

2013a), providing confidence in the accuracy of the single sample approach.  

Finally using this approach, it was possible to illuminate the dynamic nature of 

mutational processes active in single tumors over time, through the consideration of 

temporally dissected mutations. Continuation of this sort of analysis will help to 

elucidate which mutational processes may drive early tumor development, and 

which may allow for subsequent diversification, subclonal expansion, and potentially 

immune evasion. 

One potential caveat of the reference signatures used in deconstructSigs is that 

each signature represents the “consensus” signature across the multiple cancer 

types it was identified in. In practice, there are likely subtle differences in the 

signatures arising from the same mutational process across different tissue types, 

which may give rise to inaccurate results depending on the degree of discrepancy 

between the “consensus” signature and the tissue-type specific one.  

However, a key aspect of the tool is that the input signature set is a user-defined 

parameter, so as additional mutational signatures are identified and the current 

ones are refined through on-going large-scale genomic analyses, or as cancer-type 

specific signatures become available, it will be possible to alter the signature set 

under consideration. For instance, there are currently 30 curated signatures 

identified by the WTSI (http://cancer.sanger.ac.uk/cosmic/signatures), some of 

which were only identified in a single tumor sample, and others from tumor types 

not analyzed in this chapter, such as stomach cancer, kidney clear cell carcinoma, 

and Hodgkin’s lymphoma. In future studies, and as new signatures are identified, 

these signatures could be included in the input signatures set by the user.  

Furthermore, a constrained multiple linear regression model can be used to 

deconvolve signatures developed from any number of data types where there is a 

reference signature available, including recently described copy number variation 
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signatures (Macintyre et al., 2017, Glodzik et al., 2017). Thus, deconstructSigs can 

continue to complement other efforts to define and identify mutational processes. 

As the sequencing of individual tumors continues to become an aspect of cancer 

treatment, the ability to focus on single samples will be necessary to understand 

key characteristics of the tumor from a patient-specific point of view. It may be 

possible to reveal cancer vulnerabilities that may guide clinical decision-making on 

a patient-specific basis or even identify potential occult environmental exposures 

within individual tumors. One such case has been observed in the TRACERx study 

already (Jamal-Hanjani et al., 2017). A tumor from a patient who had never smoked 

showed a mutational profile that exhibited undeniable signs of early smoking 

associated mutations. While the patient himself had never smoked, he had a long 

history of environmental exposures including arsenic, benzene, bisphenol, 

polybrominated diphenyl ethers, and coal tar, which may result in mutations similar 

to those associated with tobacco. Importantly, it was possible to analyze this 

sample on its own to answer a specific question. 
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Chapter 4 Determinants of immune recognition  

4.1 Introduction 

While it is well-established that the immune system is capable of recognizing and 

eliminating tumor cells, the factors determining tumor cell antigenicity remain 

incompletely cataloged (Schreiber et al., 2011, Chen and Mellman, 2017). Recent 

advances in the understanding of the interaction between the tumor and the 

immune system have resulted in the development of effective cancer 

immunotherapies, such as immune checkpoint blockade therapy, CAR T-cell 

therapy, and neoantigen specific vaccines, which all aim to activate the immune 

system to allow for cancer cell elimination via endogenous T-cell activity 

(Schumacher and Schreiber, 2015). These immunotherapies act to enhance pre-

existing T-cell responses to tumor neoantigens presented on the cancer cell or 

generate new ones (Liu and Mardis, 2017). 

However, the recent clinical success of immunotherapies in a minority of cancer 

patients has served to highlight both the potential impact of immune modulation as 

well as our limited understanding of the factors underpinning patient response (Hodi 

et al., 2010, Brahmer et al., 2012, Topalian et al., 2012a, Wolchok et al., 2013).  

As discussed in the previous chapter, ongoing mutational processes active during 

tumor evolution can result in tumors harboring tens to tens of thousands of somatic 

alterations (Vogelstein et al., 2013, Stratton, 2011). Many of these mutations lead to 

amino acid changes that may result in neoantigen generation; thus the non-

synonymous mutation/neoantigen landscape of a tumor is capable of directly 

contributing to its immunogenicity. 

Indeed a relationship between the presence of tumor neoantigens, immune 

activation, and improved prognosis has been documented (Brown et al., 2014, 

Rooney et al., 2015). Recent analyses of checkpoint blockade treated cohorts 

designed to elucidate what differentiates the tumors of responding patients from 

those of non-responders have consistently identified non-synonymous 

mutation/neoantigen burden as a contributor to response (Snyder et al., 2014, Rizvi 

et al., 2015, Van Allen et al., 2015, Le et al., 2015). Moreover, T-cell responses 

elicited towards specific neoantigens have been demonstrated in both pre-clinical 

and clinical studies, (Castle et al., 2012, Tran et al., 2016, Rizvi et al., 2015, 

Linnemann et al., 2015). Taken together, these studies indicate that neoantigens 
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represent an attractive target for cancer therapy and that a greater understanding of 

the immune system’s regulation and response to tumor neoantigens is needed.   

Although increased genetic ITH has been shown to correlate with poor prognosis 

across multiple cancer types (Mroz and Rocco, 2013, Sveen et al., 2016, Schwarz 

et al., 2015, Jamal-Hanjani et al., 2017), little is known about the impact of 

neoantigen ITH on the immune response. Thus in this chapter, the effect of 

neoantigen ITH is considered in relation to both treatment-naïve patients and 

cohorts of patients treated with immune checkpoint blockade therapy. 

The work presented in this chapter was published as a joint-first author paper, 

(McGranahan et al., 2016). Bioinformatics analysis of the checkpoint blockade 

treated cohorts was performed in collaboration with Nicholas McGranahan. 

Experiments to identify and characterize neoantigen reactive T-cells were 

performed by Andrew Furness and Sine Hadrup’s group at the Danish Technical 

University. 

4.2 Neoantigen prediction pipeline 

The first step towards identifying putative neoantigens across large tumor cohorts in 

a streamlined manner, is developing a neoantigen prediction pipeline (Figure 4-1). 

 

Figure 4-1: Schematic of neoantigen prediction pipeline. 
Non-synonymous mutations are used to generate a comprehensive list of peptides 9-11 amino acids in 
length with the mutated amino acid represented in each possible position. A patient’s HLA type is 
determined using an HLA inference tool. To predict the likelihood of a peptide binding for presentation, 
every mutant peptide and its corresponding wildtype peptide are used as input to netMHCpan and 
netMHC. Candidate neoantigens are identified based on binding affinity or rank percentage score, a 
parameter which can be changed in the pipeline depending on user input. 
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4.2.1 Peptide prediction 

For each non-silent mutation (as determined in the Data and Methods), the pipeline 

identifies the affected amino acid(s) and the ones surrounding it. Then, using a 

sliding window approach of fixed length, it generates all possible peptide 

configurations with the mutation in each position. Because the available tools for 

proteasomal cleavage do not yield entirely accurate results, potentially eliminating 

antigenic peptides, every possible mutant configuration is created to be considered 

as a possible neoantigen. As future steps in the neoantigen prediction pipeline 

consider HLA class I presentation, a list of 9-11mer peptides generated for each 

mutation is saved. 

4.2.2 HLA typing 

For a non-synonymous mutation to result in a neoantigen and induce an immune 

response, a peptide containing the mutation must be processed and presented on 

the cell surface via MHC molecules (Neefjes et al., 2011). The antigenic peptide 

may then be recognized by T-cells, triggering immune activity. While there are 

many steps involved in antigen presentation ranging from proteasomal cleavage to 

TAP transport of the peptide to MHC-peptide binding, the most selective step in an 

immune response is the binding of the antigenic peptide to the MHC molecule for 

presentation (Nielsen and Andreatta, 2016).  

The MHC molecule is highly specific and binds only a small proportion of possible 

peptides. As a result, the particular alleles encoded at the HLA locus dictate what 

peptides bind for presentation. Thus, the patient’s HLA haplotype must first be 

determined before it is possible to generate neoantigen predictions. Serotyping is 

the most accurate way to determine an individual’s HLA haplotype; however, on a 

large scale, serotyping quickly becomes cost and time prohibitive. Accordingly, the 

last decade has seen the development of computational approaches that rely on 

NGS data to infer the correct HLA calls.  

4.2.2.1 Comparison of HLA inference tools 

HLA classification in the neoantigen prediction pipeline described here is performed 

using multiple approaches which output the HLA allelic combination that maximizes 

number of sequencing reads explained (Szolek et al., 2014, Shukla et al., 2015). 

Full details are provided in the Data and Methods. Sequencing reads containing 

possible HLA information are obtained from BAM files, either by identifying reads 
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mapped to the HLA locus (on the p-arm of chr6) or by extracting reads partially 

matching known HLA sequence. The reads are subsequently remapped to a 

reference file containing most known HLA alleles (6597 possible HLA alleles in 

total). Finally the set of HLA alleles that best explain the mapped sequencing reads 

is chosen. 

While the published NGS HLA typing methods have been validated using PCR-

verified HLA genotypes, an independent comparison was also performed for seven 

patients from the TRACERx pilot study who had previous serotyping results. These 

patients had serotype HLA calls for HLA-A and HLA-B alleles, allowing for a 

comparison with the bioinformatic approaches. The serotyped HLA calls and the 

calls inferred by both algorithmic approaches, OptiType and Polysolver, for these 

seven patients showed complete concordance (Table 4-1).  
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Table 4-1: Comparison of HLA results by serotyping and OptiType/Polysolver 

 Serotyping OptiType/Polysolver 
Sample HLA-A HLA-A HLA-B HLA-B HLA-A HLA-A HLA-B HLA-B 

L011 A*24:02 A*11:01 B*35:01/42 B*49:01 A*24:02 A*11:01 B*35:01 B*49:01 

L012 A*24:02 A*11:01 B*07:02 B*07:02 A*24:02 A*11:01 B*07:02 B*07:02 

L013 A*02:01:01 A*32:01:01 B*44:02 B*15:01 A*02:01 A*32:01 B*44:02 B*15:01 

L016 A*01:01 A*01:01 B*57:01:01 B*35:01/42 A*01:01 A*01:01 B*57:01 B*35:01 

L019 A*02:01:01 A*32:01:01 B*15:01 B*27:05 A*02:01 A*32:01 B*15:01 B*27:05 

L021 A*03:01:01 A*30:02:01 B*18:01 B*35:01/42 A*03:01 A*30:02 B*18:01 B*35:01 

L022 A*02:01 A*03:01 B*44:03:01 B*57:01:01 A*02:01 A*03:01 B*44:03 B*57:01 
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Some HLA typing tools offer added functionality, such as HLA mutation calling. This 

may be an important consideration when determining the likelihood of neoantigen 

presentation, as alterations affecting the MHC molecule may disrupt antigen 

binding. In addition to OptiType (Szolek et al., 2014), an HLA inference tool with 

mutation calling capabilities, Polysolver (Shukla et al., 2015), was employed. A 

further analysis of 100 TRACERx patients comparing these two sequencing-based 

HLA inference tools found high agreement between the two sets of results (Figure 

4-2).  

 

Figure 4-2: Comparison of HLA calls inferred from OptiType and Polysolver.  
A) A barplot is displayed showing the number of patients and number of matching HLA calls between 
OptiType and Polysolver HLA inference tools. If HLA calls at all six possible class I HLA alleles 
matched, then the patient was considered to have concordant results between the two HLA typing 
tools (green). If a subset of calls did not match between the tools, the patient was considered to have 
discordant results (red). B) For the cases of discordant calls, the HLA alleles which did not match are 
shown. 

Ninety-six of the patients were successfully HLA-typed using both tools, with 88 

matching at all six possible HLA alleles. Five patients only matched at five HLA 

alleles, two matched at four HLA alleles, and a single patient had discrepancies 

between three HLA alleles, for a total agreement between 98% of the HLA alleles 

(Figure 4-2A). In this cohort, the discordant HLA calls were equally spread over the 

three HLA class I alleles (Figure 4-2B). Furthermore, unlike previous reports, there 

were no systematic HLA miscalls identified (Kiyotani et al., 2017). 

The four patients that failed one of the HLA-typing tools (OptiType) were found to 

have extremely low-coverage at the HLA locus. By using both tools in the 

neoantigen prediction pipeline, it is possible to have increased confidence in 

inferred alleles and include patients where one tool may fail. However, these 
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patients should be treated cautiously, as results from a low-coverage sample are 

more likely to be inaccurate.  

4.2.3 Peptide-MHC binding predictions 

The list of possible peptides resulting from each non-synonymous mutation (as 

described in the Data and Methods) and the patient’s HLA haplotype are next used 

as input to determine whether that particular peptide-MHC interaction is likely to 

occur naturally. To generate quantitative predictions of the affinity for a given 

peptide-MHC interaction, a prediction tool is used that relies on extensive training 

data gathered from manually validated peptide-MHC complexes (Nielsen et al., 

2007, Hoof et al., 2009). Thus, for each peptide, predictions of how strongly it binds 

to all the patient’s MHC molecules are calculated. For the data presented in this 

chapter, netMHC-pan v2.8 was used with a neoantigen definition of binding affinity 

< 500nM. Since publication of this data, netMHC-pan v3.0 has been released, and 

the tool maintainers have suggested a rank-percentage based neoantigen 

definition, where the rank of the predicted binding affinity is compared to a set of 

400,000 random natural peptides. The rank-percentage measure should not be 

affected by the availability of training data for that particular HLA allele, which may 

bias certain HLAs towards higher or lower predicted binding affinities overall. 

Candidate neoantigen peptides that are predicted to bind to the patient’s MHC 

molecules can subsequently be filtered further using user-defined parameters, such 

as peptide length or mutation position, or expression if RNAseq data is also 

available.  

4.3 Neoantigen landscape in multi-region NSCLC 

4.3.1 Extent of heterogeneity in neoantigen landscape 

While recent research has begun to shed light on the relationship between immune 

recognition of cancer cells and neoantigens present in the tumor (Matsushita et al., 

2012, Rizvi et al., 2015, Castle et al., 2012, Snyder et al., 2014), the impact ITH has 

on this relationship had not been considered. Thus, to build an accurate picture of 

the landscape of neoantigen heterogeneity (neoantigen ITH) in early stage NSCLC 

tumors, the neoantigen prediction pipeline was applied to seven multi-region 

sequenced tumors, representing a range of histologies, including adenocarcinoma, 

squamous cell carcinoma, and a single patient with mixed histology (Table 4-2) (de 

Bruin et al., 2014, Jamal-Hanjani et al., 2016).  
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Table 4-2: Clinical characteristics of multi-region sequenced NSCLC patients 
Abbreviations: RLL, right lower lobe; RUL, right upper lobe; RML, right middle lobe; R, region; LN, 
lymph node; Undiff, undifferentiated. * A pack-year is defined as the number of packs of cigarettes 
smoked per day multiplied by the number of years the person has smoked. 

Patient 
ID 

Age 
(years) Gender Histology 

Lymph 
node(s)/ 
location 

Stage 
(I-IV) 

Regions 
sequenced 

Smoking 
status 
(pack-
years*) 

L003 84 F lung ad. 2/Station 4 IIIB R2 (RLL), R4 
(RUL), LN 

never- 
smoker 

L008 75 M lung ad. 2/Hilar IIIA R1 (RUL), R3 
(RML), LN 

ex- 
smoker (25) 

L001 59 F lung ad. 3/Hilar IIA R1-R5, LN ex- 
smoker (10) 

L004 73 M Undiff. 
NSCLC none IIB R1-R4 current 

smoker (50) 

L011 49 F lung ad. none IB R1-R3 current 
smoker (45) 

L002 78 M lung ad./ 
lung squam. 2/Station 5 IIIA R1-R4 current 

smoker (>50) 

L012 69 F lung squam. none IB R1-R3 current  
smoker (40) 

  



 93 

From this cohort of seven patients, 2860 putative neoantigens were predicted 

(median 326; range 80-741) (Figure 4-3). As patients in this dataset had multi-

region sequencing performed, the neoantigen ITH could also be accurately 

considered by determining the proportion of subclonal neoantigens. For this 

calculation, the same mutation annotations were used as originally published (de 

Bruin et al., 2014) and a neoantigen was considered subclonal if it was only found 

in a fraction of tumor regions. Consistent with the observed mutational 

heterogeneity (de Bruin et al., 2014), the calculated neoantigen ITH varied 

substantially across the cohort, with an average of 44% of putative neoantigens 

identified as subclonal per tumor. One of the most heterogeneous tumors, L012, 

was found to harbor a total of 252 neoantigens of which 74% were heterogeneous. 

Conversely, for L011, the most homogenous tumor within the cohort, fewer than 

10% (39/400) were heterogeneous. The wide range of neoantigen ITH observed in 

this cohort suggested that it would be possible to study the impact of ITH on 

neoantigen response among these patients.   

 

Figure 4-3: Heterogeneity of neoantigen landscape in TRACERx pilot study. 
The total predicted neoantigen load is plotted for each of the multi-region NSCLC tumors from the 
TRACERx pilot study. The number of clonal neoantigens, which could be found in every tumor region 
are shown in blue. Subclonal neoantigens, which were identified in multiple, but not every tumor region 
are shown in yellow. Subclonal neoantigens only identified in a single tumor region are show in red. 
Above each barplot, the fraction of subclonal neoantigens is indicated. 

4.3.2 Identification of T-cells reactive to predicted neoantigens 

To validate the calls from the neoantigen prediction pipeline and investigate the 

impact of neoantigen ITH on T-cell recognition, neoantigens from two tumors, L011 

and L012, were tested using MHC-multimers (as described in the Data and 

Methods). Despite having a comparable number of predicted neoantigens and 

lengthy history of smoking, these two patients were on opposite ends of the 

neoantigen ITH spectrum (10% vs. 74% heterogeneous predicted neoantigens, 

Figure 4-4A). HLA-matched multimers loaded with 288 and 354 putative 
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neoantigens from L011 and L012, respectively, were used to screen CD8+ T-cells 

for neoantigen reactivities. CD8+ T-cells were collected from tumor regions as well 

as from adjacent normal tissue and expanded in vitro. Finally a high throughput 

method allowed for testing the expanded CD8+ T-cell populations against many 

peptides at once (Hadrup and Schumacher, 2010).  

Reassuringly, and in validation of some neoantigen predictions generated, CD8+ T-

cells reactive to putative neoantigens were identified in both patients. In L011, a 

mutant peptide arising from MTFR2D326Y (FAFQEYDSF) resulted in a CD8+ T-cell 

response (Figure 4-4B,D). In L012, two separate CD8+ T-cell responses were 

identified from peptides arising from a CHTF18L769V mutation (LLDIVAPK) and a 

MYADMR30W mutation (SPMIVGSPW) (Figure 4-4C,E). As confirmation that these 

reflected patient-specific CD8+ T-cell responses, four healthy donor CD8+ PBMCs 

were tested against the same peptides resulting in no observable response (Figure 

4-4 D-E).  

 

Figure 4-4: Prediction and identification of neoantigen-reactive T-cells. 
A) Phylogenetic trees for patients L011 and L012 based on predicted neoantigens are depicted. B) 
The mutant binding strength and wildtype binding strength are plotted for each predicted neoantigen 
from all missense mutations in L011. Lower binding affinity indicates a stronger predicted binder. 
Clonal neoantigens are indicated in blue, subclonal neoantigens are indicated in red. The MTFR2D326Y 
neoantigen is specifically marked (FAFQEYDSF). C) The mutant and wildtype binding strengths are 
plotted for each predicted neoantigen from all missense mutations in L012. The CHTF18L769V 
neoantigen (LLLDIVAPK) and the MYADMR30W neoantigen (SPMIVGSPW) are specifically marked. D) 
and E) Results from MHC-multimer screening of expanded, region-specific, tumor-infiltrating CD8+ T-
cells and healthy donor (HD) CD8+ PBMC controls are shown. Candidate neoantigens (L011, n=288 
and L012, n=354) and control HLA-matched viral peptides (L011, n=10 and L012, n=9) were tested. 
The frequency of CD8+ MHC-multimer positive cells out of total CD3+CD8+ TILs is displayed.  



