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Abstract: The (x, y) position reconstruction method used in the analysis of the complete exposure
of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a
statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT)
light response directly from the calibration data. The light response functions make use of a
two dimensional functional form to account for the photons reflected on the inner walls of the
detector. To increase the resolution for small pulses, a photon counting technique was employed
to describe the response of the PMTs. The reconstruction was assessed with calibration data
including 83mKr (releasing a total energy of 41.5 keV) and 3H (β− with Q = 18.6 keV) decays, and
a deuterium-deuterium (D-D) neutron beam (2.45 MeV). Within the detector’s fiducial volume,
the reconstruction has achieved an (x, y) position uncertainty of σ= 0.82 cm and σ = 0.17 cm for
events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are
associated with electron recoils of energies ∼0.25 keV and ∼10 keV, respectively. The reconstructed
position of the smallest events with a single electron emitted from the liquid surface (22 detected
photons) has a horizontal (x, y) uncertainty of 2.13 cm.
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1 Introduction

The LUX detector, a 370 kg liquid-gas dual-phase xenon time projection chamber (TPC) [1], has
as its main scientific goal the observation of nuclear recoils resulting from hypothetical dark matter
particle candidates, called Weakly Interacting Massive Particles. The excited xenon atoms and
ionization electrons from the recoil in the liquid phase are observed through two different light
signals: the prompt scintillation signal (called S1) and the charge signal (called S2). S1 arises
from the direct production of xenon excited states and the recombination of some electrons with
ions in the liquid. S2 is generated by the drifting of the ionization electrons that do not recombine
towards the liquid surface, where they are extracted and accelerated into the gas phase producing
electroluminesce. The light from both S1 and S2 is observed by two arrays of photomultiplier tubes
(PMTs) placed on the top and bottom of the detector. The detection of both signals ensures a good
reconstruction of the position of the interaction: the depth of the interaction is obtained from the
time separation between S1 and S2, while the (x, y) coordinates are obtained from the distribution
of the S2 light among the PMTs. Assuming a parallel field geometry, the (x, y) position of the
interaction can be taken as that of the electroluminescence production (i.e. the S2 signal). The
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energy depositions of the recoils in the liquid xenon are considered point-like in the energy range
of interest. For example, a 10 keV electron has a range of about 2 µm while that of a 5 MeV alpha
particle is less than 50 µm. These numbers are much smaller than the typical size of the electron
cloud in the (x, y) plane due to electron diffusion along the transverse direction. At the center of
the LUX chamber (drift time = 160 µs), the standard deviation of the electron transverse diffusion
in the x and y direction is between 1 mm (for a diffusion constant of 30 cm2/s [2]) and 1.4 mm (for
a diffusion constant of 60 cm2/s [3]).

A good 3D position reconstruction of the events is paramount in the analysis of dual phase
detectors to ensure a good description of the observed events. Most of the radiological background
events are localized closer to the walls, the photomultipliers or the electrode grids, leaving the center
of the detector with a very low background [4]. Some especially troublesome backgrounds originate
from the radioactive decay of 210Pb, 210Bi and 210Po plated on the Polytetrafluoroethylene (PTFE)
walls of the detector (pp. 127–133, [5]). These decays mimic low energy nuclear recoils and cannot
be discriminated from a true recoil of a xenon nucleus using the ratio between S2 and S1. We
reject those events by preferably searching for signals in the detector central volume — the fiducial
volume. Consequently, a precise and accurate event position reconstruction, especially close to
the walls of the detector and to small S2 sizes (S2 = 0–4,000 detected photons, phd hereafter), is
essential to accurately model external backgrounds from high rates at the walls to progressively
lower rates towards the center of the detector.

Position reconstruction is also essential to correct for variations of the number of S1 and S2
photons throughout the chamber. These variations are due to the light collection dependence on
the interaction position, the finite electron lifetime due to the presence of impurities, and to local
distortions of the electric field [6]. The detector calibration with respect to nuclear recoils also
requires a precise reconstruction of the vertex of neutron interactions in the detector [7].

Several (x, y) position reconstruction algorithms have been employed in scintillation detectors.
The oldest is the center of gravity or centroid method (often used in the Anger camera [8]), in which
the position of the interaction is obtained from a weighted average of the PMT responses. A simple
weighted average is biased towards the center of the array due to the finite extent, but the position
can be partially corrected using a lookup table with corrections that depend on the position or an
alternative parameterization [9]. Another choice of position algorithm involves the use of artificial
neural networks [10], which have been employed by the XENON collaboration [11].

Other methods make use of a statistical test, such as the χ2 test or other maximum likelihood
techniques [12]. They determine the position of interactions by matching expected PMT outputs
with the observed values. These methods have the advantage of giving an estimator (e.g. χ2

minimum) that can be used to assess the quality of the position reconstruction. For each PMT, the
expected outputs as a function of the event position are usually stored in a Monte-Carlo generated
lookup table (e.g. ref. [13]) or described by an empirical light response function (LRF), which
characterizes the response of the PMT as a function of the position of the emission of the light
(x, y).

All the aforementioned algorithms require the use of some sort of calibration data for which
the position of interaction is already known. In large detectors such as LUX, it is not feasible to
use external radioactive sources to produce energy depositions at desirable locations in the inner
region of the detector, due to the large volume and self-shielding properties of liquid xenon. Thus,
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the solution usually adopted is to make use of simulated data, which has limitations since the
simulations may not describe accurately all the intricacies of the light collection such as the precise
optical properties of the materials in these detectors.

The position reconstruction algorithm employed in the LUX experiment (named Mercury,
originally developed for the ZEPLIN-III darkmatter experiment [14]) is a statistical-based algorithm
using a maximum likelihood test to find the best set of output parameters. Mercury uses S2 photons
to reconstruct the (x, y) position of the event. It employs LRFs to predict the response of each PMT
for interactions at an arbitrary distance from that PMT. The innovative aspect and major advantage
of this method is the way in which the LRFs are obtained: it employs a virtual scan method, using
the detector’s own data with minimal or no reliance on simulations. In this virtual scan, the LRFs
are obtained iteratively through a sequence of fits to the calibration data until the response functions
converge simultaneously. This method is described in detail in section 2.

LUX was designed to achieve a very low energy threshold (down to 1 keV for a nuclear recoil)
aiming to be very sensitive to low mass WIMPs. This means that the signals of interest can be
of very small amplitude (a few detected photons per PMT) which imposes new challenges to the
position reconstruction. To optimize the precision and accuracy of the algorithm for this energy
region, a new method was implemented (section 3) to count individual photons in channels with
very low signal. Another major difference from the original version of Mercury is that the LRFs in
this work are 2-dimensional (axial and polar) instead of 1-dimensional to account for the reflection
on the walls of the detector (section 2). The ZEPLIN-III detector had low-reflectance internal walls,
and thus the axial symmetry was a good approximation.

The position reconstruction method presented here was used in the analysis of the LUX data
from 2013 (WS2013), including both the original analysis (85.3 live days of data, [15]) and the
reanalysis (95.0 live days, [16–18]), as well as in the analysis of the data collected from 2014 until
2016 (WS2014–16, 332.0 live days, [19, 20]) and the calibration data used to monitor and calibrate
the detector [7, 21, 22].

