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Abstract

Type 2 diabetes (T2DM) is associated with structural cortical and subcortical alterations, although it is insufficiently clear if these
alterations are driven by obesity or by diabetes and its associated complications. We used FreeSurfer5.3 and FSL-FIRST to
determine cortical thickness, volume and surface area, and subcortical gray matter volume in a group of 16 normoglycemic obese
subjects and 28 obese T2DM patients without clinically manifest micro- and marcoangiopathy, and compared them to 31 lean
normoglycemic controls. Forward regression analysis was used to determine demographic and clinical correlates of altered
(sub)cortical structure. Exploratively, vertex-wise correlations between cortical structure and fasting glucose and insulin were
calculated. Compared with controls, obese T2DM patients showed lower right insula thickness and lower left lateral occipital
surface area (Ppwg < 0.05). Normoglycemic obese versus controls had lower thickness (Prwg < 0.05) in the right insula and
inferior frontal gyrus, and higher amygdala and thalamus volume. Thalamus volume and left paracentral surface area were also
higher in this group compared with obese T2DM patients. Age, sex, BMI, fasting glucose, and cholesterol were related to these
(sub)cortical alterations in the whole group (all P < 0.05). Insulin were related to temporal and frontal structural deficits (all Prwg
< 0.05). Parietal/occipital structural deficits may constitute early T2DM-related cerebral alterations, whereas in normoglycemic
obese subjects, regions involved in emotion, appetite, satiety regulation, and inhibition were affected. Central adiposity and
elevated fasting glucose may constitute risk factors.
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Type 2 diabetes mellitus (T2DM) and obesity are both world-
wide health concerns, which are related to an increased risk of
cardio- and cerebrovascular disease, cancer, cognitive impair-
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ment, and dementia (Reijmer et al. 2010; McCrimmon et al.
2012; Karlin et al. 2012). Cerebral damage, such as loss of
(sub)cortical gray and white matter volume, and changes in
brain functioning are also frequently observed in obese and
T2DM groups (Widya et al. 2011; McCrimmon et al. 2012;
Moran et al. 2013; Moulton et al. 2015).

In T2DM patients, a recent meta-analysis of 23 volumetric
neuroimaging studies showed reduced global brain, as well as
loss of hippocampus, basal ganglia, orbitofrontal, and occipital
volume (Moulton et al. 2015), and a large case-control study
reported loss of brain volume in T2DM patients compared to
controls in areas that are commonly atrophic in Alzheimer’s
disease, such as the temporal lobe, precuneus, and anterior
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cingulate cortex (Moran et al. 2013). Other studies have shown
deficits in cortical thickness and surface area diffusely distrib-
uted throughout the brain (Brundel et al. 2010; Peng et al.
2015). It is generally accepted that micro- and
macroangiopathy, the first serving as a marker for chronic hy-
perglycemic exposure, constitute major risk factors for these
cerebral deficits, although not all studies agree (Moran et al.
2016). Almost all of the studies so far have not used the pres-
ence of micro- or macroangiopathy as an exclusion criterion for
participation, and therefore the effects of T2DM in its early
stages on the brain are insufficiently clear. Ideally, in the ab-
sence of clinically manifest angiopathy it should be possible to
better determine the effects of obesity, blood pressure, and dis-
turbances in glucose and insulin metabolism/production on the
brain.

