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Within this work, we propose a new generalised quintom dark energy model in the teleparallel
alternative of general relativity theory, by considering a non-minimal coupling between the scalar
fields of a quintom model with the scalar torsion component T and the boundary term B. In the
teleparallel alternative of general relativity theory, the boundary term represents the divergence of
the torsion vector, B = 2∇µTµ, and is related to the Ricci scalar R and the torsion scalar T , by
the fundamental relation: R = −T + B. We have investigated the dynamical properties of the
present quintom scenario in the teleparallel alternative of general relativity theory by performing a
dynamical system analysis in the case of decomposable exponential potentials. The study analysed
the structure of the phase space, revealing the fundamental dynamical effects of the scalar torsion
and boundary couplings in the case of a more general quintom scenario. Additionally, a numerical
approach to the model is presented to analyse the cosmological evolution of the system.

I. INTRODUCTION

The appearance of Einstein’s General Relativity in 1916 represents one of the most fundamental discoveries of
modern physics. Since then, our understanding of the Universe has been improved, and new open problems have been
revealed. Although various astrophysical experiments have been developed in order to study the general relativity
theory, our cosmological understanding of the Universe is, so far, very limited. In the present cosmology, there
are two fundamental questions which have triggered the main focus of theoretical and observational physics. One
of them is represented by the dark matter fluid, a significant invisible component in the present Universe which
acts gravitationally on large galactic scales. The other fundamental question of modern cosmology is represented
by the the dark energy phenomenon. This phenomenon was discovered at the turn of the last century when two
independent observational studies from distant Type Ia Supernovae (SNIa) revealed that the Universe is expanding at
an accelerated rate [1, 2]. Considering the attractive nature of gravity, the existence of the dark energy phenomenon
represented a paradigm shifting in the theoretical physics and cosmology. Since then, many theoretical speculations
have been proposed in the scientific literature which can explain the dynamics and fundamental properties of this
phenomenon [3]. The current astrophysical observations show that the Universe is made of approximately 27% dark
matter fluid, 68% dark energy component, and less than 5% usual baryonic matter [4, 5].

One of the most promising models for the dark energy phenomenon is represented by ΛCDM model [3, 6], where
the dark energy is represented by a cosmological constant. In this model, the equation of state of dark energy is
constant, having the value w = −1. Although this model is favored by many cosmological observations, it has been
shown that it suffers by various theoretical difficulties [7]. In order to solve the issues created by the ΛCDM model,
the dynamical dark energy models have been proposed in the form of scalar field theories, where the dark energy
equation of state is a dynamical component [8–10]. In the case of quintessence models, the barotropic parameter of
the dark energy equation of state is above the ΛCDM boundary, i.e., w > −1. For phantom type models, the dark
energy is represented by a scalar field with a negative kinetic term [11–13], having a super-negative equation of state
w < −1, being slightly favored by recent observational data.
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Curiously, some of the present observational data are favoring a dynamical equation of state for the dark energy
component corresponding to quintom models, with the dark energy equation of state parameter presenting an evolution
from a phantom behavior w < −1 around present epoch, towards a quintessence behavior w > −1 in the near
past [14, 15]. These observations have important astrophysical implications for the dark energy phenomenon: the
cosmological constant has to be overruled due to the dynamical behavior of the dark energy equation of state; moreover,
the quintessence and phantom models alone cannot explain the evolution of the dark energy equation of state and
the possible crossing of the phantom divide line. Hence, a superposition between a phantom field and a quintessence
field might explain the possible crossing of the phantom divide line by the dark energy component. The quintom
dark energy model has emerged as a possible solution for the crossing of the phantom divide line by the dark energy
component [16]. Although recent observations are consistent with the quintom scenarios [17], the Bayesian evidence
still supports the ΛCDM cosmological model. In this regard, from the ”no-go theorem”, for the quintom scenarios
[18], we need to mention that a dynamically valid dark energy quintom model need to have at least two degrees of
freedom. In the first proposed quintom model, the quintom fields were minimally coupled with gravity [19], and the
action of the model simply consisted in the superposition between the phantom and the quintessence fields. Such a
construction has been extended in the case of quintom scenarios with more general potentials in the work of Setare
et. al. [20]. The case of mixed interactions between the quintom fields has been investigated by Saridakis et. al. [21],
by considering the effects of a mixed term in the corresponding action of the model.

In scalar tensor theories based on general relativity, the non-minimal couplings in the corresponding action have
been seminally initiated in the work of Chernikov et. al. [22]. In these theories, it has been shown that the non-minimal
couplings are an important aspect [23–26], which might be taken into account in constructing a valid cosmological
scenario. In scalar tensor theories, few papers have considered the effects of the non–minimal couplings in quintom
constructions [27–33]. For the quintom paradigm, the non-minimal couplings have also been considered recently in
the work of Marciu [34], where the non-minimal couplings between the scalar quintom fields and the scalar curvature
have been studied. This work showed that such a construction represents a feasible dark energy model, analyzing the
effects of the non-minimal couplings for the dynamics of the Universe at large scale.

In the recent years, in cosmological theories, a lot of attention has been focused towards the teleparallel equivalent of
general relativity [35–39], representing an alternative theory to general relativity which takes into account the torsion.
In this theory, the torsion-less Levi-Civita connection is replaced by the curvature-less Weitzenböck connection. It
turns out that the teleparallel description gives rise to the standard Einstein field equations. Then, one can also
modify the action to study some cosmological scenarios. One of the basic advantages of the teleparallel framework is
represented by the fact that the torsion tensor consists exclusively in products of the first derivatives of the tetrad.
Within this framework, an action can be formulated based on the torsion scalar T . In these theories, the torsion can
be regarded as a counterpart of the curvature in scalar tensor theories based on general relativity. Hence, we have
the following fundamental relation between the Ricci scalar and the torsion scalar [40]:

R = −T +B . (1)

In this relation, R is the Ricci Scalar, T the scalar torsion, and B a boundary term related to the divergence of the
torsion vector, being a total derivative. For more details about teleparallel theory, see [41].