Mercury has also been used with some modifications in the DarkSide-50 experiment [23], the
Panda-X experiment [24], and proven to work well for a gamma camera for medical imaging [25].

This article is organized as follows: themethod of obtaining the LRFs (virtual scan) is described
in section 2; in section 3, we introduce the method implemented to find the position of emission
of S2 light; in section 4, we discuss the use of the position reconstruction algorithm on calibration
data, the associated uncertainties, and the position resolution.

2 The Light response functions

The determination of the shape of the light response functions (LRFs) is an essential feature in
Mercury as they are used to estimate the expected response of the detector. The light response
function of a PMT i, Hi, is proportional to the probability that a S2 photon emitted at (x, y) and
detected by any of the PMTs is detected in channel i. These functions may change from PMT to
PMT because the light collection depends on the relative position of the PMT in the array. Besides
the (x, y) position, the minimization method described in section 3 also estimates the associated
uncertainties and the value of the log-likelihood ratio, qmin, associated to the reconstructed position.
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Figure 1. Top array of the LUX detector with the variables used in the definition of the functional form of
the LRFs. The yellow star corresponds to the point of emission of the light from an electro-luminescence
signal (S2). ρ is the distance between the PMT and the light source; (R,Φ) and (r, φ) are coordinates of the
PMT and of the emission of the light position, respectively. The PMTs are grouped according to the distance
to the center of the chamber. The numbering scheme reflects the group which the PMT belongs to.

In this section, we start with the description of the LUX detector geometry followed by the
discussion of the influence of reflections from the PTFE walls on the S2 light collection. Finally
we describe the fitting procedure used to derive the LRFs.

2.1 The LUX detector and calibrations

The detector light collection, which determines the (x, y) dependence of the LRFs, depends on
many factors such as the geometry of the detector, the optical properties of the internal surfaces,
and the PMT characteristics. In LUX, the active liquid xenon region has a dodecagonal shape with
a height of 52.4 cm (with a 5.5 cm gas phase layer on top of the liquid), and a distance between the
center of the side faces and the center of the detector of 23.65±0.05 cm [1]. Both S1 and S2 signal
result from far ultraviolet photons with a wavelength of ∼175 nm [26, 27]. This light is detected
by 122 Hamamatsu R8778 PMTs organized in two hexagonal arrays of 61 PMTs each, one placed
immediately above and the other at the bottom of the sensitive volume [28]. The geometry of the
top array is shown in figure 1. Each PMT has a diameter of 57 mm and an active photocathode
diameter of 45 mm, except for the PMTs on the periphery which are partially covered by the detector
walls.

Each of the 12 side walls of the detector and the space between the photomultipliers are covered
by PTFE. The high reflectance of PTFE for the xenon scintillation light (>97% in the liquid phase
[29]) ensures a good light collection for both the S1 and S2 signals.

During theWIMP search run, the detector was calibrated using a variety of radioactive sources,
both internal (83mKr and 3H, injected in the gas system of the detector) and external (2.45 MeV
deuterium-deuterium (D-D) neutron source, 252Cf, Am-Be, and 137Cs) [30]. These calibrations
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were not only used to study the response of the detector for both electronic and nuclear recoils
as a function of the deposited energy, but also to develop and study the position reconstruction
method. The 83mKr calibration is particularly important for the latter. It provided the data to i)
obtain the LRFs of the PMTs (section 2.3), ii) monitor the quality of the position reconstruction,
and iii) measure the position resolution (section 4.1).

The 83mKr isotope decays with a half life of 1.83 h occurring in two transitions of 32.1 keV and
9.4 keV respectively, the half-life of the intermediate state being 154 ns [21]. Given the short time
between these two decays, the two pulses overlap producing a single S2 signal that has between 4,000
and 20,000 phd distributed among several PMTs, depending on the depth of the event, which gives a
sizable signal on the top PMT array but far from the saturation point (∼10,000 phd per PMT). After
being injected in the circulation system, 83mKr distributes itself uniformly throughout the sensitive
volume of the detector [31]. The uniformity of the reconstructed 83mKr events gives us insight
about the quality of the position reconstruction. Furthermore, the large number of 83mKr-decay
events collected during the science runs (10 million events in WS2013) is sufficient to characterize
with great detail the S2 light collection dependence on the event position. Single electrons are also
a possible source of calibration. They are the lowest possible S2 signal (〈S2〉 ∼22 phd), and thus
can be used to study the systematics and statistical errors affecting the reconstruction of the lowest
pulses which are of great interest in the LUX analysis.

The (x, y) position reconstruction makes use of the signals from the PMTs of the top array
except for two malfunctioning units (marked by a cross in figure 1). Information from the bottom
array PMTs is only used for the determination of the total S2 size, as the S2 light collection
efficiency in each individual bottom PMT is almost independent on the (x, y) position of emission
in this high-reflectance chamber design. As for the S1 signal, its amplitude is relatively small on
both PMT arrays, being inadequate to reconstruct the position. From the S2 signal of each PMT i
on the top array, two quantities are extracted for the (x, y) position reconstruction: the pulse area,
Ai, and the photon counts, Ni. The pulse area, Ai, is obtained by the software integration of the
PMT signal along the duration of the pulse, while the number of detected photons,Ni, is estimated
by identifying and counting the individual discrete single detected photon pulses observed during
the emission of the pulse (typically some microseconds for an S2 signal). The PMT signals are
recorded in a dedicated Struck board with a sampling period of 10 ns [32], making it possible to
implement photon counting software. In the simple method employed, a photon is counted each
time the photomultiplier waveform crosses a certain threshold (>1.4 mV, 5σ above the baseline
noise). Both Ai and Ni are used in the statistical method described in the section 3.

2.2 Influence of the wall reflection in the S2 light collection

In LUX, the LRFs are described using two-dimensional analytic functions, dependent on the radial
position of the S2 light emission, r , and the distance between the PMT and the and the position
of the S2 light emission, ρ. This is unlike the simpler approach in ZEPLIN-III described in
[14], in which one dimensional LRFs were used instead as lateral reflections could be ignored to
good approximation due to the low reflectivity of copper (the bi-hemispherical reflectance [33] of
polished copper in xenon gas and for λ ∼175 nm is less than 13% [34]). In LUX the active region
is defined by highly reflective PTFE panels extending up until the PMTs in the top array in order
to increase the light collection of the S1 signal and thus increase the detection efficiency for low
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Figure 2. Contour curves of the position of an interaction showing the number of photons detected by a PMT
at R = 18 cm for non-reflective walls (a) and 100% reflective PTFE panels (b). The data is from simulated
83mKr S2 events (∼20,000 detected photons) uniformly distributed in the liquid xenon active volume. The
circular edge of the PMT borders and the border of the chamber are shown in gray.

energy nuclear recoils. The bi-hemispherical reflectance of these panels in contact with gas was
found to be 70% as measured by [35] and >75% as determined in LUX from comparison with
Monte Carlo simulations [30]. The bi-hemispherical reflectance of the panels immersed in liquid
xenon is much higher (>95% [29]). While the light reflected on the PTFE walls in the gas gap has
a significant impact in the light distribution pattern, the reflection of the scintillation light on the
walls in contact with the liquid xenon does not influence the shape of the LRFs.