The effect of obesity on cortical structure is less clear-cut.
Studies in the general population have found that increased
BMI is related to thinning of the left lateral occipital and right
ventromedial prefrontal cortex (Medic et al. 2016), and larger
waist-hip-ratio and waist circumference to total brain and
global gray matter volume (Debette et al. 2014). In the latter
study, higher BMI was related to increased white matter
hyperintensity volume. In contrast, higher visceral fat indices
were found to relate to cortical thickening in both adolescents
(Saute et al. 2016) and adults (Kaur et al. 2015). Studies di-
rectly comparing obese versus non-obese participants have
shown increased cortical thickness (Ronan et al. 2016), and
amygdala and hippocampus volume (Widya et al. 2011).
Other studies, however have shown lower cortical thickness
and volume diffusely distributed throughout the brain in el-
derly (Brooks et al. 2013; Marqués-Iturria et al. 2013).
Willette and Kapogiannis (2015) reviewed 44 studies that
assessed gray and white matter volume in obesity, concluding
that there may be an association between obesity and frontal
gray matter atrophy across all ages, as well as temporal and
parietal gray matter atrophy in middle and old age (Willette &
Kapogiannis, 2015). These different results could be the result
of different processes. The first possible explanation is what is
called the ‘obesity-paradox’, stating that midlife obesity, but
not obesity in elderly, is especially harmful for the brain. A
recent meta-analysis on dementia diagnosis by Kiviméky et al.
demonstrated this ‘obesity paradox’. The hazard ratio for de-
mentia per 5-points BMI increase was below 1 for those
groups measured 10 and 10-20 years before diagnosis of de-
mentia, but was 1.16 for those measured > 20 years before
dementia diagnosis (Kivimaki et al. 2017). This indicates that
midlife obesity was related to an increased dementia risk, but
that later life obesity resulted in lower risk of dementia. A
similar effect is observed in T2DM, where midlife onset
T2DM is related to (more severe) cognitive dysfunction than
later-life onset T2DM (Ryan et al. 2016). This ‘reverse epide-
miology’, may be driven by the shorter time of late-life
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obesity/T2DM to exert their negative effects on the brain,
compared with midlife obesity/T2DM. Alternatively, obese
people are sometimes healthy, without blood pressure, lipid
or glucose metabolism problems, even though they possess
several risk factors for major diseases, especially regarding
cardiovascular conditions (Kim et al., 2016). The differences
may also be driven by various methodological differences,
such as use of different variables, i.e. visceral fat or BMI, or
the inclusion of obese subjects with and without glucose dis-
orders. Due to these diverging results, it remains difficult to
determine the risk factors of cerebral damage in obesity. Risk
factors identified so far include BMI, hypertension, increased
glucose levels, insulin resistance and cholesterol (Kullmann
et al. 2016; Wennberg et al. 2016).

As it is less clear if the alterations in T2DM are driven by
obesity or by diabetes and its associated complications, we
aimed to perform a detailed evaluation of cortical and subcor-
tical gray matter structural alterations in normoglycemic obese
subjects, obese T2DM patients without clinically manifest
micro- or macroangiopathy, and matched lean normoglycemic
controls. It was hypothesized that structural alterations would
be present in obesity, but more aggravated in T2DM patients.
As T2DM is most prevalent during middle-age/old age, and
because T2DM related comorbidities during this period are
related to cognitive problems and dementia later in life
(Ryan et al. 2016), patients during midlife/older age were
included. Exploratively, the correlation between glucose and
insulin and (sub)cortical structure was determined.

Materials and methods
Participants

This study was conducted in accordance with the Declaration
of Helsinki and was approved by the Medical Ethics
Committee of the VU University Medical Center. Written in-
formed consent was given by all participants. In the current
study, data was pooled from 2 different studies performed at
the VU University Medical Center. The first study assessed
the acute effects of GLP-1 infusion on reward and satiety
centers in the brain (NCT(01281228) (van Bloemendaal et al.
2014), from which we included 14 controls, 16 obese partic-
ipants and 13 obese T2DM patients. From the other study,
assessing the long-term effects of GLP-1 treatment on reward
and satiety centers in the brain (NCT01363609) (ten Kulve
et al. 2016), 17 controls and 15 overweight/obese T2DM pa-
tients were included.

Inclusion criteria were age between 40 and 70 years,
Caucasian ancestry, right-handedness, and stable body weight
(i.e. <5% change during the 3 previous months). Women had
to be post-menopausal, BMI had to be >30 kg/m2 for
normoglycemic obese, >25 kg/m? for overweight/obese
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T2DM participants and < 25 kg/m? for controls. Controls and
obese participants had to be normoglycemic (i.e. fasting plas-
ma glucose <5.6 mmol/l and 2-h glucose <7.8 following a
75 g oral tolerance test), HbAlc of obese T2DM patients
had to be between 42 and 69 mmol/mol (6.0-8.5%), with only
oral (metformin/sulphonylurea derivates) treatment.
Exclusion criteria were: history of neurological, cardiovas-
cular, renal or liver diseases, psychiatric disorders, malignan-
cies, substance abuse, use of centrally acting agents or oral
glucocorticoids, and the inability to undergo MRI scanning.

MRI

A 3 Tesla GE Signa HDxt scanner (General Electric,
Milwaukee, Wisconsin, USA) was used for MRI scanning,
using an 8-channel phased-array head coil. For this study, a
T1-weighted fast spoiled gradient-echo (TR: 8.2 ms, TE:
3.2 ms, 1 mm slice thickness) and a T2-based Fluid
Attenuating Inverse Recovery (3D-FLAIR; TR: 8000 ms,
TE: 126 ms, slice thickness 1.2 mm) sequences was used.
Excessive neck signal was removed by registration of a
Montreal Neurological Institute standard brain (MNI-152) to
each participant’s T1-MPRAGE, thereby identifying the low-
er border of the brain, to increase reliability of the analyses.

