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Aim: An outstanding challenge in epigenome studies is the estimation of cell-type proportions in complex
epithelial tissues. Materials & methods: Here, we construct and validate a DNA methylation reference and
algorithm for complex tissues that contain epithelial, immune and nonimmune stromal cells. Results: Using
this reference, we show that easily accessible tissues such as saliva, buccal and cervix exhibit substantial
variation in immune cell (IC) contamination. We further validate our reference in the context of oral
cancer, where it correctly predicts an increased IC infiltration in cancer but suppressed in patients with
highest smoking exposure. Finally, our method can improve the specificity of differentially methylated CpG
calls in epithelial cancer. Conclusion: The degree and variation of IC contamination in complex epithelial
tissues is substantial. We provide a valuable resource and tool for assessing the epithelial purity and IC
contamination of samples and for identifying differential methylation in such complex tissues.
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Epigenetic alterations and DNA methylation (DNAm) changes in particular, are thought to mediate the effects of
environmental exposures on disease risk [1–5]. Epigenome-wide association studies (EWAS) aim to identify these
DNAm changes [6], mainly, but not exclusively, in easily accessible surrogate tissues such as blood, saliva or buccal
swabs [7–10]. Identifying such DNAm alterations is, however, challenging due to cell-type heterogeneity, which can
lead to confounding and reverse causality [11]. While a range of statistical methods for cell-type deconvolution and
inference of cell-type fractions have been developed [12–16], these methods have only been largely validated in whole
blood. Moreover, the degree of cell-type heterogeneity and contamination by immune and other stromal cells in
epithelial tissues has not yet been fully assessed, especially in the context of surrogate tissues like saliva, buccal swabs
and cervical smears.

Here we address these challenges by constructing and validating a novel DNAm reference for general epithelial
tissues. We demonstrate the feasibility of using DNAm data generated as part of the ENCODE project [17] and
other studies [18,19] to construct a DNAm reference database, which allows us to obtain estimates of epithelial,
immune cell (IC) and non-IC stromal fractions in any given sample. We validate the reference in multiple studies,
including whole-genome bisulfite sequencing (WGBS) data from the International Human Epigenome Consortium
(IHEC) [20] and matched RNA-seq data from The Cancer Genome Atlas (TCGA) [21]. In addition, alongside this
novel DNAm reference, we also present and validate a novel hierarchical strategy for inferring cell-type fractions of
individual IC subtypes within epithelial tissues. Using this reference, we demonstrate that all three main surrogate
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tissues, in other words, buccal, saliva and cervix, exhibit substantial variation in the total IC fraction, with a large
proportion of the samples containing more than 70% ICs.

Materials & methods
Construction of a general DNAm reference for epithelial tissues (the EpiFibIC reference)
We aimed to build a reference DNAm database for a general tissue that would allow us to estimate fractions of
epithelial, ICs and nonimmune stromal cells from the DNAm profile of a sample, using our EpiDISH algorithm [22],
which is a reference-based approach that uses robust partial correlations (RPC) to estimate cell-type fractions. To
construct the reference database, we used Illumina 450k data, generated as part of the ENCODE project, from
11 different epithelial cell lines (Hipe, Saec, Hre, Hae, Hrpe, Prec, Hee, Hcpe, Hnpce, Hmec and Hrce), seven
different fibroblast lines (Imr90, ProgFib, Ag04449, Ag04450, Ag09319, Bj and Nhdfneo) and a total of 42 purified
samples representing all seven major IC types (neutrophils, eosinophils, monocytes, CD4+ and CD8+ T cells, B
cells and natural killer [NK] cells) from Reinius et al. [18]. We reasoned that using cell lines, a source of relatively
homogenous cells, representing a variety of different epithelial and fibroblast cells, would allow us to identify
common epithelial and fibroblast markers. These 450k profiles were used in conjunction with an empirical Bayes
framework [23] to select differentially methylated CpGs (DMCs) between the three major cell groupings: epithelial
(Epi), fibroblast (Fib) and ICs. Specifically, we performed three comparisons, each one comparing one cell type to
the other two. In order to ensure that DMCs between the different cell types are not confounded by cell-culture
artefacts, we demanded, besides a false discovery rate (FDR) <0.05, that DMCs also exhibited strongly bi-modal
patterns, in other words, exhibiting at least 60% differences in average DNAm between cell types. Specifically,
between ICs and the Epi+Fib groupings, we demanded at least a 90% difference in average methylation, between
Epi and IC+Fib groupings, we demanded at least a 70% difference, and between Fib and Epi+IC groupings, we
demanded a difference of at least 60%. These thresholds were chosen to ensure similar numbers of DMCs in each
comparison (247, 233 and 236, respectively with a total of 716 unique CpGs), which in principle helps ensure the
stability of the inference to random removal of CpGs [24]. Finally, the DNAm reference was obtained by averaging
DNAm values for the 716 DMCs and for each of the three main cell types (Epi, Fib and IC), resulting in a 716 × 3
reference matrix, we call ‘EpiFibIC’. The averaging procedure is justified since we verified that the great majority
of the 716 CpGs exhibited very stable (i.e., ultra-low variance) DNAm values within a given cell type.