In scalar tensor theories based on general relativity, an usual coupling function in the corresponding action is
represented by a term like ξRφ2, analysed by various authors [22, 42–44]. An analogous formalism has been considered
also in the teleparallel equivalent of general relativity, by taking into account non-minimal couplings of the type ξTφ2

[37, 38, 45–50]. Such constructions have revealed interesting consequences, like phantom behavior [35–39] and the
possible crossing of the phantom divide line for the dark energy equation of state. Hence, in the teleparallel equivalent
of general relativity, interesting scenarios are represented in a dynamic model obtained by the non-minimal coupling
between the quintessence field and a torsion scalar [37]. Recently, Bahamonde and Wright [39] extended this action
[37] by adding a non-minimal coupling to the boundary term B, exploring the effects of the boundary coupling in
the phase space structure, for an exponential potential. In the latter paper, the authors found that for the case
where only a scalar field is coupled with B, the dynamic evolution of the system evolves towards a dark energy
attractor at late times without fine tuning. They also showed that the phantom crossing barrier was also possible
in this theory. The coupling of the teleparallel quintessence with the scalar torsion and the boundary term has
been investigated for exponential and inverse power-law potentials, in the case of radiation and matter dominated
epochs by considering scaling solutions of the Klein-Gordon equation [51]. Furthermore, the effects of the boundary
couplings in the teleparallel alternative of general relativity have been investigated in various recent studies [52–63].
Let us emphasize here that when one is considering teleparallel theories of gravity or its modifications, there are two
approaches in the literature: 1) One can work with the spin connection and find that the theory is local Lorentz
invariant, however there is still a debate on how to compute the spin connection [64]; or 2) One can work in the pure
tetrad formalism setting the spin connection equal to zero, which gives a theory which is non covariant under Lorentz
transformations, and then fixing the gauge by using the good tetrad approach [65]. Both approaches give the same
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equations since the spin connection does not change the equations. We will use the second approach since most of the
literature in teleparallel gravity works with this approach. In principle, one can can switch on the spin connection
and find a theory which is covariant under Lorentz transformations, but cosmologically speaking, the equations will
be the same. Recently, in [66], it was presented a more general formalism for teleparallel scalar tensor theories which
also considers a non-zero spin connection.

In the case of quintom scenarios, Marciu [34] proposed a quintom dark energy model with a non-minimal coupling
between the scalar quintom fields and the scalar curvature in the theoretical framework of general relativity. Therefore,
it is expected that such a construction can be extended to the teleparallel equivalent of general relativity. Motivated
by [39] and [34], we proceed to propose a more generalised teleparallel quintom dark energy model with non-minimal
coupling to the scalar torsion and the boundary terms. Hence, the present paper can be regarded as an attempt aiming
to unify the two previously approaches - quintom scalar tensor theories based on general relativity and quintom scalar
tensor theories based on teleparallel gravity.

The paper is organised as follows. In section II, we propose the action of the generalised teleparallel quintom model
with non-minimal couplings and we derive the corresponding evolution equations. In section III, we perform the
dynamical system analysis of the present dark energy model and reveal the fundamental structure of the phase space.
Then, in section IV, we perform a numerical approach by studying the evolution of the field equations for the present
model and then analysing the implications of scalar torsion T and boundary B couplings for the dark energy equation
of state. Finally, in section V we present the conclusions of our study and the final concluding remarks. The notation
used in the paper is the same as in [39], where tetrads and its inverse are denoted by a lower letter eaµ and a capital
letter Eµa respectively with the (+,−,−,−) metric signature.

II. GENERALISED TELEPARALLEL QUINTOM DARK ENERGY WITH NON-MINIMAL COUPLING

In the same spirit as [34], let us propose the following generalised teleparallel action,

S =

∫ [
T

2
+

1

2

(
f1(φ) + f2(σ)

)
T +

1

2

(
g1(φ) + g2(σ)

)
B +

1

2
ξ∂µφ∂

µφ+
1

2
χ∂µσ∂

µσ − V (φ, σ) + Lm

]
e d4x , (2)

where T is the scalar torsion, B = 2∇µTµ the boundary term, V (φ, σ) is the potential associated with both scalar
fields and the functions f1, f2, g1 and g2 are coupling functions which depend on two different scalar field φ and σ.
Note that we have assumed κ = 1. The constants ξ and χ were introduced in order to have different kind of scalar
fields. If ξ = χ = 1 (ξ = χ = −1) we will have two canonical scalar field (two phantom scalar fields) whereas when
ξ = −χ = 1 (−ξ = χ = 1), the first scalar field φ will be canonical and the second σ will be phantom (φ phantom and
σ canonical). Clearly, the action with one scalar field coupled non-minimally with both the boundary term B and the
scalar torsion T studied in [39, 55] can be recovered if

g2(σ) = f2(σ) = χ = 0 , V (φ, σ) = V (φ) , (3)

so that, teleparallel dark energy (only one scalar field coupled to the scalar torsion T ) can be recovered by choosing
[37]

f1(φ) = c1φ
2 , g1(φ) = g2(σ) = f2(σ) = χ = 0 , V (φ, σ) = V (φ) . (4)

Moreover, since R = −T + B, one can also recover the cases coming from the standard curvature framework. For
instance, the quintom model non-minimally coupled with the scalar curvature R studied in [34], can be also recovered
by setting

f1(φ) = −g1(φ) = c1φ
2 , f2(σ) = −g2(σ) = −c1σ2 , −ξ = χ = 1 . (5)

Obviously, if one further assumes that c1 = 0 and switches off one scalar field (for example setting σ = 0), one could
recover a scalar tensor theory non-minimally coupled with the scalar curvature R. Then, the above action represents
a large class of teleparallel or standard scalar tensor theories. By varying this action with respect to the tetrads, we
get

2 (1 + f1(φ) + f2(σ))

[
e−1∂µ(eSa

µν)− EλaT ρµλSρνµ −
1

4
EνaT

]
− Eνa

[
1

2
ξ∂µφ∂

µφ+
1

2
χ∂µσ∂

µσ − V (φ, σ)

]

+ξEµa ∂
νφ∂µφ+ χEµa ∂

νσ∂µσ + 2∂µ

(
f1(φ) + f2(σ) + g1(φ) + g2(σ)

)
EρaSρ

µν + Eνa (g1(φ) + g2(σ))
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−Eµa∇ν∇µ (g1(φ) + g2(σ)) = T νa , (6)

where = ∇α∇α; ∇α is the covariant derivative linked with the Levi-Civita connection symbol and T νa is the matter
energy momentum tensor.

Now, variations of the action (2) with respect to φ and σ gives us, respectively,

ξ φ+ Vφ = f ′1(φ)T + g′1(φ)B , (7)

χ σ + Vσ = f ′2(σ)T + g′2(σ)B , (8)

where prime denotes differentiation with respect to the argument. Let us now study flat FRW cosmology where the
metric is given by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) , (9)

with a(t) the scale factor of the universe. A good tetrads field [65] corresponding to this particular case is in the
following form: eiµ = diag(1, a(t), a(t), a(t)). As usual, we will model the matter content of the universe with a
standard perfect fluid whose energy-momentum tensor is defined as

Tµν = (ρm + pm)uµuν − pmgµν , (10)

where uµ is the four velocity of the fluid and ρm and pm define the matter energy density and pressure, respectively.
For the FRW metric given by (9), the field equations (6) become

3H2(1 + f1(φ) + f2(σ)) = ρm + V (φ, σ) +
1

2
ξφ̇2 +

1

2
χσ̇2 + 3H(g′1(φ)φ̇+ g′2(σ)σ̇) , (11)