 95 

These results proved that neoantigen responses could be identified in patients with 

both high and low levels of neoantigen ITH, but interestingly, the three mutations 

that generated identifiable CD8+ T-cell responses all represented clonal 

neoantigens. In the homogenous patient, L011, this was expected, as the vast 

majority of predicted neoantigens were clonal; however, the neoantigen landscape 

of patient L012 was extremely heterogeneous and still the only observable 

responses arose from clonal mutations. Thus, this suggests that clonal neoantigens 

can be recognized and initiate immune activity in both homogeneous and 

heterogeneous tumors. 

To ensure the TIL expansion protocol did not bias the observed CD8+ T-cell 

responses, non-expanded TILs were also considered. Functional CD8+ T-cell 

responses in L011 from non-expanded TILs, were still identified against the 

MTFR2D326Y mutation in all tumor regions, with a far greater frequency than the 

normal region. Similarly, CD8+ T-cells reactive to the CHTF18L769V peptide and 

MYADMR30W peptide could also be identified in non-expanded samples from all 

tumor regions in L012, with a lower frequency in the normal lung tissue (Figure 4-5 

A-B).  

As previously explained in the Introduction, a mutant peptide may generate a tumor-

specific immune response either by being a novel binder to a patient’s MHC 

molecule (the mutant peptide has a stronger binding affinity than the wildtype) or by 

harboring a mutation recognizable by a T-cell (both mutant and wildtype peptides 

have strong binding affinities). The peptides arising from the MTFR2D326Y mutation in 

L011 and the CHTF18L769V mutation in L012 belong to the latter category and show 

very little reactive CD8+ T-cells in normal tissue as compared to tumor tissue 

(Figure 4-5A and y-axis of Figure 4-5B). 

However, MYADMR30W-reactive CD8+ T-cells were observed in normal tissue at a 

higher percent than either of the other two neoantigen generating mutations (x-axis 

of Figure 4-5B). The mutant peptide arising from MYADMR30W represents an 

instance of the first category of neoantigen, where the mutant version of the peptide 

has a stronger binding affinity than the wildtype version. The mutation which 

generated the MYADMR30W peptide affects the anchor residue, which alters the 

peptide-MHC binding interaction rather than T-cell recognition. Thus it appears that 

in patient L012, the increased stability provided within a MHC-multimer system 

allowed the T-cells to recognize both mutant and wildtype peptides; however in 

vivo, without the artificial stability of the MHC-multimer, the low predicted binding 
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affinity of the wildtype peptide to the HLA molecule would most likely result in no 

peptide presentation. 

 

Figure 4-5: Clonal neoantigens identified in multi-region NSCLC. 
A) MHC-multimer analysis of non-expanded, tumor-infiltrating CD8+ T-cells isolated from tumor 
regions and normal lung tissue of L011 showing recognition of mutant MTFR2 peptide. The 
percentage of CD8+ T-cells recognizing multimers with the fluorescent marker indicated are shown on 
the x- and y-axes. As there was only one reactivity in L011, both multimers are for the same peptide, 
so reactive T-cell populations are in the top-right quadrant.  B) MHC-multimer analysis of non-
expanded, tumor-infiltrating CD8+ T-cells isolated from tumor regions and normal lung tissue of L012 
identifies two populations of CD8+ TILs reactive to mutant CHTF18 and MYADM peptides. The 
percentage of CD8+ T-cells recognizing multimers with the fluorescent marker indicated are shown on 
the x- and y-axes. There were two reactivities identified in L012, so CD8+ T-cells recognizing the 
MYADM peptide are to the right on the x-axis, and those recognizing the CHTF18 peptide are towards 
the top on the y-axis. 

4.4 Applying the neoantigen prediction pipeline to TCGA tumors 

To further determine the extent of neoantigen ITH in a wider cohort of NSCLC, the 

neoantigen prediction pipeline was used to analyze data from HLA-typed NSCLC 

patients available through TCGA, which consisted of 150 lung adenocarcinoma and 

124 lung squamous cell cases (Lawrence et al., 2014, Rooney et al., 2015, Shukla 

et al., 2015). The TCGA cohort represented primarily early-stage disease consisting 

of 106 stage I/II, 43 stage III/IV lung and 1 unknown stage lung adenocarcinoma 

and 92 stage I/II and 32 stage III/IV lung squamous cell carcinoma cases. 

Furthermore, to quantify the neoantigen heterogeneity of each sample, the cancer 
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cell fraction of each mutation, which describes the proportion of cancer cells that 

harbors a given mutation, was calculated. 

In keeping with previous reports and reflecting the increased mutational burden 

found in lung squamous cell tumors, in this cohort, lung squamous cell tumors 

harbored an average of 140 putative neoantigens and lung adenocarcinoma 

harbored an average of 103 putative neoantigens. (Rajasagi et al., 2014). As has 

been observed previously (Rooney et al., 2015), the number of predicted 

neoantigens strongly correlates with the number of missense mutations in the 

tumor. This relationship held for both clonal (LUAD: cor = 0.96, p < 2.2e-16; LUSC: 

cor = 0.96, p < 2.2e-16) and subclonal neoantigens (LUAD: cor = 0.95, p<2.2e-16; 

LUSC: cor = 0.97, p< 2.2e-16) (Figure 4-6). Notably, a considerable range in 

neoantigens per tumor, as well as level of neoantigen heterogeneity was observed 

(Table 4-3). 
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Table 4-3: Summary of neoantigens and neoantigen ITH in TCGA cohort. 
 

 Lung adenocarcinoma Lung squamous cell carcinoma 
 1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu. 

Neoantigen 34 73 128 78 110 150 

Clonal Neoantigen 20 57 115 54 84 121 

Subclonal Neoantigen 6 12 24 12 21 37 

Neoantigen ITH 0.09 0.18 0.31 0.12 0.20 0.34 

 

 

Figure 4-6: Neoantigens predicted in TCGA NSCLC cohort. 
Number of predicted neoantigens is shown for lung adenocarcinoma (A) and lung squamous cell 
carcinoma (B) tumors from TCGA, with neoantigens arising from clonal mutations indicated in blue and 
neoantigens arising from subclonal mutations indicated in red. Clonality of mutations was determined 
using the cancer cell fraction. 
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4.5 Clinical impact of neoantigen heterogeneity  

4.5.1 Neoantigen load and heterogeneity associates with survival in the 

treatment-naïve setting 

A large tumor neoantigen burden may increase tumor recognition by T-cells, 

reducing the potential for immune-evasion (Schreiber et al., 2011). Previous work 

has provided some evidence of the clinical relevance of tumor neoantigens (Brown 

et al., 2014). In support of these previous findings, a high neoantigen load (defined 

as the upper quartile of the number of neoantigens predicted in the cohort) was 

associated with longer overall survival times in TCGA lung adenocarcinoma 

samples with matched clinical data (n=139) when compared to the remaining 

tumors in the cohort. (Figure 4-7A, log-rank p = 0.025). While the lung squamous 

cell carcinoma tumors had a similar total neoantigen landscape, there appeared to 

be no relationship between overall survival and total neoantigen load (Figure 4-7B, 

log-rank p = 0.81). 

 

Figure 4-7: Relationship between neoantigen burden and survival in TCGA. 
Kaplan-Meier curves are shown for lung adenocarcinoma (A) and lung squamous cell carcinoma (B). 
The curves are split based on the upper quartile of total neoantigen burden, with high neoantigen 
burden tumors signified by the blue line and low neoantigen burden tumors signified by the red line. A 
significant association between overall survival and total neoantigen burden is observed in lung 
adenocarcinoma, but not lung squamous cell carcinoma. 

To determine whether neoantigen clonal status might influence the relationship with 

survival outcome, potentially allowing for a refined understanding of the impact of 

neoantigen ITH on immune recognition and response, each putative neoantigen 

was classified as either arising from a clonal or subclonal mutation. Lung 

adenocarcinoma patients with homogeneous tumors (neoantigen ITH < 1%) tended 

to have an increased overall survival time than when compared to patients with 

heterogeneous tumors (log-rank p = 0.06). Interestingly, a combination of 

neoantigen ITH and neoantigen burden was more significant than considering either 
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metric alone and was observed across a range of neoantigen ITH thresholds. In this 

analysis, a neoantigen ITH=0 represents a tumor where all neoantigens were called 

as clonal and a neoantigen ITH=0.05 represents a tumor where 5% of the 

neoantigens were identified as subclonal (Figure 4-8; ITH threshold=0, log-rank 

p=0.019; ITH threshold=0.01,  log-rank p=0.0096; ITH threshold=0.05, log-rank 

p=0.021). This association remained significant when incorporating tumor stage and 

patient gender and age in a multivariate analysis (Table 4-4), suggesting that that 

not just the presence of neoantigens but also their prevalence within the tumor 

relates to overall survival in treatment-naïve lung adenocarcinoma  patients. 

 

Figure 4-8: Relationship between neoantigen ITH and survival in TCGA lung adenocarcinoma. 
Kaplan-Meier curves are shown for TCGA lung adenocarcinoma tumors across multiple levels of 
neoantigen ITH. Tumors with a high clonal neoantigen burden and neoantigen ITH below the given 
threshold are shown in blue; tumors with either a low clonal neoantigen burden or neoantigen ITH 
above the given threshold are show in red. 
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Table 4-4: Multivariate survival analysis in lung adenocarcinoma. 
 

Neoantigens         

(without ITH threshold) 
  HR 95% CI lower 95% CI upper p-value 

Number neoantigens 0.996 0.992 1 0.025 

Gender 0.675 0.372 1.226 0.2 

Early stage (vs. late) 0.259 0.141 0.476 0 

Age 1.015 0.985 1.045 0.33 

          

ITH threshold =0     

  HR 95% CI lower 95% CI upper p-value 

High neoantigen and ITH<=0 0.291 0.069 1.237 0.095 

Gender 0.66 0.362 1.204 0.18 

Early stage (vs. late) 0.313 0.171 0.572 0 

Age 1.017 0.989 1.047 0.23 

          

ITH threshold =0.01     

  HR 95% CI lower 95% CI upper p-value 

High neoantigen and ITH<=0.01 0.262 0.103 0.667 0.005 

Gender 0.619 0.339 1.132 0.12 

Early stage (vs. late) 0.236 0.126 0.442 0 

Age 1.017 0.989 1.047 0.23 

          

ITH threshold =0.05     

  HR 95% CI lower 95% CI upper p-value 

High neoantigen and ITH<=0.05 0.366 0.172 0.781 0.009 

Gender 0.66 0.363 1.2 0.174 

Early stage (vs. late) 0.241 0.13 0.445 0 

Age 1.012 0.982 1.042 0.432 
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An independent cohort of patients from the TRACERx main study was also 

considered to validate the observed association between clonal neoantigen burden 

and survival in the treatment-naïve setting. Importantly, the multi-region sequencing 

nature of this cohort allowed for a more accurate classification of neoantigens as 

having arisen from a clonal or subclonal mutation. Likely due to the increased 

sequencing depth, as well as the improved sensitivity to detect subclonal 

neoantigens gained from multi-region sequencing, both a higher number of clonal 

neoantigens and subclonal neoantigens were identified in the TRACERx cohort as 

compared to TCGA (Table 4-5 and Figure 4-9). This observation is consistent with 

the original publication of the TRACERx study, which reported identifying 

significantly more mutations from the multi-region TRACERx cohort as compared to 

only considering a single region from the TRACERx cohort or as compared to using 

single NSCLC tumor samples from TCGA (Jamal-Hanjani et al., 2017). 
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Table 4-5: Summary of neoantigens and neoantigen ITH in TRACERx cohort. 
 

 Lung adenocarcinoma Lung squamous cell carcinoma 
 1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu. 

Neoantigen 68 128 361 178 225 360 

Clonal Neoantigen 33 71 171 100 150 213 

Subclonal Neoantigen 15 29 87 19 52 88 

Neoantigen ITH 0.16 0.28 0.42 0.12 0.22 0.37 

 

 

Figure 4-9: Neoantigens predicted in TRACERx cohort. 
The number of predicted neoantigens is shown for lung adenocarcinoma and lung squamous cell 
carcinoma tumors from the TRACERx study, with neoantigens arising from clonal mutations indicated 
in blue and neoantigens arising from subclonal mutations indicated in red. 
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Interestingly, whereas in TCGA, neoantigen burden only associated with survival in 

lung adenocarcinoma, in both TRACERx lung adenocarcinoma and lung squamous 

cell carcinoma, increased clonal neoantigen burden associated with improved 

progression free survival (Figure 4-10A-B). This finding supports the potential 

prognostic relevance of clonal neoantigens and highlights the importance of 

sensitive subclonal mutation/neoantigen detection, as it is likely that subclonal 

mutations were either not called or misidentified as clonal mutations in TCGA 

samples.  

 

Figure 4-10: Relationship between neoantigen burden and survival in TRACERx main study cohort. 
Kaplan-Meier curves are shown for lung adenocarcinoma (A,C) and lung squamous cell carcinoma 
(B,D). The curves are split based on the upper quartile of clonal neoantigen burden (A-B) and on the 
upper quartile of subclonal neoantigen burden (C-D). Associations between neoantigen burden and 
progression free survival is only seen when clonal neoantigen burden is considered.  

Contrary to clonal antigen burden, no relationship between subclonal neoantigen 

burden and progression free survival was observed (Figure 4-10C-D). While the 

numbers in each group were too small to further sub-divide by level of neoantigen 

ITH, as was done for the analysis of samples from TCGA, the observation that only 

clonal neoantigen burden and not subclonal neoantigen burden associated with 

improved progression free survival further supports the hypothesis that clonal 
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neoantigens, found in every cancer cell, may have a heightened impact on immune 

response as compared to subclonal neoantigens. 

Interestingly, the relationship between survival and clonal neoantigen load in lung 

squamous cell carcinoma was inconsistent, appearing significant in the TRACERx 

cohort but not in TCGA. One possibility is that subclonal mutation calling was 

underpowered in TCGA tumors. However, it is also possible that TCGA lung 

squamous cell carcinoma utilized additional immune evasive mechanisms, such 

that high clonal neoantigen burden was not enough to elicit an effective immune 

response. To investigate if this was a possible reason for the observed differences 

between TCGA lung squamous cell carcinoma and TCGA lung adenocarcinoma, 

available RNAseq data, from tumor and adjacent normal samples, was used to 

explore whether any genes with documented roles in immune regulation were 

differentially expressed between these cohorts.  

Almost all HLA class I genes, including HLA-A (Wald padj = 1.1e-09), HLA-B (Wald 

padj = 7.9e-06), HLA-C (Wald padj = 3.7e-08), as well as beta-2 microglobulin 

(β2M) (Wald padj = 2.0e-04), a stabilizing component of the HLA molecule that is 

required for HLA cell surface expression, were expressed at a significantly lower 

level in lung squamous cell carcinomas as compared to lung adenocarcinomas. 

Furthermore, this difference was not dependent on total neoantigen burden, but 

rather remained significant across all levels of neoantigen burden (Figure 4-11). 

 

Figure 4-11: HLA-A expression in TCGA lung adenocarcinoma and lung squamous cell carcinoma. 
The expression of HLA-A is shown across neoantigen burden categories for lung adenocarcinoma and 
lung squamous cell carcinomas. HLA-A was chosen as a representative of all MHC class I genes.  
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HLA class I genes were also significantly down-regulated compared to matched 

normal samples in lung squamous cell carcinomas, but not in lung 

adenocarcinomas (Figure 4-12). Without HLA class I expression, potential 

neoantigens that could have been presented on the cell surface may no longer be 

detectable, thus incapable of instigating an immune response. Indeed, HLA down-

regulation has been proposed in many cancer types as one possible immune 

evasive mechanism (Hicklin et al., 1999, Garrido et al., 2017a, Campoli et al., 

2002).  

 

Figure 4-12: Changes in HLA expression between normal and tumor samples. 
Expression of HLA class I genes in paired normal and tumor samples from TCGA lung squamous cell 
carcinoma (A) and lung adenocarcinoma (B) cohorts. Decreased expression from normal to tumor 
sample is indicated in red, increased expression is indicated in blue. The adjusted Wald p-value and 
log2 fold change from the differential gene expression analysis is displayed. 

Taken together, these analyses support the hypothesis that a high number of clonal 

neoantigens in homogeneous lung adenocarcinoma may more effectively elicit an 

immune response, conferring improved patient prognosis. However, in lung 

squamous cell carcinomas, down-regulation of the HLA alleles may provide one 

way for the tumor to escape immune detection, a possibility that will be further 

explored in the following chapter. 
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4.5.2 Immune microenvironment of high clonal neoantigen tumors 

To more completely investigate the impact of clonal neoantigen load on the immune 

microenvironment, TCGA RNAseq data was further used in a differential gene 

expression analysis. Homogeneous (≤1% neoantigen ITH) lung adenocarcinoma 

tumors with a high clonal neoantigen burden (≥ upper quartile) were compared to 

those lung adenocarcinoma tumors that either had a heterogeneous (>1% 

neoantigen ITH) neoantigen landscape or low clonal neoantigen burden (< upper 

quartile). This comparison revealed eight genes that were significantly differentially 

expressed between the groups. The most significantly differentially expressed 

genes, programmed cell death ligand-1 (PD-L1) and the pro-inflammatory cytokine, 

IL-6, were found to be up-regulated among the homogeneous and high clonal 

neoantigen tumors.  

Specifically comparing tumors in the upper quartile of clonal neoantigen burden with 

tumors in the lower quartile, led to the identification of an additional 25 differentially 

expressed genes (Figure 4-13). In this analysis, a cluster of genes associated with 

antigen presentation (TAP-1, TAP-2, STAT-1) and those associated with T-cell 

infiltration (CD8A, CD8B), T-cell migration (CXCL-10, CXCL-9) , and T-cell function 

(IFN-γ, granzymes B, H and A) were significantly up-regulated among the high 

clonal neoantigen tumors.  

 

Figure 4-13: Differential expression of immune-related genes. 
Significantly differentially expressed genes in high clonal neoantigen tumors (blue) as compared to low 
clonal neoantigen tumors (red) are shown, clustered by their level of co-expression using a metric 1-r2. 
The most highly correlated genes are colored more lightly.  



 108 

Furthermore, negative regulators of T-cell function, PD-1 and lymphocyte activation 

gene 3 (LAG-3) (Nguyen and Ohashi, 2015), as well as the regulatory ligands PD-

L1 and PD-L2 were also found among the set of up-regulated genes. Thus overall, 

differential gene analysis suggests that, among lung adenocarcinoma, a high clonal 

neoantigen burden is associated with the presence of activated effector T-cells 

potentially regulated by the expression of specific immune checkpoint ligands (PD-

1, PD-L1/2 and LAG-3). 

4.5.3 Characteristics of neoantigen reactive T-cells  

In order to further understand the immune microenvironment and confirm results 

from the differential gene expression analysis, the neoantigen-reactive T-cells which 

had been identified from the multi-region NSCLC tumors were characterized further 

using multi-color flow cytometry, allowing for the expression of specific immune 

checkpoint molecules and effector cytokines to be assessed (Figure 4-14). 

Consistent with the findings from TCGA RNAseq, CD8+ T-cells recognizing the 

MTFR2D326Y mutant peptide highly expressed the negative regulators PD-1 and 

LAG-3 (Figure 4-14A). Indeed, almost all of the neoantigen-reactive T-cells (97%) 

expressed high levels of PD-1 compared to only 49% of the tumor-infiltrating CD8+ 

T-cells which did not recognize the mutant peptide. The subset of CD8+ T-cells that 

recognized the MTFR2D326Y mutant peptide and expressed PD-1 also expressed 

high levels of granzyme B (GzmB) (74.8%, Figure 4-14B). Further supporting the 

immune-signature first identified in TCGA, CD8+ T-cells from patient L012 which 

recognized CHTF18L769V and MYADMR30W mutant peptides also displayed with high 

expression of PD-1, observed in 97% and 99.6% of CHFT18L769V and MYADMR30W-

reactive CD8+ T-cells respectively. 