Estimating the cell-type fractions using hierarchical EpiDISH (HEpiDISH)
In order to estimate cell-type fractions for all nine cell types (epithelial, fibroblast and the seven IC subtypes listed
above) in any given sample, we use the following tree based strategy. First, we apply EpiDISH with RPC and the
EpiFibIC reference, to obtain cell-type fractions for the epithelial, fibroblast and total IC components. Then, we
reapply EpiDISH with RPC to a 188 CpG subset of our previously validated blood reference database (a reference
DNAm matrix consisting of 333 CpGs and seven IC cell subtypes) [22] to estimate relative proportions for all seven
IC cell subtypes. Finally, these relative proportions for the seven IC cell subtypes are rescaled, by multiplying them
with the total IC fraction estimated in the first step to obtain absolute proportions of all seven IC subtypes in the
sample of interest. We note that the last steps are only required if there is a need to estimate fractions for the IC cell
subtypes. Importantly, we note that: the 333 DMCs of the blood reference share no overlap with the 716 CpGs
making up EpiFibIC, as required, since the 333 DMCs in the blood reference were chosen to discriminate different
IC cell subtypes from each other; and that inference of the individual IC subtype fractions is performed on a 188
CpG subset of the 333 blood reference DMCs. These 188 CpGs were selected by requiring that their median
DNAm value across all seven IC cell subtypes did not differ significantly from the median DNAm values of the
epithelial and fibroblast lines. Specifically, from the 333 DMCs, we only selected CpGs that exhibited a median
DNAm value larger than 0.7 or less than 0.3 in all three cell types (epithelial, fibroblast and ICs). This ensures that
the inference of IC subtype fractions in the second step is not significantly confounded by variation in the epithelial
and fibroblast proportions since the baseline DNAm level of these CpGs in the ICs cannot differ from that of
the epithelial and fibroblast lines by more than 0.3, while the IC subtype specific DMCs themselves exhibit larger
than 0.5 methylation differences between one IC cell subtype and the other six subtypes. Moreover, we verified
that these 188 CpGs exhibited fairly stable DNAm value across all epithelial and fibroblast lines, which means
that taking the median is likely to be representative. We have found that the hierarchical or tree-based approach
outlined above works better than trying to construct one single DNAm reference that encompasses all cell types.
Indeed, inferring cell-type fractions for all cell types from a single DNAm reference containing many cell types that

926 Epigenomics (2018) 10(7) future science group



High immune cell fraction in surrogate tissues Research Article

belong to widely different developmental lineages can be unstable, and will result in estimated cell-type fractions
being more reliable for some cell types than for others. The improvement provided by HEpiDISH stems from the
fact that the inference of cell-type fractions is always performed on a smaller number of fundamental cell types,
with the DMCs used for inferring fractions at each step optimized to discriminate the relevant cell types (and not
optimized for cell types further down the developmental hierarchy). Importantly, the use of RPCs at each step of
the inference procedure facilitates this hierarchical approach, since RPCs do not force the regression weights to be
positive or to add to one [22]. The positivity and normalization constraints are always imposed a posteriori, as done
also in the case of CIBERSORT [22,24]. This therefore allows and justifies the rescaling of the weights at every step
of the inference procedure, in order to finally obtain the cell type proportions in the sample of interest.

Validation of the EpiFibIC reference & HEpiDISH
Validation of the EpiFibIC reference, was first carried out against DNAm datasets profiling pure or relatively pure
cell types: we validated it in Illumina 450k data of purified monocytes, T cells and B cells from 50 monozygotic
twin pairs [25], as this should correctly predict zero fractions for epithelial and fibroblasts and near 100% for the
IC subtype. We also validated it on WGBS IHEC data of two samples enriched for breast epithelial cells and
four purified samples representing kidney podocytes (a type of epithelial cell) [20], as this should predict higher
cell fractions for the epithelial component. Finally, we also validated it against Illumina 450k data from the
Stem-Cell-Matrix Compendium2 (SCM2) [19], which had profiled independent epithelial and fibroblast cell lines.

We also validated our EpiFibIC reference and the HEpiDISH algorithm, by performing in silico mixtures of
five cell types: the Hibec epithelial cell line from SCM2 (not used in the construction of EpiFibIC), the MRC5
fibroblast cell line from SCM2 (not used in the construction of EpiFibIC), and the CD4+ T cells, B cells and
monocytes from Paul et al. [25] (also not used in the construction of EpiFibIC or our blood reference). We performed
a total of 1000 in silico mixtures, with the five weights drawn from a Dirichlet distribution, and assessed our method
by estimating R2 values between estimated and true mixing proportions. We note that the HEpiDISH strategy
was further validated using the same 1000 in silico mixture approach in the context of the breast tissue DNAm
reference.

Stability analysis of the EpiFibIC reference
We used three epithelial cell lines (HRPTEC, HREC and HRCEC) and eight fibroblast cell lines (HPLF, 2 HDF,
HDFF, HDFA, CCD1079SK, IMR90 and MRC5) from SCM2 as well as the CD4+ T cells, B cells and monocytes
pool from several sources (B cells: 56 samples from Absher et al. [26], four from Mamrut et al. and six from Zilbauer
et al. [27]; CD4+ T cells: 71 samples from Absher et al., 31 from Limbach et al. [28], six from Mamrut et al., eight
from Nestor et al. [29], six from Zilbauer et al. and 214 from Reynolds et al. [30]; monocytes: 28 samples from Absher
et al., five from Mamrut et al., 36 from Marabita et al. [31], six from Zilbauer et al. and 1202 from Reynolds et al.)
to generate 500 in silico mixtures, with the five weights drawn from a Dirichlet distribution. Before mixing them
together, we altered the methylation value of a number of CpGs in our EpiFibIC reference, so as to model the
effect of potential errors or dropouts in our reference. The number of altered CpGs varied up to about 550 of the
716 CpGs in the reference. We altered methylation values by shifting the β-values by as much as 0.8 on the β-value
scale, in one of the cell types. For a given number of altered CpGs in the reference, we did 100 Monte-Carlo runs,
and evaluated performance by computing R2 values between estimated and true mixing cell type proportions.