(3H2 + 2Ḣ)(1 + f1(φ) + f2(σ)) = −pm + V (φ, σ)− 1

2
ξφ̇2 − 1

2
χσ̇2 − 2H(φ̇f ′1(φ) + σ̇f ′2(σ)) + g̈1(φ) + g̈2(σ) , (12)

where H = ȧ/a and dots represent differentiation with respect to the cosmic time. The scalar fields equations (7) and
(8) become

ξ(φ̈+ 3Hφ̇) + 3H2f ′1(φ) + 3g′1(φ)
(

3H2 + Ḣ
)

+
V (φ, σ)

∂φ
= 0 , (13)

χ(σ̈ + 3Hσ̇) + 3H2f ′2(σ) + 3g′2(σ)
(

3H2 + Ḣ
)

+
V (φ, σ)

∂σ
= 0 , (14)

where we have used T = −6H2 and B = −18H2 − 6Ḣ. It can be shown that the standard conservation equation for
the fluids is valid in this theory, i.e.,

ρ̇m + 3H(ρm + pm) = 0 . (15)

Hence, if we assume a barotropic equation for the fluid pm = (γ−1)ρm, we directly find that ρm = ρ0a(t)−3γ , where γ
is a barotropic index and ρ0 is an integration constant. γ is physically constrained to lie between γ = 0, corresponding
to a dark fluid (behaving like a cosmological constant) and γ = 2, corresponding to a stiff fluid. Therefore, we will
only concentrate our study in this range (0 ≤ γ ≤ 2). For simplicity, let us assume that the energy potential can be
separated as follows

V (φ, σ) = V1(φ) + V2(σ) . (16)

The modified FRW equations (11) and (12) can be also be rewritten in terms of effective energy and pressure, as
follows

3H2 = ρeff , (17)

3H2 + 2Ḣ = −peff , (18)

where we have defined ρeff = ρm + ρφ + ρσ, peff = pm + pφ + pσ and

ρφ = −3H2f1(φ) + V1(φ) +
1

2
ξφ̇2 + 3Hg′1(φ)φ̇ , pφ = (3H2 + 2Ḣ)f1(φ) +

1

2
ξφ̇2 + 2Hφ̇f ′1(φ)− g̈1 − V1(φ) , (19)

ρσ = −3H2f2(σ) + V2(σ) +
1

2
χσ̇2 + 3Hg′2(σ)σ̇ , pσ = (3H2 + 2Ḣ)f2(σ) +

1

2
χσ̇2 + 2Hσ̇f ′2(σ)− g̈2 − V2(σ) . (20)
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We can define the equation of state of the dark energy or scalar fields as the following ratio of the scalar field
pressures and energy densities

ωφ =
pφ
ρφ

, ωσ =
pσ
ρσ

. (21)

For the present generalised quintom model in teleparallel gravity, the dark energy equation of state is:

wde =
pφ + pσ
ρφ + ρσ

. (22)

We can also define the total or effective equation of state as

ωeff =
peff

ρeff
=
pm + pφ + pσ
ρm + ρφ + ρσ

, (23)

and the standard matter energy density as:

Ωm =
ρm

3H2
. (24)

Analogously, we define the energy density parameter for dark energy or scalar fields as,

Ωφ =
ρφ

3H2
, Ωσ =

ρσ
3H2

, (25)

such that the relation Ωm + Ωφ + Ωσ = 1 holds.

III. GENERAL DYNAMICAL SYSTEM

In this section, we will study the dynamical system of the generalised teleparallel quintom model introduced in the
last section. For a comprehensive description about dynamical systems in cosmology, see the review [67]. We consider
the coupling constants as,

f1(φ) = c1φ
2 , f2(σ) = c2σ

2 , g1(φ) = c3φ
2 , g2(σ) = c4σ

2 , (26)

where ci (i = 1, .., 4) are constants. Let us now introduce the dimensionless variables

s2 =
ρm

3H2
, x2 =

φ̇2

6H2
, y2 =

V1(φ)

3H2
, z = 2

√
6ξφ, u2 =

σ̇2

6H2
, v2 =

V2(σ)

3H2
, w = 2

√
6χσ , (27)

which straightforwardly generalise the normalised variables used to analyse standard quintessence [68]. If the Fried-
mann equation (11) is written in terms of the above dimensionless variables, it is reduced to the following constraint,

s2 = 1− ξx2 − y2 +
c1

24ξ2
z2 − c3

ξ
xz − χu2 − v2 +

c2
24χ2

w2 − c4
χ
uw . (28)

The above surface defines the boundary of our phase space. Therefore, it is possible to reduce the dimensionality of
the dynamical system from 7 to 6.

We must also assume that the energy density of matter is non-negative and since usually the potential is also
considered to be positive in standard quintessence theories, we will further assume that condition. Hence, we must
consider y, v > 0. ξ, χ, φ̇ while σ̇ can be positive or negative. Thus, there is no restriction of signature for x, z, u and
w.

For simplicity, we define the quantity N = log a and compute the dynamical equations in terms of its derivatives
via dx/dN = (1/H)dx/dt. In this variable, we obtain the following autonomous system of first order

dx

dN
=

1√
6

(
q −
√

6px
)
, (29)

dy

dN
= −y

2

(
2p+

√
6λ1x

)
, (30)

dz

dN
= 12ξx , (31)

du

dN
=

1√
6

(
q −
√

6pu
)
, (32)

dv

dN
= −v

2

(
2p+

√
6λ2u

)
, (33)

dw

dN
= 12uχ , (34)
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where we have defined the following quantities

p = − 1

2 (χ3 (c1ξz2 + 6c23z
2 + 24ξ3) + c2ξ3w2χ+ 6c24ξ

3w2)

[
3χ3
(
c1z(4c3z + ξ(16ξx+ γz))

+4
(

3c23z
2 − c3ξ

(
6ξx(4ξx+ (γ − 2)z) +

√
6λ1y

2z
)
− 6ξ3

(
γ
(
u2χ+ v2 + ξx2 + y2 − 1

)
− 2

(
u2χ+ ξx2

))))
+c2ξ

3w(4c4w + χ(16uχ+ γw)) + 12c24ξ
3w2 − 4c4ξ

3χ
(

6uχ(4uχ+ (γ − 2)w) +
√

6λ2v
2w
) ]

, (35)

q = −
√

6c1z +
√

6c3(p+ 3)z + 6ξ
(√

6ξx− λ1y
2
)

2ξ2
, (36)

λ1 = −V
′
1(φ)

V1(φ)
, (37)

λ2 = −V
′
2(σ)

V2(σ)
. (38)

The effective equation of state in terms of the dimensionless variables is given by

ωeff =
1

χ3 (z2 (c1ξ + 6c23) + 24ξ3) + ξ3w2 (c2χ+ 6c24)

[
24γξ3χ3 + 4c1c3χ

3z2 + 16c1ξ
2χ3xz + γc1ξχ

3z2 − c1ξχ3z2

+8ξ3χ2uw(2c2 − 3(γ − 2)c4) + 4c2c4ξ
3w2 + γc2ξ

3χw2 − c2ξ3χw2 + 6c23χ
3z2 − 96c3ξ

3χ3x2 − 24γc3ξ
2χ3xz

+48c3ξ
2χ3xz + 4

√
6c3ξχ

3λ1y
2z + 6c24ξ

3w2 − 24ξ3χ3u2((γ − 2)χ+ 4c4) + 4ξ3χv2
(√

6c4λ2w − 6γχ2
)

−24ξ3χ3 − 24γξ4χ3x2 + 48ξ4χ3x2 − 24γξ3χ3y2
]
. (39)

In the following, we will assume that the energy potential is given by the following exponential type,

V1(φ) = V1e
−λ1φ , V2(σ) = V2e

−λ2φ , (40)

where V1, V2 and λ1, λ2 are constants. In our study, we will further assume that λ1 > 0 and λ2 > 0.