The observed expression of LAG-3 and PD-1 on T-cells reactive to clonal 

neoantigens supports the immune-signatures identified in TCGA lung 

adenocarcinoma tumors containing high clonal neoantigen load. These data 

suggest that immune checkpoint molecules are expressed in response to T-cell 

activity recognizing clonal neoantigens, providing evidence that targeting such 

checkpoints in lung adenocarcinoma tumors with high clonal neoantigen burden 

may be an effective therapy choice. 
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Figure 4-14: Flow cytometry analysis of neoantigen-reactive T-cells. 
A) Multi-parametric flow cytometric analysis of TIL subsets isolated from L011 region 3 is displayed. 
The relative expression of iCTLA-4 (intracellular CTLA-4), surface PD-1, and surface LAG-3 by 
CD4+FoxP3+(Tregs), CD4+FoxP3- (CD4+ T-cell), CD8+ multimer negative, and CD8+ multimer-
reactive (CD8+ MTFR2+) T-cells are displayed. B) The co-expression of PD-1 and iGzmB by tumor-
infiltrating T lymphocyte subsets isolated from L011 region 3 is shown. 

4.5.4 Neoantigen heterogeneity impacts response to checkpoint 

blockade 

Across a wide variety of cancers, targeting immune checkpoint molecules such as 

cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death-1 (PD-1), or 

programmed cell death ligand-1 (PD-L1) through antibody-mediated blockade has 
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shown great clinical promise (Sharma and Allison, 2015, Rizvi et al., 2015, Topalian 

et al., 2012a). Furthermore, in both treatment-naïve and checkpoint blockade 

treated cohorts, the number of tumor neoantigens has been associated with 

immune activity and overall survival and specific neoantigens have been identified 

which generate T-cell responses (Brown et al., 2014, Rooney et al., 2015, Castle et 

al., 2012, Tran et al., 2016, Rizvi et al., 2015, Linnemann et al., 2015). 

While the efficacy of anti-PD-1 is linked to predicted neoantigen load of tumors in 

NSCLC (Rizvi et al., 2015), the impact of ITH upon this relationship is unknown. As 

earlier results indicated that clonal neoantigens may more effectively lead to 

neoantigen-reactive T-cell response and that those reactive T-cells expressed 

elevated levels of PD-1, neoantigen ITH may also be expected to play a role in 

patient response to anti-PD-1 therapy. 

Thus to determine the clinical relevance of neoantigen ITH in the context of immune 

modulation, a cohort of late-stage NSCLC treated with the antibody targeting PD-1, 

pembrolizumab, was obtained. This cohort contained exome sequencing data with 

matched clinical data from a recent study of 34 patients (Rizvi et al., 2015). To 

investigate the role of neoantigen ITH, the clonal architecture of each tumor was 

first determined. This was only possible for 31/34 tumors due to sequence quality. 

Consistent with the initial publication of this cohort, a high neoantigen burden was 

related to improved response of the patient while on pembrolizumab (Figure 4-15). 

Furthermore, clinical response to pembrolizumab also appeared to relate to 

neoantigen ITH with tumors obtained from patients with non-durable clinical 

response having significantly higher levels of neoantigen ITH than those tumors 

obtained from patients exhibiting clinical response (p = 0.006), highlighting the 

potential importance of clonal neoantigens in patient response to immunotherapy 

(Figure 4-15).  
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Figure 4-15: Neoantigen load and clinical benefit in anti-PD-1 treated cohort 
Neoantigen clonal architecture, clinical response and patient characteristics. Samples are grouped 
according to response groups, with durable clinical benefit on left and no durable benefit on right (as in 
(Rizvi et al., 2015)). The barplot depicts clonal neoantigens in blue and subclonal neoantigens in red.  

Indeed, nearly every patient (12/13) with a tumor that harbored a high number of 

clonal neoantigens and few subclonal neoantigens (neoantigen ITH <5%, ≥70, 

median clonal neoantigens of the cohort) exhibited durable clinical benefit to 

pembrolizumab. Those patients with tumors that were either highly heterogeneous 

(>5% neoantigen ITH) or with few clonal neoantigens (<70, median clonal 

neoantigens of the cohort) frequently demonstrated no durable benefit to 

pembrolizumab. In fact, there are only two tumors with low neoantigen burden or 

high neoantigen ITH in the group of responding patients.  

Incorporating a measure of neoantigen heterogeneity allowed for a refinement of 

the initial analysis, which had focused solely on neoantigen burden. Two outlier 

patients from the original analysis, TU0428 and ZA6505, both had very high 

neoantigen burden, suggesting that they may respond to pembrolizumab; however, 

these two patients quickly progressed on the therapy. Analysis of the clonal 

architecture of these tumors revealed that they were two of the most heterogeneous 

of the cohort, suggesting a possible explanation for the lack of response on 

immunotherapy. 

Neoantigen ITH also impacted progression free survival in this cohort, with tumors 

harboring a high clonal neoantigen burden in conjunction with low neoantigen ITH 

exhibiting an increased progression free survival time. The relationship observed 

did not depend on choice of ITH threshold, and resulted in a wider separation of the 

survival curves (lower hazard ratios) than only incorporating total neoantigen 

burden (Figure 4-16A).  
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Figure 4-16: Neoantigen clonal architecture and survival following checkpoint blockade therapy. 
A) Progression free survival in NSCLC (Rizvi et al., 2015) cohort treated with anti-PD-1 either without 
an ITH threshold, or with an ITH threshold of 0.01, 0.02, or 0.05. B) Overall survival in melanoma 
(Snyder et al., 2014) cohort treated with anti-CLTA-4 either without an ITH threshold, or with an ITH 
threshold of 0.01, 0.02, or 0.05.   

To validate the impact of neoantigen ITH in a separate checkpoint blockade treated 

cohort, a cohort of melanoma patients treated with the antibodies targeting CTLA-4, 

either ipilimumab or tremelimumab, was obtained (Snyder et al., 2014). Of the initial 

64 melanoma patients, the clonal architecture of the tumor could be resolved for 57 

patients.  

Consistent with the results from the anti-PD-1 treated NSCLC cohort, improved 

overall survival was observed from patients with tumors harboring high number of 

clonal neoantigens and a low number of subclonal neoantigens, and again, the 

observed relationship did not depend on a specific ITH threshold, but rather 

remained robust across multiple thresholds (Figure 4-16B). Intriguingly, in this 

cohort, considering total neoantigen burden alone did not result in a significant 

stratification of groups in the survival analysis. 

The previously published studies originally investigating these melanoma and 

NSCLC checkpoint blockade treated cohorts had also sought to identify specific 

neoantigens engendering an immune response. With the additional information 

provided by deciphering the tumor’s clonal architecture in these cohorts, it was also 

possible to determine if the potent neoantigens represented clonal or subclonal 

mutations. Interestingly, and consistent with the results identifying neoantigen 

reactive T-cells from the TRACERx pilot multi-region sequencing cohort, all 
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neoantigenic peptides had arisen from clonal non-synonymous mutations (Figure 

4-17). 

 

Figure 4-17: Clonality of neoantigens identified in previous publications. 
Mutations that had been found to result in peptides which elicited CD8+ T-cell responses in the initial 
studies (Rizvi et al., 2015, Snyder et al., 2014) were analyzed to determine their clonality. All three 
mutations had a cancer cell fraction of 1, indicating presence in every cancer cell. 

4.6 Conclusions 

While previous reports have indicated that overall non-synonymous 

mutation/neoantigen burden impacts patient response to immune checkpoint 

blockade (Rizvi et al., 2015, Snyder et al., 2014, Van Allen et al., 2015, Le et al., 

2015), this chapter describes the first time the influence of neoantigen ITH was 

considered. Indeed it appears that clonal neoantigens and subclonal neoantigens 

do not equally result in immune recognition. Among the checkpoint blockade treated 

cohorts, all observable T-cell responses were found to react to clonal peptides. 

While the interpretation of results from these cohorts may be somewhat confounded 

by the limited ability to identify subclonal mutations from a single tumor sample, 

results from the multi-region sequencing cohort were consistent. Even though over 

250 peptides arising from subclonal mutations were tested, neoantigen reactive T-

cells were only found to recognize clonal neoantigens. Further work is needed to 

establish whether subclonal neoantigens can be identified yielding a T-cell 

response.  

Considering neoantigen clonality also allowed for a more refined analysis of the 

relationship between patient overall survival and neoantigen burden, significantly 

associating with longer survival in both treatment-naïve patients and those treated 

with checkpoint blockade. This suggests that the T-cell responses being generated 

against clonal neoantigens are also affecting overall tumor immunity. One possible 
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explanation is that increased heterogeneity of the neoantigen landscape may result 

in lower antigen dosage. Importantly, high neoantigen ITH could also result in the 

generation of T-cells which recognize peptides only found in a subset of tumor cells, 

likely limiting the efficacy of T-cell mediated tumor elimination. 

As the mutational processes active over the course of tumor evolution may have 

distinct timings, early processes may contribute more to the generation of effective 

neoantigens. In tumor types with an exogenous mutagen, such as melanoma and 

NSCLC, the abundance of early, clonal non-synonymous mutations may render 

these diseases vulnerable to vaccination or T-cell therapies targeting multiple clonal 

neoantigens, to limit potential immune editing, in combination with checkpoint 

blockade. By targeting clonal mutations, shared by all tumor cells, it may be 

possible to circumvent the challenges associated with genetic ITH (Yap et al., 

2012).  

It is also important to consider that mutational processes active late in tumor 

evolution may be less effective at generating recognized neoantigens. Indeed, a 

number of melanoma tumors not responding to anti-CTLA4 therapy have been 

found to harbor huge numbers of subclonal neoantigens in a mutational context 

associated with prior treatment with alkylating agents, such as DTIC or 

temozolomide (McGranahan et al., 2016). This suggests that it is important to 

consider the risk of inducing a multitude of subclonal mutations (Johnson et al., 

2014), which may not contribute to a robust anti-tumor immune response against 

every tumor cell. 

While in the treatment-naïve setting, there was an association between neoantigen 

heterogeneity and overall survival in lung adenocarcinoma, the same relationship 

was not clearly observed in lung squamous cell carcinoma. Among the lung 

squamous cell carcinoma cohort, even an abundance of clonal neoantigens did not 

consistently impart improved overall survival. There are a number of possible 

explanations for the observed differences between these two subtypes.  

Firstly, many possible steps can be taken to improve the neoantigen predictions 

and clonal neoantigen calling. Currently only the peptide-MHC binding interaction is 

considered; however as prediction algorithms improve, the likelihood of peptide 

cleavage and transport may also be included as important factors determining the 

likelihood of successful antigen presentation. Downstream peptide prediction 

filtering steps may also be incorporated, such as an expression threshold if RNAseq 
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data is available. However, as RNAseq only provides a snapshot of gene 

expression, optimization steps are likely required. Recent work has also suggested 

that insertion and deletion mutations should be considered as potentially highly 

immunogenic, as they can result in a greater number of neoantigens, exhibit greater 

mutant-binding specificity, and are often more dissimilar to self-peptides than the 

neoantigens arising from SNVs (Turajlic et al., 2017). Finally, some reports suggest 

trying to capture the likelihood of a given neoantigen being recognized by a TCR by 

calculating a similarity measure of the peptide to known T-cell antigens from 

curated immune databases (Luksza et al., 2017). 

Another possibility explaining the absence of an association between neoantigen 

heterogeneity and prognosis is not inferior neoantigen prediction, but rather that 

presentation of the available clonal neoantigen is dis-functional in many of the lung 

squamous cell carcinoma tumors. From the available RNAseq data, a marked 

decrease in HLA expression was observed in lung squamous cell tumors as 

compared to their paired normal tissue counterparts, independent of clonal 

neoantigen load. The next chapter will re-visit impaired antigen presentation as 

means of immune evasion. 

As neoantigen predictions improve and more predictions are validated in vitro and 

as the interaction between the immune system and the tumor is more completely 

understood, it will be possible to more completely understand the complex 

relationship between neoantigen burden, ITH,  and tumor immunogenicity.   
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Chapter 5 Mechanisms of immune evasion 

5.1 Introduction 

An evolving tumor and the immune system continuously adapt to each other. As the 

tumor develops increasing numbers of somatic alterations and dis-regulated genes, 

it must also find routes to evade detection and elimination by activated immune 

cells (Hanahan and Weinberg, 2011). This balance between immune detection and 

evasion is especially clear in the development of resistance to immunotherapy, as 

the tumor may utilize multiple routes to escape the heightened activity of the 

immune system. While cancer immunotherapy has resulted in durable antitumor 

responses in a fraction of patients treated (Hodi et al., 2010, Wolchok et al., 2013, 

Topalian et al., 2012b), many of the mechanisms through which a tumor develops 

resistance remain elusive (Rizvi et al., 2015, Snyder et al., 2014, Roh et al., 2017, 

Chen et al., 2016).  

Immunotherapy resistance mechanisms can affect the function of T-cells (for 

instance via the expression of immune checkpoint molecules or inhibition of T-cell 

effector activity) (Tumeh et al., 2014, Matsuzaki et al., 2010, Sakuishi et al., 2010, 

Woo et al., 2002, Powles et al., 2014, Herbst et al., 2014, Spranger et al., 2015, 

Peng et al., 2016) or they may affect the tumor cell’s antigen presentation and 

response to T-cell activity (Tran et al., 2016, Zaretsky et al., 2016, Zhao et al., 2016, 

Minn and Wherry, 2016, Benci et al., 2016, Gao et al., 2016, Sucker et al., 2017).  

The antigen presentation axis of immunotherapy resistance is of particular interest 

as it relates to tumor neoantigens, which are frequently the intended targets of 

immune activation. As described in Chapter 4, one of the most critical steps in the 

neoantigen-induced generation of an immune response is the binding of the 

antigenic peptide to the MHC (HLA) molecule, which presents intra-cellular peptides 

on the cell surface for recognition by T-cell receptors. Thus, disruption of the HLA 

genes via detrimental mutations (Shukla et al., 2015) or down-regulation of their 

expression could result in reduced antigen presentation leading to reduced immune 

recognition. Indeed, many cancer types have been found to down-regulate HLA 

expression, potentially leading to the evasion of T-cell mediated destruction (Hicklin 

et al., 1999, Garrido et al., 2017a, Campoli et al.), with reduced HLA expression 

associating with decreased overall survival and tumor progression (Mehta et al., 

2008).  
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While the down-regulation of HLA expression may be transient and therapeutically 

counteracted by the release of specific cytokines (Garrido et al., 2017b), there are 

other mechanisms of HLA loss that cannot be reversed, such as mutation of a β-2 

microglobulin (B2M) allele followed by deletion of the other allele (Benitez et al., 

1998, D'Urso et al., 1991, Drake et al., 2006).  

Another irreversible means of HLA disruption is via loss-of-heterozygosity (LOH) at 

the HLA locus (Koopman et al., 2000). Much of the diversity in antigen presentation 

is due to three HLA genes (HLA-A, HLA-B, and HLA-C), located on the homologous 

paternal and maternal chromosome 6. An individual heterozygous at each of these 

loci would have six different alleles available for antigen presentation. However, 

loss of either the maternal or paternal HLA haplotype, resulting in LOH at the locus, 

would likely reduce the diversity of peptides that are presented and impair the 

immune system’s ability to recognize tumor antigens.  

Indeed, Tran and colleagues reported LOH at the HLA locus in a resistant lesion 

from a patient with metastatic colorectal cancer that had spread to the lung (Tran et 

al., 2016). The patient was treated with TILs composed of T-cell clones reactive to a 

KRAS G12D mutation found in the metastatic lesions. After infusion, the metastatic 

lesions initially regressed, but within a year, a resistant lesion had lost expression of 

HLA-C*08:02 via LOH at the locus and stopped responding to treatment. The HLA-

C*08:02 allele was responsible for presentation of the KRAS G12D neoantigen, 

allowing for tumor recognition by the T-cells. Thus the loss of this specific HLA 

allele appeared to enable immune evasion.  

Beyond the case study presented by Tran et al., the extent of LOH at the HLA locus 

in human tumor samples and the impact it may have on the relationship between 

the tumor and the immune system has not been fully explored. This is due in large 

part to the polymorphic nature of the HLA locus. The same HLA diversity that allows 

for a wide range of antigens to be presented to the immune system also hinders the 

alignment of sequencing reads, as an individual’s HLA genes differ too greatly from 

the human reference genome. Thus copy number at the locus cannot be inferred 

using standard approaches. 

In order to further understand the impact HLA LOH may have on tumor immunity, 

neoantigen presentation, and subsequent tumor evolution, this chapter will describe 

a tool developed to estimate haplotype specific copy number at the HLA locus, 

LOHHLA (Loss Of Heterozygosity in Human Leukocyte Antigen). 
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The work presented in this chapter was published as a joint-first author paper, 

(McGranahan et al., 2017). Tool development and bioinformatics analyses was 

performed in conjunction with Nicholas McGranahan. PCR-based validation 

experiments to validate the tool described were performed by Andrew Rowan.  

5.2 HLA Mutations in TRACERx 

HLA mutations have been described in many cancer types (Shukla et al., 2015). 

Due to the role the HLA molecules play in binding potential neoantigens and 

presenting them to the immune system, HLA mutations have the potential to disrupt 

neoantigen recognition and have been associated with immune escape and 

increased cytolytic activity (Lawrence et al., 2014, Shukla et al., 2015). However, 

HLA mutations are not common events in tumor evolution, only found to occur at a 

maximum frequency of ~10% in the head and neck squamous cell carcinoma 

cancer type (Shukla et al., 2015). 

In a cohort of 100 NSCLC TRACERx patients, only three non-synonymous HLA 

mutations were detected using the state-of-the-art tool, Polysolver (Shukla et al., 

2015). One additional lung adenocarcinoma tumor also harbored a mutation in the 

MHC class I stabilizing molecule, B2M; however recent studies have shown tumors 

with immunotherapy resistant metastatic lesions containing B2M mutations also 

have LOH at the locus, suggesting that one function B2M allele may still allow for 

antigen presentation (Li et al., 2016). No other mutations that were predicted to 

disrupt antigen presentation were identified in the TRACERx cohort. Similarly, a 

TCGA pan-cancer study that included 174 lung squamous cell and 223 lung 

adenocarcinoma patients only identified HLA mutations in 8% and 5% of tumors, 

respectively (Shukla et al., 2015). These findings indicate that while HLA mutations 

have the capacity to disrupt neoantigen presentation, they are infrequent events, 

particularly in a majority early-stage NSCLC cohort.  

5.3 LOH at the HLA locus 

Frequently during tumor evolution, one copy of  a gene or the surrounding 

chromosomal region is subject to loss, resulting in only one parental copy remaining 

at the locus. The first step to infer allele specific copy number, allowing for the 

identification of regions where one allele is present at a copy number of 0, is to 

identify single nucleotide polymorphisms (SNPs) in the tumor and matched normal 

and determine their relative coverage and variant allele frequency (Van Loo et al., 
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2010, Shen and Seshan, 2016, Carter et al., 2012). However, in regions of the 

genome where there are no identifiable heterozygous SNPs, determining if a 

parental copy has been lost is not possible. 

5.3.1 Difficulty of the HLA locus 

Very few sequencing reads successfully align to the HLA region of the genome due 

to its polymorphic nature, rendering copy number inference at this locus is 

unfeasible, as the coverage is too low. With low coverage of the locus, SNPs that 

allow for the identification of the maternal and paternal allele cannot be identified.  

Indeed, while the TRACERx pipeline uses a highly sensitive SNP caller (Rimmer et 

al., 2014), fewer than 1 heterozygous SNP from the HLA locus was identified on 

average in the first cohort of 100 TRACERx patients (Jamal-Hanjani et al., 2017). 