Whole-brain cortical structure analysis

To calculate cortical thickness, surface area, and volume the
surface-based stream of Freesurfer 5.3 (http://surfer.nmr.mgh.
harvard.edu) was used. A detailed description of the pipeline
can be found elsewhere (Dale et al. 1999; Fischl and Dale
2000). In short, brain images were linearly registered to
Talairach space to compute seed points, the bias field inhomo-
geneity was corrected, skull stripped, and white matter seg-
mented using volumetric classification. Cutting planes de-
rived from Talairach space were used to separate both hemi-
spheres. An initial white matter surface was generated for each
hemisphere from the results of the white matter segmentation.
To find white and gray matter and pial surface, these initial
surfaces were nudged into the direction of the gradient. To
improve the estimation of the pial surface the 3D-FLAIR
was added, as the contrast between the pial surface and dura
is better on a 3D-FLAIR than on a T1-weighted image. The
cortical surface of each hemisphere was automatically labeled
by nonlinear surface-based registration of the Desikan-
Killiany atlas, which resulted in 35 cortical parcellations per
hemisphere (Fischl et al. 2004). The resulting white and pial
surfaces were manually checked, and corrected if necessary.

Subcortical volume analysis

FMRIB’s Software Library 5.0.8 (FSL; http:/fsl.fmrib.ox.ac.
uk/fsl/fslwiki/) FIRST was used for subcortical analyses

(Patenaude et al. 2011). Further details on FSL-FIRST can be
found elsewhere (Patenaude et al. 2011). In short, FSL-FIRST
models the outer surface of the bilateral hippocampus, thala-
mus, amygdala, nucleus accumbens, caudate nucleus, globus
pallidus and putamen by creating a vertex-based mesh for each
image. Subsequently, each voxel within the images is assigned
the label of the structure to which that voxel belongs, taking
into account individual variations in surface shape of each
structure, as well as the presence of neighboring structures.
Next, in the participant’s native space, volume of each subcor-
tical structure is calculated. All segmentations were manually
checked, and corrected if necessary. To be able to perform
group comparisons, all volumes were corrected for head size
by multiplying the participant’s subcortical volume by its own
V-scaling factor. The V-scaling factor is obtained from FSL-
SIENAX (Smith et al. 2004) and calculated by affine registra-
tion of the TI-MPRAGE brain image to MNI-152 standard
brain (Jenkinson et al. 2002). This value represents the factor
with which the brain volume needs to be multiplied to normal-
ize to MNI-152 standard brain.

Statistical analyses

Between-group participant characteristics were analyzed
using one-way ANOVA with Bonferroni correction for con-
tinuous variables, Kruskal-Wallis test for non-normally dis-
tributed variables, and y>-test for categorical variables.

First, to assess if obesity and T2DM had an effect on global
cortical structure, whole brain cortical thickness, volume and
surface area were compared between the groups, correcting
for age, sex, hypertension, and estimated intracranial volume.
Next, local effects on thickness, volume, and surface area
were analyzed using FreeSurfer 5.3 vertex-wise general linear
modeling for the main effect of group, again correcting for
age, sex, hypertension and estimated intracranial volume. To
allow for group comparisons, thickness, surface area, and vol-
ume data were smoothed with a 10 mm full width at half
maximum Gaussian kernel and transformed into fsaverage
standard space, to ensure comparability between scans.
Clusters were identified using a cluster-wise threshold of
P <0.01. Correction for multiple comparisons was performed
using Monte Carlo Z simulation with 10,000 iterations. The
Family Wise Error (FWE) corrected P-value was set a
P <0.05, after multiplying the P-value by 2 correcting for
testing two hemispheres. To identify brain regions with a
shared influence of BMI/obesity in both T2DM and
normoglycemic obese participants, a conjunction analysis
was performed (Nichols et al. 2005). Normalized for head size
bilateral subcortical volume was compared between groups
using a multivariate ANCOVA model, corrected for age,
sex, and hypertension, applying Bonferroni correction for
multiple comparisons in SPSS 20. Correlations between
(sub)cortical structure and medical and demographical
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variables were determined using forward linear regression
modeling. To increase power these correlations were calculat-
ed in the whole group, adding group allocation as confound-
ing factor. Correlations between thickness/surface
area/volume and glucose/insulin were calculated in a vertex-
wise way correcting for estimated intracranial volume and
group allocation.

All analyses were preformed using IBM SPSS Statistics 20
(IBM SPSS, Chicago, IL) or FreeSurfer 5.3. A P<0.05 was
considered to be statistically significant.