A. The autonomous dynamical system

Let us denote the autonomous system (29)-(34) as

ẋi = fi(x, y, z, u, v, w), xi = (x, y, z, u, v, w) . (41)

Critical or fixed points of Eqs. (29)-(34) correspond to (x∗, y∗, z∗, u∗, v∗, w∗) that are solutions to all six equations
fi(x∗, y∗, z∗, u∗, v∗, w∗) = 0. There are 21 critical points for the dynamical system, but only 13 satisfy y ≥ 0 and v ≥ 0
which ensures that the potentials are positive. Table I shows all the physical critical points of the system. Table II
presents the existence, acceleration criteria and stability regions for the points O, A± and B±. For the remaining
points, the expressions are complex and they will be presented in the forthcoming sections.
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Point x y z u v w

O 0 0 0 0 0 0

A± 0 0 0 0 0 ±2
√
− 6
c2
κχ

B± 0 0 ±2
√
− 6
c1
κξ 0 0 0

C± 0 0 0 0

√
2(c2+3c4)

√
χ(c2+3c4)±∆1√

c2χλ2

2
√

6(χ(c2+3c4)±∆1)
c2λ2

D± 0

√
2(c1+3c3)

√
c1ξ+3c3ξ±∆2√

c1ξλ1

2
√

6(c1ξ+3c3ξ±∆2)
c1λ1

0 0 0

E± 0
√

c1+3c3√
6λ1ξ

z z 0
√
c2+3c4

√
12c2λ1ξ2χ+36c4λ1ξ2χ±∆3

√
λ1ξχ√

6χc2λ1λ2ξ

χ(12
√
λ1ξ(c2+3c4)±∆3)√

6λ1c2λ2ξ

F± 0
√

c1+3c3√
6λ1ξ

z z 0 −
√
c2+3c4

√
12c2λ1ξ2χ+36c4λ1ξ2χ±∆3

√
λ1ξχ√

6χc2λ1λ2ξ

χ(12
√
λ1ξ(c2+3c4)±∆3)√

6λ1c2λ2ξ

TABLE I. Critical points of the dynamical system (29)-(34). For simplicity, we have de-

fined the quantities ∆1 = χ
√

(c2 + 3c4)2 − c2λ2
2, ∆2 = ξ

√
(c1 + 3c3)2 − c1λ2

1 and ∆3 =
√

6
√
c2λ2

2z
(
4
√

6ξ(c1 + 3c3)− c1λ1z
)

+ 24λ1ξ2 ((c2 + 3c4)2 − c2λ2
2).

Point Existence Acceleration Stability

O Always γ < −1/3 Saddle point

A± c2 < 0 c4 > 0 ∧ c2 < −2c4
Stable if c4 > 0 ∧ c2 < −3c4 ∧ c1 > c2c3

c4
∧ ξ ≥ 24c4(c1c4−c2c3)

c22

Unstable if c4 < 0 ∧ c2 < 0 ∧ c1 > c2c3
c4
∧ ξ ≥ 24c4(c1c4−c2c3)

c22

B± c1 < 0 c3 > 0 ∧ c1 < −2c3
Stable if c3 > 0 ∧ c1 < −3c3 ∧ c2 > c1c4

c3
∧ χ ≥ 24c3(c2c3−c1c4)

c21

Unstable if c3 < 0 ∧ c1 < 0 ∧ c2 > c1c4
c3
∧ χ ≥ 24c3(c2c3−c1c4)

c21

TABLE II. Existence, acceleration condition and stability for the critical points O, A± and B±

The point O is always a saddle point and it represents a matter dominated era, as it usually appears in the dynamical
analysis. The corresponding eigenvalues for the O critical point are the following:

µO
1 =

3γ

2
, (42)

µO
±,2 =

3(γ − 2)

4
±
√

9(γ − 2) ((γ − 2)χ+ 16c4)− 96c2
4
√
χ

, (43)

µO
±,3 =

3(γ − 2)

4
±
√

9(γ − 2) ((γ − 2)ξ + 16c3)− 96c1

4
√
ξ

. (44)

Critical points A+ and A− correspond to a dynamical scenario where the first quintom field φ is absent, whereas
the second quintom field σ is frozen, without any kinetic or potential energy. The values of the σ field are related to
the c2 parameter, describing the strength of the scalar torsion coupling for the σ field. It can be noted from Table II,
the points A± describe critical points corresponding to a dynamical scenario in which only the σ field is non-negative,
and the dark energy dominates the universe in terms of the density parameters. The eigenvalues of the A+ and A−
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are the following:

µA
1 =

c2
c4

+ 3 , (45)

µA
±,2 =

c2
2c4
±
√
c22ξ + 24c3c4c2 − 24c1c24

2c4
√
ξ

, (46)

µA
3 =

c2
c4
, (47)

µA
4 = −3γ +

2c2
c4

+ 6 . (48)

Fig. 1 shows the regions where the critical points A± are unstable and stable. Note that the point A+ has the same
eigenvalues as the point A−. Thus, the stability regions of A− are the same as A+. It can be noticed that one needs
negatives values of c24 and positive values of c13 in order to have stability. Remark that if ξ is increased, the stability
region also is increased.
Critical points B± correspond to a situation where the kinetic and the potential energy for the two quintom fields are
equal to zero, the fields are frozen in time, and the first quintom field φ dominates the cosmic picture. The existence
and acceleration conditions, as well as the stability criteria are expressed in Table II. The stability regions for the
points B± have the same structure as Fig. 1, since those points are identical by changing c1 ↔ c2, c4 ↔ c3 and ξ ↔ χ.
For the A± and B± critical points, we have to mention that the density parameter for the dark energy component is
equal to Ωde = 1, describing a dark energy dominated universe.

-1 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

c24

c13

-10 -8 -6 -4 -2

0

1

2

3

4

5

c24

c13

FIG. 1. The figure on the left(right) represents the regions where the points A± are unstable(stable). The black, yellow and
red regions represent the cases where ξ = 0.1, 0.5 and 1 respectively. The blank regions show the regions where the points
are saddle points. We have defined the constants c24 = c2/c4 and c13 = c1 − c3c24 since the eigenvalues of those points only
depend on those quantities. For the stability(instability) regions, we have assumed that c4 > 0(c4 < 0) in order to have
stability(unstability).