We studied the influence of the reflectance of the inner surfaces on the light collection dis-
tribution at each PMT of the top array using the S2s from a LUXSim 83mKr simulation with full
light propagation [36]. Two scenarios were considered: i) all the PTFE inner surfaces are diffusely
reflective with a diffuse albedo of 100%, and ii) all the PTFE inner surfaces are non-reflective. In
both cases, specular reflection was not considered. For each case, 20,000 83mKr events uniformly
distributed in the active liquid volume were generated, and the light was propagated until it was
detected or absorbed. Figure 2 shows the S2 light collected at a PMT close to a detector wall.
As shown, for the case with non-reflective inner surfaces, the PMTs collect almost only direct S2
light, which is emitted isotropically, with exception of two small components: light that is reflected
on the liquid/gas interface and light that crosses that interface and returns to the gas via Rayleigh
scattering in the liquid. On the contrary, for reflective surfaces, the light collection is no longer
axially symmetric, showing a saddle extending from the center of the photomultiplier towards the
wall. It is clear from this study that in LUX the light collection depends not only on the distance
between the PMT and the S2 position but also on the distance of the S2 position to the walls,
requiring two variables to describe the LRFs.
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2.3 LRF determination

We implemented a newmodel for the LRFs that takes into account the light reflected on the walls and
takes advantage of the symmetries of the detector by adding an axial (η) and a polar (ε) component
calculated for each PMT i on the top array. This function can be written as

Hi (r, ρ) = Ci [η (ρ) + εi (r, ρ)] , (2.1)

where ρ corresponds to the distance between PMT i centered at (Ri, Φi) and the light emission at
(r , φ) (figure 1). Ci are normalization constants to equalize the response of the PMTs for the same
number of incident photons per unit of PMT window area under the same geometrical conditions.
Differences in the values of Ci are due to different quantum efficiencies of the photomultipliers for
xenon scintillation and different exposed photocathode areas as some PMTs are partially covered
with PTFE tiles reducing the light collection.

The functional form of the axial component was determined using LUXSim [36], being
described by the following empirical function

η (ρ) = A(
1 + γ2ρ2) 3

2
+ mρ + b, (2.2)

where A, γ, m and b are the fitting parameters. The first term, a bivariate-Cauchy function, describes
the light that goes directly to the PMT or is reflected on the gas/liquid interface, while the polynomial
term is necessary to describe the light that is reflected inside the liquid bulk or in the PTFE trefoils
placed between the PMTs.

The polar component, ε, cannot be described using the same function for all PMTs, as in the
case of η, given that PMTs closer to the walls detect more reflected light. However, the symmetry
of the LUX detector allows us to use the same LRF for PMTs with the same radial position Ri.
Therefore, the function ε has to be found for each of the 8 different groups of PMTs in the top array
(identified in figure 1 with the numbers 2–9). This approach significantly reduces the number of
parameters and is more robust as the symmetry of the chamber is directly incorporated in the LRF
model. In the initial iterations, only the PMT groups closer to the walls (Ri > 19 cm), where the
polar component is more significant, are used (the border of Ri = 19 cm is represented in figure 1
by the dashed line). After at least 5 iterations, all the PMT groups are incorporated in this fit.

The shape of the curve used to fit the polar component to the experimental data was also
inferred from simulations of the light collection in the detector. These simulations showed that this
component is described in first approximation by the following empirical function:

εg (ρ, r) = κg exp
(

r
ξg

)
exp

(
− ρ
ζg

)
, (2.3)

where the index g indicates the PMT group (g = 2–9) and κg, ζg and ξg are the fit parameters. This
function ensures that the polar component increases with the radial coordinate of the light emission
location, r , as expected, since the effect of the wall reflection is larger for events at larger radii.
However, it was clear that this simple function was not sufficient to describe the intricacies of the
light collection in the detector. Hence, in the final iterations of the process of the LRF determination
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Figure 3. Flowchart of the LRF fitting process.

that will be described next, an alternate format of eq. (2.3) that included more fitting parameters
was used:

εg (ρ, r) =
[
κg exp

(
r
ξg

)
+ αg(r)

]
exp

(
− ρ

ζg + βg(r)

)
αg (r) = kg,1 exp

[
−

(
r − kg,2

)2

2
(
kg,3

)2

]
+ kg,4r + kg,5

βg (r) = kg,6 exp

[
−(Wc − r)2

2
(
kg,7

)2

]
, (2.4)

where
(
κg, ξg, ζg, kg,1, kg,2......kg,7

)
correspond to the fitting parameters for each group of PMTs

and Wc = 24.5 cm is the position of the corners of the wall in the LUX dodecagon. Although
this function is more complex than eq. (2.3), the new terms only introduce small corrections to the
LRFs. κg is larger than αg, and the constant term ζg dominates with an average value ∼0.19 cm,
while kg,6 is only, on average, ∼0.04 cm.

Eq. (2.1) is used for all the PMTs with the exception of the central channel (R = 0). As this
PMT has axial symmetry relative to the active volume of the chamber, its LRF can be described
using the axial component, η(ρ), only (given by eq. (2.2) but in an independent fit).

The experimental data used to obtain the LRFs consisted of a sample of 83mKr calibration S2
pulses with unknown positions. For this, we selected 100,000 83mKr events close to the top of the
detector (at depths ranging from ∼8 cm to ∼12 cm). This number of events ensures the fitting is
done in a reasonable time and is sufficient to describe the light collection in the detector. For each
83mKr event and for each PMT, the pulse fractions, Fi, are defined as

Fi = Ai/AT or Fi = Ni/AT , (2.5)
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Fi being a sample of the functionHi (r, ρ). AT is the total pulse area of the S2 pulse summed over
all the photomultipliers in the chamber.

The functionsHi (r, ρ) are obtained by an iterative process. The flowchart of the fitting process
that follows is shown in figure 3. In each iteration m, C(m)i , η(m) (ρ), and ε(m)i (r, ρ) are fitted in
this order. The functional forms of η (ρ) and εi (r, ρ) are fitted to their values calculated with
eq. (2.1) using the experimental values ofHi given by Fi and the event position estimates from the
previous iteration. The constants C(m)i and the functions η(m) and ε(m)i are then employed to get
better estimates of the positions of the experimental events using the statistical method described
in section 3. These positions are used in the next iteration. The event positions used in the first
iteration are obtained with a corrected centroid method [14].

The constants C(m)i are obtained by equalizing the radial response of the PMTs from the top
array. The method used to determine C(m)i is as follows: the observed axial component, ηobs, is
computed as ηobs = Fi/C(m−1)

i − ε(m−1)
i (in the first iteration C(m−1)

i and ε(m−1)
i are set equal to 1

and 0, respectively). The values of ηobs with ρ ∈ [0, 15] cm are grouped in sections 1 cm wide in ρ.
For each section, we calculate the ratio between the average over that section of the axial function
for PMT i and that for all the PMTs of the top array. The factor C(m)i is given by the average over
all the sections of these ratios multiplied by C(m−1)

i .
To obtain η(m) (ρ), the function given by eq. (2.2) is fitted to its values at the experimental

values given by Fi/C(m)i − ε(m−1)
i (in the first iteration ε(m−1)

i is set equal to zero).
For the determination of both C(m)i and η(m), only events within a strip with thickness d along

the radial line between the current PMT center and the farthest wall are used, selected by the
conditions

|r sin (φ − Φi)| < d and r cos (φ − Φi) < Ri . (2.6)

In this fit, we set d = 0.25 cm.
To determine ε(m)i , the function given by eq. (2.3) (or by eq. (2.4) for the final iterations) is

fitted to its values at the experimental event positions given by Fi/C(m)i − η(m).
The C(m)i , η(m), and ε(m)i are then used to update the estimated coordinates of the positions of

the experimental events (using the statistical method described in section 3) that will be used in the
next iteration. In the first 5 iterations, a uniformization of the event positions (see section IV in ref.
[21]) obtained in the previous iteration was performed in the radial direction, in order to speed-up
the process.