Results
Participant characteristics

As is shown in Table 1, obese T2DM patients had higher
HbAlc, fasting glucose levels, and hypertension rates, but a
more favorable lipid profile than the other groups (P < 0.05).
Compared with controls, obese T2DM patients had higher sys-
tolic and diastolic blood pressure (P < 0.05), triglycerides and
fasting insulin levels were higher in obese T2DM and obesity
groups as compared to controls (P < 0.05). Manual edits (main-
ly editing brain voxels), were performed for 8 controls, 5
normoglycemic obese, and 10 T2MD participants (P =
0.729). Estimated total intracranial volume was not statistically
significantly different between the groups (P = 0.149).

Cortical gray matter structure

No significant differences were found when testing for a glob-
al effect of obesity and T2MD on mean cortical thickness,
mean surface area or total grey matter volume between groups
(P> 0.05; Table 2).

Corrected for age, sex, hypertension, and estimated intra-
cranial volume there was an overall group-effect for cortical
thickness in the right insula region extending into the trans-
verse and superior temporal, supramarginal, and precentral
regions (Ppwg = 0.024; Fig. 1; Table 3). For surface area, the
overall group analysis showed a borderline significant cluster
comprising the left lateral occipital, superior parietal and
cuneus regions (Ppwg =0.063; Fig. 1; Table 3). For cortical
volume, there was no overall group-effect (all Prwg > 0.05).
Given the explorative nature of this study between-group dif-
ferences for right thickness and left surface area were tested.
Between-group testing showed lower cortical thickness in
these regions in the T2DM group versus controls (Prwg =
0.017; Fig. 1; Table 3). Thickness was also lower in these
regions and the pars opercularis in the normoglycemic obese
participants compared with the controls (Prwg = 0.019; Fig. 1;
Table 3). There were no differences between the
normoglycemic obese and obese T2DM groups (Ppwg >
0.05), and the conjunction analysis showed a trend
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toward statistical significance for a cluster comprising the
insula, extending into the transverse and superior temporal
and supramarginal regions (Ppwg =0.073). A group-effect
was borderline significant for left hemisphere surface area in
the lateral occipital, superior parietal and cuneus regions
(Prwg =0.063; Fig. 1; Table 3). This effect was driven by
lower surface area in T2DM patients relative to controls
(Prwe =0.007; Figure 1; Table 3). Interestingly, T2DM pa-
tients also showed lower surface area compared with the
normoglycemic obese participants, yet in the left paracentral
regions (Ppwg = 0.040; Fig. 1; Table 3). There were no differ-
ences between the obese and control subjects (Prwg > 0.05).
There was no overall group-effect for cortical volume, hence
no further group testing was performed (Pgrwg > 0.05).

Subcortical gray matter structure

The overall F-test including all normalized subcortical struc-
tures, corrected for age, sex, and hypertension, was statistically
significant (F(2, 69) = 1.83; P=0.04), indicating a difference in
at least 1 subcortical structure between the groups. Post-hoc
analysis showed that, after Bonferroni correction for multiple
hypothesis testing, the obese group had significantly higher vol-
ume in the bilateral thalamus when compared to both other
groups (all P< 0.03; Table 2), and in the bilateral amygdala
when compared with the control group (P= 0.001; Table 2).

Correlations with cortical gray matter structure

In a forward regression model, including age, sex, BMI, hyper-
tension, waist-hip ratio, HbAlc, total cholesterol, and fasting
glucose/insulin, it was tested which variables were independent-
ly related to altered gray matter structure in the whole group. We
choose to do this in the whole group, because of the lack of
power in the subgroups. To avoid influence of group allocation
this variable was added as confounding factor.

Uncorrected for group allocation there was an association
between higher BMI and lower right insula thickness (cluster
controls vs T2DM: (3 =—0.339, P=0.001; cluster controls vs
obesity: 3 =-0.431, P<0.001, Fig. 2). Higher glucose (3 =
—0.366; P=0.001) and being female (3 =—0.325; P =0.003)
were related to lower left lateral occipital surface area. Lower
left paracentral surface area was also related to being female
(B =-0.238; P=0.046). After correction for group allocation
only the correlations between being female and lower left lateral
occipital (3 =-0.329; P=0.003) and paracentral (3 =—0.236;
P =0.049) surface area remained statistically significant.