This suggests that in order to accurately infer allele specific copy number at the 

HLA locus, it is impractical to rely on established copy number calling approaches. 

5.3.2 Using patient-specific HLA information  

Instead of relying on the human reference genome, LOHHLA uses information 

gathered from patient-specific HLA typing, which can either be performed using 

computational approaches (Szolek et al., 2014, Shukla et al., 2015, Warren et al., 

2012, Liu et al., 2013, Bai et al., 2014, Xie et al., 2017) or via serotyping. HLA 

typing is performed as part of the neoantigen prediction pipeline outlined in Chapter 

4 using multiple algorithmic approaches. Sequencing reads are then aligned to the 

inferred HLA types, rather than the human reference HLA, resulting in coverage of 

the locus whereas previously reads had failed to align (Figure 5-1).  

As the sequence of the inferred HLA alleles is known, it is possible to perform 

sequence alignment of the alleles found on homologous chromosomes to determine 

where they differ, effectively identifying the heterozygous SNP positions. By 

mapping sequencing reads to the individuals’ germline alleles directly and using the 

known mismatch positions between the two HLA alleles as heterozygous SNPs, 

LOHHLA circumvents the issues generated due to poor coverage at the HLA locus, 

allowing for the determination of HLA haplotype specific copy number (Figure 5-2). 
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Figure 5-1: Schematic of sequencing read alignment to HLA locus. 
A) Aligning sequencing reads to the human reference HLA results in individual reads containing many 
mismatches, indicated in color along the grey read. The HLA locus is highly polymorphic, so the 
patient’s HLA alleles do not match the reference. B) Instead, using the patient-specific HLA alleles as 
reference allows sequencing reads to map without mismatches. Positions that would have originally 
been called a mismatch appear as a box along the sequencing read. 

 

Figure 5-2: Information gained by using known HLA alleles as reference. 
(legend on following page) 
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Schematic of SNPs that are identified using the standard allele-specific copy number tool, ASCAT, and 
LOHHLA at the HLA loci and surrounding, less polymorphic, regions. A) In instances without any LOH, 
maternal and paternal SNPs are positioned at the same copy number, with no separation between 
them. ASCAT does not have any identifiable SNPs at the HLA locus, whereas LOHHLA has used the 
mismatch positions between the two known patient HLA types B) In cases with evidence for LOH, 
there is separation between the maternal and paternal SNPs reflecting the allele that was lost. The 
lack of identifiable heterozygous SNPs at the HLA locus makes it impossible for ASCAT to infer LOH 
at the HLA locus, whereas LOHHLA can infer LOH at the HLA locus and determine which HLA allele 
was subjected to loss. LOHHLA can also identify focal HLA LOH, where surrounding regions of the 
genome do not exhibit any evidence of LOH. 

5.3.3 LOHHLA method 

To infer HLA-allele specific copy number, LOHHLA performs five steps (Figure 5-3): 

 

Figure 5-3: Overview of the LOHHLA method. 
LOHHLA uses normal and tumor sequencing BAM files, along with patient HLA type information and 
tumor purity and ploidy to identify HLA LOH in tumor samples. After mapping tumor and normal 
sequencing reads to the patient-specific HLA alleles, LOHHLA uses the relative coverage at mismatch 
SNP positions to calculate the log-ratio and B-allele frequency (BAF). Finally LOHHLA incorporates 
tumor purity and ploidy to infer the HLA allele specific copy number. 

5.3.3.1 Step 1: Extract HLA reads 

Tumor and germline reads that map to the HLA region of the genome as well as 

chromosome 6 contigs (chr6_cox_hap2, chr6_dbb_hap3, chr6_mann_hap4, 

chr6_mcf_hap5, chr6_qbl_hap6, chr6_ssto_hap7) are extracted using samtools 

view. An additional (optional) step extracts any read that perfectly matches a list of 

unique k-mer (default: 38mer) sequences generated from the full reference HLA 

FASTA file. Any unpaired mates from this step are removed and the output is 

converted to FASTQ format. 

5.3.3.2 Step 2: Create HLA allele-specific BAM files 

The entries corresponding to each of the patient’s heterozygous HLA alleles are 

extracted from the input HLA FASTA file to generate a patient-specific reference 

FASTA. The FASTQ files generated in the previous step are used to generate HLA 
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specific BAM files, using mapping parameters that allow for reads to map to multiple 

HLA alleles, using similar mapping parameters to those previously published 

(Shukla et al., 2015). Post-alignment filtering is performed such that reads whose 

mates mapped to a different allele were discarded, as well as any reads that 

contained more than one insertion, deletion, or mismatch event compared to the 

reference HLA allele. For each filtered tumor/germline HLA allele-specific BAM file, 

coverage is calculated using samtools mpileup. 

5.3.3.3 Step 3: Determine coverage at mismatch positions between 

homologous HLA alleles 

For each HLA gene under consideration, a local pairwise alignment is performed 

between the two homologous HLA alleles using the R biostrings package to 

determine the polymorphic sites. The HLA-specific coverage calculated in Step 2 is 

used to determine differences in relative (tumor/normal) coverage at each of the 

mismatch positions. Because some mismatch positions fall within a sequencing 

read-length from one another, to avoid over-counting reads that spanned more than 

one mismatch position, an additional coverage file containing the coverage at every 

mismatch position, counting each read only once, is also generated. 

5.3.3.4 Step 4: Obtain HLA specific logR and BAF  

Tumor coverage relative to germline (logR) and b-allele frequencies (BAF) are 

inferred at each HLA locus, making use of identified polymorphic sites. LogR’s 

across each HLA gene are obtained by binning the coverage across both 

homologous alleles at 150 base pair intervals, for both tumor and normal. For each 

bin, the tumor/normal coverage ratio was multiplied by the multiplication factor, M, 

corresponding to number of unique mapped reads in the germline, divided by the 

number of unique mapped reads in the tumor region. The BAF is calculated at each 

polymorphic site, and simply reflects the coverage of HLA allele 1 divided by the 

coverage of HLA allele 1 + coverage of HLA allele 2.   

5.3.3.5 Step 5: Determine HLA haplotype specific copy number  

Finally, HLA allele specific copy number is determined for each HLA gene, 

accounting for tumor purity and ploidy (obtained from a copy number caller e.g. 

ASCAT (Van Loo et al., 2010) or FACETs (Shen and Seshan, 2016)). At each 

polymorphic site, an estimate of the major and minor allele copy number is obtained 

using the following equations, with the logR value from the corresponding bin in 



 123 

which the polymorphic site was found to reside utilized and the BAF of the 

polymorphic site. 

𝐴𝑙𝑙𝑒𝑙𝑒 1 =  
𝜌 − 1 + 𝐵𝐴𝐹×2 ×𝑙𝑜𝑔𝑅×(2(1 − 𝜌) + 𝜌×𝜑)

𝜌
  

𝐴𝑙𝑙𝑒𝑙𝑒 2 =  
𝜌 − 1 − 2(𝐵𝐴𝐹 − 1)×𝑙𝑜𝑔𝑅×(2(1 − 𝜌) + 𝜌×𝜑)

𝜌
 

where 𝜌 = tumor purity and 𝜓= tumor ploidy, which are input at the start. The logR 

value from the corresponding bin in which the polymorphic site was found to reside 

is used as well as the BAF of the polymorphic site.  

For each bin, the median Allele 1 and Allele 2 copy number was then determined. 

To estimate copy number of Allele 1, the median value across bins was calculated. 

Likewise, to estimate the copy number of Allele 2, the median value across bins 

was calculated.  

A copy number <0.5, was classified as subject to loss. In addition, to avoid over-

calling LOH, a p-value was calculated relating to allelic imbalance (AI) for each HLA 

gene. This p-value corresponded to the difference in logR values at mismatch sites 

between the two HLA homologues, adjusted to count each sequencing read if it 

spanned more than one mismatch site. AI was determined if p < 0.01 using the 

paired Student’s t-Test between the two distributions.  

5.3.4 Validation of LOHHLA 

To ensure confidence in the LOHHLA output, a number of validation steps were 

performed. Firstly, LOHHLA calls for each sample were compared to the 

corresponding calls from the surrounding region as generated by a standard allele 

specific copy number tool, ASCAT. This did not provide a way to test if LOHHLA 

was calling the correct HLA allele as subject to LOH, and there is a possibility of 

LOH only affecting the HLA locus; however, excluding highly focal events, ASCAT 

would likely identify a nearby chromosome segment exhibiting LOH. Secondly, 

LOHHLA results were compared to those generated from an independent 

approach, not reliant on exome sequencing data. Finally, LOHHLA output was 

explored using incorrect HLA calls to quantify potential sources of false positives. 

Each of these validation steps is explained in greater detail below. 
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5.3.5 Comparison to ASCAT 

As there is currently no other method to infer allele specific copy number at the HLA 

locus, LOHHLA was first tested against a standard allele specific copy number tool, 

ASCAT (Van Loo et al., 2010). In order to perform these comparisons, the 

assumption was made that the segments adjacent to the HLA locus would show the 

same copy number profile as the HLA locus itself. This assumption is valid as long 

as the resulting LOH was not due to a highly focal event ( 

Figure 5-2). Such a comparison is not able to perfectly determine whether the copy 

number estimation determined by LOHHLA is correct, nor is it capable of validating 

LOHHLA’s inference as to which HLA haplotype is subject to loss, as ASCAT is not 

designed to infer HLA specific events. However, in conjunction with other validation 

methods, it serves as a good assessment against the current state-of-the-art copy 

number calling tools. 

Thus ASCAT was independently used to estimate the frequency of AI and LOH in 

the genomic regions surrounding the HLA locus in 288 TRACERx NSCLC exomes 

from 96 patients (Jamal-Hanjani et al., 2017). These were compared to LOHHLA 

copy number estimation in order to determine whether ASCAT and LOHHLA 

exhibited concordant copy number profiles.  

The minor copy number obtained from LOHHLA and ASCAT exhibited a highly 

significant relationship (Figure 5-4A, p < 0.001, rho = 0.70), providing confidence in 

the copy number estimates calculated by LOHHLA. Furthermore, on an individual 

tumor region basis, both AI estimates and LOH estimates were largely concordant 

(Figure 5-4B-C). Out of 288 tumor regions considered, AI estimates agreed 

between LOHHLA and ASCAT in 246 cases. Using LOHHLA, evidence of AI in 

thirty-four additional tumor regions was uncovered, while only 8 tumor regions 

exhibited evidence of AI using ASCAT and not LOHHLA. Similarly, there were 

concordant LOH calls in 258/288 cases, where twenty-one tumor regions with LOH 

identified using LOHHLA alone, and 9 tumors regions which only showed signs of 

LOH using ASCAT. In many cases, LOHHLA has provided finer resolution for 

identifying true AI or LOH events not spanning the entire HLA locus. For instance, 

as ASCAT cannot directly infer haplotype specific copy number at the HLA locus, a 

highly focal event would be missed by ASCAT by relying on the adjacent 5’ or 3’ 

segment.  
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Figure 5-4: Comparison of LOHHLA and ASCAT copy number profiles. 
A comparison between the HLA copy number profile generated by LOHHLA and the copy number 
profile from the regions surrounding HLA by ASCAT was made. A) The minor copy number estimated 
by both LOHHLA and ASCAT were highly concordant (p<0.001, rho=0.70). (B-C) Summary of 
concordant and discordant tumor regions in terms of allelic imbalance (B) and LOH (C). 

5.3.6 PCR-based fragment analysis 

To validate LOHHLA without using a method also reliant on exome sequencing 

data, PCR based fragment analysis was performed (Figure 5-5A-B). Highly 

polymorphic markers located in close proximity to the HLA locus were analyzed in 

82 tumors regions from 27 tumors. The fragment length and area under the curve of 

each allele could be determined, and when two separate alleles were identified for a 

particular marker, the fragments could be analyzed for AI using the formula 

(Atumor/Btumor)/(Anormal/Bnormal). The output of this formula was defined as the 

normalized allelic ratio. 

For comparison to LOHHLA, tumor regions analyzed were either predicted to have 

all loci (HLA-A, HLA-B and HLA-C) subject to LOH, or no loci affected. 

Reassuringly, there were highly significant differences in the normalized allelic ratio 

between tumors classified as exhibiting either LOH, AI without LOH, or no AI or 

LOH (p = 1.07e-19 [LOH versus no imbalance], p= 4.57e-05 [LOH versus AI],). 

These results provide independent confirmation that LOHHLA is able to accurately 

classify LOH and AI. Furthermore, the separation in normalized allelic ratios 

between tumor regions only exhibiting signs of HLA AI and those also harboring 

HLA LOH events was clearer using LOHHLA than the standard copy number tool 

ASCAT (Van Loo et al., 2010) (Figure 5-5C-D). 
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Figure 5-5: PCR-based fragment analysis validation of LOHHLA. 
A) Area under the curve of each allele (as determined through the use of polymorphic markers near 
the HLA locus) for germline and tumor regions R1 and R2 in CRUK0010, given in arbitrary units (a.u). 
While the germline alleles had approximately equal expression, tumor region R1 showed evidence of 
decreased expression for one HLA allele. B) Normalized allelic ratio determined using the formula 
(Atumor/Btumor)/(Anormal/Bnormal). Region R1 shows clear evidence of allelic imbalance and likely LOH, 
while region R2 appears similar to germline. (C-D) Normalized allelic ratio for tumor regions showing 
either LOH and allelic imbalance; no LOH but allelic imbalance; or no LOH or allelic imbalance 
classified by LOHHLA (C) and ASCAT (D). 

5.3.7 Incorrect HLA alleles 

Finally, the impact of using the incorrect HLA allele as input to LOHHLA was 

determined to ensure that false positive results were not generated due to 

inaccurate starting data, as there are many competing tools designed to infer HLA 

types from sequencing data, and they do not always give concordant results. 

When the input to LOHHLA was altered such that an HLA allele was replaced by 

the one least similar to it, as determined by percent identity following multiple 

sequence alignment, there were no likely false positives generated (Figure 5-6). 

Instead the majority of changes occurred because LOHHLA could no longer identify 

LOH at the locus where it once had, usually due to a decrease in coverage, as 

sequencing reads do not map well to the incorrect HLA allele. Indeed, in 55% the 

cases (140/256) LOHHLA was unable to perform allele specific copy number 

estimation due to insufficient coverage and returned no result. Of cases with 

sufficient coverage, 97% of the time LOHHLA was unable to identify HLA LOH, and 
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in 3% of cases (4/256), results were concordant to those inferred using the correct 

allele. Importantly, similar results were seen, when either both HLA alleles were 

incorrectly used as input, and when an incorrect allele with higher similarity to the 

correct allele was used. In these cases, a maximum of 1 false positive was 

observed, representing 0.4% of cases, providing confidence that LOHHLA will not 

erroneously call HLA LOH due to incorrect input. Additionally, the tool includes 

warnings if the coverage of the locus is too low or differs drastically between alleles, 

so that the user may check the validity of the HLA input being used. 

 

Figure 5-6: Impact of incorrect HLA type input to LOHHLA. 
Multiple instances of using the incorrect HLA alleles as input to LOHHLA were considered. Either one 
HLA allele was replaced by the one least similar to it, both HLA alleles were replaced by the ones least 
similar to them, or one HLA allele was replaced by the allele of median similarity. Concordant calls are 
plotted in green, likely false negatives, where the LOH is now missed due to low coverage, are plotted 
in blue, and likely false positive calls are plotted in red. 

Together the validation steps show that is possible to use LOHHLA to correctly infer 

both AI and LOH in tumor samples. Furthermore, LOHHLA will not give misleading 

results if provided with poor input data. Additionally, LOHHLA provides greater 

resolution to detect highly focal HLA LOH events, exhibiting an increased sensitivity 

and specificity.   

5.4 Prevalence and timing of HLA LOH 

5.4.1 HLA LOH is a common event in NSCLC 

In contrast to the low frequency of HLA mutations observed in the TRACERx 

cohort, a far higher percentage of patients were found to exhibit HLA AI and HLA 

LOH (Figure 5-7A). Forty-percent (36/90) of the NSCLC patients had tumors 

harboring HLA LOH (six patients had tumors with a histology other than lung 

adenocarcinoma or lung squamous cell carcinoma, and thus not considered further 

for analysis), where either one maternal or paternal HLA allele was lost, resulting in 
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HLA homozygosity. Over 60% of NSCLC tumors showed signs of HLA AI, where 

the maternal and paternal HLA alleles were present at different, non-zero copy 

numbers.   

 

Figure 5-7: Observations of HLA LOH in TRACERx. 
A) The number of patients whose tumors harbored an HLA mutation, HLA AI, or HLA LOH are shown. 
B) The number of lung adenocarcinoma patients exhibiting HLA LOH or HLA AI as compared to lung 
squamous cell carcinoma patients exhibiting HLA LOH or HLA AI.  

5.4.2 Enrichment for HLA LOH among lung squamous cell carcinomas 

Just as HLA mutations have found to be more common in lung squamous cell 

carcinomas (Shukla et al., 2015), HLA LOH was also enriched among lung 

squamous cell carcinomas as compared to lung adenocarcinomas (p = 0.004) 

(Figure 5-7B). Interestingly, there was no enrichment for AI in lung squamous cell 

carcinoma as compared to lung adenocarcinoma (p = 0.336). The cause of the 

difference appears to be due to the fact that fewer lung adenocarcinoma with AI 

also exhibit LOH. As many lung adenocarcinoma tumors also are genome doubled, 

this suggests that the genome doubling event has occurred before the HLA locus is 

altered. Thus timing HLA LOH in tumor evolution could help understand what role it 

plays. 

5.4.3 HLA LOH is a late event in tumor evolution 

As with other genomic alterations in cancer, it is possible to characterize HLA LOH 

as an early event in the tumor’s evolution, present clonally in every cancer cell, or 

as a subclonal event, occurring only in a subset of cancer cells. Subclonal HLA 

LOH indicates that the locus was altered later in tumor evolution and potentially as 
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a response to a change in the balance between immune recognition and evasion. 

However, unlike mutations, where the cancer cell fraction can be calculated, 

allowing for clustering approaches to estimate clonality, copy number alterations are 

more difficult to time.  

Instead the multi-region nature of the TRACERx dataset was utilized to understand 

when HLA LOH occurred during tumor evolution. Events at each of the HLA A/B/C 

loci were considered clonal if they were found in every patient region and subclonal 

if they were found in only a subset of tumor regions. A tumor sample was 

considered to exhibit clonal HLA LOH if all of the loci subject to loss in the tumor 

were classified as clonal events.  

HLA LOH was a frequently subclonal event in both histological subtypes, with 13/17 

lung adenocarcinoma and 9/17 lung squamous cell carcinomas exhibiting loss of an 

HLA allele in a subset of cancer cells (Figure 5-8). Two lung squamous cell 

carcinomas exhibiting HLA LOH, but with only a single region available for copy 

number analysis could not be considered. 

 

Figure 5-8: Timing of HLA LOH events in NSCLC. 
Clonal HLA LOH events are shown in blue and subclonal HLA LOH events are shown in red for lung 
adenocarcinomas and lung squamous cell carcinomas. 

Because this cohort of multi-region NSCLC patients had been previously analyzed 

(Jamal-Hanjani et al., 2017), phylogenetic trees built from the integrated mutation 

and copy number information were available. Thus the individual HLA LOH events 

were mapped to probable subclones from the tumor’s evolutionary tree, allowing for 

a more refined analysis of their timing (Figure 5-9). 
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Figure 5-9: Phylogenetic mapping of HLA LOH events. 
(legend on following page) 
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Phylogenetic trees for each lung adenocarcinoma and lung squamous cell carcinoma tumor showing 
evidence of HLA LOH have been annotated with the most likely timing of the HLA LOH event. 
Homozygous HLA alleles, where HLA LOH is not possible, are indicated by an asterisk. Clones on the 
phylogenetic tree (nodes) are indicated as clonal (blue) or subclonal (red). In cases where the HLA 
LOH event did not map to a possible clone on the phylogenetic tree, an additional grey subclone was 
included. 