1. Critical points C± and D±

The following two classes of critical points, C± and D± are analysed in Table III, where we show the existence
conditions. For those two classes of critical points, the density parameters for the dark energy sector are equal
to Ωde = 1, showing that the dark energy sector is dominating the cosmic picture. We should note that those
four points are non-hyperbolic since they have at least one zero eigenvalue. Since those points are non-hyperbolic,
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the conditions for stability cannot be determined using only standard linear stability theory, and another approach
should be considered, such as center manifold method. Since our system is very complex and contains 6 independent
parameters (c1, c2, c3, c4, λ1, λ2), such an approach cannot be applied symbolically due to the high complexity of the
dynamical equations obtained after diagonalisation. Hence, in the present manuscript, we shall rely only on standard
linear stability methods, and we shall analyse the eigenvalues for the corresponding critical points. Note again that if
ones uses the linear stability method, it is not possible to determine the regions where the points are stable. However,
if one eigenvalue is positive(negative) and at least another eigenvalue is negative(positive), then the point cannot
be stable. Obviously, in principle there are more regions where the point can be saddle or unstable even if all the
eigenvalues have the same sign. Those regions can be determined only by using other techniques, such as centre
manifold or Lyapunov method. Thus, due to the difficulty of the system, we will only focus our study on determining
the regions where the points are unstable or saddle by analysing the signs of the eigenvalues.

In the following, we shall discuss the dynamical properties of those four points C±, D±, by considering the analysis
of the corresponding specific eigenvalues. Analysing the Table I, we can observe that points C± correspond to a
scenario where the field φ is absent, having a zero kinetic and energy potentials. Also, for these critical points, the
second field is frozen without any kinetic energy, having only a non-zero potential energy, while the value of the scalar
function which describes the second field σ is related to the parameters c2 and c4. The later constants describe the
strength of the scalar torsion and boundary couplings for the σ field.

Point Existence

C+

c4 ≤ 0 ∧ c2 < 0 ∧ λ2 ≥ 0

c4 < 0 ∧ 0 ≤ λ2 ≤ c2+3c4√
c2
∧
(

0 < c2 ≤ −3c4 ∨ c2 > −3c4
)

c4 > 0 ∧ c2 ≤ −3c4 ∧ λ2 ≥ 0

c4 > 0 ∧ c2 > 0 ∧ 0 ≤ λ2 ≤ c2+3c4√
c2

C−

c4 < 0 ∧ 0 ≤ λ2 ≤ c2+3c4√
c2
∧
(

0 < c2 ≤ −3c4 ∨ c2 > −3c4
)

c4 ≥ 0 ∧ −3c4 ≤ c2 < 0 ∧ λ2 ≥ 0

c4 ≥ 0 ∧ c2 > 0 ∧ 0 ≤ λ2 ≤ c2+3c4√
c2

D+

c3 ≤ 0 ∧ c1 < 0 ∧ λ1 ≥ 0

c3 < 0 ∧ 0 ≤ λ1 ≤ c1+3c3√
c1
∧
(

0 < c1 ≤ −3c3 ∨ c1 > −3c3
)

c3 > 0 ∧ c1 ≤ −3c3 ∧ λ1 ≥ 0

c3 > 0 ∧ c1 > 0 ∧ 0 ≤ λ1 ≤ c1+3c3√
c1

D−

c3 < 0 ∧ 0 ≤ λ1 ≤ c1+3c3√
c1
∧
(

0 < c1 ≤ −3c3 ∨ c1 > −3c3
)

c3 ≥ 0 ∧ −3c3 ≤ c1 < 0 ∧ λ1 ≥ 0

c3 ≥ 0 ∧ c1 > 0 ∧ 0 ≤ λ1 ≤ c1+3c3√
c1

TABLE III. Existence conditions for points C± and D±.

In order to study the critical points C±, it is convenient to introduce the following constants

Ξ± =

√
2(c2 + 3c4)

(
c2 + 3c4 ±

√
(c2 + 3c4)2 − c2λ2

2

)
√
c2λ2

. (49)
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Using the above constants, the eigenvalues of the points C± can be written as follows

λ
C±
1 = 0 , (50)

λ
C±
±,2 = −3

2
±

√
−6 (8c22 + 24c2c4 + 9c24) + 6Ξ2

±(2c2 + 3c4)2 + 9c2Ξ2
±χ

2
√
c2Ξ2
±χ+ 6c24

(
Ξ2
± − 1

) , (51)

λ
C±
±,3 = −3

2
±
√

9ξ − 24(c1 + 3c3)

2
√
ξ

, (52)

λ
C±
4 = −3γ . (53)

As we pointed out before, points C± are non-hyperbolic, since they have a zero eigenvalue (λ
C±
1 ). Since γ ≥ 0, the

eigenvalue λ
C±
4 < 0. Then, if one of the remaining eigenvalues (λ

C±
±,2 or λ

C±
±,3) are positive, the points C± cannot be

stable, so they can be either saddle, or unstable. Further, eigenvalues λ
C±
−,2 and λ

C±
−,3 are always negative. Then, they

will not change the stability properties of the points. One can directly notice from the eigenvalue λ
C±
+,3 that the points

C± are either saddle or unstable, if ξ > 0 and c1 < −3c3. Notice that for the existence of the points C+(C−), we

require Ξ+ ≥ 0(Ξ− ≥ 0) and (Ξ+ − 1)/c2 ≥ 0(Ξ− − 1)/c2 ≥ 0). If χ > −(6c24(Ξ2
+ − 1))/(c2Ξ2

+), from λ
C+

+,2, one can
also conclude that the point C+ will be also saddle or unstable in all the following cases:

c4 ≤ 0 and
((

0 < c2 < −3c4 and 1 ≤ Ξ+ <
√

2
)

or
(
c2 > −3c4 and Ξ+ >

√
2
))

, (54)

or c4 > 0, c2 > 0 and Ξ+ >
√

2 . (55)

Additionally, for the case where χ < −(6c24(Ξ2
+ − 1))/(c2Ξ2

+), the point will be either saddle or unstable, when
c4 > 0, −3c4 < c2 < 0 and 0 < Ξ+ ≤ 1. The same conditions described above hold for C− by changing Ξ+ → Ξ−.
Since the conditions written above are not so easy to understand, as an example, Fig. 2 shows a region plot for the
specific case of quintom (ξ = −χ = −1) for the points C±. The regions represent the values of the parameters when
the points are always saddle or unstable. For all the other cases, one needs to use other dynamical system techniques
to conclude something about the stability of the points C±.

FIG. 2. Region plot for the points C± showing the regions where the points are always unstable or saddle. We have set
ξ = −χ = −1. Note that Ξ+ corresponds to the point C+, whereas Ξ− corresponds to the point C−.