Validation & consistency against TCGA RNA-seq data
We downloaded and processed level 3 Illumina 450 k and RNA-seqV2 data from TCGA [21]. In total, we considered
12 cancer types and only included normal (N) and cancer (C) samples with both DNAm and RNA-seq data: bladder
adenocarcinoma (BLCA): nN = 15; nC = 198, breast adenocarcinoma (BRCA): nN =68; nC = 650, colon adenocar-
cinoma (COAD): nN =19; nC = 254, head and neck squamous cell carcinoma (HNSC): nN = 20; nC = 396, kidney
renal cell carcinoma (KIRC): nN = 24; nC = 297, kidney renal papillary carcinoma (KIRP): nN = 23; nC = 195,
liver hepatocellular carcinoma (LIHC): nN = 38; nC = 173, lung squamous cell carcinoma: nN = 8; nC = 275, lung
adenocarcinoma (LUAD): nN = 21; nC = 392, prostate adenocarcinoma (PRAD): nN = 33; nC = 276, thyroid
carcinoma (THCA): nN = 48; nC = 487) and uterine cervix endometrial carcinoma: nN = 9; nC = 253. Type-2
bias of DNAm data were adjusted with BMIQ [32]. RNA-seq data were offset by 1, log2 transformed and quantile
normalized.
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We then used EpiDISH (RPC mode, v 1.0.0) with EpiFibIC to estimate the total IC fraction in all of the above
samples using their 450 k DNAm profiles. We obtained independent estimates of the relative total IC proportions
by applying the ESTIMATE [33] algorithm (v 1.0.13) on the matched RNA-seq profiles. Unless specified, all settings
of the software were default. Pearson correlation coefficients (PCCs) between EpiDISH and ESTIMATE results
were computed for all samples, cancer samples and normal samples, respectively in each cancer type.

Construction & validation of a DNAm reference for breast
Breast tissue is special in that it contains a significant amount of fat cells [34]. Hence, in addition to the epithelial
and fibroblast cell lines and the purified IC cell subtypes used earlier, we repeated the same procedure as before to
construct a DNAm reference for four major cell types: epithelial, fibroblast, adipocyte and IC. For fat, we used two
adipocyte samples from SCM2 [19]. In all cases, DNAm data were normalized with BMIQ [32], and the reference
was constructed using a similar procedure as for EpiFibIC, resulting in a reference over 491 strongly bi-modal
DMCs and four representative major cell types (epithelial, fibroblast, fat and IC). In detail, when selecting DMCs,
besides FDR <0.05, we demanded a difference in average methylation of at least 90% between ICs and all other
cell types, of at least 75% between epithelial cells and all other cell types, of at least 60% between fibroblasts
and all other cell types, and finally of at least 50% between fat cells and all others. These thresholds were chosen
to ensure approximately similar numbers of DMCs in each comparison. To validate this DNAm reference and
HEpiDISH strategy, we generated 1000 in silico mixtures of independent DNAm profiles representing normal
mammary epithelial cells, fat cells, mammary fibroblasts and IC-types. Specifically, we used the three normal
mammary epithelial cell lines from Lowe et al. [35], six adipocyte samples from Slieker et al. [36], two breast fibroblast
samples from Holm et al. [37] and the purified B cells, T cells and monocytes samples from Paul et al. [25]. In all
cases, DNAm data were normalized with BMIQ [32], and in silico mixtures were generated by randomly choosing
one sample from each of the six cell types and mixing them together with random uniform weights.

DNAm datasets used
The following lists the DNAm datasets used in this manuscript, with their GEO (www.ncbi.nlm.nih.gov/geo)
accession numbers or download links. Illumina 450 k data from ENCODE (GSE40699), Illumina 450 k data
from SCM2 [19] (GSE31848), Illumina 450 k data of CD4+ T cells, B cells and monocytes from Paul et al. [25]

(www.ebi.ac.uk/ega/datasets/EGAD00010001025), Absher et al. [26] (GSE59250), Zilbauer et al. [27] (www.ebi.ac
.uk/arrayexpress/experiments/E-MTAB-2145/) and Mamrut et al. (GSE71244), Illumina 450 k data of CD4+ T
cells and monocytes from Reynolds et al. [30] (GSE56047), Illumina 450 k data of CD4+ T cells from Limbach
et al. [28] (GSE71955) and Nestor et al. [29] (GSE50222), Illumina 450 k data of monocytes from Marabita et al. [31]

(GSE43976), Illumina 450 k from 20 normal cervix samples from Farkas et al. [38] (GSE46306), Illumina 450 k
data from 152 buccal samples (all women) [9], Illumina 27k data of 152 normal cervical smears [39] (GSE30760),
Illumina EPIC data of 150 saliva samples (24 female + 126 male) (GSE111631) and Illumina 450 k data of normal
breast tissue (n = 92) [34] (GSE69914). Processed WGBS data from IHEC was downloaded from the IHEC data
portal (http://epigenomesportal.ca/ihec/).