The iteration process finishes once the average value of the qmin (minimumof the likelihood ratio
defined next, eq. (3.3)) does not change significantly between consecutive iterations (|∆ 〈qmin〉| < 0.1
typically). For LUX, the number of iterations needed to find a good set of functions {Hi} was
around 20, clearly larger than than the 5 iterations needed in ref. [14] when the simpler axial
approximation was used.

The LRFs of the faulty PMTs (marked by an x in the figure 1) are given by the average response
of the PMTs placed at the same distance Ri.

The good agreement between the data and the LRFs is illustrated in figures 4 and 5. The
former shows the final iteration of the fit of eq. (2.2) to the experimental data; in figure 5, the
colors represent the observed fractions Fi (panels a and b) or the corresponding LRFs (panels c
and d) as a function of the reconstructed interaction position (x, y) for a PMT in the central region
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Figure 5. 2D histogram of the fractions Fi from 83mKr for Ri = 10.4 cm (panel a) and Ri = 18 cm (panel b)
events and the respective LRFs (panel c and d). The contours of the photomultipliers and the border of the
chamber are shown in gray, while the center of the PMT under analysis is marked by a black cross.

(Ri = 10.4 cm) and a PMT close to the walls of the detector (Ri = 18 cm). The LRFs are mostly
axial symmetric for PMTs in the central region, approaching an oval shape for PMTs closer to the
walls due a larger polar component. In the latter case, the position of the maximum is not coincident
with the center of the PMT being pushed towards the wall of the detector as already expected from
the simulation results shown in figure 2.

We found that a single set of LRFs was sufficient to reconstruct all the collected data for the
full detector exposure. In fact, we monitored the average value of 〈qmin〉 for the 83mKr along both
runs. For both the WS2013 and WS2014–16 results, 〈qmin〉 was stable within 1% with no visible
degradation observed in the position reconstruction. Also, we fitted the LRFs using other krypton
datasets from WS2013 and we found that they were mostly indistinguishable. Additionally, we
monitored the PMT gain stability and the light yield stability. It was found that the PMT gain
fluctuations were smaller than 2% and that the relative variation in the light yield was only about
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0.6% [30].

3 The statistical method

A maximum likelihood algorithm [37, 38] was implemented to search for the (x, y) position of
the interaction that would produce in an array of N PMTs the expected outputs S = {Si(x, y)}
(i = 1, ..., N) which are the closest to the observed outputs D = {Di}. This consists in finding the
position (x, y) that maximizes the likelihood function,

L (D|S) =
N∏
i=1

pi (Di |Si) , (3.1)

where pi is the probability for the PMT i to have the observed output Di given the expected output
Si. Provided that the response of the PMTs and the subsequent electronics is linear, the expected
outputs can be written as

Si = DTHi (x, y) , with DT =

all PMTs∑
i=1
Di, (3.2)

where DT is the total number of detected photons summed over all the photomultipliers in the
chamber. For the non-working PMTs, we assumed Di = Si. The LUX analog signal chain and
DAQmaintain linearity up to energies of ∼100 keVee (Atop ' 50,000 in the S2) which is well above
the WIMP region of interest and the 83mKr and 3H β calibrations [32].

Instead of maximizing L (D|S), it is more convenient to minimize the log-likelihood ratio
[39] given by

q = −2 [lnL − lnL0] with L0 = L (D|D) , (3.3)

where L0 corresponds to the likelihood maximized in an unconstrained way (in this analysis, we
assumed S = D in the computation of L0).

The probability pi can be written as

pi (Di |Si) =
+∞∑
n=0

Pi(n;Si) · ui(n;Di), (3.4)

where Pi(n;Si) describes the fluctuations of the number of detected photons, n, for an expected
outputSi; and ui(n;Di) characterizes the response of the PMT i and the respective signal processing
electronics, being equal to the probability that the response is Di for n detected photons. In this
work we assume Pi(n;Si) to be the same for all the PMTs and given by a Poisson distribution:

Pi(n;Si) =
[
Sn
i exp(−Si)/n!

]
. (3.5)

As previously mentioned, the PMT outputs Di can be assessed by pulse areas or by photon
counting. The formulation of the maximum likelihood method in each of these cases is described
next, along with an innovative mixed method, which uses both as proxies for Di depending on the
pulse area recorded for each PMT.
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3.1 Pulse areas

In the pulse area method, the PMT response for a single detected photon is u(1)with 〈u(1)〉 = 1 phd.
Therefore, the response for n detected photons (n > 1) is obtained by the following recurrent
convolution

u(n) = u(n − 1) ∗ u(1). (3.6)

The probability density pi is given by the sum of the response for n detected photons with
weights given by Poisson distributions and taking the pulse areas, A = {Ai}, as estimators for the
measured outputs, {Di}, leading to

pi (Ai |Si) = e−Si
[
δ (Ai) +

+∞∑
n=1

(Si)n

n!
ui (n;Ai)

]
, (3.7)

where the Dirac delta function, δ (Ai), corresponds to the case n = 0, and the expected outputs, Si,
are obtained from

Si = ATHi (x, y) , with AT =

All PMTs∑
i=1

Ai . (3.8)

To obtain the likelihood ratio q, we can use the probability distribution from eq. (3.7) in eq. (3.3).
When the number of photons detected in each PMT is large enough, Gaussian statistics can be

used for Pi instead of the Poisson distribution. In the asymptotic Gaussian limit (Wilks’ theorem
[40]), q is distributed as the following simple χ2 minimization

q ≡ χ2 =

N∑
i=1

(Si − Ai)2

Si
(
1 + σ2

i

) , (3.9)

where the term
(
1 + σ2

i

)
represents the excess noise factor for each PMT [41]. This factor measures

the degradation of the signal compared with Poissonian statistics. It can be shown that σi is the
standard deviation of the response to single photons.

The pure pulse area method was used in the initial analysis of the WS2013 data [15]. In this
analysis, the single photon response, u(1), was obtained from LED calibrations (λ = 420 nm). It
was found that u(1) was well described by a Gaussian for all PMTs with the value of σi ranging
from 0.4 to 0.6 phd [42]. The simpler χ2 minimization was used for AT > 2, 000 phd.