The following class of critical points presented in Table III, denoted as D±, represents a similar behavior as the C±
class, and shall be briefly discussed. We can notice that this class of critical points is related to a scenario in which
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the second quintom field σ is absent, without any kinetic and potential energy, while for the first quintom field, φ, we
can notice that is is frozen, without any kinetic energy. However, the value of the field φ and the potential energy is
related to the strengths of the c1 and c3 parameters, related to the scalar torsion and boundary couplings for the first
quintom field, φ. Since this class is similar to the previous class of critical points C±, we shall omit it in the following
presentation of the corresponding eigenvalues, as well as the stability figures, and we shall concentrate on the final
classes of critical points.

2. Critical points E± and F±

In the following, we shall discuss the dynamical properties of the last class of critical points, denoted in Table I as
E± and F±. As it can be observed from the table, those points are described by a critical line where the dynamical
variable z is independent, which is related to the scalar fiend φ. For those critical lines, the dynamical variables x
and u, respectively are zero, which corresponds to a scenario in which the fields φ and σ are frozen in time, without a
kinetic energy for the two scalar fields φ and σ. In this case we can observe that for the E± and F± critical lines, we
have a non-zero potential energy embedded into the y and v dynamical variables. The two classes of critical points,
E± and F± are describing a universe which is characterised by the full domination of the dark energy fields over the
matter component in the cosmos, Ωm = 1 − Ωde = 0, and the dark energy equation of state is wde = −1, describing
an accelerated scenario. Without assuming any value of z, the computation of the eigenvalues are very complicated.
In this case, we need to mention that for the E± and F± critical points, one eigenvalue is always zero. Then, we will
perform a similar analysis as in the previous section, i.e., we will determine the regions where the points cannot be
stable. Concerning the stability of those critical lines, in order to find the eigenvalues numerically, we will study the
case where z = 0. Hence, we shall concentrate on the specific case where the field φ is absent, displaying possible
regions for the parameters of the model which correspond to saddle/unstable critical points where we have at least
one eigenvalue with a positive real part and at least one eigenvalue with a negative real part (simultaneously). Since
the dynamical properties of the critical points E± and F± are similar, we shall present our analysis only for the first
class of critical points, E+ and E−. Considering the fine-tuning of the parameters of our model for the E+ point,
we have presented in Fig. 3 the case which corresponds to a saddle or unstable point, due to the presence to at least
one positive eigenvalue and one negative eigenvalue, considering the cold dark matter equation of state for the matter
component. In a similar way, for the E− critical point, we show some possible values of the parameters of the model
which results in a saddle or unstable behavior for the E− point in Fig. 4. The present discussion can be adapted also
for the other critical lines in our dynamical system of equations, F±.
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FIG. 3. Region plots for which the point E+ is in the real space and corresponds to a saddle or unstable behavior, where at
least one eigenvalue has a positive real part and at least one eigenvalue has a negative real part. In the left panel, we have
considered the following coefficients: ξ = −1, χ = +1, c3 ≈ −0.15, c4 ≈ 1.14, λ1 ≈ 1.73, λ2 ≈ −2.35. In the right panel, we have
considered the following values: ξ = −1, χ = +1, c1 = 0.002, c2 = 0.002, c3 ≈ −0.15, c4 ≈ 1.14.
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FIG. 4. Domains for the case where the point E− is in the real space and corresponds to a saddle or unstable behavior. In
the left panel, we have considered the following values of the coefficients for the present quintom model: ξ = −1, χ = +1, c1 =
0.2, c2 = 3, c4 = −2, λ1 = 0.1. For the right panel, we have the following values of the parameters: ξ = −1, χ = +1, c1 =
0.2, c2 = 3, c3 = 2, c4 = −2.

IV. NUMERICAL FEATURES OF THE QUINTOM MODEL

In this section we shall analyse the behavior of the present generalised quintom model in the teleparallel gravity
theory by adopting a numerical approach previously considered by Perivolaropoulos in scalar tensor theories [69, 70],
and recently applied to a quintom scenario [34]. The present numerical approach enables us to analyse the effects of the
scalar torsion and boundary coupling in the evolution of the corresponding quintom fields. In the following, we shall
focus on two distinct specific models, taking into account scalar torsion coupling and boundary coupling, respectively,
in an independent manner. We shall investigate a quintom model, by taking the constants as: ξ = −χ = +1. At first,
we shall analyse the following model which takes into account only the scalar torsion coupling with the scalar fields:

f1(φ) = c1φ
2 , f2(σ) = −c1σ2 , g1(φ) = 0 , g2(σ) = 0 . (56)

In the case of a decomposable scalar potential, V (φ, σ) = V1(φ) + V2(σ) given by eq. (40), we have the following
energy densities and pressures for the scalar quintom fields:

ρφ =
1

2
φ̇2 + V1(φ)− 3c1H

2φ2 , (57)

ρσ = −1

2
σ̇2 + V2(σ) + 3c1H

2σ2 , (58)

Pφ =
1

2
φ̇2 + 4c1Hφφ̇+ c1φ

2(3H2 + 2Ḣ)− V1(φ) , (59)

Pσ = −1

2
σ̇2 − 4c1Hσσ̇ − c1σ2(3H2 + 2Ḣ)− V2(σ) . (60)

In this case, the Klein-Gordon equations which dictates the behavior of the quintom fields become:

φ̈+ 3Hφ̇+ 6c1H
2φ+

dV1(φ)

dφ
= 0 , (61)

σ̈ + 3Hσ̇ + 6c1H
2σ − dV2(σ)

dσ
= 0 , (62)

with the dark energy equation of state being

wde =
Pφ + Pσ
ρφ + ρσ

=
1
2 φ̇

2 + 4c1Hφφ̇+ c1φ
2(3H2 + 2Ḣ)− V1(φ)− 1

2 σ̇
2 − 4c1Hσσ̇ − c1σ2(3H2 + 2Ḣ)− V2(σ)

1
2 φ̇

2 + V1(φ)− 3c1H2φ2 − 1
2 σ̇

2 + V2(σ) + 3c1H2σ2
. (63)
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In order to study the numerical evolution of the quintom model by taking into account a scalar torsion coupling
with the scalar fields, we need to express the evolution of the matter component in the acceleration equation, namely
[34, 69, 70]

ä

a
= −1

6
(ρφ + ρσ + 3Pφ + 3Pσ)− Ωm0H

2
0

2a3
. (64)

In this equation, Ωm0 is the density parameter for the matter component at the present time, denoted as t0 ∼ 0.96.
Moreover, H0 and a0 are the Hubble parameter and cosmic scale factor at the present time. For further details on
the numerical implementation, the reader might consult Refs. [34, 69, 70]. Further, we shall take the following values
at the present time Ωm0 ∼ 0.30 and H0 ∼ a0 ∼ 1, while at the initial time we consider that the Universe is deep in
the matter epoch:

a(t) ∼
(9Ωm0

4

)1/3

t
2
3 . (65)

Hence, our dynamical system of equations is now reduced to the two Klein-Gordon equations (61) and (62), together
with the acceleration equation (64). We evolve in time this reduced system of equations for different values of the
parameters of the model. The numerical solutions obtained are to be constraint by the requirement that at the present
time t0 ∼ 0.96 we had the following relations: Ωm0 ∼ 1−Ωde ∼ 0.30, H0 ∼ a0 ∼ 1, where Ωde represents the quintom
energy density parameter, deduced from the Friedmann constraint, with the energy potential being considered as
exponential type as Eq. (40).