Correlations with subcortical gray matter structure
Higher thalamus volume was related to lower age (3 =

—0.429; P<0.001) and higher BMI (3 =0.215; P=0.044;
Fig. 3). Both remained statistically significantly related to
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Table 1 Participant characteristics
Controls Obese Type 2 diabetes P value

Age (years) 57.08+7.10 58.01+8.39 60.44+5.05 0.158
(41.03-66.92) (40.32-68.09) (50.86-70.24)

Sex, male/female (% male) 16/15 (51.6) 8/8 (50) 15/13 (53.6) 0.999

Diabetes duration (years) - - 8.15+4.81 -

(1-20)

BMI (kg/m?) 22.96+1.64 32.58 +£2.86" 32.25+4.51% <0.001
(20.00-25.41) (29.28-39.35) (26.90-42.70)

Systolic blood pressure (mmHg) 118.32+16.17 126.75+£12.08 135.31+13.11% <0.001
(88.67-159.00) (99.00-148.00) (110.67-163.00)

Diastolic blood pressure (mmHg) 74.60 +10.51 79.14+7.73 81.00+8.84" 0.033
(58.00-98.67) (62.00-92.00) (65.33-100.00)

Antihypertensive medication use (%) 0(0) 3(18.8) 17 (60.7)> ® <0.001

Hypertension (%)° 5(16.1) 4 (25) 18 (643~ ° <0.001

HbAlc (%) 5.61+£0.36 5.58+£0.27 6.99+1.05*° <0.001
(5.00-6.00) (5.00-6.10) (5.70-9.00)

HbA1c (mmol/mol) 37.24+1.57 37.62+3.03 53.46+10.74%® <0.001
(33.00-40.00) (31.00-43.00) (39.00-77.00)

Total cholesterol (mmol/L) 543+0.89 5.66+0.89 455+138*° 0.002
(4.00-7.00) (3.70-6.90) (3.00-8.00)

HDL cholesterol (mmol/L) 1.91+048 1.424+0.43 1.17+£0.33* <0.001
(1.00-3.00) (0.81-2.44) (0.87-2.00)

LDL cholesterol (mmol/L) 3.13+0.80 3.45+0.69 239+0.92%° <0.001
(2.00-5.00) (2.104.60) (1.00-5.00)

Triglycerides (mmol/L) 0914041 1.76 £1.31* 1.66+1.01* 0.002
(0.00-2.00) (0.50-5.50) (0.80-5.60)

Cholesterol medication use (%) 0(0) 1(6.3) 19 (67.9)*® <0.001

Fasting plasma glucose (mmol/L) 4.85+0.56 527+0.41 8.50+2.31%" <0.001
(4.00-5.70) (4.40-5.90) (5.70-15.00)

Fasting insulin (pmol/L) 37.56 +18.75 83.62+51.25% 90.77 +35.42% <0.001
(16.00-109.50) (42.40-243.40) (40.80-157.10)

Estimated intracranial volume (mL) 1547 +127.70 (1352-1768) 1505+ 173.35 (1266-1874) 1473 £ 143.67 (1272-1884) 0.149

Manual edits (%) 8(25.8) 5(31.3) 10 (35.7) 0.729

Control points 1 0 0 -

Brain editing® 7 5 10 -

Data are presented as mean with standard deviation or absolute number with percentage between parentheses. The P-value represents the P-value of the

overall F-test
4 different from controls

® different from obese

¢ Hypertension was defined as a systolic blood pressure of 140 mmHg or above, a diastolic blood pressure of 90 mmHg or above, or the use of

antihypertensive medication

9 Adding control point in the white matter to push the white matter segmentation forward

¢ Brain editing consisting of removing excessive skull or changing the intensity of voxels that were wrongly labeled

thalamus volume after correction for group allocation (age:
3=-0.369, P=0.001; BMI: 3 =0.444; P=0.006). Higher
amygdala volume was related to higher BMI (3 =0.495; P
<0.001), being male (3 =—0.332; P =0.002), and higher cho-
lesterol ( =0.294; P=0.006; Fig. 3). Although the correla-
tions were slightly attenuated after correction for group allo-
cation, all remained statistically significant.

Vertex-wise correlations with glucose and insulin

All correlations are graphically presented in Fig. 4, scatter
plots are shown in Fig. 5, and statistics can be found in

Table 3. To increase power, these correlations were calculated
in the whole group, but were corrected for group allocation
and estimated intracranial volume.

Higher levels of insulin were related to lower surface area
in the left rostral middle and superior frontal gyri (Prwg <
0.001) and in a cluster comprising the left superior temporal,
supramarginal, and banks of the superior temporal sulcus re-
gions (Prwr < 0.001). Higher insulin was also related to lower
cortical volume in the left superior temporal, supramarginal,
and banks of the superior temporal sulcus regions (Prwg =
0.001) and in the left insula and transverse temporal regions
(Ppwg = 0.020). Contrary, higher insulin was also related to
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Table 2  Values of whole brain indices of cortical structure and subcortical volume

Controls Normoglycemic obese Type 2 diabetes P value?

Cortical thickness (mm)

Whole brain 2.47+0.08 2.43+0.08 2.43+0.08 0.368

Left hemisphere 247£0.08 2.44+0.08 2.43+0.09 0.313

Right hemisphere 2.46+0.09 2.43+0.08 2.43+0.08 0.439
Cortical surface area (mm?)