3.2 Photon counting

In the photon counting technique, the response of a PMT for n detected photons is u(n) = δ(n);
thus, pi follows a Poisson law, q being given by (equation 39.16 in ref. [43])

q = 2
N∑
i=1

[
Si − Ni +Ni ln

Ni

Si

]
. (3.10)

For the PMTs with no photon detection (Ni = 0), we have Ni · ln(Ni/Si) = 0.
The main advantages of using the counting over the pulse area method are that it is much less

computationally expensive, and the excess noise factor is 1, which improves the energy resolution.
Moreover, the pulse areas method has a poor performance for very low signals given that the
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Figure 6. Distribution of the pulse areas (PA) and photon counts (PC) for pulses with a single extracted
electron from the liquid. The single electrons were emitted between the S1 and the S2 of the 83mKr. Both
histograms are fitted with Gaussian distributions for pulse size between 10 and 27 phd (fit-range indicated by
the dashed vertical lines), the upper bound defined to avoid contamination from double electron pulses. The
fit to the pulse areas is centered at 22.05±0.09 phd with a resolution (σ/µ) of 23.1±0.6%, while the fit to the
photon counting histogram has a mean of 22.04±0.06 phd and a resolution of 20.5±0.4%. This improvement
of 2.6±0.7% matches well the expected 2.7% estimated from the reduction of the noise factor. Only events
with a reconstructed radius smaller than 16 cm were considered in this analysis.

fluctuations in the baseline noise are integrated in the signal, while in the photon counting method
most of the baseline noise is well rejected by the threshold discriminator. The latter fact can be
directly assessed from figure 6 which shows a comparison of the resolution between these two
metrics using pulses from a single extracted electron.

Another main advantage of photon counting is the manner in which the double photoelectron
emission from a single xenon scintillation photon is treated [44]. For xenon scintillation light, 20%
of the photons produce two photoelectrons per photon on the photocathode of the PMT. In this
case, the single photon response function, u(1), can no longer be approximated by the Gaussian
single photon response of the PMTs obtained with blue LED light, in which case the photons do
not have enough energy for double photoelectron production. This greatly complicates the use
of the pulse area integration method that requires the knowledge of u(1), but has no effect on the
photon counting method, as the two photoelectrons are emitted simultaneously and thus counted as
corresponding to a single photon.

Photon counting is limited by the pile-up that occurs when two or more photons are detected
almost simultaneously, producing a signal indistinguishable from that of single photon. The
probability of pile-up depends on the time resolution, τ, assumed to be the same for all the
photomultipliers, and on the photon flux. The time resolution, τ, is the minimum time difference
between two detected photons to ensure they are not merged into a single count. It was estimated
from the analysis of S1 signals to be 30 ns.

To estimate the effect of pile-up, we approximated the light flux during the emission of the S2
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signal to a Gaussian distribution defined by a standard deviation σS2, estimated for each S2 pulse.
σS2 increases with the drift time of the event due to longitudinal diffusion of the electrons while
drifting to the liquid surface [45]. From the analysis of the S2 signals, it was found that the average
value of σS2 ranges from 360 ns to 830 ns for events from the top and bottom of the liquid layer,
respectively. The probability of pile-up was computed in a dedicated Monte-Carlo simulation for
different values of σS2 and pulse areas of the PMTs. These results were then used in the q of the
mixed method described in the following subsection.

3.3 Mixed method

In the mixed method, the response of the PMTs is described with the photon counting method when
the pulse area, Ai, observed for a PMT i, is smaller than a certain threshold, T , and the pulse
areas method above that threshold. The threshold depends on the pulse width of the event, and the
log-likelihood ratio is given by the value of q for the PMTs described by pulse areas plus the value
of q for the PMTs described by photon counting. By combining eqs. (3.9) and (3.10) we have:

q =
N∑
i=1,
Ai<T

2
[
Si − Ni +Ni ln

Ni

Si

]
+

N∑
i=1,
Ai>T

(Si − Ai)2

Si
(
1 + σ2

i

) . (3.11)

The threshold, T , is set such that the contamination of the pile-up in the photon counting is smaller
than 5%, determined from the Monte-Carlo simulations described in the previous sections. It was
found to be given by

T = 0.39 · σS2
τ
(phd), (3.12)

where τ = 30 ns.
The mixed method was used both in the reanalysis of the WS2013 results [16] and in the

WS2014–16 results [19]. In both analyses, the pulse areas are calibrated using 83mKr calibration
data in order to ensure compatibility between photon counting and pulse areas [30]. The mean
values of the two histograms on figure 6 agree within uncertainties, showing good agreement
between the photon counting and the pulse areas methods.

3.4 Position uncertainties

The analysis of the shape of q around the minimization point (qmin) is used to estimate the un-
certainties associated with the position reconstruction. Figure 7 shows the contour lines of the
q minimization for three different small S2 events (AT<4,000 phd). As shown, the q surface is
smooth, well behaved and has an unambiguous global minimum. The q is axially symmetric for
events in the central region of the detector (r<20 cm), while for events near the walls the surface is
elongated along the radial direction, reflecting the larger uncertainty on that coordinate.

Considering the symmetry of the q contours, the uncertainties in the reconstructed positions
are best expressed in cylindrical coordinates (σr , σφ). To obtain them, we select the curve in the
(x, y) space where q = qmin + 1 [43]. The azimuthal, σφ, and the radial, σr , uncertainties are given
by the distance between this curve and the position of the minimum along the azimuthal and the
radial directions, respectively. Even though this method is only exact for a Gaussian distribution, the
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Figure 7. Contours of the q minimization profile for three different small S2 pulses (AT < 4,000 phd): two
near the walls of the detector (a and c) and the other close to the central region of the PMT array, between
two PMTs. PMT shapes and the border of the chamber are represented by black lines.

results presented in section 4 show that these values are a good estimate of the position uncertainty
for the smaller S2 pulses.

The uncertainties in the reconstructed positions decrease with increasing number of top array
PMTs involved in the reconstruction. However, that improvement is only relevant up to 20 PMTs
(including all 59 working channels instead of 20 PMTs improves the position uncertainty by only
3%). For this reason, we considered in the position reconstruction procedure only the 20 PMTs
closest to the initial position estimate (obtained by the corrected centroid algorithm [14]). This
is done in order to minimize the interference from noise sources (such as the emission of single
electrons or afterpulsing in a PMT), which typically lead to events located near the wall of the
detector to be reconstructed towards the center. It also improves the speed of the reconstruction by
10%.

The position reconstruction fails or is affected by a large systematic errorwhen the reconstructed
signal is not from a single scatter S2 or the S2 is affected by some source of noise such as after-
pulsing in a PMT or the presence of an unstable PMT etc. Those events have, on average, a larger
minimum value of qmin, and thus a quality cut based on the value of qmin can be used to remove
those events. In the WS2014–2016, we considered only events with qmin < 40 + Atot/42. The
efficiency of this cut calculated using calibration data (namely 3H) was above 95% [19] for Atot
between 200 and 4,000 phd.

3.5 Vertex positions

The coordinates of the interaction vertex in the (x, y) plane, (xver, yver), coincide with the S2 (x, y)
coordinates when a uniform field exists between the cathode and anode of the TPC. In LUX detector,
the electric field exhibited some non-uniformity during both WS2013 and WS2014–16, being more
severe and time-dependent in the latter. This is described further in the section 4 and in more detail
in [6, 21]. To obtain the vertex coordinates from the S2 (x, y) position, we created a mapM that
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converts the reconstructed S2 position into the real vertex positions xver and yver

(xver, yver) =M (x, y, drift time) . (3.13)

The 83mKr calibration events, assumed uniformly distributed in the volume of the detector, were
used to obtain the map M and verify its stability in time. This map remained constant along
WS2013 but varied along WS2014-2016. A thorough discussion of the creation of those maps is
presented in ref. [21]. It is worth to note that in WS2014-16 the background modeling and the
WIMP search data analysis were carried out with the data kept in S2 coordinates, while the true
positions of simulated data were mapped into the S2 space using field models developed for this
purpose [19]. In the following analyses, S2 reconstructed positions are used and not the interaction
vertex positions unless stated otherwise.