To determine placement on the tumor’s phylogenetic tree, an algorithm was 

developed. LOH events that were classified as clonal events (found in every tumor 

region considered) were simply mapped to the trunk of the phylogenetic tree. To 

determine the placement of heterogeneous LOH events, the regional copy number 

of the HLA allele lost was calculated. These values were incorporated with the 

patient tree structure and subclone cancer cell fractions in a quadratic programming 

approach to determine where on the phylogenetic tree the LOH event most likely 

occurred (Data and Methods). All of the subclonal events that were mapped were 

further inspected. Events sometimes did not fit the phylogenetic tree generated from 

mutation data or some had large error values. This indicated the presence of an 

additional subclone or multiple independent HLA LOH events. As such events failed 

the algorithmic approach, they were manually adjusted. Patients with HLA LOH 

events that did not fit the current phylogenetic tree had additional nodes included to 

contain the HLA LOH event.  

5.4.4 Enrichment of HLA LOH in metastatic samples 

The TRACERx cohort examined consisted of mostly early stage, primary tumors. 

To gain greater understanding on the timing of HLA LOH in NSCLC tumor 

evolution, a second cohort was considered, consisting of 37 NSCLC patients who 

had primary tumors with matched brain metastases (Brastianos et al., 2015). LOH 

at the HLA locus was identified in 17/37 (46%) of the patients’ tumors, which was 

similar to the prevalence observed in the early stage disease cohort (Figure 5-10A).  

To time the LOH event, a similar classification was used as previously described. 

Patients with HLA LOH identified across the same HLA loci in both the primary 

tumor and every brain metastasis were classified as having clonal HLA LOH. 

Patients with either different HLA loci subject to LOH or those with HLA LOH 

identified in only a subset of the samples available were classified as having 

subclonal HLA LOH. Again, the LOH event was found to occur predominantly later 

in tumor evolution, occurring subclonally in 11/17 (65%) cases (Figure 5-10A). 
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Figure 5-10: HLA LOH occurrence in metastatic samples. 
(A) Number of NSCLC patients from Brastianos et al (Brastianos et al., 2015) exhibiting no HLA LOH 
(grey), HLA LOH in both the primary tumor and brain metastasis (green), HLA LOH only in the primary 
tumor (red), or HLA LOH only in the brain metastasis (blue). (B) The number of events that were found 
in the primary and/or brain metastasis is shown. Clonal HLA LOH events occur in both the primary 
tumor sample and the brain metastases (green), whereas subclonal HLA LOH events either arise in 
the brain metastases (blue) or have occurred in a subclone of the primary tumor that does not seed 
the brain metastasis (red). 

Furthermore, the availability of paired primary and metastatic samples from the 

same patient allowed for a comparison of event frequencies over the course of 

disease development (Figure 5-10B). Overall, an increase in HLA LOH was 

observed in the brain metastatic samples as compared to the primary tumor (27% 

to 43%) and a corresponding decrease was observed in brain metastatic samples 

exhibiting no HLA LOH (73% to 57%). While seven patients harbored HLA LOH in 

the metastatic sample alone, there was only one patient with HLA LOH in the 

primary tumor alone. Thus there was a trend towards enrichment of HLA LOH in 

brain metastases compared to the matched primary tumor (p=0.08). These results 

provide support that HLA LOH occurs later in cancer evolution, and indicate that 

over the course of late stage disease, there may be additional selection for immune 

evasive mechanisms. 

5.5 Positive selection for HLA LOH 

5.5.1 Recurrent HLA LOH events 

Four patients from the TRACERx cohort had tumors where the HLA LOH event was 

equally likely to map to multiple branches of the phylogenetic tree (Figure 5-9). The 

only possibility for reconciling the observed phylogenetic and LOH data was if 

multiple instances of HLA LOH had occurred during the evolution of the tumor. In all 

four cases, the same alleles from a patient were subject to loss on separate 

branches. 
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Indeed, in these four cases, loss of the same HLA haplotype occurred as separate 

events on different branches of tumor’s phylogenetic trees. Multiple losses could be 

an indication of parallel evolution with convergence upon the loss of a particular 

HLA haplotype (Figure 5-11). The fact that the same alleles were subjected to loss 

multiple times during tumor evolution indicates that loss of these alleles specifically 

may endowed the subclones harboring the loss events with an evolutionary 

advantage.  

 

Figure 5-11: Recurrence of HLA LOH events in tumor evolution. 
Parallel evolution of HLA LOH, with allele specific HLA loss shown on phylogenetic trees. 

5.5.2 Focal LOH more frequent than expected by chance 

The previous results show that HLA LOH is a common event in NSCLC, frequently 

occurring late in cancer evolution. To formally test whether HLA LOH is selected for 

in tumor evolution, the expected frequencies of both focal (<75% chromosome arm) 

and arm-level (>= 75% chromosome arm) events were simulated, taking into 

account the baseline frequency of LOH in every tumor considered.  

For tumors harboring focal events, first the proportion of the entire genome with 

evidence of focal LOH was determined. This value was used as the background 

level of focal minor allele loss in each tumor, so that tumors were simulated with an 

LOH rate that reflected what was observed in each specific sample. Using the 

background value as probability of LOH, each tumor sample was randomly 

assigned an aberration state (loss or no loss), and the proportion of samples 

assigned loss was determined. This entire process was repeated 10,000 times to 

obtain a background distribution, which reflected the likelihood of observing a loss 

given the respective probabilities of LOH in each sample. Then a p-value was 

calculated by counting the percentage of simulations showing a higher proportion of 

loss at the HLA locus than observed. 

Supporting the putative role of HLA LOH in tumor evolution, focal LOH events 

affecting the HLA locus were observed in the TRACERx cohort significantly more 
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frequently than expected by chance (Figure 5-12). There was a clear peak in focal 

LOH centered around the HLA locus for both histological subtypes, strongly 

suggesting the HLA locus is subject to selective pressure during NSCLC evolution. 

 

Figure 5-12: Selection for focal LOH in NSCLC. 
The frequency of focal LOH events in lung adenocarcinoma and lung squamous cell carcinoma is 
shown. Focal LOH was defined as <75% of a chromosome arm. An arrow indicates location of HLA 
locus. A horizontal dashed line depicts significant focal LOH at p=0.05, using simulations. Clonal LOH 
is shown in blue, with subclonal LOH shown in red. 

A similar simulation process was used to investigate whether arm-level events 

occurred more frequently than expected by chance. However, arm-level LOH 

events affecting the HLA locus were not any more common than the background 

simulation would suggest (Figure 5-13). The increased frequency of focal LOH 

events and not arm-level LOH events further suggests that alteration of the HLA 

locus specifically is selected for, rather than as the result of large-scale events that 

happen to affect the LOH locus.  

 

Figure 5-13: Selection for arm-level LOH in NSCLC. 
The frequency of arm-level LOH in lung adenocarcinoma and lung squamous cell carcinoma is shown. 
Arm-level LOH was defined as >=75% of a chromosome arm. An arrow indicates location of HLA 
locus. A horizontal dashed line depicts significant arm-level LOH at p=0.05, using simulations. Clonal 
LOH is shown in blue, with subclonal LOH shown in red. 
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The results from the simulation, in conjunction with the observation of parallel 

evolution of HLA LOH, indicate that HLA LOH is under strong selection late in 

cancer evolution. 

5.6 Impact of HLA LOH on tumor evolution  

As each HLA allele present on a cell is capable of presenting a different subset of 

antigenic peptides to the immune system, the loss of one of the HLA haplotypes 

could result in fewer putative neoantigens being presented to the T-cells for 

recognition. Thus after the HLA LOH event, there may be less ongoing immune 

surveillance, potentially allowing for subclonal expansions that would have been 

otherwise subjected to immune restriction. If this hypothesis is true, then the 

expected result would be an increased mutation/neoantigen burden among tumors 

harboring an HLA LOH event.  

5.6.1 Increased mutation burden in tumors with HLA LOH  

To test this hypothesis, first the total number of non-synonymous mutations were 

compared between tumors samples with and without an LOH event at the HLA 

locus, without considering the timing of the HLA LOH event, such that all events 

were considered together. Overall there was a significant increase in the number of 

non-synonymous neoantigens in tumor samples exhibiting HLA LOH, but this did 

not remain significant when the subtypes were considered separately (Figure 

5-14A) (NSCLC p=0.016; lung adenocarcinoma p=0.07; lung squamous cell 

carcinoma p = 0.82). Interestingly, when the tumors were divided into mutational 

burden categories (low defined by the lowest quartile of NSCLC mutation burden), 

there were only 3/36 NSCLC tumors harboring an HLA LOH event with a low 

mutation burden. Among the 54 tumors without an HLA LOH event, far more tumors 

harbored low mutational burden (21/54). 

Because the HLA LOH event tends to occur later in tumor evolution, the increase in 

mutational burden may be limited to subclonal mutations, so next the clonal nature 

of the mutations was considered. There was a significant increase in the number of 

subclonal, but not clonal, non-synonymous mutations. The increase in subclonal 

mutational burden was only observed among the lung adenocarcinoma subtype 

(Figure 5-14B-C) (NSCLC p=0.008; lung adenocarcinoma p=0.01; lung squamous 

cell carcinoma p=0.6). This observation indicates that HLA LOH may allow for the 

accumulation of potentially antigenic subclonal mutations.  
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Figure 5-14: Non-synonymous mutation burden in tumors with HLA LOH. 
(A) The total number of non-synonymous mutations is plotted across different categories of HLA LOH 
for lung adenocarcinoma (light blue) and lung squamous cell carcinomas (magenta). Tumors were 
classified as having: no HLA LOH; any HLA LOH event, without taking into account the timing of the 
event; or clonal HLA LOH. The lowest quartile of total non-synonymous mutation is indicated by the 
dashed red line and the proportion of tumors with a total non-synonymous mutational burden greater 
or less than the lowest quintile is indicated by the pie charts for each HLA LOH classification group. (B) 
The number of clonal non-synonymous mutations is plotted across different categories of HLA LOH. 
(C) The number of subclonal non-synonymous mutations is plotted across different categories of HLA 
LOH. All p-values are calculated using an unpaired wilcoxon test. 

When the timing of the HLA LOH event itself was included in the analysis, there 

was a significant association between early HLA LOH events, events mapped to the 

trunk of the phylogenetic tree, and an elevated clonal (NSCLC p=0.002; lung 

adenocarcinoma p=0.01; lung squamous cell carcinoma p=0.29) and subclonal 

(NSCLC p=0.03; lung adenocarcinoma p=0.004; lung squamous cell carcinoma 

p=0.89) non-synonymous mutational burden (Figure 5-14B-C). These results show 

that when the HLA LOH event occurs early in tumor evolution, there is an increase 

among both clonal and subclonal non-synonymous mutations in lung 

adenocarcinoma. 

5.6.2 Increased mutation burden in tumor regions with HLA LOH 

The observed intratumor heterogeneity of the HLA LOH events meant that some 

patients had tumors where only a subset of regions harbored LOH at the HLA locus. 

To determine if the increased non-synonymous mutational burden was confined to 
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tumor regions that harbored the LOH event, HLA LOH events were next considered 

at the region-level. Consistent with the previous results, tumor regions exhibiting 

HLA loss had a significant increase in subclonal non-synonymous mutations as 

compared to tumor regions from patients without HLA LOH (NSCLC p=1.9e-05; 

lung adenocarcinoma p=0.009; lung squamous cell carcinoma p=0.07) (Figure 

5-15).  

 

Figure 5-15: Subclonal non-synonymous mutational burden at the region-level. 
The number of subclonal non-synonymous mutations is plotted for tumor regions from tumors without 
any indication of HLA LOH, for tumor regions without HLA LOH from a tumor where other regions 
exhibit HLA LOH, and for tumor regions containing an HLA LOH event. All p-values are calculated 
using an unpaired wilcoxon test. Lung adenocarcinoma is shown in light blue and lung squamous cell 
carcinomas is shown in magenta. 

Interestingly, even among tumor regions that had no HLA loss event, but HLA LOH  

was observed in other regions from the same tumor (i.e. the non-affected regions 

from patients with subclonal HLA LOH), there was a significantly higher subclonal 

non-synonymous mutational burden as compared to tumor regions where the entire 

tumor had both HLA haplotypes (Figure 5-15). This result suggests that not only 

may HLA LOH allow for subclonal expansions in affected tumor regions, but that the 

tumors harboring an elevated mutational burden may be under increased 

evolutionary pressure for losing an HLA haplotype. 

5.6.3 Increased mutation burden in clones with HLA LOH 

Because phylogenetic analysis had allowed for each HLA LOH event to be mapped 

to specific clones present during tumor evolution, it was possible to consider the 

impact HLA LOH had on specific cancer subclones. In tumors with subclonal HLA 

LOH the number of mutations present in the cancer subclone harboring HLA loss 
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could be directly compared with the mutational load of its sister subclone without 

HLA loss (i.e. clones that shared an ancestor clone but had diverged) (Figure 5-16). 

As only sister clones were being considered, and they had only differentially 

evolved after the acquisition of an HLA LOH event, it was possible to assess the 

immediate impact of HLA LOH on non-synonymous mutation acquisition. 

Of the 36 tumors exhibiting any HLA LOH, there were 19 instances where the event 

was subclonal and not on a terminal node for which a comparison between sister 

subclones could be made. Events that had occurred immediately prior to a terminal 

node had to be excluded, as there was no sister clone to compare against.  

 

Figure 5-16: Non-synonymous mutational burden at the tumor subclone level. 
Schematic of the clones considered for the comparison performed. Here, the cancer subclone 
harboring HLA loss (purple) is shown with its sister subclone, descended from the same ancestral 
cancer cell, but without HLA loss (green). The number of non-synonymous mutations found in the 
clone with HLA LOH is compared to the number of non-synonymous mutations found in the sister 
clone without HLA LOH. If the HLA LOH containing clone has a higher non-synonymous mutation 
burden than its sister clone, the line is shown in red; if it has  a lower non-synonymous mutation 
burden, the line is shown in blue. All p-values are calculated using a paired wilcoxon test. 

Further confirming the hypothesis that HLA LOH was permissive for subclonal 

expansions, the subclones harboring an loss of an HLA allele consistently showed 

an increased non-synonymous mutational burden as compared to their sister clones 

without HLA LOH (NSCLC p=4e-04; lung adenocarcinoma p=0.018; lung squamous 

cell carcinoma p=0.008) (Figure 5-16). Unlike the observations at the tumor-level 

and tumor region-level, subclones with HLA LOH had an increased mutational 

burden regardless of histological subtype. Overall, there were only 2/19 instances 

(blue lines in Figure 5-16) of the subclone with HLA LOH having fewer non-

synonymous mutations than its counterpart subclone without loss of an HLA allele.  

Taken together, these results, at multiple levels of resolution, suggest that HLA 

LOH directly contributes to the observed increase in subclonal non-synonymous 

mutations among tumors harboring HLA LOH. While lung squamous cell carcinoma 
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subclones harboring an HLA LOH event had higher non-synonymous mutational 

burden as compared to their wildtype counterparts, the overall trend for HLA LOH 

allowing for higher non-synonymous mutational burden was more strongly observed 

for lung adenocarcinomas. Yet there were very few lung squamous cell carcinomas 

harboring an HLA LOH event that were categorized as having low non-synonymous 

mutational burden. This suggests that while HLA LOH may allow for acquisition of 

subclonal mutations in lung squamous cell carcinomas, there are also additional 

mechanisms beyond HLA LOH and HLA down-regulation contributing to the 

observed high subclonal mutational burden. 

5.6.4 Validation in TCGA 

To further validate the findings from the TRACERx cohorts in larger cohort, 383 

lung adenocarcinomas and 309 lung squamous-cell carcinomas samples from 

TCGA were analyzed (Campbell et al., 2016). Similar to what was observed in the 

TRACERx cohort, HLA LOH frequently occurred in lung squamous-cell carcinomas 

(133/309) and lung adenocarcinomas (118/383) tumors, again being a significantly 

more common event in lung squamous cell carcinomas (p=0.001) (Figure 5-17A).  

 

Figure 5-17: Prevalence and impact of HLA LOH in TCGA NSCLC. 
(A) The total number of TCGA patients exhibiting AI or LOH at the HLA locus is shown. (B) The total 
number of non-synonymous mutations is plotted across different categories of HLA LOH for lung 
adenocarcinoma (light blue) and lung squamous cell carcinomas (magenta). Tumors were classified 
as having: no HLA LOH; any HLA LOH event; or HLA LOH at all three HLA loci. The lowest total non-
synonymous mutation quartile is indicated by the dashed red line and the proportion of tumors with a 
total non-synonymous mutational burden greater or less than that is indicated by the pie charts for 
each HLA LOH classification group. 

As the TCGA dataset contained more patients, samples could also be categorized 

as either having HLA LOH at a single locus (56 lung squamous cell carcinoma, 56 

lung adenocarcinoma) or HLA LOH affecting all three HLA loci (77 lung squamous 
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cell carcinoma, 62 lung adenocarcinoma). In agreement with the TRACERx 

samples, a significantly higher non-synonymous mutation burden was observed in 

lung adenocarcinomas tumors exhibiting HLA LOH (p=0.0001), regardless of 

whether a single HLA locus was affected (p=0.002) or all three HLA loci were 

(p=0.003) (Figure 5-17B).  

5.6.5 Mutational signatures in tumors with HLA LOH 

A known contributor to subclonal mutations often active late in tumor evolution is 

the APOBEC family of enzymes. To determine if APOBEC activity was contributing 

to the elevated subclonal mutational load observed in tumors harboring an HLA 

LOH event, the mutational signatures active in each tumor sample were calculated 

(Figure 5-18) (Rosenthal et al., 2016, Alexandrov et al., 2013a).  

 

Figure 5-18: Weights of mutational signatures in tumors by HLA LOH status. 
For each lung adenocarcinoma (blue) and lung squamous cell carcinoma (purple) tumor, the relative 
contributions of APOBEC mutational signatures (A), Signature 1 (B), Signature 4 (C), and Signature 5 
(D) are shown. p-values are calculated using an unpaired wilcoxon test. 

Among lung adenocarcinoma tumors that exhibited HLA LOH, there was a 

significant increase in the APOBEC signatures (Signature 2 and Signature 13) 

(NSCLC p=0.03; lung adenocarcinoma p=0.003, lung squamous cell carcinoma 
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p=0.63); however, no other signatures found in this cohort (Signatures 1, 4, and 5) 

were found to be differentially contributing between groups. 

5.6.6 Enrichment for neoantigens bound to lost HLA allele 

After loss of one of the HLA haplotypes, only one set of HLA alleles will be still 

available to present neoantigens to the immune system. If the decrease in 

neoantigen presentation has allowed for subclonal expansions, as suggested by the 

data described above, then there may be an enrichment for subclonal neoantigens 

that bind to the allele that was lost, as it is those neoantigens that are no longer 

affected by immune surveillance and elimination. To test this hypothesis, subclonal 

neoantigens binding to lost and kept HLA alleles were compared from tumors with 6 

distinct HLA alleles (i.e. not homozygous at HLA-A,B, or C) and loss of one HLA 

haplotype in at least one tumor region (n=20; 9 lung adenocarcinomas and 11 lung 

squamous cell carcinoma).  

Consistent with the hypothesis that loss of an HLA allele facilitates the accumulation 

of subclonal neoantigens, there was an enrichment for subclonal neoantigens 

predicted to bind to the lost HLA alleles as compared to the kept alleles (Figure 

5-19A) (NSCLC p=0.0083; lung adenocarcinoma p=0.29; lung squamous cell 

carcinoma p=0.02, paired wilcoxon test).  