Generation of saliva DNAm dataset
Saliva was collected as part of the ethically approved study Saliva To Predict Risk of Disease Using Transcriptomics
and Epigenetics (SPIT) study (ISRCTN Registration: 11921553). Patients who were being assessed for esophageal
cancer at endoscopy were categorized into risk profiles, from low through to high risk. All fasted for a minimum
of 6 h prior to saliva collection, as required for endoscopy. Up to 1 ml saliva was collected into 10 ml collection
tubes in which 1 ml of RNAlater was already present. Immediately after collection, the tube was inverted to mix
the preservative and saliva. All samples were stored at ambient temperature for 12 h and then stored at -80◦C
until DNA extraction. DNA extraction was performed using a Zymo spin column system (Zymo Research, CA,
USA). Genome-wide DNAm was profiled using the Infinium MethylationEPIC BeadChips (Illumina, CA, USA).
Genomic DNA (500 ng) was bisulfite converted using an EZ-96 DNA Methylation MagPrep kit (Zymo Research,
CA, USA), using alternative incubation conditions recommended for Infinium arrays (16 cycles of 95◦ for 30 s,
50◦ for 60 min). BeadChips were processed by UCL Genomics (UCL, London, UK) using standard recommended
protocol. DNA was hybridized to BeadChips and single nucleotide extension followed by immunohistochemistry
was performed using a Freedom EVO robot (Tecan, Maennedorf, Switzerland). BeadChips were subsequently
imaged using the iScan Microarray Scanner (Illumina). All idat files were then processed with minfi (v.1.22) using
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Figure 1. The hierarchical EpiDISH algorithm. Flowchart of how HEpiDISH works on a complex epithelial tissue. (A) In the first step, we
apply EpiDISH with RPC to estimate cell-type fractions for the epithelial, fibroblast and immune cell (IC) compartments, using a reference
DNA methylation (DNAm) matrix designed and optimized to discriminate a general epithelial, fibroblast and IC from each other. In the
second step, we reapply EpiDISH but now using a different DNAm reference, defined over differentially methylated CpGs (DMCs)
designed and optimized to discriminate the seven major IC subtypes from each other. Inferred weights in the second step are rescaled so
that they add to the weight for the total IC fraction estimated in step-1. Finally, all proportions for all nine cell types add to one, as
required. (B) Hierarchical tree depiction of HEpiDISH. We note that there is no overlap between the DMCs in the two reference DNAm
matrices and that we further demand that DMCs used in step-2, exhibit similar median DNAm values across all three main cell types.
DMC: Differentially methylated CpG; Epi: Epithelial; Fib: Fibroblast; HEpiDISH; Hierarchical EpiDISH; IC: Immune cell; NK: Natural
killer; RPC: Robust partial correlation.

the Illumina definition of β-value. Using the detection p-values estimated by minfi, we first computed coverage
per probe (fraction of samples with detection p-value <0.05), removing low quality probes (coverage <0.99) and
subsequently computing coverage per sample over the good-quality probes, removing low quality samples (coverage
<0.95). The small remaining number of missing values were imputed using impute.knn (with k = 5) from the
impute R-package [40]. Raw data and all idat files are available from GEO under accession number GSE111631.

Results
Overall strategy & construction of a reference DNAm database for solid tissues
We aimed to construct a reference DNAm database for samples derived from solid epithelial tissues (e.g., cervix,
buccal, breast, lung, etc.). Contamination is expected to arise from infiltrating immune/inflammatory cells, as well
as from resident stromal cells such as fibroblasts and fat cells. Since there are many types of ICs, we decided to
approach the problem using a two-step hierarchical inference procedure, called hierarchical EpiDISH (HEpiDISH),
which recognizes the fact that cells are arranged naturally in a developmental tree (Materials & methods, Figure 1).
In the first step, we use a reference DNAm matrix representing the three main cell types: epithelial cells, fibroblasts
(as a model for non-IC stromal cells) and ICs. We use our EpiDISH framework [22], using RPC, to obtain estimates
for the proportions of these three cell types in any given sample. In the second step, we reapply EpiDISH using our
validated IC reference database encompassing seven different IC subtypes [22] to the same sample to infer relative
fractions of all major IC subtypes, which are finally rescaled to yield absolute proportions in the sample of interest.
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Thus, this hierarchical approach uses a different DNAm reference at each level of the developmental hierarchy
(here we consider two levels), which is optimized to estimating relative cell-type fractions at that level. Importantly,
we note that the DMCs used in step-1 and step-2 share no overlap and that in step-2 we restrict to DMCs between
IC cell subtypes, which in addition exhibit median DNAm values across ICs that are similar to those seen across
the epithelial and fibroblast lines.

In order to construct the DNAm reference database for the three main cell types, we made use of the ENCODE
DNAm data of epithelial and fibroblast cell lines [17,41], as these are clonal and therefore of the highest possible
purity. To avoid bias toward one particular epithelial tissue-type, we used a reasonable number of different normal
epithelial (n = 11) and fibroblast (n = 7) cell lines (Figure 2A). By using many different types of normal epithelial and
fibroblast lines, we reasoned that this would also help avoid confounding by cell-culture artefacts, an assumption
which we validate a posteriori. For IC subtypes, we used the Illumina 450 k DNAm data from Reinius et al. [18],
which included DNAm profiles for neutrophils, eosinophils, monocytes, B cells, NK cells, CD4+ and CD8+ T
cells. The reference was constructed using our previously validated procedure [22], which selects DMCs between
cell types (epithelial, fibroblast and ICs) that exhibit as strong a bi-modal distribution as possible (Figure 2A).
We identified a total of 716 bi-modal DMCs, all of which exhibited at least a 60% difference in average DNAm
between cell types, and with 247 of these exhibiting at least a 90% difference (Supplementary Table 1, Figure 2A).
Because of the very large differences in DNAm between cell types and the relatively low variation within a cell
type, all these DMCs are highly likely to be true positives and not artefacts of confounding factors. Finally, the
reference DNAm database was obtained by separately averaging the DNAm profiles of all epithelial, fibroblast and
IC samples, resulting in a matrix of 716 DMCs and three representative cell types, which we call ‘EpiFibIC’. As a
sanity check, we verified that all samples used in the reference construction, were predicted to be either near 100%
or over 90% representative for the corresponding cell types (Supplementary Figure 1).