Whole brain 2511.09 £221.00 2435.03 £318.07 2398.78 £248.28 0.951

Left hemisphere 2507.86£219.64 2436.05+310.31 2397.12+250.98 0.973

Right hemisphere 2514.31+£224.07 2434.00 £326.67 2400.44 +246.41 0.909
Cortical volume (mL)

Whole brain 465.38+43.61 449.97+62.22 439.65+35.27 0.833

Left hemisphere 233.22+£22.42 225.22+30.57 219.98+17.20 0.743

Right hemisphere 232.17+21.52 224.74+31.73 219.67+18.38 0911
Subcortical volume (mL)°

Bilateral amygdala 1.86+0.29 2.17+£0.25% 2.01+0.23 0.001

Bilateral thalamus 10.16=£0.72 10.66 +0.57* ¢ 10.04 + 0.63f 0.010

Bilateral caudate nucleus 4.65+0.47 4.61+£0.32 4.59+0.36 0.871

Bilateral putamen 6.41+0.71 6.45+0.57 6.24+0.58 0.833

Bilateral pallidum 2.35+0.21 2.44+0.15 2.35+0.17 0.174

Bilateral hippocampus 5.10+0.52 531+0.39 5.17+0.46 0.305

Bilateral nucleus accumbens 0.63+0.13 0.61+0.08 0.60+0.12 0.962

Data are presented as mean with standard deviation. The P-value represents the overall P-value of the F-test

 different from controls
b different from obese
¢ different from type 2 diabetes

9 Analyses of cortical thickness, surface area and volume are corrected for age, sex, hypertension and estimated total intracranial volume. Subcortical

analyses were corrected for age, sex and hypertension only

¢ Subcortical volume was corrected for head size by multiplying the participant’s subcortical volume by its own V-scaling factor, obtained by FSL-

SIENAX

higher cortical thickness in the left medial and lateral
orbitofrontal gyri (Prwg = 0.040). There were no correlations
between insulin and the right hemisphere or with glucose and
brain structure (all Ppwg > 0.05).

Discussion

In this study, cortical and subcortical gray matter structure was
studied in normoglycemic obese subjects and obese T2DM
patients and compared to lean normoglycemic healthy controls.
Firstly, comparing obese T2DM patients without clinically
manifest micro- and macroangiopathy to controls, we saw low-
er right insular and temporal thickness and lower left occipital
and superior parietal surface area. Secondly, comparing
normoglycemic obese to normoglycemic lean control subjects,
right insular, temporal and inferior frontal thickness was lower.
In contrast, subcortical thalamic and amygdala gray matter vol-
ume was found to be higher. Between normoglycemic obese
and obese T2DM patients, thalamic volume and left paracentral
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surface area were found to be lower in the latter group com-
pared with the first. The cortical alterations were mainly related
to sex, whereas the subcortical alterations were related to BMI,
total cholesterol, age, and being female. Vertex-wise in the
whole group, higher fasting insulin was related to lower left
frontal and temporal surface area, lower temporal and insular
volume, but higher orbitofrontal thickness.

The cortical structural findings of lower thickness and sur-
face area in the temporal, parietal and occipital cortex in obese
T2DM patients corroborate previous studies that also found
alterations in T2DM patients in similar regions (Brundel et al.
2010; Moran et al. 2013; Moulton et al. 2015; Peng et al.
2015). Many of these previous studies, however, showed re-
sults that were spatially more widespread and found in other
regions than the results from our study. An important differ-
ence with the previous studies is that in the current study no
T2DM patients were included who had clinically manifest
micro- or macroangiopathy. It is known that both microvas-
cular complications and macrovascular events have a strong
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Fig. 1 Clusters of lower cortical gray matter surface indices overlaid on a standard brain for right cortical thickness, left panel, and left surface area, right
panel. Red-Yellow indicate the positive group effect, whereas blue-light blue indicates a negative effect

negative effect on brain structure in T2DM (van den Berg
et al. 2009), which may explain the differences in results.