 

Figure 5-19: Neoantigens predicted to bind to the lost HLA allele. 
(A) The number of subclonal neoantigens predicted to bind to either the lost HLA allele or the kept 
HLA allele is indicated for tumors exhibiting HLA LOH. All NSCLC tumors are first considered, and 
then lung adenocarcinomas and lung squamous cell carcinomas are considered separately. The p-
value is calculated using a paired wilcoxon test. (B) The total number of mutations predicted to result 
in a neoantigen binding to the lost allele is shown for all patients with at least one HLA LOH event. The 
mutation clonality is also indicated as either clonal (light blue) or subclonal (light red). 

To determine the potential impact that HLA LOH could have on which neoantigen 

repertoire of a tumor, the neoantigens binding to the lost alleles from the entire 

TRACERx cohort harboring an HLA LOH event were determined (37 patients total) 

(Figure 5-19B). All patients had mutations that had previously been classified as 
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neoantigens but were predicted to bind to a now lost HLA allele. This finding 

highlights the potential clinical impact HLA LOH could have on the targeting of 

putative neoantigens (Ott et al., 2017, Sahin et al., 2017). 

5.7 Conclusions 

In order to avoid immune predation, evolving tumors must acquire mechanisms to 

escape immune detection or withstand its activity. One such mechanism could be 

via loss of antigen presentation, as then somatic mutations present in the tumor cell 

as a result of ongoing mutational processes do not have the chance to be 

recognized as foreign by T-cells.  

While HLA down-regulation has been explored previously as a means of disrupting 

the antigen presentation pathway, the irreversible loss of an HLA allele had mostly 

been determined by immunohistochemistry staining. For large-scale analyses of the 

impact of HLA loss, a computational tool to identify HLA LOH from sequencing data 

was required. As standard copy number tools fail to resolve the HLA locus, due to 

its highly polymorphic nature, this chapter has described the computational tool, 

LOHHLA. LOHHLA is capable of not only determining the major and minor copy 

numbers at the HLA locus, but also which specific HLA haplotype is subject to copy 

number loss.  

Supporting the notion that loss of antigen presentation may play an important role in 

immune evasion during tumor evolution, HLA LOH was identified in 40% of the 

NSCLC samples analyzed, frequently as a late event in tumor evolution. HLA LOH 

appeared to be an event under strong selection, occurring multiple times over the 

course of a single tumor’s evolutionary history, with consistent HLA alleles subject 

to loss during each event, suggesting preferential selection for loss of one set of 

alleles over the other. A formal analysis of focal HLA LOH found that the LOH event 

occurred more frequently than expected based on random simulations, supporting 

the hypothesis that HLA LOH is under strong selective pressure. 

The subclonal nature of HLA LOH, as well as the tendency for brain metastases to 

harbor an HLA LOH event more frequently than their matched primaries, supports 

the theory that immune evasion is a key factor in tumor evolution. Furthermore,  

mapping the HLA LOH events to the tumors’ phylogenetic tree allowed for a direct 

comparison of the non-synonymous mutational burden between sister clones with 

and without an LOH event and revealed a significantly elevated non-synonymous 
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mutation burden among clones exhibiting HLA LOH. This increase in non-

synonymous mutation burden was accompanied by an enrichment of neoantigens 

predicted to bind to the lost HLA alleles. Together, these results suggest that 

decreased antigen recognition following loss of HLA alleles may be permissive for 

subclonal expansions and could allow mutations that may have once instigated an 

immune response to go undetected by the immune system.  

Importantly, the characterization of HLA LOH in this chapter was performed in 

strictly treatment-naïve cohorts, but given the prevalence of LOH events detected, it 

may be important to consider HLA LOH when designing patient-specific 

immunotherapy approaches, such as TIL based therapies and neoantigen vaccines. 

Targeting neoantigens predicted to bind to HLA alleles already lost in the tumor 

may not effectively elicit a T-cell response. Furthermore, as HLA allele specific loss 

has already once been observed in an immunotherapy-resistant lesion, it will be 

intriguing to investigate how frequently HLA LOH results in acquired immunotherapy 

resistance. As more cohorts become available containing data from both pre- and 

post-therapy samples, it will be possible to address such questions. 

The previous two chapters have explored the determinants of tumor 

immunogenicity and the mechanisms facilitating immune escape. In the following 

chapter I’ll consider how these factors can be combined with information about the 

tumor microenvironment to generate a more complete understanding of the 

tumor/immune interaction in cancer. 
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Chapter 6 Interaction between tumor and immune 
microenvironment 

6.1 Introduction 

Much of the previous work reported in this thesis, as well as in the field of cancer 

immunology on the whole, has focused on understanding the genomic correlates of 

immune evasion and patient response to immunotherapy. While immune 

recognition of a tumor does require functional presentation of tumor-specific 

antigens, the surrounding microenvironment must also be capable of generating an 

immune response. Thus, the degree of immune infiltration and composition of the 

infiltrating cells is an equally important consideration in the understanding of tumor 

immunogenicity and has been shown to have prognostic relevance (Galon et al., 

2006, Charoentong et al., 2017).   

Indeed, there have been many recent efforts made to develop bioinformatic 

methods capable of quantifying immune infiltration from RNAseq data in large tumor 

cohorts. These approaches can help to elucidate the complex relationship between 

the immune microenvironment, genomic features of the tumor, and overall patient 

outcome or response to checkpoint blockade (Gentles et al., 2015, Li et al., 2016, 

Davoli et al., 2017, Angelova et al., 2015, Danaher et al., 2017, Charoentong et al., 

2017). However, recent publications have only considered a single tumor region as 

reflective of the entire tumor’s microenvironment. As genomic ITH has been widely 

observed across nearly all cancer types, it is likely that if immune infiltration is 

influenced by somatic tumor alterations then the level and composition of immune 

infiltrate will also be heterogeneous. 

In order to determine the degree of immune infiltration in NSCLC and how it varies 

on the backdrop of a genomically heterogeneous tumor, this chapter uses multi-

region RNAseq data to estimate the abundance of various immune cell populations 

and determine what characteristics of the tumor are associated with changes in the 

immune microenvironment. 

The pathology determination of region-specific TIL scores used as a ground-truth 

measure was performed by Roberto Salgado. The PD-L1 staining described in this 

chapter was performed by Crispin Hiley and Roche. 
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6.2 Improving immune signatures of infiltration 

Traditionally, the immune landscape of tumors has been quantified using flow 

cytometry and immunohistochemical staining. However, these methods are labor 

intensive and not well suited for the analysis of large expression datasets. 

Therefore, to fully leverage the data available, bioinformatic  methods to estimate 

the quantity and composition of infiltrating immune cells have been developed. 

These scores, which all make different assumptions for their analysis, are generally 

benchmarked against datasets of known immune cells, but have rarely been 

compared with each other or across different cancer types. Thus, the first step in 

estimating the immune infiltration in the multi-region RNAseq cohort was to 

determine which measure can best describe the data available using direct 

pathological TIL quantification methods as a benchmark. 

6.2.1 Summary of methods 

6.2.1.1 CIBERSORT (Newman et al., 2015) 

CIBERSORT requires a reference gene expression input matrix containing 

expression data for each immune cell subtype to quantify. The gene matrix 

developed by the authors contains 547 genes that are capable of distinguishing 22 

different cell types; however, it was designed based on microarray data and not 

RNAseq. The approach then uses linear support vector regression to de-convolve 

bulk expression data from tumor samples into cell subsets. The CIBERSORT 

authors claim their approach can handle noise in the data and collinearity effects 

due to closely related cell types, though the latter claim is questioned by the authors 

of TIMER (Li et al., 2016). 

6.2.1.2 TIMER (Li et al., 2016) 

TIMER first selects genes from the tumor sample set of interest which negatively 

correlate with tumor purity, under the assumption that these genes are more likely 

to be representative of infiltrating immune cells. They then use an external 

reference set of purified immune cells and filter it to only include contributions from 

the genes they identified to negatively correlate with purity and remove those genes 

that were in the top 1% most highly expressed for a particular cell subtype to avoid 

outliers driven by the large variance of highly expressed genes. Finally, they use 

constrained least squares fitting to estimate the abundance of immune cell types. 

The final estimates represent the relative abundance of the immune cell subtypes, 
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but they are not comparable between cancer types or between different immune 

cells within the same cancer type. TIMER is capable of resolving six different 

immune cell populations. 

6.2.1.3 EPIC (Racle et al., 2017) 

Like the previous two deconvolution methods, EPIC also uses a reference gene 

expression profile, provided with the tool, to model the bulk expression data as a 

linear combination of the different cell types. The reference genes are only lowly 

expressed in non-immune cells. Also included among the different populations is an 

uncharacterized group of cells in order to simultaneously estimate the fraction of 

cancer cells in addition to the different immune cells.  

6.2.1.4 Davoli (Davoli et al., 2017) 

Davoli et al. estimate immune cell composition by identifying gene sets from the 

ImmGen (https://www.immgen.org/) gene expression database which uniquely 

define a specific cell type (i.e. they are only expressed in a single immune cell type 

and not others). They considered the average gene expression level of genes 

comprising each cell subtype.  

6.2.1.5 Danaher (Danaher et al., 2017) 

Danaher et al. also begin with previously identified immune cell subtype markers 

identified from studies of individual immune cell populations performed by the Galon 

group (Bindea et al., 2013). To fill in candidate gene markers for immune cell 

subtypes that were not considered by Bindea et al., they included genes which were 

highly enriched in a particular immune cell subtype as reported by Newman et al. 

(Newman et al., 2015). Finally they included well-characterized markers for 

exhausted CD8+ T-cells and regulatory T-cells. Danaher et al. next attempted to 

remove poor marker genes in order to only use reference genes that were stably 

expressed in a single cell type and at roughly the same level within that cell type. To 

accomplish this, the expression levels for all reference genes for a given immune 

cell subtype were compared pair-wise and only those that correlated well, with a 

slope of ~1, were retained. For each cell subtype, a score was calculated from the 

mean of the log-transformed expression values of the reference genes. This score 

does not reflect absolute quantification, but rather allows for a comparison of the 

same immune cell subtype between different tumor samples. 
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6.2.1.6 Rooney (Rooney et al., 2015) 

Rooney et al. defined cytolytic activity as the geometric mean of the genes GZMA 

and PRF1. Specific cell type enrichment was calculated using ssGSEA using 

marker genes that had been defined as having at least 2-fold greater expression in 

the immune cell subtype of interest as compared to any other immune cell subtype. 

Importantly, all of the immune signature measures described rely heavily on the 

fidelity of the reference gene set used to either define marker genes delineating the 

immune cell subtype of interest or in the reference matrix used for deconvolution. 

Furthermore, they often ignore the immune component of the normal tissue. Marker 

gene approaches do not depend so strongly on the data sets used to define an 

immune subset signature, but they do require that the gene expression be confined 

to only a single immune cell subtype. Finally, it’s important to consider that tumor 

cells may also express genes that are typically associated with a particular immune 

subset. Deconvolution methods which have not taken this into account, for instance, 

if they have only used expression profiles generated from purified immune gene 

populations, may not correctly capture the infiltrating immune cell population. 

6.2.2 Consistency of immune signatures 

To investigate the variability of different methods for immune subset quantification, 

immune cell types were compared across the large number of TCGA lung 

adenocarcinoma and lung squamous cell carcinoma tumors available using the 

different approaches. Even if an approach characterizes relative immune 

contribution for a given cell type, a correlation between predictions generated by the 

different methods should be observed.  

Two cell types, CD8+ T-cells and B cells, were chosen for analysis as they both 

could be estimated by multiple immune signature approaches. Surprisingly CD8+ T-

cells showed poor correlation between the different estimation methods, particularly 

when comparing tools that relied on deconvolution (EPIC and TIMER) to those that 

used marker genes (Davoli and Danaher) (Figure 6-1A).  

Importantly, such differences could confound conclusions associating particular 

immune cell infiltrate levels with patient prognosis. The correlations observed 

among the B cell estimates were much stronger across methods (Figure 6-1B), 

suggesting that some immune cell types are more challenging to accurately 

estimate than others. 
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Figure 6-1: Correlations of immune cell type estimations. 
Immune cell type estimations for TCGA lung adenocarcinoma and lung squamous cell carcinoma are 
compared between various approaches for CD8+ T-cells (A) and B cells (B). CIBERSORT, which had 
originally been designed for microarray data, was only trusted to quantify CD8+ T-cells. The steps 
taken to determine what cell types CIBERSORT could accurately identify from RNAseq data are 
detailed in the Methods. 

The main explanation for the differences observed in immune cell estimation is that 

the genes used in the reference signatures, or the assumptions used to filter the 

gene lists, differ between approaches. To explore this, the genes used in the 

various immune cell type definitions were compared. Interestingly, for both CD8+ T-

cells and B cells, there was not a single gene that was shared between all of the 

immune signatures considered (Figure 6-2). 

 

Figure 6-2: Overlapping gene between immune signatures. 
Number of genes shared between different signature definitions are shown for CD8+ T-cells (A) and B 
cells (B). Dots represent the number of genes in each category, and connected dots represent the 
number of genes shared between those categories. No gene is shared between all of the immune 
signatures considered for either immune subset. 

6.2.3 Choosing an immune signature approach 

Given the number of possible immune infiltration tools available and their observed 

variability, choosing the most reliable estimate to describe the TRACERx dataset is 
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imperative, as inaccurate estimates may generate misleading conclusions. As the 

genes used to define immune subtypes will be expressed on infiltrating immune 

cells, a negative correlation should exist between the expression of the immune 

genes and the purity of the tumor. Indeed, this assumption is incorporated into the 

first step of the TIMER approach. To test how the expression of the genes used in 

other immune signatures related to tumor purity, correlations were determined for 

each gene used to define an immune subset (Figure 6-3). 

 

Figure 6-3: Immune signature genes correlated with tumor copy number. 
The expression of the genes used in each immune signature definition is correlated against tumor 
purity. The rho value of the correlation is plotted for the immune genes comprising each signature 
definition, colored by the p-value of the association. The comparisons are performed separately for 
lung adenocarcinoma (A) and lung squamous cell carcinoma (B). The median rho value for each 
immune signature set is indicated by the red line. The fraction of genes whose expression value is 
significantly correlated with purity is shown and compared to a set of random genes. For every 
immune signature, there was significant enrichment of genes whose expression negatively correlated 
with tumor purity as compared to the random selection of genes.  

Reassuringly, for both lung adenocarcinoma and lung squamous cell carcinoma 

tumors, most of the immune genes used in cell subset definitions were significantly 

negatively correlated with tumor purity. Furthermore, there was significant 

enrichment of immune genes that negatively correlated with tumor purity as 

compared to a random subset of genes. As expected, all of the genes used in 
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TIMER were negatively correlated with purity. The immune signature which had the 

next highest proportion of immune genes anti-correlated with tumor purity for both 

lung cancer histologies was the Danaher approach. Interestingly, the Danaher 

approach did not specifically require this characteristic of their gene lists. 

6.2.4 Using copy number to refine immune signatures 

 Building on the assumption made by TIMER that immune gene expression should 

negatively correlate with tumor purity if the expression of these genes is due to 

infiltrating immune cells, it holds that there should also be no relationship between 

immune gene expression and tumor copy number at the gene locus. A positive 

correlation may indicate that the gene is expressed by the tumor cell in addition to 

tumor infiltrating immune cells, thereby confounding any immune estimates made 

using a reference gene list obtained from purified immune cell populations. In any 

cancer type characterized by extensive copy number aberrations, such as NSCLC, 

an immune gene also expressed by the tumor may have a profound impact on the 

immune infiltrate estimations.  

 

Figure 6-4: Association between CYT genes expression, copy number, and purity in lung squamous 
cell carcinoma. 
The expression levels of the two genes comprising the CYT score (GZMA and PRF1) was correlated 
against the copy number status of the genes in the tumor as well as the purity of the tumor for lung 
squamous cell carcinoma.  
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For instance, the two genes comprising the CYT score (GZMA and PRF1) are both 

significantly negatively correlated with tumor purity, as would be expected by genes 

expressed on infiltrating immune cells. However, in lung squamous cell carcinoma, 

expression of both these genes is also positively correlated with tumor copy number 

at the GZMA and PRF1 loci, suggesting that these genes are not solely indicative of 

immune cytolytic activity in this cancer type (Figure 6-4).  

No correlation was observed between tumor copy number and gene expression for 

the CYT score components in lung adenocarcinoma (Figure 6-5). Interestingly, in 

the paper where the CYT score was first defined, the authors observe a correlation 

between mutational load and cytolytic activity in most cancer types including lung 

adenocarcinoma, but there was no significant association in lung squamous cell 

carcinoma (Rooney et al., 2015), further suggesting that in this cancer type CYT 

score may be an inaccurate measure of immune activity. 

 

Figure 6-5: Association between CYT genes expression, copy number, and purity in lung 
adenocarcinoma. 
The expression levels of the two genes comprising the CYT score (GZMA and PRF1) was correlated 
against the copy number status of the genes in the tumor as well as the purity of the tumor for lung 
squamous cell carcinoma.  

Thus, to refine immune signatures, the genes used by each approach were tested 

for a correlation with tumor copy number. Reassuringly, a significantly lower 

proportion of the immune signature genes exhibited expression that was positively 
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correlated with copy number as compared to a random selection of genes. 

However, a large number of genes used in immune signature definitions had 

expression values that were significantly positively correlated with tumor copy 

number, even among the TIMER-defined genes, where these selected genes must 

also have shown a negative correlation with tumor purity (Figure 6-6).  

These results suggest that for each immune signature, there are genes expressed 

by the tumor that are possibly contributing to inaccurate estimates of immune 

infiltration. The immune signature with the fewest genes showing a positive 

correlation between expression value and copy number was the Danaher set. For 

this signature, only two genes (MS4A4A and TPSAB1, used in the definitions of 

macrophages and mast cells, respectively) had a positive relationship. This 

suggests the Danaher immune signature approach may be most well-suited for use 

in this data set. 

 

Figure 6-6: Immune signature genes correlated with tumor copy number. 
The expression of the genes used in each immune signature definition are compared against tumor 
copy number. The rho value of the correlation is plotted for the immune genes comprising each 
signature definition, colored by the p-value of the association. The comparisons are performed 
separately for lung adenocarcinoma (A) and lung squamous cell carcinoma (B). The median rho value 
for each immune signature set is indicated by the red line. The fraction of genes whose expression 
value is positively correlated with is shown and compared to a set of random genes. For every immune 
signature, there was significant depletion of genes whose expression positively correlated with tumor 
copy number as compared to the random selection of genes.  
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6.2.5 Copy number associations depend on cancer type 

Further complicating the de-convolution of immune cell subsets, the immune genes 

expressed by the tumor cell may not be consistent between cancer types. Thus, if 

different cancer types express different immune genes, adjusting immune 

signatures for tumor expressed genes will not be as simple as further filtering the 

gene lists. The genes that are used in immune subset definitions, in large part, do 

not depend on tumor type, with the only exception being the genes used by TIMER, 

as those are identified on a cohort-by-cohort basis (Figure 6-7A). However, the 

genes that were found to positively correlate with tumor copy number were almost 

entirely unique to the cancer type being studied (Figure 6-7B). Only eight genes 

exhibiting a correlation with tumor copy number were shared between lung 

adenocarcinoma and lung squamous cell carcinoma.  

 

Figure 6-7: Overlap in immune signature genes between cancer types. 
The vast majority of genes used in the definitions of the different immune signatures overlap between 
lung adenocarcinoma and lung squamous cell carcinoma (A). However, the genes whose expression 
is significantly correlated with copy number rarely overlap between the two histologies (B).  