4 Results and discussion

The position of each interaction is an essential quantity in the LUX analysis, since both the radius
and the azimuthal angle are two of the observables (r , drift time, S1, S2, and φ in WS2014–16)
of the profile likelihood analysis used for the determination of the exclusion limits [19]. It is thus
crucial to assess the quality of the position reconstruction and determine the uncertainties of the
reconstructed positions. As mentioned before, due to the detector design and size, it is not practical
to obtain experimental data with known positions of interaction allowing the direct comparison of
the reconstructed positions with the original positions. However, calibration data from dispersed
sources have a known distribution of events in the detector. The most useful calibrations for the
position reconstruction assessment are the 83mKr (as previouslymentioned, used for the construction
of the LRFs), the 3H (β− with Q = 18.6 keV), and the 2.45MeV D-D neutron calibrations.

In the analyses that follows, WS2013 data are used unless stated otherwise. However, both
runs use the same set of LRFs and the same position reconstruction method with no observable
changes in the light collection. For the WS2013 results, we observed that 〈qmin〉 was stable within
1% with no clear degradation observed in the position reconstruction. For the 2014/2016 LUX
results [19], a faulty PMT affected the reconstruction leading to the exclusion of that PMT from
the analysis. However, it was sufficient to recover the reconstruction quality without modifying the
LRFs. Therefore, the main conclusions presented here are still valid for the WS2014–16 data. The
calibration data used here was processed in the same manner as in the analysis of recently published
LUX science results [16, 19].

4.1 Krypton-83m data

The reconstructed (x, y) distribution of 83mKr decays in the detector is shown in figure 8 for events
occurring at the top (drift time between 4–10 µs) and bottom of the detector (drift time between
290–320 µs). From figure 8, it can be seen that the reconstructed coordinates do not extend to the
edge of the top PMT array. This effect is stronger for longer drift times. Detailed simulations of the
electric field in the LUX chamber (described in ref. [6]) explain this observation by the existence
of a radial component of the drift field, pushing electrons towards the center of the detector as they
drift upwards and hence shifting radially inwards the position of S2 relative to that of the interaction.
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Figure 8. (x, y) scatter plot of the S2 reconstructed positions of 83mKr events for drift time between 4 and
10 µs (left panel, WS2014–16) and between 290 and 320 µs (right panel, WS2013). The PMT and TPC
inner walls are represented by black lines. In both figures, especially at the left, a striped pattern with the
pitch of the gate grid wires can be clearly seen.

In the WS2013, the main origin of the radial field component is the electrical transparency of the
cathode grid and the lateral field rings of the TPC, which allow some field leakage. A nearly
identical effect is observed in the XENON100 detector [46]. This radial field also depends on the
azimuthal angle, an effect which is also visible in figure 8. This may be caused by a combination
of azimuthally-varying field leakage across the grid and possibly a non-uniform distribution of
accumulated charge on insulating surfaces of the detector. In the WS2014–16 run, the radial field
was much stronger compared with that in the WS2013 run (see ref. [6] for details), but with no
direct impact on the LRFs.

In figure 8, one can observe a striped pattern in the event density, parallel to the wires forming
the gate grid (both the gate grid and the observed pattern are at an angle of 15◦ to the x axis). The
grid wires are 0.1 mm in diameter and 5 mm apart. The grid plane is ∼4 mm below the surface of
the liquid and 1 cm below the anode grid. This grid separates the drift field (defined by the cathode
and gate grids, the former being 48 cm below the gate grid) and the extraction/electroluminescence
fields (defined by the gate and anode grids, the latter being 4.8 cm below the top PMTs) in the
detector, allowing these two fields to be set independently. Given the large difference between the
drift field (180±20 V/cm in the WS2013) and the extraction field (2.84±0.16 kV/cm in liquid in
WS2013), the drift field lines are compressed as they pass through the gate plane; any electrons
leaving the drift volume appear only in narrow strips between each pair of gate wires. This effect is
shown in figure 9, with the path of the electrons along the field lines represented by the white lines
and the color-map representing the electric potential.

The visualization of this focusing effect of the field lines between the grid wires can be used
to assess the quality of the position reconstruction. The histogram on figure 10 represents the
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Figure 9. Electron trajectories (in white) and electric potential (color-map) near gate grid wires obtained
by a COMSOL Multiphysics simulation [6]. The gate grid is shown at z = 0 cm by the white dots and the
surface of the liquid is represented by the black line. The original (x, y) position of the events were rotated
by 15◦ in such a way that the direction of the new x-axis (x ′) is parallel to the gate wires, and the direction of
the new y-axis (y′) is perpendicular to the gate wires. Note that the line density is not intended to illustrate
the field strength.
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Figure 10. Histogram of the density of 83mKr events just below the gate grid represented on an axis
perpendicular to the orientation of the gate wires. Only 83mKr events at a depth less than 1 cm below the gate
are considered.
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Figure 11. Histogram of the S2 event density for 3H β-decay events (red curves) and 83mKr events (blue
curves) for different sections of the detector. The two top curves correspond to events from the top third of
the chamber (drift time between 5 and 110 µs), the two middle curves for events from the middle third of the
chamber (drift time between 110 and 215 µs), and the two bottom curves to the bottom third of the chamber
(drift time between 215 and 320 µs). For clarity, we added a value of +200 to the curves from the top and
+100 for the curves from the middle.

density of the events occurring right below the gate plane (0 to 1 cm below the gate) and along
the direction perpendicular to the gate wires. Each peak was fitted with a Gaussian distribution
to obtain the central position and adjacent strips width. The results show that for the selected
region the average distance between two wires is 5.13±0.07 mm, matching the grid pitch (5 mm)
within 2σ. Additionally, the resolution of the wires determined from the Gaussian width is on
average σ = 0.965±0.028 mm for the selected region, similar to the average uncertainty from the
position reconstruction method (σ = 0.86 mm, see section 4.4). While the strips in the reconstructed
position distribution are mostly uniform right below the gate grid (figure 8 left), large variations in
the number of events in each strip are observed in the remaining volume (figure 8 right). These
variations are mostly likely to be caused by small variations in the pitch of the wires producing
fluctuations of the bulk field which are not observed for the S2 right below the gate wires.

4.2 Tritium data

The detector was also calibrated using a tritiated methane source [22, 47], where the Q-value of
the 3H β− decay is 18.59 keV. We collected more than 300,000 tritium events in a relatively high
rate (10 Bq) calibration [22], which is sufficient to compare with 83mKr calibrations. As in the case
of 83mKr, the 3H events are expected to be uniformly distributed in the liquid, but the size of the
S2 is smaller, up to 6,000 phd. The range of S2 for 3H is comparable to what is expected from a
WIMP event in the search region. For this reason, most of the PMT pulses are described using the
photon counting technique instead of pulse area integration as is the case with 83mKr. Therefore,
3H is an excellent source to assess the quality of the position reconstruction for smaller S2 pulses
and to confirm the consistency of the mixed model described in section 3.