For the DNAm reference to be used in the second step, we start out with the 333 CpG blood reference matrix
encompassing the seven major IC subtypes, previously derived and validated by us [22]. We note that these 333
DMCs share zero overlap with the 716 DMCs of the EpiFibIC reference, and that we further restrict to a subset
of 188 DMCs (Supplementary Table 2) which exhibit similar median DNAm values across epithelial, fibroblast
and ICs to ensure that the estimation of IC subtype fractions is not confounded by the epithelial and fibroblast
cells in the sample (Materials & methods, Supplementary Figure 2). Importantly, we verified that restriction to
these 188 DMCs did not appreciably alter the estimated IC type fractions in whole blood, as compared with those
derived from the original validated 333 CpG blood DNAm reference (Supplementary Figure 3), or in relation to
experimental mixtures of IC subtypes, where the underlying true cell-type fractions are known (Supplementary
Figure 4).

Validation & robustness of the EpiFibIC reference
To validate the reference DNAm matrix, we first tested it on a large Illumina 450k dataset of 302 purified blood cell
subtypes (100 B cells, 98 CD4+ T cells and 104 monocytes) [25]. As required, applying EpiDISH with RPC to this
dataset resulted in all 302 samples having IC fractions equal (or very close) to 1 (Figure 2B). When estimating the
fractions for the different IC subtypes, we found excellent agreement with their known subtype (Figure 2B). Only
in the case of B cells, did we observe that many samples were predicted to be not that pure, exhibiting non-negligible
monocyte or CD4+ T-cell fractions. Using independent FACS based purity estimates [25] we were able to confirm
the predictions from our EpiDISH algorithm, as B-cell samples did indeed exhibit a much lower purity and FACS
based purity estimates correlated significantly (p < 1e-12) with those from EpiDISH (Supplementary Figure 5).
Next, we tested the reference in WGBS data from IHEC [20], selecting epithelial samples of highest possible purity,
which included two primary breast epithelial and four purified kidney podocyte samples. In line with their expected
high epithelial purity, five of the six samples were predicted to be over 90% epithelial, with one podocyte sample
exhibiting a partial fibroblast phenotype (Figure 2C). We also applied EpiDISH to eight nonpure kidney tissue
samples, confirming that these samples had a more mixed cellular phenotype with non-negligible fibroblast and IC
proportions (Figure 2C). As a further test, we applied EpiDISH with our EpiFibIC reference to Illumina 450 k
data from the SCM2, which included many independent epithelial, fibroblast and muscle/mesenchymal cell lines.
All epithelial cell lines were predicted to be over 90% epithelial, with most of the fibroblast cell lines also exhibiting
a clear fibroblast phenotype (Figure 2D). Cell lines representing different types of muscle cells, exhibited a more
intermediate classification between epithelial and fibroblast (Figure 2D).
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Figure 3. Further validation of the EpiFibIC reference. (A) Validation of the EpiFibIC reference against 1000 in silico mixtures generated
from an epithelial cell line (hepatic biliary epithelium), fibroblast cell line (lung fibroblast) and three immune cell (IC) cell subtypes (CD4+

T cells, monocytes and B cells). True cell-type fractions are plotted against estimated fractions, as obtained using EpiDISH (RPC) with the
EpiFibIC reference. R2 values are given. (B) as (A), but now considering the total IC fraction, and plotting the obtained R2 values against
an increasing number of perturbations affecting CpGs in the EpiFibIC reference. Specifically, the CpGs in the EpiFibIC reference exhibit a
bi-modal distribution, and for a given number of these CpGs we altered/perturbed their methylation values from being unmethylated to
methylated or vice versa. (C) Validation of the estimated total IC fractions from EpiDISH+EpiFibIC reference against the weight of the top
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DMC: Differentially methylated CpG; EWAS: Epigenome-wide association study; PCC: Pearson correlation coefficient; RPC: Robust partial
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To further test the robustness and resolution of our DNAm reference, we applied it to 1000 different in silico
mixture samples, obtained by mixing together independent samples representing five purified cell types: epithelial,
fibroblast and three IC types (B cells, monocytes and CD4+ T cell). We note that none of these samples had been
used in the reference construction. We estimated the proportions for each of these five cell types in each of the
1000 in silico mixtures, using our hierarchical two-step procedure (Materials & methods). We observed excellent
agreement between predicted and true cell-type fractions with R2 values consistently above 0.9 (Figure 3A). To
assess the stability of the inference to random errors in the reference matrix, we simulated a scenario where
increasing numbers of DMCs in the reference represent false positives, by altering their DNAm values to render
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them nondifferentially methylated between cell types (Materials & methods). This demonstrated that by altering
even as many as 100 of our 716 DMCs, estimated cell-type fractions were still highly correlated with the true values
(R2 ∼ 0.9) (Figure 3B).