6.2.6 Comparison to pathology determined TIL scores 

To determine if the observed correlations between immune gene expression and 

tumor copy number had any bearing on the accuracy of immune infiltrate estimates, 

the immune infiltrate estimates were compared to pathology determined TIL scores 

found in that tumor region (Figure 6-8). Many of the measures of immune infiltration 

showed a significant positive correlation with the TIL scores obtained, with only a 

few measures exhibiting a negative correlation (macrophages as estimated by 

TIMER, CD4+ T-cells in lung squamous cell carcinoma as estimated by EPIC, 

endothelial cells and CAFs in lung adenocarcinoma as estimated by EPIC, mast 

cells in lung adenocarcinoma as estimated by Danaher et al., and neutrophils in 
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lung squamous cell carcinoma as estimated by CIBERSORT). However, none of 

these negative correlations were significant. 

 

Figure 6-8: Correlations between TIL scores and immune infiltrate estimates. 
Correlations between the estimates of different immune cell subtypes calculated by different methods 
and the TIL scores identified in that tumor region. Significance indicators are FDR corrected, q<0.01 
(**), q<0.05 (*). 

The immune score showing the strongest association with TIL scores was the CD8+ 

T-cell score estimated using the Danaher approach, supporting the notion that 

taking into account copy number variation may be critical to accurately estimating 

immune infiltrate. Indeed, many of the Danaher measures significantly correlated 

with the TIL score for lung adenocarcinoma and/or lung squamous cell carcinoma 

tumors, with the exception of CD4+ T-cells. This is likely because Danaher et al. 

found no suitable genes to describe the CD4+ T-cell population, and instead, 

estimated this population by using the total T-cell score minus CD8+ T-cells. 

Overall the Danaher immune signatures consistently showed a superior correlation 

with TIL scores, even when comparing the lung adenocarcinoma and lung 

squamous cell carcinoma subtypes separately, indicating that this immune estimate 

was valid in both histological subtypes. For instance, the Danaher immune 

signatures were the only ones to show a significant relationship between CD8+ T-

cells and TIL score for both histology subtypes (Figure 6-9).  
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Figure 6-9: Relationship between CD8+ T-cells and TIL scores. 
Scatterplots show the correlation between TIL scores and CD8+ T-cells as measured by the Danaher 
(A) and TIMER (B) approaches. Blue dots indicate regions from a lung adenocarcinoma tumor, red 
dots indicate regions from a lung squamous cell carcinoma tumor. Rho values and p-values are given 
for all tumor regions (black), lung adenocarcinoma tumor regions (blue), and lung squamous cell 
carcinoma tumor regions (red). 

Additionally, there was no correlation of tumor purity with pathology determined TIL 

scores (lung adeno: p=0.73, rho=-0.04; lung squam: p=0.24, rho=-0.17), suggesting 

that the immune measures provide further information than would be gained from 

considering stromal content alone (Figure 6-10).  

 

Figure 6-10: Relationship between tumor purity and TIL scores. 
Scatterplots show the correlation between TIL scores tumor purity for lung adenocarcinoma (A) and 
lung squamous cell carcinoma (B). Rho values and p-values are displayed. 
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Thus, for analysis of the TRACERx data, the Danaher immune signatures were 

used for all immune subtypes except CD4+ T-cells. For CD4+ T-cells, the Davoli 

immune signature was used, as it also relied on a marker gene approach. 

6.3 Classifying immune activity in NSCLC 

The Danaher immune signatures were used to estimate of immune cell populations 

for each TRACERx region using available RNAseq data. This cohort was taken 

from a subset of the original TRACERx first 100 cohort (Jamal-Hanjani et al., 2017) 

and was comprised of 172 tumor regions from 64 patients (41 lung 

adenocarcinoma, 16 lung squamous cell carcinoma, 7 other histology). The majority 

of patients had RNAseq data from multiple regions available, with 19 only having a 

single region sequenced (Figure 6-11).  

 

Figure 6-11: TRACERx multi-region RNA-sequencing 
The number of regions from each patient with available RNAseq data is shown, colored by histological 
subtype.  

There was a wide range of immune infiltration observed in this cohort, both between 

tumor samples and between separate regions from the same tumor. However, 

individual tumor regions from both lung squamous cell carcinomas and lung 

adenocarcinomas could be stratified as either having high immune infiltrate for the 

majority of the measures considered or nearly uniform low levels of immune 

infiltrate (Figure 6-12 & Figure 6-13).  
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Figure 6-12: Heatmap of immune infiltrates for lung squamous cell carcinoma. 
Regions from lung squamous cell carcinoma TRACERx patients are shown, clustered by the level of 
estimated immune infiltrate. Each column represents a tumor region from the patient indicated on the 
barplot below. Regions classified as having low levels of immune infiltration are shown in blue, 
whereas regions classified as having high levels of immune infiltration are shown in red. If all regions 
from a patient’s tumor are classified as having low immune infiltrate, that patient is indicated in blue. If 
all regions from a patient’s tumor are classified as having high immune infiltrate, that patient is 
indicated in red. Patients with tumors containing heterogeneous levels of immune infiltration are 
indicated in orange. 



 158 

 

Figure 6-13: Heatmap of immune infiltrates for lung adenocarcinoma. 
Regions from lung adenocarcinoma TRACERx patients are shown, clustered by the level of estimated 
immune infiltrate. Each column represents a tumor region from the patient indicated on the barplot 
below. Regions classified as having low levels of immune infiltration are shown in blue, whereas 
regions classified as having high levels of immune infiltration are shown in red. If all regions from a 
patient’s tumor are classified as having low immune infiltrate, that patient is indicated in blue. If all 
regions from a patient’s tumor are classified as having high immune infiltrate, that patient is indicated 
in red. Patients with tumors containing heterogeneous levels of immune infiltration are indicated in 
orange. 

6.3.1 Heterogeneity of immune infiltration 

The multi-region nature of the RNAseq data also allowed the investigation of the 

heterogeneity of immune infiltration across different tumor regions from the same 

patient. While some patients had tumors with consistently low or high levels of 
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immune infiltration, many patients had tumors with regions of disparate levels of 

immune infiltration. For instance, for LTX111, a lung squamous cell carcinoma, 

(Figure 6-12) and LTX097, a lung adenocarcinoma, (Figure 6-13), tumor regions 

were found on completely opposite ends of the immune infiltration spectrum. In 

total, 4/14 lung squamous cell carcinomas and 9/25 lung adenocarcinomas with 

more than a single region had a heterogeneous immune landscape. 

Thus, individually, tumor regions could be classified as having high or low levels of 

immune infiltration, and tumors on the whole could also be classified as having 

consistent (low or high) levels of immune infiltration or heterogeneous levels of 

immune infiltration. The classification at the tumor-level is of particular importance 

when trying to determine which patients may respond from immunotherapy using 

only a single region. If a tumor is heterogeneously infiltrated, then a single biopsy 

will provide an inaccurate picture of the tumor as a whole. 

6.3.2 Composition of immune clusters 

Consistent with previous reports (Tamborero et al., 2017), tumor regions with high 

levels of immune infiltration also had a significantly increased ratio of immune 

effector cells (CD8+ T-cells, NK cells) to immune suppressor cells (regulatory T-

cells, macrophages, neutrophils) (Figure 6-14). This suggests that the composition 

of immune cells, as well as their quantity, differs between high and low immune 

infiltrate tumor regions.  

 

Figure 6-14: Ratio of immune effector to immune suppressive cells. 
For each tumor region, the ratio of immune effector to immune suppressive cells is plotted by the 
immune cluster indicating whether that tumor region had high or low levels of immune infiltration). 
Plots are shown for lung adenocarcinoma (A) and lung squamous cell carcinoma (B). The p-value 
tests the effector to suppressive ratio between the immune high regions and immune low regions. 
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Interestingly, while both lung adenocarcinoma and lung squamous cell carcinoma 

tumors showed an increase in immune effector cells relative to immune suppressive 

cells in high infiltrate tumor regions, the ratios calculated for tumors with 

heterogeneous immune infiltrate differed. Regardless of whether the region itself 

had high or low levels of immune infiltration, regions from lung adenocarcinoma 

tumors with heterogeneous immune infiltrate tended to resemble regions from 

tumors with consistently high immune infiltrate (Figure 6-15A). On the other hand, 

regions from heterogeneous lung squamous cell carcinoma tumors tended to 

resemble regions from tumors with consistently low levels of immune infiltration 

(Figure 6-15B).   

 

Figure 6-15: Immune effector to suppressive cell ratio by tumor classification. 
The ratio of immune effector cells to immune suppressive cells is shown for each region, broken down 
by whether that region came from a tumor with consistently low immune infiltration, consistently high 
immune infiltration, or a heterogeneous level of immune infiltration. Plots for lung adenocarcinoma (A) 
and lung squamous cell carcinoma (B) tumors are displayed. Regions with low levels of immune 
infiltrate are shown in blue, those with high levels of immune infiltrate are shown in red. 

When the regions from heterogeneous lung adenocarcinomas were split into those 

containing high or low immune infiltration, all regions had a high ratio of immune 

effector to immune suppressive cells (Figure 6-16A). Indeed, there was no 

significant difference between the effector to suppressor ratio between low immune 

infiltrate regions and high immune infiltrate regions from heterogeneously infiltrated 

tumors. This indicated that lung adenocarcinoma tumors may exhibit a strong 

“tumor phenotype”, wherein all the regions from the tumor, regardless of whether 

they have low or high levels of immune infiltration, share specific characteristics.  
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Lung squamous cell carcinoma tumors tended to show a stronger “region 

phenotype”. In this case, the low immune infiltrate regions from heterogeneously 

infiltrated tumors tended to resemble the regions from tumors with consistently low 

levels of immune infiltration. Similarly, the high immune infiltrate regions from 

heterogeneously infiltrated tumors resembled the regions from tumors with 

consistently high levels of immune infiltration (Figure 6-16B). 

 

Figure 6-16: Immune effector to suppressive cell ratio by tumor classification and region cluster. 
The ratio of immune effector cells to immune suppressive cells is shown for each region, broken down 
by whether that region came from a tumor with consistently low immune infiltration, consistently high 
immune infiltration, or a heterogeneous level of immune infiltration. Regions from heterogeneously 
infiltrated tumors are further divided based on whether the region itself had a low or high level of 
immune infiltration. Plots for lung adenocarcinoma (A) and lung squamous cell carcinoma (B) tumors 
are displayed. Regions with low levels of immune infiltrate are shown in blue, those with high levels of 
immune infiltrate are shown in red. 

6.4 Characteristics of immune clusters 

Previous chapters in this thesis have shown that clonal neoantigens can be 

recognized by T-cells in the tumor and that high clonal neoantigen burden is related 

to good clinical outcome, potentially due to enhanced T-cell activation by clonal 

neoantigens. In contrast, high neoantigen heterogeneity is associated with poor 

clinical outcome and response to immunotherapy. To determine if the level of 

immune infiltration was related to other factors associated with tumor immunity, 

such as neoantigen load and genomic ITH, the information gathered from the 

exome analysis of these tumors was also considered. The goal of these analyses 

was to determine any tumor intrinsic characteristics that could explain the level or 
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heterogeneity of immune infiltration, potentially shedding light on the relationship 

between the neoantigen repertoire and immune activation.  

6.4.1 Increase of clonal neoantigens in high immune infiltrate tumors 

Consistent with previous reports (Brown et al., 2014, Giannakis et al., 2016) and the 

work reported in Chapter 4, both total and clonal neoantigen load in lung 

adenocarcinomas were positively correlated with the average CD8+ T-cell infiltrate 

estimate from that tumor (Figure 6-17). A patient-level average measure was 

considered here, as the clonal neoantigen load will be consistent across regions 

from the same tumor. 

 

Figure 6-17: Correlation of immune infiltrate and neoantigen load. 
(A) The correlation between average CD8+ T-cell score per patient and neoantigen burden in the 
tumor is shown for lung adenocarcinomas and lung squamous cell carcinomas, which positive 
correlations indicated in blue and negative in red. An FDR corrected p-value is shown where 
significant. (B-C) The correlation between CD8+ T-cells and clonal neoantigens is shown for lung 
adenocarcinoma (B) and lung squamous cell carcinoma (C). The red dashed lines on each plot 
represent the median clonal neoantigen burden for lung squamous cell carcinomas, and the blue 
dashed lines represent the median clonal neoantigen burden for lung adenocarcinomas.  

Interestingly, and in agreement with the findings from Chapter 4, clonal neoantigen 

load was more significantly correlated with immune infiltration than total neoantigen 

load, suggesting that clonal neoantigens can more potently induce an immune 

response. Furthermore, this association was strengthened when the number of 

clonal neoantigens was filtered by whether the underlying mutation was expressed 

or not (Figure 6-17A). A neoantigen was considered to be expressed if at least five 

RNAseq reads mapped to the mutation position, and at least three contained the 

mutated base to ensure that the gene was expressed as well as the mutant copy of 

the gene. 

As reported in Chapter 5, overall lung squamous cell carcinoma tumors had an 

increased clonal neoantigen burden as compared to lung adenocarcinomas (lung 
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squam: median clonal neo = 150, lung adeno: median clonal neo = 71) (Figure 

6-17B-C). It may be that there is no observed correlation in lung squamous cell 

carcinoma between neoantigen load and CD8+ T-cell infiltrate because all the 

tumors considered of this cancer type had high clonal neoantigen burden. Indeed 

when only the subset of lung adenocarcinoma tumors with >150 clonal neoantigens 

was considered, there was no longer an association between neoantigen load and 

CD8+ T-cell estimate, suggesting that CD8+ T-cell infiltrate may not correlate with 

neoantigen burden in high burden tumors (p = 0.6, rho = 0.18). 

6.4.2 High immune infiltration associates with low genomic ITH 

The previous results have shown that clonal neoantigen load is an important factor 

in generating an immune response and influencing patient response to checkpoint 

blockade, but under the immune editing hypothesis, the immune system may also 

shape the evolution of the tumor. Thus, to determine if there was evidence of 

immune activity altering the genomic landscape of the tumor, the level of CD8+ T-

cells was compared to the observed heterogeneity of each tumor region, as 

measured by the Shannon diversity index (calculation described in the Data and 

Methods). 

Consistent with the hypotheses that T-cell activity can prune away tumor subclones 

or that T-cell infiltrate is driven by high clonal neoantigen burden, a significant 

negative correlation was observed between the level of immune infiltration and ITH 

in that tumor region, with regions having high T-cell activity generally having lower 

ITH. This association was only observed among tumor regions from lung 

adenocarcinomas (lung adeno: p=0.035, rho=-0.22; lung squam: p=0.91, rho=-0.02) 

(Figure 6-18).  

The level of heterogeneity observed in a tumor region also differed by immune 

classification of the tumor. Lung adenocarcinoma tumors whose regions had 

consistently low levels of immune infiltration had higher levels of ITH, and those 

with high levels of immune infiltrate had low levels of ITH; however, 

heterogeneously infiltrated tumors tended to also have low levels of genomic 

heterogeneity (Figure 6-19). In these tumors, it is possible that earlier T-cell 

infiltration which had subsequently been diminished due to an acquired mutation 

already had an effect in narrowing the genomic landscape. Alternatively, the T-cell 

activation from heavily infiltrated neighboring regions may still affect clonal 

expansion in immune sparse tumor regions.  
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Figure 6-18: Relationship between immune infiltration and heterogeneity. 
A) For each region from the lung adenocarcinoma tumors, the CD8+ T-cell score is plotted against the 
Shannon ITH score. Lung adenocarcinomas (A) and lung squamous cell carcinomas (B) are shown. 

 

Figure 6-19: Relationship between heterogeneity and immune classification. 
The Shannon ITH score for each region is shown grouped by whether the patient had consistently low 
levels of immune infiltration, heterogeneous levels of immune infiltration, or high levels of immune 
infiltration. Lung adenocarcinomas (A) and lung squamous cell carcinomas (B) are shown. 

6.4.3 Immune distance mirrors with genomic distance 

To better understand the associations between genomic features of a tumor and the 

immune microenvironment, the pairwise genomic and immune distances were 

calculated between every two tumor regions from the same patient. The immune 
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distance was determined by taking the Euclidean distance of immune infiltrate 

estimates between tumor regions, whereas the genomic distance was calculated by 

taking the Euclidean distance of the mutations present between tumor regions. 

Further details are contained in the Data and Methods. 

Interestingly, there was a significant correlation between the two distance measures 

observed among both lung adenocarcinomas and lung squamous cell carcinomas 

(Figure 6-20), indicating that tumor regions that are more closely related to each 

other in genomic space also have more closely linked immune microenvironments. 

This is further evidence of an interaction between immune infiltrate and the tumor 

and suggests that there may be specific genomic events either influencing or 

selected in response to the immune landscape of the tumor. 

 

Figure 6-20: Comparison of pairwise genomic and immune distances. 
The pairwise genomic and immune distances between every two tumor regions from the same patient 
are compared for lung adenocarcinoma (A) and lung squamous cell carcinoma (B) patients. There is a 
significant association between the two measures. 

6.5 Genomic basis of immune infiltration 

6.5.1 Elevated PD-L1 staining in HLA LOH tumors 

Evidence from the previous chapter suggested that there is heavy selective 

pressure in tumors that develop LOH at the HLA locus, as it was frequently a 

subclonal event, occurring more often than expected by chance, sometimes at 

multiple points during the evolution of a single tumor. Furthermore, loss of the HLA 

alleles resulted in subsequent subclonal expansions, suggesting that upon loss of 

antigen presentation, the tumor had fewer restrictions on growth. 
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To investigate whether evidence from the tumor microenvironment supported high 

immune activity, immunohistochemistry analysis was performed to determine the 

expression of PD-L1 on both tumor and immune cells. As the PD-L1 ligand binds to 

the inhibitory receptor PD1, the expression of PD-L1 may reflect a response to an 

active immune system. 

Consistent with loss of the HLA alleles occurring in immune hot microenvironments, 

tumors in which the HLA LOH event occurred early in evolution had significantly 

elevated PD-L1 staining of immune cells as compared to tumors without any HLA 

LOH (p=0.029) (Figure 6-21).  

 

Figure 6-21: PD-L1 immunohistochemistry staining of tumors with HLA LOH. 
(A) anti-PD-L1 staining on FFPE diagnostic blocks from tumors with clonal HLA LOH, subclonal HLA 
LOH and no observed HLA LOH. Immune-cell based staining and tumor-cell staining is depicted. (B) 
Staining from two representative tumors, one without HLA LOH and one with clonal HLA LOH is 
shown. 

Non-significant trends were also observed for elevated PD-L1 staining on tumor 

cells. Additionally, the proportion of high PD-L1 staining tumors increased from 

tumors without any evidence for HLA LOH to those with subclonal LOH to those 

with clonal LOH. 

These data are consistent with the hypothesis that HLA LOH may facilitate immune 

escape in response to an active immune microenvironment. The observed trends 

suggest that investigating the expression of checkpoint molecules and immune 

infiltrate in a larger cohort of tumors may help resolve whether HLA loss is 

associated with an immune replete microenvironment. 
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6.5.2 High immune infiltrate in HLA LOH tumors 

By analyzing the full set of immune signatures used for immune estimation in the 

multi-region RNAseq data set, it was possible to investigate whether HLA loss was 

associated with a more active tumor microenvironment. There was RNAseq data 

available for 13 lung adenocarcinoma patients (29 regions) and 12 lung squamous 

cell carcinoma patients (36 regions) exhibiting HLA LOH and 27 lung 

adenocarcinoma patients (62 regions) and 3 lung squamous cell carcinoma patients 

(10 regions) without HLA LOH.  

Supporting the results found from the PD-L1 IHC staining in the TRACERx cohort, 

PDL1 was again found to be significantly up-regulated in the lung adenocarcinomas 

harboring loss of HLA (Figure 6-22). Furthermore, the estimated abundance of 

nearly every subpopulation of infiltrating immune cells was significantly elevated 

among lung adenocarcinoma tumor regions harboring an HLA LOH event, as was a 

score designed to capture the extent of immune activity (IFN score), all indicating a 

highly active immune microenvironment. 