Similarly to 83mKr, the distribution of reconstructed tritium events exhibits the same striped
pattern in the (x, y) density of events and the presence of the same radial field. Figure 11 shows

– 19 –



0 100 200 300 400 500 600
0

500

1000

1500

2000

Radius Squared (cm2)

E
v
en

ts
/c

m
2

Tritium data (3H) 

Krypton data (83mKr)

Figure 12. Density of events as function of the squared radius for 83mKr (red line) and 3H (blue line) data.
The event density was normalized at small radii.

the event density profiles along the direction perpendicular to the wires for these two sources and
for different drift times. As shown, the event density profiles are aligned as expected, showing no
significant systematic error affecting the position reconstruction as function of the drift time and
between the two sources.

Another test performed using tritium data was the comparison between the radial density of
3H and 83mKr events (figure 12). The two histograms match well except for a small systematic
difference for the events with r2 > 400 cm2. This disagreement is caused by the larger position
uncertainties of the tritium events due to their smaller size [30].

4.3 Neutron data

The response of the detector to nuclear recoils was calibrated using a D-D neutron generator that
emits monoenergetic neutrons with an energy of 2.45 MeV [7, 48, 49]. The D-D neutrons are
collimated by a 4.9 cm internal diameter air-filled tube which extends between the walls of the
shielding water tank and the detector cryostat. Since the position of the first neutron scatter is
located in the direction of the beam, the data from these calibrations were used to check for any
systematic error affecting the reconstruction.

Figure 13 shows the reconstructed positions of the first neutron scatter. No correction from the
radial field effect was applied to data as, at the height of the neutron beam, this correction is small
(only 4%).

To check the straightness of the reconstructed beam, we divided the beam along the y-axis
in 2 cm thick slices, and then for each slice we fitted the histogram of the x position to find the
center of the beam. The fit is composed of a semi-circle function describing the elastic neutron
events inside the beam and a skew-normal distribution describing the background from multiple
scatter events and other non-nuclear recoil events. The results are represented in ïňĆfigure 13 by the
black dots with the error bars corresponding to the uncertainty obtained in the fit plus a systematic
contribution from the size and position of the bins. These data are well described by a linear fit
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Figure 13. Scatter plot of the reconstructed S2 positions for the neutron data. The colors represent the local
(x, y) event density. Yellow points represent the center of the neutron beam measured in 2 cm slices along
the neutron beam direction. The x error bars are not visible because they are smaller than the dots, and the
yellow y bars correspond to the size of each slice. The green line is the linear fit to the data.

represented by the gray line. The root-mean square of the difference between the center of the beam
set by the center of the data slices and the fit is only 1.4 mm with the maximum absolute deviation
being 4 mm.

4.4 Position uncertainties and resolution

The LUXposition reconstruction code calculates two statistical position uncertainties (σr ,σφ) in the
reconstructed positions (section 3.4). These uncertainties are used in: i) the neutron calibrations,
to estimate the uncertainty in the scattering angle of double scatters [7]; and ii) calculating the
wall-event contribution to the background model, to estimate the contamination of wall events in
the fiducial volume [19].

Figure 14 shows both uncertainties as a function of the S2 area in the top array, Atop
(
〈
Atop/AT

〉
= 0.566±0.019 for r < 20 cm). This figure includes calibration data from both

tritium (blue dots) and D-D nuclear recoil events (red crosses), for a reconstructed radius smaller
than 17 cm (dark red/blue markers) and larger than 17 cm (light red/blue markers). As shown,
the uncertainties depend mostly on σ2 ∝ 1/Atop reflecting the Poisson distribution of the photon
statistics.

We can normalize the uncertainties to the number of photons, defining Υr and Υφ as

Υ(r,φ) = σ(r,φ)
√
Atop. (4.1)

The average values of Υr and Υφ as a function of the radius r are represented on figure 15. As
the figure confirms, Υr has a significant radial dependence, being about 40% larger for peripheral
events than for central ones. Conversely, Υφ is mostly constant. Additionally, the values of Υr and
Υφ depend on the distance of the event to the center of the nearest PMT. We fobserved that both
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of the position uncertainties.

uncertainties are on average 8% larger for S2 pulses generated right below the center of a PMT than
for those near the border of a PMT. We can explain this by looking to the first derivative of the
radial component, |η′ |, (see figure 4) which is maximized for ρ between 3 and 5 cm. The number
of PMTs that fall into that region is larger when the light is emitted near the border of a PMT.

The comparison of the experimental uncertainties with those obtained from simulated data is
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Figure 16. Radial statistical uncertainty, σr , as a function of the pulse area of the top PMT array. The data
are from the neutron calibrations, tritium calibrations, single electrons from 83mKr, and simulations of D-D
neutron calibrations, covering a wide range of pulse areas. For the simulations, the uncertainty corresponds
to the root mean square of the difference between the reconstructed radius and the true radial position of the
event. For both data and simulations, only the events with a reconstructed radius smaller than 20 cm and
a drift time between 40 and 300 µs are shown. The uncertainty for single electron events is σr = 2.13 cm
(average top pulse area of 13.8 phd). The black and gray dashed vertical lines corresponds to the S2 threshold
used in the WS2013 analysis (165 phd) and in the WS2014–16 analysis (200 phd) respectively. The dotted
line corresponds to a fit on the form K

√
Atop simultaneously to both D-D and tritium data.

shown in figure 16. It shows the average value of the uncertainties obtained with tritium, neutron
data and single electrons emitted after the 83mKr S2 signal, as well as with simulation data of neutron
calibrations. The data are for a reconstructed radius smaller than 20 cm. The uncertainties follow
a square-root dependence as predicted by photon statistics. For the simulated data, the uncertainty
corresponds to the root mean square of the difference between the reconstructed radius and the true
radial position of the event. There is only a small difference (∼0.5 mm) between the uncertainties
obtained from experimental data and from simulations. For r < 20 cm, the radial uncertainty is
0.93 cm for the WS2013 S2 threshold (AT = 165 phd,Atop = 93.4 phd, < 1 keVnr) and 0.82 cm for
the WS2014–16 S2 threshold (AT = 200 phd,Atop = 113.2 phd). These values were obtained with
the 2013 D-D data. The uncertainty decreases to 0.17 cm for AT = 4,000 phd (Atop = 2,264 phd,
∼10 keVee) obtained with the 2013 3H data.

An S2 due to a single electron that escapes from the liquid into the gas is the smallest
electroluminescence signal that can be observed (AT '22 phd, figure 6); thus, the study of
the single electron events is paramount to assess the reconstruction of very small signals and to
determine the lower limit of the position resolution. In a detector such as LUX, the single electrons
are typically caused by [50, 51]:

(1) delayed single emission from a previous S2 event: electrons can accumulate under the surface
barrier at the liquid/gas interface and escape into the gas later;

(2) photoionization of impurities in the liquid by the S2 or S1 photons.

– 23 –



−15 −10 −5 0 5 10 15
0

5,000

10,000

15,000

x(S2) - x(SE) (cm)

E
v

en
ts

/c
m

Data

Fit 2 Gau.