In previous obesity studies, results have been mixed; with
studies showing both increased and decreased cortical and
subcortical structural indices. In this study, including solely
normoglycemic obese subjects, we found decreased right

insular cortical thickness, which extended into the temporal
and inferior frontal gyri, but no increased indices of cortical
gray matter structure. On the other hand, both amygdala and
thalamus gray matter volume was increased in
normoglycemic obese participants. A recent study also
showed decreased insula and inferior frontal gyrus volume

Table 3  Information of between-group vertex-wise analyses and whole group vertex-wise correlation analyses
Cluster Peak MNI coordinates Anatomical location P-value
size (mm?)  t-value peak value
x,y.2)
Right cortical thickness
Cluster group effect 537.38 4.347 34.0,-11.1, 16.3 Insula / transverse temporal / superior temporal /  0.024
supramarginal / precentral
Cluster T2DM lower than controls ~ 571.43 4.720 34.1,-10.3, 16.1 Insula / transverse temporal / superior temporal /  0.017
supramarginal / precentral
Cluster obese lower than controls 556.05 3.380 37.9,-34.4,12.5 Insula / transverse temporal / superior temporal /  0.019
supramarginal / precentral / pars opercularis
Left surface area
Cluster group effect 678.51 2.892 —12.7,-95.2,20.0  Lateral occipital / superior parietal / cuneus 0.063
Cluster T2DM lower than controls ~ 972.56 3.478 —13.3,-94.9,20.3  Lateral occipital / superior parietal / cuneus 0.007
Cluster T2DM lower than obese 748.11 4.890 —6.9,-19.6, 67.0 Paracentral 0.040
Whole group insulin
Cluster 1 left area negative 2008.94 —4.278  —23.6,49.2,9.6 Rostral middle frontal / superior frontal 0.0002
Cluster 2 left area negative 1373.58 -2.697 —64.1,-319,8.5 Superior temporal / supramarginal / banks 0.0008
of the superior temporal sulcus
Cluster 1 left volume negative 951.04 —2.831  —58.7,-51.3,22.2  Superior temporal / supramarginal / banks 0.001
of the superior temporal sulcus
Cluster 2 left volume negative 599.10 -3.057 —359,-172,74 Insula / transverse temporal 0.020
Cluster 1 left thickness positive 491.43 4212 -7.3,35.2,-22.7 Medial orbitofrontal / lateral orbitofrontal 0.040
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Fig. 2 Scatter plot of the correlations between clusters of altered cortical
structure and medical and anthropometric variables. Green circles depict
the healthy lean controls, blue triangles the normoglycemic obese, and red
squares the obese T2DM patients. The black regression line shows the
correlation for the whole group. The colored regression lines depict the

in obese patients, thus corroborating the current results (Zhang
et al. 2016). Interestingly, after bariatric surgery, there was an
increased volume in the obese patients in the inferior frontal

correlation for either the normoglycemic obese (blue) or obese T2DM
(red) participants. The correlation with sex is presented as mean with
standard deviation and represents men and women irrespective or group
allocation

gyrus (Zhang et al. 2016). Although increased thalamus vol-
ume has not been observed previously as far as we know,
higher amygdala volume has been observed in obese
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Fig. 3 Scatter plot of the correlations between altered subcortical
structures and medical and anthropometric variables. Green circles
depict the healthy lean controls, blue triangles the normoglycemic
obese, and red squares the obese T2DM patients. The black regression
line shows the correlation for the whole group. The colored regression
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Normalized bilateral amygdala volume (mL)

lines depict the correlation for either the normoglycemic obese (blue) or
obese T2DM (red) participants. The correlation with sex is presented as
mean with standard deviation and represents men and women irrespective
or group allocation
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Fig. 4 Schematic representation of the clusters where insulin, was
significantly negatively related to either, surface area, thickness, or
volume in all participants. Blue-light blue indicates a negative correlation,
whereas red-yellow indicates a positive correlation

individuals (Widya et al. 2011). Both the amygdala and the
insula are part of the limbic system and as such involved in
emotion regulation. Activation due to watching food pictures
in these regions has been shown to be increased in this sample
of normoglycemic obese and obese T2DM patients, whereas
response to actual food was decreased, linking these structures
to food and satiety as well (van Bloemendaal et al. 2014; ten
Kulve etal. 2016). The inferior frontal gyrus, besides involved
in language processing, has a major role in response inhibition

(Weywadt et al. 2016). Taking these results together, it might
be hypothesized that inhibition of feeding behavior is
disrupted in these obese subjects. If and how structural chang-
es in these regions affect feeding behavior, and how and if
they are involved in the pathophysiology of obesity needs to
be determined in further studies.