Next, we aimed to assess the performance of our reference on real mixtures of epithelial and IC subtypes. While
this is hard due to the inherent difficulty of counting cells in a solid tissue, we posited that a way to reliably assess
cell-type fraction estimates is by linear correlation with the weights from the top principal component of a PCA,
as: for suitably chosen cohorts (e.g., cohorts representing one ethnic group and one gender) the top component
of variation must be associated with cell-type heterogeneity; and it is reasonable to assume that samples are linear
mixtures of underlying cell types. We performed this analysis for four separate Illumina DNAm datasets [9,38,39],
all profiling white Caucasians of the same gender (women), encompassing three separate tissues (buccal, saliva and
cervix). In all cases, we observed excellent agreement between the weight of the top principal component (PC;
estimated without using cell-type specific DMCs) and the estimated total IC fraction from EpiDISH (Figure 3C).
In fact, for the three datasets generated with either Illumina 450k or 850k versions, the absolute PCC was larger
than 0.98 (Figure 3C). Even in an Illumina 27k set profiling cervical samples, for which only 28 of the 716 CpGs
in the reference were available, we still observed a remarkably good correlation (PCC = 0.96; Figure 3C). In the
case of saliva, we also profiled samples from men and here too we observed a strong correlation (PCC = 0.96;
Supplementary Figure 6). In general, all these results demonstrate the reliability of our reference DNAm matrix
and its robustness to large numbers of CpG dropouts.

Consistency with RNA-seq based cell-fraction estimates
To further demonstrate the validity of our EpiFibIC reference, we would expect consistency with independent
cell-type fraction estimates obtained using a different molecular assay, for example, RNA sequencing. To this end,
we applied the EpiDISH and ESTIMATE algorithms [33] on the matched Illumina 450k DNAm and RNA-seq
profiles of normal-adjacent and cancer samples from 12 cancer types, profiled as part of TCGA [21]. Specifically, we
compared the total IC fraction estimated using EpiDISH on the DNAm profile, with the corresponding IC score
obtained using ESTIMATE on the matched RNA-seq profile. We observed a remarkably good agreement, for both
normal and cancer tissue and across all 12 cancer types (Figure 4).

Substantial variation in IC contamination in surrogate tissues
Having validated the EpiFibIC reference, we next explored the degree of IC contamination across epithelial tissues.
In addition to buccal swabs, saliva and cervix, we collected Illumina DNAm datasets representing fallopian tube [42]

(n = 212), breast [34] (n = 92) and intestine [43] (n = 61), using only histologically normal samples in order to
more reliably assess the natural variation in a disease-free context. We also included the tissues for which there were
sufficient normal-adjacent samples profiled as part of the TCGA [21]. Interestingly, all three surrogate tissues (saliva,
cervix and buccal) ranked highest in terms of the degree of IC contamination (Figure 5A). These same tissues were
also highly ranked by variance (Figure 5B), and in fact, ranked highest by the range of total IC fractions. For saliva
specially, most of the samples exhibited more than 80% contamination by ICs, yet a few samples also exhibited
close to zero IC fractions (Figure 5A). Interestingly, tissues like lung and liver exhibited relatively high levels of IC
contamination, but were far less variable than for example cervix, pancreas or breast (Figure 5).

HEpiDISH reveals lower IC infiltration in smoking-related head & neck cancer
In order to demonstrate and also further validate the utility of our novel DNAm reference and HEpiDISH, we
applied it to the DNAm data of 405 HNSCs and 45 normal adjacent tissues, profiled as part of the TCGA [44]. Both
normal and cancer samples exhibited considerable IC infiltration, although as expected the epithelial component
was the largest (Figure 6A). Comparing estimated cell-type fractions between normal and HNSC, we observed an
increased total IC infiltration in cancer, with the fibroblast fraction remaining unchanged (Figure 6A). Of note,
HEpiDISH predicted that this increase in IC infiltration in HNSC was driven primarily by increases in the T-cell
and neutrophil proportions, with NK cells exhibiting only a marginal increase (Figure 6D). To explore if the
variations in cell-type fraction also relate to specific HNSC subtypes, we estimated a smoking index in each cancer
sample using our previously validated 1501 CpG smoking DNAm signature, which has been derived from 400
buccal swabs [9]. The importance of using a DNA-based measure of smoking exposure was recently highlighted [45].
Validating the DNAm-based smoking index, it correlated with the epidemiological measure of smoking exposure,
despite the relatively small numbers of normal samples (Figure 6B). We observed that the DNAm-based smoking

future science group www.futuremedicine.com 933



Research Article Zheng, Webster, Dong et al.

0.0 0.2 0.60.4 0.8

Global PCC = 0.82
Cancer PCC = 0.82
Normal PCC = 0.59

Global PCC = 0.72
Cancer PCC = 0.75

Normal PCC = 0.5

Global PCC = 0.8
Cancer PCC = 0.85

Global PCC = 0.74
Cancer PCC = 0.76
Normal PCC = 0.89

Global PCC = 0.76
Cancer PCC = 0.78

Normal PCC = 0.7

Global PCC = 0.67
Cancer PCC = 0.69
Normal PCC = 0.66

Global PCC = 0.68
Cancer PCC = 0.68

Normal PCC = 0.93

Global PCC = 0.78

Cancer PCC = 0.78
Normal PCC = 0.88

Global PCC = 0.8
Cancer PCC = 0.8

Normal PCC = 0.67

Global PCC = 0.7
Cancer PCC = 0.69
Normal PCC = 0.77

Global PCC = 0.61
Cancer PCC = 0.6

Normal PCC = 0.72

Global PCC = 0.87
Cancer PCC = 0.88
Normal PCC = 0.79

0.00 0.25
EpiDISH fIC (DNAm)

BLCA

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.50 0.75

-2000

-1000

0

1000

2000

3000

0.00 0.25
EpiDISH fIC (DNAm)

BRCA

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.50 0.75

-1000

0

1000

2000

3000

0.00 0.25
EpiDISH fIC (DNAm)

COAD

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.50 0.75

-1000

0

1000

2000

0.2
EpiDISH fIC (DNAm)

HNSC

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.4 0.6

-1000

0

1000

2000

0.2

EpiDISH fIC (DNAm)