 

Figure 6-22: Immune signatures in TRACERx by HLA LOH status. 
The log-ratio of medians between tumors containing an HLA LOH event at all loci and those without 
any HLA LOH event is shown for published immune microenvironment measures and signatures. 
Increase of an immune measure among tumors with HLA LOH is shown in red, and a decrease is 
shown in blue. FDR (q) values comparing the distribution of immune measures between the HLA LOH 
groups are indicated by asterisks (*). 

To validate these findings, a larger set of TCGA NSCLC samples was used, where 

HLA LOH had already been identified as reported in the previous chapter. For this 

analysis, tumors with an HLA LOH event that affected all three loci were compared 

to those without any evidence of HLA LOH. For lung adenocarcinoma, 62 tumors 

had ubiquitous loss of the HLA alleles, compared to 265 tumors without any HLA 

LOH. For lung squamous cell carcinomas 77 tumors with ubiquitous HLA LOH were 
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compared to 179 tumors without any HLA LOH. Consistent with results observed in 

the TRACERx cohort, in lung adenocarcinoma with loss of the HLA locus, there was 

significantly elevated CD8+ T-cells and NK cells (Figure 6-23).  

Together, these data suggest that tumors harboring an HLA loss event have a more 

active immune microenvironment, with higher immune cell infiltration observed in 

lung adenocarcinoma.  

 

Figure 6-23: Immune signatures in TCGA by HLA LOH status. 
The log-ratio of medians between tumors containing an HLA LOH event at all loci and those without 
any HLA LOH event is shown for published immune microenvironment measures and signatures. 
Increase of an immune measure among tumors with HLA LOH is shown in red, and a decrease is 
shown in blue. FDR (q) values comparing the distribution of immune measures between the HLA LOH 
groups are indicated by asterisks (*). 

6.6 Conclusions 

The interaction between the tumor and immune system can only be fully understood 

by combining genomic features of the tumor with knowledge of the immune 

microenvironment. To decipher the degree and composition of infiltrating immune 

cells using transcriptomic data, many bioinformatic methods have been published. 

However, these published methods often produce inconsistent estimates. Here a 

number of methods were compared to determine which was best suited to describe 

the TRACERx multi-region RNAseq data. Building on previous approaches, three 

criteria were considered.  

Firstly, the reference genes used in immune subset definitions should exhibit a 

negative correlation with tumor purity in order to reflect their expression on 

infiltrating immune cells. Secondly, these genes should also not correlate with tumor 

copy number at the gene locus, as expression of the reference gene on both the 

immune cells and the tumor will confound any estimates of immune infiltration. 
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Finally, the immune cell predictions should correlate well with a ground truth 

measure. After analyzing potential immune signature methods with the TRACERx 

data, the immune subset definitions that best matched the above criteria was 

selected and used to determine the quantity and composition of infiltrating immune 

cells in each tumor region with RNAseq data. The fact that purity did not correlate 

with the ground truth measure used in validating the immune signatures suggested 

that the immune measures provide further information than would be gained from 

considering stromal content alone. 

While a wide range of immune infiltration was observed in both the lung 

adenocarcinoma and lung squamous cell carcinoma subtypes, tumor regions could 

be classed as having either high or low immune infiltrate. Surprisingly, individual 

regions from the same tumor did not always closely resemble each other, often 

exhibiting disparate levels of immune infiltration. Indeed tumors were identified with 

heterogeneous levels of immune infiltration, a finding that may have implications for 

the robustness of predictive or prognostic immune-based biomarkers, as different 

conclusions may be reached on the basis of the particular sample selected.  

Tumor regions containing high levels of immune infiltration appeared to differ from 

the sparsely infiltrated tumor regions not just in extent of infiltrate but also in 

composition, with highly infiltrated tumor regions also being shifted towards a higher 

ratio of immune effectors cells compared to immune suppressive cells. 

Furthermore, increased levels of effector CD8+ T-cell infiltration in lung 

adenocarcinoma correlated with a reduction in tumor region heterogeneity and 

increase in clonal neoantigen burden.  

Interestingly, a difference between tumors with a heterogeneous level of immune 

was observed between histological subtypes. All the regions from heterogeneously 

infiltrated lung adenocarcinoma tumors tended to resemble tumors with high levels 

of immune infiltration, regardless of whether the region itself was highly immune 

infiltrated. This suggested that lung adenocarcinoma tumors had more of a tumor 

intrinsic phenotype, such that certain characteristics of the tumor were shared 

among all regions. On the contrary, the behavior of lung squamous cell carcinomas 

was driven at the regional level, with regions from heterogeneously infiltrated 

tumors not closely resembling each other, but rather driven by the level of immune 

infiltration in the sample. While there were fewer lung squamous cell carcinomas 

considered in this chapter, if a regional phenotype is more common in this subtype, 

it could be one reason why associating properties at the tumor level, such as 
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number of neoantigens and overall survival, have been inconclusive. As such, this 

is a key area for further study.  

Finally a relationship between genomic features of the tumor and immune infiltration 

was observed. In both lung adenocarcinoma and lung squamous cell carcinoma, as 

the genomic distance between two tumor regions grew, so did the immune distance 

between those tumor regions. This suggested that specific genomic events may 

either influence the immune infiltration of the tumor or that they may be selected for 

in response to the immune landscape of the tumor.  

One such event, hypothesized to be an immune evasive mechanism developed in 

response to a highly active immune microenvironment was LOH at the HLA locus. 

Indeed, supporting this hypothesis, elevated PD-L1 staining was observed among 

tumors exhibiting clonal HLA LOH and a significant increase in infiltrating immune 

cells, such as CD8+ T-cells, NK cells, and DCs, was observed in lung 

adenocarcinoma exhibiting HLA LOH. 

While only one specific genomic event related to level of immune infiltration was 

identified, the observed relationship between pairwise genomic distance and 

pairwise immune distance indicates that there may be others. Thus, important next 

steps would include trying to identify any known driver alterations common in 

regions exhibiting high or low levels of immune infiltration. Furthermore, there may 

be specific immune pathway genes that are either disrupted or amplified, such as 

B2M, PDL1, or genes in the JAK-STAT pathway. However, given the ever-growing 

number of identified genes that modulate the immune system, identifying a signal in 

a limited number of samples and integrating that signal with poorly understood 

tumor extrinsic factors, such as host genetics and the microbiome, will present a 

challenge. 
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Chapter 7 Discussion 

The immune system is capable of recognizing antigens present on the surface of 

tumor cells and eliminating them, effectively providing some protection from tumor 

development. While early attempts to exploit this were largely considered failures, 

the recent success of immunotherapies, ranging from checkpoint-blockade to 

neoantigen vaccines to cellular therapies, has shown that harnessing and re-

directing the power of the immune system can have a significant impact of patient 

outcome. However, by recognizing antigenic components of the tumor cell, the 

immune system imposes a selective pressure on the growing cancer, shaping its 

antigenicity and diversity as the tumor evolves.  

This thesis has investigated the mutational processes active that may generate 

potentially antigenic mutations and endeavored to understand what factors are 

important in immune recognition of the tumor, including the clonality of neoantigens 

present, mechanisms through which the tumor may evade detection, and the 

immune microenvironment. 

7.1 Mutational processes and immune recognition 

7.1.1 Identification of mutational signatures is possible in single tumor 

samples 

As sequencing of patient tumors continues to become more affordable, the clinical 

utility of single sample analysis to understand key features of the tumor will be 

increasingly relevant. A more thorough understanding of mutational processes 

active over the course of tumor development has great implications for 

understanding how the tumor evolved and for informing the best patient-specific 

therapeutic choices (Le et al., 2015, Alexandrov et al., 2015).  

As part of this thesis, a tool (deconstructSigs) was developed that allows for the 

determination of mutational signatures present in individual tumor samples (Chapter 

3). Through the use of deconstructSigs on temporally dissected mutations, it was 

possible to more fully understand the dynamic nature of mutational processes 

active in single tumors over time. Understanding the timing of different mutational 

processes will help to elucidate which may most contribute to early tumorigenesis, 

and which may aid subsequent diversification, subclonal expansion, and potentially 

immune evasion. 
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7.1.2 Relationship between mutation generation and immune recognition 

Increased mutation burden of a tumor has been previously shown to have both 

prognostic capabilities, associating with improved overall survival, and can be used 

as a biomarker predicting patient response to immunotherapy (Rizvi et al., 2015, 

Snyder et al., 2014, Brown et al., 2014). This, coupled with the fact that some 

mutational processes contribute high numbers of mutations, suggests that some 

mutational processes may generate more antigenic tumors than others. However, 

mutational processes active during tumor evolution often have distinct timings 

(McGranahan et al., 2015, de Bruin et al., 2014). Those that are active late during 

tumor evolution disproportionately contribute to intratumor heterogeneity and can 

result in the expansion of clones that have acquired new driver mutations. On the 

other hand, clonal mutations are often the result of mutational processes active 

early in tumor evolution. As described below, Chapter 4 of this thesis found that 

clonal mutations that are recognized by the immune system can result in effective 

neoantigens and may represent the most potent targets of immune activation. Thus 

by understanding the contribution and dynamics of mutational processes, it may be 

possible to select specific patients likely to respond to immunotherapeutic 

interventions. 

7.1.3 Clonal neoantigens elicit T-cell responses and influence patient 

survival 

In this thesis (Chapter 4), in silico neoantigen prediction made using a bioinformatic 

pipeline were tested and validated in vitro using T-cells collected from individual 

patient tumors. Interestingly, among both checkpoint-blockade treated cohorts and 

treatment-naïve patients, all observable T-cell responses were identified against 

clonal peptides. Furthermore, patients with a large number of clonal neoantigens 

and few subclonal neoantigens were found to fare better both without treatment and 

in response to checkpoint blockade therapy. Together these findings suggested that 

clonal neoantigens and subclonal neoantigens differentially elicited an immune 

response and highlighted the potential gain in immunotherapy efficiency that could 

be made by considering the clonality of tumor neoantigens prior to treatment.  

While the cohort investigated in this thesis was small, no neoantigen reactive T-

cells were identified that recognized peptides arising from subclonal mutations. As 

this may have been confounded by the challenge of making accurate subclonal 

mutation calls, further study in a larger cohort is warranted to determine whether 
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subclonal mutations generate peptides capable of being recognized by T-cells. 

However, even if an immune response is elicited, the presentation of a subclonal 

neoantigen on the surface of a subset of tumor cells will likely inherently limit the 

ability of the T-cells to target the entire tumor. A recent publication suggests that 

inactivating DNA repair processes in the tumor to increase the burden of 

neoantigens may be exploited therapeutically, without regard for the clonality of the 

mutations generated. Thus determining if subclonal neoantigens are indeed 

capable of driving effective anti-tumor immunity is of paramount importance for 

patient care (Germano et al., 2017). 

As more neoantigen reactive T-cells are identified, the properties determining what 

leads to effective antigen presentation can be further elucidated. This will allow for 

the prioritization of peptides likely to be antigenic based on the most discriminating 

attributes, such as expression, predicted binding affinity, how the mutant binding 

affinity compares to the wildtype binding affinity, similarity to self, similarity to known 

antigens, and likelihood of in vivo processing. Currently, in an effort to circumvent 

the difficulties predicting in vivo antigen processing, large-scale mass spectrometry 

approaches are underway to determine which neoantigens are being recognized 

from the tumor (Abelin et al., 2017, Bassani-Sternberg et al., 2017, Muller et al., 

2017). Importantly, by being prediction-agnostic, mass spectrometry approaches 

could also allow for the identification of peptides presented by MHC class II 

molecules (Muller et al., 2017, Gfeller et al., 2016), which have proven even harder 

to predict than their MHC class I counterparts. 

Additionally fitness models, similar to ones used to model immune interactions in 

viral disease, have been recently developed. These models aim to determine the 

similarity between presented peptides and known T-cell antigens in order to better 

predict whether a given peptide is likely to be recognized once it is successfully 

processed and presented on the tumor cell (Luksza et al., 2017). 

These developments will all serve to improve neoantigen predictions and can 

subsequently be used to refine neoantigen predictions to more completely 

understand the complex relationship between neoantigen burden, ITH,  and tumor 

immunogenicity.  
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7.2 HLA LOH as an immune evasive mechanism in NSCLC 

Under the immune editing hypothesis, the selective pressure of the immune system 

can result in a tumor acquiring mechanisms to evade immune detection in order to 

avoid immune predation. As neoantigens are displayed on the cell surface for 

potential immune recognition, disruption of antigen presentation is one possible 

avenue to escape immune detection. Extending the observations of reversible HLA 

down-regulation found in a number of cancer types (Hicklin et al., 1999, Garrido et 

al., 2017a, Campoli et al.), the LOHHLA method was developed as a part of this 

thesis (Chapter 5) to detect irreversible LOH at the HLA locus. LOHHLA exploited 

patient specific HLA information in order to overcome the challenges posed by the 

highly polymorphic nature of the HLA locus and its resulting poor mapability.  

7.2.1 HLA LOH occurs under heavy selection late in tumor evolution 

Keeping with the notion that defective antigen presentation may play a key role 

during tumor evolution, LOHHLA identified HLA LOH in 40% of the NSCLC samples 

analyzed. This was in contrast to the low frequency (~3%) of HLA mutations 

cataloged in the cohort analyzed, suggesting that HLA LOH may represent a far 

more prevalent means of antigen presentation disruption in NSCLC. 

Mapping LOH events to the phylogenetic tree allowed for the characterization of the 

timing of HLA LOH. HLA LOH was often a late occurrence in tumor evolution, 

occurring subclonally in only a portion of tumor cells. There also appeared to be 

strong selection for HLA LOH, as it occurred multiple times over the course of a 

single tumor’s evolutionary history, with consistent HLA alleles subject to loss 

during each event. This implied preferential selection for the loss of one set of 

alleles over the other. Formal testing using simulated focal LOH events found that 

LOH at the HLA locus occurred more frequently than expected by chance. 

Together, these observations suggested HLA LOH is strongly selected for in 

NSCLC evolution.  

While lung adenocarcinoma and lung squamous cell carcinoma were the only tumor 

types investigated in this chapter, aneuploidy is a hallmark of cancer, and other 

LOH events are commonly observed in tumor development (Ryland et al., 2015, 

Merajver et al., 1995, Knudson, 1971). As such, further work is warranted to 

determine the frequency of HLA LOH across other tumor types and its association 

with immune evasion. 
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7.2.2 HLA LOH is permissive for subclonal expansion 

Further analysis showed that tumor subclones harboring an HLA LOH event had a 

significantly higher non-synonymous mutation burden as compared to sister 

subclones descended from the same ancestral cancer cell but without HLA LOH. 

Tumors exhibiting HLA LOH also showed an enrichment for neoantigens predicted 

to bind to the lost allele. Together, these results suggest that decreased antigen 

recognition following loss of HLA alleles may be permissive for subclonal 

expansions and could allow mutations that may have once instigated an immune 

response to go undetected by the immune system.  

One hypothesis generated from this work is that HLA LOH facilitates immune 

escape in response to an active immune microenvironment. Indeed, a single case 

study following a patient treated with tumor-infiltrating lymphocytes composed of T-

cell clones reactive to a particular neoantigen observed loss of the HLA allele 

responsible for that neoantigen’s presentation (Tran et al., 2016). Thus while the 

cohorts analyzed with LOHHLA were treatment-naïve, it would be expected that 

HLA LOH may also be a mechanism of acquired resistance to checkpoint blockade 

therapy.  

A recent publication has since investigated the HLA locus of patients treated with 

checkpoint blockade therapy and found that patients harboring an HLA LOH event  

had poorer survival (Chowell et al., 2017). While this study only considered pre-

treatment samples, as more data is published from patients who have relapsed on 

immunotherapy, the prevalence of HLA LOH as a mechanism of immune evasion 

can be investigated further. 

7.3 Immune microenvironment is heterogeneous in NSCLC 

As the picture of tumor immunity is incomplete without also considering the immune 

microenvironment, Chapter 6 of this thesis used multi-region RNAseq data to 

quantify immune infiltration and to explore the extent to which the immune 

contexture varied across different regions from the same tumor. A re-analysis of 

published immune signatures led to the identification of a set of signatures that 

were not informed by immune genes also expressed by the tumor and could be 

validated using in vitro data. Thus the degree of immune infiltration and its cell 

composition could be determined on a region-by-region basis. 
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Paralleling the genetic ITH reported in NSCLC, Chapter 6 found that regions from 

the same tumor exhibited vastly different immune infiltration estimates. Not only did 

the abundance of infiltration vary between tumor regions, but they also exhibited 

different immune cell composition, with highly infiltrated tumor regions harboring a 

significantly higher ratio of immune effector cells to immune suppressive cells. 

These findings also highlighted a potential limitation of using immune infiltration 

estimates generated from a single tumor sample to guide therapeutic decisions, as 

the information gathered from a single tumor region may not be accurately reflect 

the immune landscape of the entire tumor. 

7.3.1 Genomic events reflect shifts in immune contexture  

With increasing levels of effector CD8+ T-cell infiltration in lung adenocarcinoma, a 

reduction in tumor region heterogeneity and increase in clonal neoantigen burden 

was also observed, providing evidence for a relationship between the immune cells 

infiltrating the tumor and the genomic landscape. In further support of a 

tumor/immune interaction, a relationship was observed between the pair-wise 

genomic distance and pair-wise immune distances calculated for every two regions 

of the same tumor. 

By investigating the immune microenvironment it was possible to identify whether 

specific genomic events either influence or are selected in response to the immune 

landscape of the tumor.  

One such genomic event suspected to arise due to the strong selective pressure of 

the immune system was HLA LOH. Indeed, consistent with loss of the HLA alleles 

occurring in immune hot microenvironments and potentially as an immune evasive 

mechanism, lung adenocarcinoma tumors exhibiting LOH at the HLA locus had a 

significant increase in immune infiltrate, including CD8+ T-cells and NK cells. These 

results were recapitulated using a larger cohort of lung adenocarcinomas from 

TCGA. Furthermore, PD-L1 staining of immune cells was performed and found to 

be elevated among tumors in which the HLA LOH event occurred early in evolution. 

Using bulk transcriptomic data presents inherent challenges in deciphering immune 

cell subpopulations, particularly as all current deconvolution or marker gene 

approaches rely on reference genes expressed identified from purified immune 

cells. As shown in this thesis, tumor cells, as well as the infiltrating immune cells, 

may express these reference immune genes. Furthermore, the expression profiles 
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of tumor infiltrating immune cells may not be well represented by immune cells 

purified from the peripheral blood. To overcome such challenges, the analysis of 

single cells may be required using methods such as CyTOF (Newell et al., 2012, 

Chevrier et al., 2017, Lavin et al., 2017) or single-cell RNAseq (Tirosh et al., 2016, 

Singer et al., 2017). 

Finally, as more aspects contributing to an effective immune response are 

understood and as more data is generated, it may be possible to design a 

comprehensive model to predict the tumor immune interaction and patient response 

to immunotherapy. Such a model would have to consider tumor intrinsic properties, 

such as genomic events altering the immune landscape (i.e. disrupted antigen 

presentation or altered/unresponsive immune pathways), tumor cytokine secretion, 

and epigenetic events (i.e. demethylation of the PD-L1 promoter (Gettinger et al., 

2015)). Incorporating tumor genomic features with TCR/BCR sequencing and 

monitoring the immune repertoire may also help to shed light on how a patient is 

responding (Liu and Mardis, 2017). In addition, tumor extrinsic properties are likely 

to play a role in dictating the immune response. Host genetics, such as the 

particular HLA haplotype of an individual, can influence response to immunotherapy 

(Chowell et al., 2017), and the impact of recent/current infection and the gut 

microbiome remains under-studied (Routy et al., 2017, Gopalakrishnan et al., 

2017). 

As small variations in any one of these components could tip the immune balance in 

favor of immunity or tolerance (Chen and Mellman, 2017), it will take a nuanced 

understanding to decipher how they connect with and impact each other, likely 

requiring much more data. 
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