It may be hypothesized that, as obesity is a strong risk factor
for T2DM, the brain changes in T2DM are aggravated in com-
parison with obese subjects. In this study, in the right insula,
both T2DM and normoglycemic obese participants showed
lower cortical thickness, and the conjunction analysis showed
a trend towards overlap within this cluster, possibly indicating
that the insula is an area of overlap between both groups.
Regarding cortical surface area, obese T2DM patients showed
lower indices than normoglycemic obese subjects in the
paracentral region. Instead of showing a continuum, both
groups showed specific cortical changes in distinct regions.
These diverging results may be driven by the selection of our
obese participants. They had to be normoglycemic as objecti-
fied by an oral glucose tolerance test, and therefore represent a
special group of obese subjects that has previously been labeled
as healthy obese. The absence of impaired glucose metabolism
may be driving the observed differences. It was, however, not
possible to test this hypothesis as obese participants with glu-
cose metabolism disturbances were not included in this study.
Alternatively, the sample of normoglycemic obese subjects in
this study was modest and lower than that of the obese T2DM
and lean control participants, which may have resulted in lower
power to detect alterations in other brain regions.
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Fig. 5 Scatter plot of the correlations between clusters that showed a
vertex-wise correlation with insulin. Green circles depict the healthy lean

controls, blue triangles the normoglycemic obese, and red squares the
obese T2DM patients. The black regression line shows the correlation
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for the whole group. The colored regression lines depict the correlation
for either the normoglycemic obese (blue) or obese T2DM (red)
participants
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The structural cortical gray matter alterations found were
related to being female, fasting glucose, and BMI. However,
after correction for group allocation only the correlation with
sex remained statistically significant. Sex is commonly known
for its influence on cortical structure. Although BMI and fasting
glucose were not correlated with cortical structure after correc-
tion for group allocation, it hints towards the influence of both
central adiposity and glucose metabolism disturbances on the
brain. Many previous studies have suggested these factors have
negative consequences on the brain, but future studies should
determine if they have an effect on different brain regions.

The subcortical alterations were related to age, sex, BMI, and
cholesterol, independent of group allocation. Previous studies
showed that cholesterol and free fatty acids were related to in-
creased white matter integrity (Haltia et al. 2007; Verstynen et al.
2013), suggesting that abnormal lipid metabolism may relate to
increased indices of cortical structure. Whereas these effects
may be most profound in white matter, as the primary compo-
nent of myelin is cholesterol, the results of this study show it
might also be connected to amygdala volume, a deep gray mat-
ter structure that is connected and adjacent to major white matter
tracts. Further studies are warranted to understand the relation-
ship between increased brain structure and lipid metabolism.

Exploratively, the correlation between cortical gray matter
structure and fasting glucose and insulin levels was determined.
After correction for group allocation and estimated intracranial
volume, there were no correlations with glucose. On the other
hand, higher insulin was related to lower frontal, temporal, and
insula surface area and volume, regions that were found affect-
ed in this study or in other obesity and T2DM studies (Moran
et al. 2013; Zhang et al. 2016). Interestingly, some of these
regions are part of the default mode network, a network that
is highly active during rest (Greicius et al. 2004), and are con-
sidered hub regions, i.e. regions with high importance within
the brain because of extensive structural and functional connec-
tions (de Haan et al. 2012). It might be hypothesized that high
levels of insulin in the brain have a greater negative effect on
these hub regions. This should be studied in future studies.

Limitations of this study include the relatively small sample
size, especially the sample size of the normoglycemic obese
subjects. Although this will have limited statistical power, the
current sample size yielded sufficient power to detect between-
group differences. The smaller sample size also prohibited the
calculation of meaningful correlations in the groups separately.
Therefore, correlations were determined in the whole group.
This, however, prevents us from drawing group specific con-
clusions. Although the well-phenotyped normoglycemic obese
and complication free obese T2DM subjects constitute a
strength of the current study, it is not possible to generalize
the results of this study to the general obese or T2DM popula-
tion. The cross-sectional nature of this study did not allow for
determination of a causal relationship. Another limitation is
the difference in age range between T2DM patients and

@ Springer

the other groups. However, this difference was small (3 years)
and not statistically significant. In addition, we corrected for
age in the statistical analyses. It would have been interesting to
compare functional connectivity or DTI data between these
participants as well, however, as this is a combined study, both
fMRI and DTI data are only available for a subset of partici-
pants. Also, as the parent studies did not include cognitive
testing or APOE genotyping this information is not available
in this study.

In conclusion, we found insula, parietal and occipital cortical
deficits in obese patients with uncomplicated T2DM, which
may constitute early T2DM-related brain damage. In
normoglycemic obese subjects, insula and inferior frontal gyrus
deficits, but increased amygdala and thalamus volume were
found, indicating a distinctly differential pattern of brain alter-
ations in normoglycemic obese and complication free obese
T2DM nparticipants. These deficits were related to sex, but also
central adiposity, and altered lipid metabolism. Lastly, insulin
seems to be related to poorer cortical structural integrity in sev-
eral hub regions. Future studies should focus on the pathophys-
iology of these cortical deficits, ultimately to ameliorate or pre-
vent the deleterious effects of obesity and T2DM on the brain.
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