Wider Gau.

Figure 17. Difference between the reconstructed x position of a S2 83mKr signal, x(S2), and the reconstructed
x position of the single electron observed after the 83mKr signal, x(SE). Only single electrons signals with
a total pulse area from 10 to 35 phd, r < 20 cm, and ∆τ < 20 µs are analyzed. The dashed black curve
corresponds to the fit with the sum of two Gaussians centered at zero, and the dashed gray curve corresponds
to the contribution from the broader Gaussian distribution.

The delayed electrons (1) are expected to have the same reconstructed (x, y) position of the parent
S2 signal, so they can be used to directly measure the position resolution for single electrons. On
the contrary, single electrons from photoionization (2) are created anywhere along the path of the
S2 (or S1) light in the liquid being almost uncorrelated with the position of the parent S2.

In this study, we selected single electrons emitted after the S2 pulse of 83mKr events. The
uncertainty in the (x, y) position of the 83mKr S2 pulse is negligible compared with that of the
single electron since it is much larger (between 4,000 and 20,000 phd). This selection of single
electrons includes both single electrons from delayed emission and photoionization. To reduce the
background from the latter, only single electrons observed within a time window, ∆τ, less than
∆τ < 20 µs after the end of the 83mKr S2 signal were accepted.

The distribution of the difference between the reconstructed x position of the 83mKr S2 signal
and the reconstructed x position of the associated single electron, ∆x, is shown in figure 17. This
histogram is fitted with the sum of two Gaussians with different widths, both centered at zero.
The narrower distribution corresponds to the single electrons from the delayed emission while the
wider Gaussian describes the contribution from photoionization single electrons. The resolution
of the single electrons given by the standard deviation of the narrower Gaussian distribution was
determined to be 2.24±0.04 cm, comparable to the average uncertainty in the x position (2.13 cm)
obtained for these single electrons in the position reconstruction. In contrast, the standard deviation
of the wider Gaussian is about 11 cm. The results for the ∆y match exactly with the results for ∆x.

The contamination of the single electrons from photoionization can be estimated by measuring
the relative area of the wider Gaussian distribution. For our selection of ∆τ < 20 µs, the photoion-
ization accounts for 46.8% of all the single electrons. For larger values of ∆τ, the number of single
electrons from delayed emission as function of ∆τ follows an exponential decay law with a decay
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time constant of ∼40µs.
We checked the existence of any possible drift of single electrons from delayed emission along

the liquid surface of the detector as this would deteriorate the position resolution. The existence
of such drift was tested by measuring the average value of ∆x and ∆y as function of ∆τ. For this,
the data were sliced in 20 µs sections in ∆τ up to a maximum value of 200 µs and for each of
those slices the ∆x and ∆y histograms were fitted using a double Gaussian with the mean of both
Gaussian distributions not fixed. We observed that for ∆τ < 200 µs the absolute value of the fitted
mean is always smaller than 2 mm for both ∆x and ∆y, and no significant increase in the standard
deviation of the distribution was observed. This is a good indication that there is no significant
movement of the charge along the surface of the liquid.

We performed this same analysis using only the pulse areas to reconstruct the position of single
electrons instead of the mixed method adopted through this paper (both described in section 3.1).
The resolution obtained in the double Gaussian fit was 2.47±0.04 cm which corresponds to a
degradation on the resolution of single electrons of 10.27±0.25%. This shows that the mixed
method employed here improves the reconstruction of low energy events.

The uncertainties of the true vertex positions, (xver, yver), are affected by additional contribu-
tions. As before, the uncertainties are described using cylindrical coordinates (σver

r , σver
φ ). The

uncertainty along the radial direction σver
r is obtained in the following way:

(σver
r )

2
=

(rver
r
σr

)2
+ σ2

gate + σ
2
sys (xver, yver) , (4.2)

where rver corresponds to the vertex radial position. For the azimuthal uncertainty, σver
φ , the first

term is replaced by σ2
φ. The first term in eq. (4.2) corresponds to the error propagation of the

uncertainties in the S2 position reconstruction, σ(r,φ). rver/r measures the effect of the stretching
along the radial direction. For the WS2013 data, 〈rver/r〉 is 1.0 in the top, 1.06 in the middle, and
1.15 in the bottom of the chamber. For the WS2014–16 data, 〈rver/r〉 increases to about 3 in the
bottom of the chamber. The second term, σgate, corresponds to the contribution of the gate focusing
effect to the final uncertainty. We estimated this contribution by taking the standard deviation of
the distribution of the distances between events uniformly distributed in (x, y) to the nearest wire.
From this, we obtained σgate = 1.1 mm, independent of the event depth. The third term, σsys, is
the systematic uncertainty associated to the process of obtaining the vertex coordinates from the
reconstructed S2 position using eq. (3.13). This uncertainty was estimated directly from the data
using two different methods: i) study of wall events produced in the radiative decay of both 210Pb
and its daughters and ii) study of the neutron D-D beam linearity. Using the population of wall
events, we estimated σsys to be 1 mm for WS2013 and between 2 and 3 mm for the WS2014-16 for
events close to the walls. The study of the linearity of the D-D beam in corrected variables limited
σsys to a maximum of 4 mm for events in the center of the chamber (see [30]).

5 Summary

A statistical method was developed to obtain the (x, y) position of an interaction in the LUX
detector from the observed S2 signal distribution at the top PMT array. This method employs in situ
calibrations to obtain the LRF for each photomultiplier. The presence of PTFE reflectors around
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the sensitive volume increases the complexity of the LRFs. These were written as the sum of two
terms: an axial component η (ρ) describing the light that goes directly to the PMTs or is reflected
in the liquid surface and a polar component ε (ρ) characterizing the light reflected from the PTFE
walls.

We assessed the quality of the position reconstruction using calibration data obtained during
LUX detector operations. Although in these data the position of each individual interaction is not
known, the resolution can be measured using both the effect of the focusing effect of the electrons
going through the gate grid and the single electrons emitted right after a 83mKr S2 event. This
resulted in an observed resolution of 0.0965±0.0028 cm for the 83mKr S2 pulses (with average areas
of 22,000 phd) and 2.24±0.04 cm for single electrons (with average areas of 22 phd), which agree
well with the calculated uncertainties obtained in the position reconstruction algorithm (0.086 cm
for 83mKr S2 pulses and 2.13 cm for single electrons).

The analysis of systematic errors was done by looking to the uniformity in (x, y) of both 3H
and 83mKr reconstructed events, the linearity of the neutron beam produced in the D-D neutron
calibrations, and by measuring the average distance between two wires of the gate grid. All these
tests verified the absence of significant systematic uncertainties affecting the position reconstruction.

For the position reconstruction of very small S2s (AT < 4,000 phd), we employed a method
where the response of a PMT is described using photon counting or pulse areas according to
the pulse size observed in the PMT. This method was faster when compared to a pure maximum
likelihood method based only on pulse areas. Moreover, we observed no significant systematic
error on the low S2 pulse data (3H and single electrons) when compared with the large S2 pulse
(83mKr), and the analysis of the position resolution of single electrons obtained with the mixed
method revealed an improvement of 10.27±0.25% when compared with a pure pulse areas method.
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