KIRC

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.4 0.6

-1000

0

1000

2000

3000

0.0 0.2

EpiDISH fIC (DNAm)

KIRP

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.4 0.6

-1000

0

1000

2000

0.0 0.2

EpiDISH fIC (DNAm)

LIHC

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.60.4 0.8

-1000

0

1000

2000

3000

0.00 0.25

EpiDISH fIC (DNAm)

LSCC

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.50 0.75

-1000

0

1000

2000

3000

0.2

EpiDISH fIC (DNAm)

LUAD

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.4 0.6

-1000

0

1000

2000

3000

0.1 0.2

EpiDISH fIC (DNAm)

PRAD

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.50.40.3

-1000

0

1000

2000

0.0 0.2

EpiDISH fIC (DNAm)

THCA

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

0.4 0.6

-1000

0

1000

2000

3000

EpiDISH fIC (DNAm)

UCEC

E
st

im
at

e 
sI

C
 (

R
N

A
-S

eq
)

-1000

0

1000

2000

3000

Normal PCC = 0.97

Figure 4. Consistency of DNA methylation and RNA-seq based estimates. Scatterplots of the total IC fraction estimates of RNA-seq
TCGA samples obtained using the ESTIMATE algorithm (y-axis) against the corresponding total IC fractions obtained on the matched
Illumina 450 k DNAm profiles with the EpiDISH algorithm (using EpiFibICall as reference), for 12 different TCGA cancer types. The PCC
between the two scores is given, using all normal and cancer samples, using only normal samples and only cancer samples.
BLCA: Bladder adenocarcinoma; BRCA: Breast adenocarcinoma; COAD: Colon adenocarcinoma; DNAm: DNA methylation; HNSC: Head
and neck squamous cell carcinoma; IC: Immune cell; KIRC: Kidney renal cell carcinoma; KIRP: Kidney renal papillary carcinoma; LIHC: Liver
hepatocellular carcinoma; LSCC: Lung squamous cell carcinoma; LUAD: Lung adenocarcinoma; PCC: Pearson correlation coefficient; PRAD:
Prostate adenocarcinoma; THCA: Thyroid carcinoma; UCEC: Uterine cervix endometrial carcinoma; TCGA: The Cancer Genome Atlas.

index was strongly anticorrelated with the level of total IC infiltration across the 405 HNSCs (Figure 6C). This
not only confirms similar findings obtained in the same TCGA samples using a smoking mutational signature as
a smoking index and an mRNA expression based IC infiltration score [45], but serves as strong validation that our
total IC fraction estimates are reliable. Of note, we observed similar strong anticorrelations between the smoking
index and the level of NK, CD4+ T cell and monocyte/macrophage infiltration (Figure 6E), suggesting that the
proportions of these specific cell types are particularly low in smoking-related HNSC.

Improved specificity of DMC cells in breast cancer
In order to demonstrate the suitability of our DNAm reference to infer DMCs in the context of solid epithelial
tissues, we considered the case of DMCs between normal and cancer, using breast cancer as an example because of the
availability of DNAm profiles for large numbers of breast cancer cell lines: although it is hard to define true positive
cancer DMCs, we reasoned that an approximate gold standard set of breast cancer DMCs could be constructed by
intersecting a list of DMCs derived from a comparison of two normal to 52 breast cancer cell lines (n = 23,258) [46],
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Figure 5. Degree and variation of immune cell contamination across epithelial tissues. (A) Boxplots of estimated total IC fractions
obtained using EpiDISH with EpiFibIC reference, across several tissue types, with tissues ranked in decreasing order of mean total IC
fraction. (B) as (A), but now ranking tissues in decreasing order of variance. Number of samples in each tissue types is given below sample
labels.
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with a separate list of DMCs derived from the large breast cancer TCGA study [47] consisting of 81 normal samples
and 652 breast cancers (Figure 6F). By using cell lines in the first comparison we avoid the limitation of cell-type
heterogeneity (as cell lines are relatively pure), and by using tissues in the second comparison we take advantage
of the large sample size (81 normal breast tissue samples) while also avoiding potential cell-culture artefacts. Thus,
the overlap of DMCs from the two comparisons ought to define a high-confidence set of DMCs occurring within
the epithelial compartment of breast cancers and therefore independent of changes in IC and stromal composition.
The above strategy resulted in a list of 19,379 true positive breast cancer DMCs, as well as a list of 15,212 true
negatives (Supplementary Table 3; Figure 6F). In order to objectively estimate sensitivity and specificity, we used
an independent breast cancer tissue EWAS (92 normal/normal-adjacent samples and 305 primary breast cancers)
(Figure 6F) [34]. Because breast tissue is known to contain a lot of fat, we extended the DNAm reference matrix
to also include adipocytes (Supplementary Table 4) [34]. We validated this new DNAm reference using 1000 in
silico mixtures of purified samples representing independent normal mammary epithelial, mammary fibroblast,
adipocytes and ICs (Materials & methods). Applying HEpiDISH with our constructed reference to these 1000
mixtures resulted in a strong validation with R2 values consistently above 0.9 (Supplementary Figure 7). Treating
all ICs as one covariate in the regression analysis, and therefore using a total of four cell types (epithelial, fibroblast,
adipocyte and IC) represented by three independent covariates (e.g., fibroblast, adipocyte + IC) in the adjusted
regression models, we obtained a sensitivity of 84% and specificity of 83% (Figure 6G). An unadjusted analysis
achieved a higher sensitivity (96%), but at a much lower specificity (66%) (Figure 6G). Including all seven IC
subtypes as separate covariates (thus a total of ten cell types and nine independent covariates), HEpiDISH obtained
a sensitivity of 82%, but at the advantage of a much higher specificity (89%), in other words, over 20% higher
than the unadjusted analysis (Figure 6G). Thus, the increased specificity or lower false-positive rate supports the
view that HEpiDISH is able to remove false positives attributable to changes in cell-type composition between
normal breast and breast cancer. We also note that although the performance measures of HEpiDISH are similar
to those of surrogate variable analysis [48] (a state-of-the-art reference-free approach [49]), that surrogate variable
analysis cannot estimate cell-type fractions. Thus, our HEpiDISH + novel DNAm reference can provide reasonably
accurate estimates of cell-type fractions, while also controlling for the false-positive rate in complex epithelial tissues.
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Figure 6. Applications of hierarchical EpiDISH to epithelial cancer. (A) Variation in the epithelial, fibroblast and total immune cell (IC)
fraction (y-axis), as estimated using hierarchical EpiDISH (HEpiDISH), between normal oral tissue (N) and head and neck cancer (C).
p-values are from a two-tailed Wilcoxon rank sum test. (B) Validation of a DNAm-based smoking index in the normal oral tissue. p-value is
from a linear regression. (C) Correlation and anticorrelation of the same smoking index (y-axis) with the epithelial and total IC fractions
(x-axis), respectively, as evaluated across the 405 HNSC. p-values are from a linear regression. (D) as (A), but now for the IC subtype
fractions as estimated using HEpiDISH. (E) PCCs between the DNAm-based smoking index and the individual cell-type fractions, as
evaluated across the 405 HNSCs. (F) Outline of the strategy used to construct a gold standard list of breast cancer differentially
methylated CpGs (DMCs). Briefly, two separate lists of DMCs are derived by comparing breast cancer cell lines to normal breast epithelial
lines, and comparing breast cancer tissue to normal breast tissue. By taking the overlap of these two, we obtain a high-confidence set of
breast cancer DMCs occurring in the epithelial compartment of the breast. The sensitivity and specificity of an algorithm to detect DMCs
independent of changes in cell-type composition can then be estimated using an independent breast cancer tissue dataset. (G) The
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covariates, and using SVA.
DMC: Differentially methylated CpG; DNAm: DNA methylation; HNSC: Head and neck squamous cell carcinoma; NK: Natural killer; PCC:
Pearson correlation coefficient; SE: Sensitivity; SP: Specificity; SVA: Surrogate variable analysis.