In Figs. 5, we show the evolution of the dark energy equation of state in the case of four quintom models non-
minimally coupled with the scalar torsion, denoted as Ti, with i = 1, ..4, for different coupling parameters and
constants. The analysis and the discussion on the numerical features of the model in the case of scalar torsion
coupling models is presented in the following paragraphs.

FIG. 5. The evolution of the dark energy equation of state for scalar torsion coupling models T1, T2, T3, T4

A second class of models numerically investigated takes into account only boundary couplings with the scalar fields,
neglecting the scalar torsion couplings in the quintom model. As previously discussed, we shall also consider the case
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of ξ = −χ = +1. In this case, we take the following models for the coupling functions:

f1(φ) = 0 , f2(σ) = 0 , g1(φ) = c3φ
2 , g2(σ) = −c3σ2 . (66)

Assuming again that the scalar potential is separable into two exponentials as (40), the energy densities and pressure
for the scalar fields become

ρφ =
1

2
φ̇2 + V1(φ) + 6c3Hφφ̇ , (67)

ρσ = −1

2
σ̇2 + V2(σ)− 6c3Hσσ̇ , (68)

Pφ =
1

2
φ̇2 − 2c3(φ̇2 + φφ̈)− V1(φ) , (69)

Pσ = −1

2
σ̇2 + 2c3(σ̇2 + σσ̈)− V2(σ) . (70)

The dark energy equation of state is:

wde =
Pφ + Pσ
ρφ + ρσ

=
1
2 φ̇

2 − 2c3(φ̇2 + φφ̈)− V1(φ)− 1
2 σ̇

2 + 2c3(σ̇2 + σσ̈)− V2(σ)
1
2 φ̇

2 + V1(φ) + 6c3Hφφ̇− 1
2 σ̇

2 + V2(σ)− 6c3Hσσ̇
. (71)

For boundary coupling with the scalar fields, the Klein-Gordon equations take the form:

φ̈+ 3Hφ̇+ 6c3φ(3H2 + Ḣ) +
dV1(φ)

dφ
= 0 , (72)

σ̈ + 3Hσ̇ + 6c3σ(3H2 + Ḣ)− dV2(σ)

dσ
= 0 . (73)

As in the previous case, we express the acceleration equation for the scale factor as [34, 69, 70]:

ä

a
= −1

6
(ρφ + ρσ + 3Pφ + 3Pσ)− Ωm0H

2
0

2a3
, (74)

and we study the system of equations numerically in a similar way to the scalar torsion coupling with the scalar
fields. For these cases, we present the dynamics of four different models, denoted Bi with i = 1, .., 4, taking different
parameters and constants.

In the following, we shall analyse the dynamical properties of the quintom model by investigating the numerical
results obtained. As previously stated, the numerical solutions deduced in the case of scalar torsion and boundary
couplings with the scalar fields are depicted in Figs. 6-9. As a general remark, we observe that these results are
compatible to the previous ones obtained in the case of a quintom model non-minimally coupled with scalar curvature
[34]. Then, we shall discuss the obtained results and the possible physical consequences of the scalar torsion and
boundary couplings with the scalar fields in the quintom model.

In the left panel of Fig. 6, we have represented the evolution of the cosmic scale factor as a function of cosmic time for
the four scalar torsion models previously mentioned Ti, for different initial conditions. For the scalar torsion model T1,
the initial conditions are: c1 = 0.7, λ1 = λ2 = 0.6, V1 = V2 = 1.02, φ(ti) = σ(ti) = −0.6, φ̇(ti) = σ̇(ti) = 0, ti = 0.008.
The second scalar torsion model, denoted as T2, has the following initial conditions: c1 = 0.5, λ1 = λ2 = 0.5, V1 =
V2 = 1, φ(ti) = σ(ti) = 0.5, φ̇(ti) = 0.01, σ̇(ti) = 0.001, ti = 0.05. In the case of the third scalar torsion model T3, we

have the initial conditions: c1 = 0.7, λ1 = λ2 = 0.6, V1 = V2 = 1.08, φ(ti) = σ(ti) = 0.6, φ̇(ti) = 0, σ̇(ti) = 0, ti = 0.008.
The last scalar torsion model, named T4, has the conditions as: c1 = 0.6, λ1 = λ2 = 0.01, V1 = V2 = 1.01, φ(ti) =

σ(ti) = 8, φ̇(ti) = 0.0001, σ̇(ti) = 0.001, ti = 0.035. We can observe that the dynamics of the Universe in the case of
the four scalar torsion models corresponds to an accelerated expansion, very close to a de Sitter expansion at late
times. The present time is at the numerical value of t0 = 0.96, where the cosmic scale factor is approximately equal
to unity a(t0) ∼ 1, as requested from the numerical method considered. Moreover, we can observe that the values
of the coupling coefficient c1 have minor influence on the dynamics at the large scale. The Universe in this model is
accelerating independently from the values of the coupling parameter c1.

The case of boundary coupling models, neglecting the scalar torsion couplings are represented in the right panel of
Fig. 6, where we observe a similar behavior - the dynamics of the Universe in the case of the four boundary coupling
models corresponds to an accelerated expansion, toward a de Sitter stage, independently from the values of the coupling
parameter c3. The boundary coupling models investigated in this figure are denoted as Bi, and we shall describe
the initial conditions used in order to investigate the effects of the boundary couplings. In the case of the boundary
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coupling model B1, we have used the following initial conditions: c3 = 0.5, λ1 = λ2 = 0.7, V1 = V2 = 1, φ(ti) = σ(ti) =

0.6, φ̇(ti) = 0.001, σ̇(ti) = 0.000001, ti = 0.0295. The next model B2 has the initial conditions: c3 = 0.6, λ1 = λ2 =

0.4, V1 = V2 = 1.05, φ(ti) = σ(ti) = 1.5, φ̇(ti) = 0.001, σ̇(ti) = 0.001, ti = 0.0295. The third boundary coupling model,

B3 has: c3 = 0.4, λ1 = λ2 = 0.2, V1 = V1 = 1.05, φ(ti) = σ(ti) = −5, φ̇(ti) = 0.00001, σ̇(ti) = 0.00001, ti = 0.0083.
Finally, for the last boundary coupling modelB4, we have considered: c3 = 0.6, λ1 = λ2 = 0.5, V1 = V2 = 1.055, φ(ti) =

σ(ti) = 1.1, φ̇(ti) = σ̇(ti) = 0.00001, ti = 0.0015. As previously mentioned, we have a similar behavior as in the left
panel of Fig. 6, an evolution of the system toward a de Sitter stage in the distant future.