Discussion
The main aim of this study is to present a resource and strategy for estimating cell-type fractions of main cell
subtypes found in complex tissues, extending the success of the reference-based framework [13,22] to tissues other
than blood. Although we do not provide detailed reference DNAm databases for individual tissue types, we have
demonstrated, using several independent datasets, generated with different technologies, and using in silico mixture
experiments (where the mixing proportions are known with certainty), that our EpiFibIC reference is able to reliably
estimate fractions of epithelial, total immune and stromal (mainly fibroblasts) cells in these complex tissues. In the
case of breast, we successfully extended the reference to also include adipocytes. Importantly, our analysis shows the
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feasibility to construct reliable DNAm references using cell-line DNAm data as models for pure epithelial cells and
fibroblasts, and that these can be successfully combined with noncell line DNAm profiles representing all major IC
subtypes.

Using our novel DNAm reference matrix we have been able to demonstrate that many complex tissues exhibit
widespread contamination by ICs. This was especially true for easily accessible, surrogate tissues, like saliva, buccal
swabs and cervical smears. Thus, these results have profound implications for future EWAS that want to use
these tissues to identify DNAm alterations that may be more representative of the alterations that originate in the
epithelial or stromal compartments of solid tissues.

Our DNAm reference and algorithm can also be useful in cancer epigenome studies, as shown here in the context
of head and neck (HNSC) and breast cancer. In the former case, the total IC infiltration increases in cancer compared
with normal tissue while among the HNSCs the total IC fraction was lowest in those patients who according to
a DNAm-based smoking index had smoked most, in agreement with a recent study [45]. Moreover, our analysis
suggests that while the increased IC infiltration in cancer is due to T cells and neutrophils, that the lower IC fraction
seen in smoking-associated HNSC is driven by a lower proportion of NK cells and monocytes/macrophages. This
observation may be important for devising immunotherapies [45]. In the context of breast cancer, the reference
DNAm matrix can be used not only to estimate the epithelial content of samples, which could be used as a
quality control measure or criterion for selecting samples, but also to infer cancer DMCs occurring in the epithelial
compartment of the breast tissue. In particular, we have demonstrated that EpiDISH, in combination with our
DNAm reference matrix, is able to achieve relatively high sensitivity (>80%) and specificity (∼90%), comparable to
state-of-the-art reference-free methods. As a potential future application, the obtained cell-type fractions in complex
tissues could be used to also infer the specific cell types responsible for the DMCs, allowing us to determine if
the DNAm alterations associated with disease are occurring in one, several, or all of the epithelial, stromal or IC
compartments.

Conclusion
In summary, the novel DNAm reference matrix ‘EpiFibIC’ presented here will be useful for a wide range of
epigenome studies that need to obtain approximate estimates of the total epithelial, total IC and non-IC stromal
fractions in samples representing complex tissues.

Summary points

• We have constructed a DNA methylation reference for complex epithelial tissues and validated it in purified
samples, cell lines, in silico mixtures and primary tissue.

• Saliva, cervix and buccal tissue exhibit high levels of immune cell contamination, while also exhibiting large
inter-individual variance.

• Our new DNA methylation reference and hierarchical EpiDISH procedure could be used to identify differentially
methylated CpGs in solid tissues.
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