The influence of the scalar torsion coupling coefficient c1 in the evolution of the density parameters of the Universe,
dark energy density parameter and matter density parameters, respectively, are presented in Fig. 7. In these figures
we can observe that at the present time t0 = 0.96, the density parameters have approximately the values suggested
by astrophysical observations, Ωde = 1 − Ωm ∼ 0.70. From the numerical evolution, it can be noticed that at the
initial time, the Universe is deep in the matter dominated era, while at the final numerical time, the cosmic picture
is dominated by the dark energy quintom fields non-minimally coupled with the scalar torsion. Hence, the present
quintom model with a scalar torsion coupling is able to explain the current values of the density parameters in the
Universe, in a good agreement with astronomical and astrophysical observations. It is easy to see that the values of
the coupling coefficient c1 have minor effects on the values of the density parameters, since with a proper fine-tuning
of the initial conditions, we are able to reproduce the corresponding current values of the density parameters in the
Universe. From this, we remark that the present generalised quintom model in the framework of teleparallel gravity
theory with a scalar torsion coupling is a feasible dark energy model.

Next, in Fig. 8 is displayed the evolution of the density parameters in the case of boundary coupling models Bi,
considering different values of the coupling coefficient c3, previously discussed. Here, we have a similar behavior as
in the case of a scalar torsion coupling. At the initial time, the Universe is deep in the matter epoch, while at late
times the dark energy fields dominate the cosmic picture. Hence, boundary coupling models Bi are representing
also feasible dark energy models, explaining the acceleration of the Universe as well as the current values of the
density parameters. The values of the boundary coupling parameters c3 have minor influence on the evolution of the
density parameters corresponding to the dark energy fluid and matter fluid, respectively, similar to the scalar torsion
models Ti. Consequently, in both models with boundary couplings Bi and scalar torsion couplings Ti endowed with
decomposable exponential potentials, the Universe is evolving towards a state dominated by dark energy fields over
the matter fluid, while the cosmic scale factor is in an accelerated stage.

The time evolution of the dark energy equation of state in the case of scalar torsion coupling models Ti is shown in
Fig. 5. We can remark that for the scalar torsion coupling models, the dark energy equation of state can exhibit the
main specific feature to quintom models; the crossing of the phantom divide line. For scalar torsion coupling models,
in the first stage of evolution, the dark energy equation of state presents oscillations around the cosmological constant
boundary, while at later times the equation of state evolves asymptotically towards the ΛCDM model, acting almost
as the cosmological constant. As a consequence, the generalised quintom model in the teleparallel gravity theory
with a scalar torsion coupling can be in agreement with cosmological observations which have suggested that the
cosmological constant boundary might be crossed by the dark energy equation of state.

Finally, the evolution of the dark energy equation of state in the case of boundary coupling models Bi, is depicted
in Fig. 9. As in the previous models, at the initial stage of evolution, the models show the crossing of the phantom
divide line, while in the end at the final time, the dark energy quintom model acts asymptotically as a cosmological
constant. By comparing the evolution of the boundary coupling models Bi with the scalar torsion models Ti, one
can notice that in the case of boundary coupling, the dark energy equation of state presents pronounced oscillations
around the phantom divide line. Hence, for scalar torsion models Ti, the oscillations around the phantom divide line
are more reduced. As a concluding remark, we remind that the present generalised quintom model in the teleparallel
gravity with scalar torsion and boundary couplings represents also a possible dark energy model, an alternative to
the ΛCDM model, which can explain the observed crossing of the cosmological constant boundary in the near past of
the dark energy equation of state, as suggested by various cosmological observations. Notice that this behaviour can
be achieved without evoking any cosmological constant.
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FIG. 6. The time evolution of the cosmic scale factor for models with scalar torsion coupling(left panel) T1, T2, T3, T4 and
boundary couplings(right panel) B1, B2, B3, B4

FIG. 7. The evolution of the quintom energy density and matter energy density for scalar torsion coupling models

FIG. 8. The evolution of quintom energy density and matter energy density for boundary coupling models
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FIG. 9. The evolution of the dark energy equation of state for boundary coupling models B1, B2, B3, B4

V. CONCLUSIONS

In this paper we have considered a general quintom model constructed in the teleparallel framework, taking into
account a possible non-minimal interaction between the quintom fields and the scalar torsion T and boundary terms
B, respectively. Our Lagrangian is constructed in the teleparallel alternative of general relativity framework, where
the boundary term B present in the action of the model is related to the divergence of the torsion vector. We have
analysed the structure of the phase space, taking into account that the potential of our model is decomposed into a
sum of two exponential terms, revealing the effects of the non-minimal coupling of the scalar torsion and boundary
terms for the dynamics of our quintom model. We should note that the choice of the potential for the dark energy fields
play an important role in the phase space dynamics, the results of our analysis are specific for this type of potential.
By studying the critical points of the autonomous system, we have revealed the effects of the non-minimal coupling
coefficients for the main characteristics of our critical points, related to the position in the 6D dimensional space and
the corresponding eigenvalues, which determine the stability of the dynamical solutions. As can be noticed from the
analysis, the matter dominated epoch is characterised by a critical point with a saddle behavior. Our analysis revealed
that the remaining critical points of the autonomous dynamical system are characterizing a dark energy dominated
universe. Although the complexity of our model is high due to the presence of the 6 constant parameters related to
the potential energy, the couplings of the scalar fields with the scalar torsion and boundary terms, respectively, we
have obtained possible constraints for the parameters of our model which correspond to different dynamical scenarios.
After the dynamical study of the present quintom scenario, we have considered a numerical evolution of the system of
equations from the matter dominated era, considering particular choices for the scalar torsion and boundary coupling
terms. The numerical study takes into account that in the matter dominated epoch the cosmic scale factor satisfy
the usual dynamical behavior and the fields are almost frozen. The analysis revealed that the system evolves towards
to a de Sitter epoch in the distant future. As expected, for different values of the scalar torsion and boundary
coupling parameters, the equation of state for the dark energy component presents oscillations around the ΛCDM
behavior, and the oscillatory characteristic of the model is present for the scalar torsion and boundary couplings,
respectively. Although the late time dynamics of our model corresponds to a ΛCDM evolution, in the early times
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the dark energy equation of state presents a quintom behaviour in favor with the recent cosmological observations
regarding the crossing of the phantom divide line boundary by the dark energy equation of state. Consequently, the
present quintom model generalised to the teleparallel equivalent of general relativity represents a feasible cosmological
scenario which can explain the large scale behavior of the universe at the level of background dynamics.
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