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Slowly varying shear flow is considered over one or
more flexible three-dimensional patches in a surface
inside a boundary layer. At certain shear values,
resonances emerge in which the effects on flow and
patch shape are enlarged by an order of magnitude.
Fast evolution then occurs: this leads to fully nonlinear
unsteady interaction, after some delay, combining
with finite-time break-ups to form a distinct path into
transition.

This article is part of the theme issue ‘Modelling of
sea-ice phenomena’.

1. Introduction
This contribution on modelling the interaction between
fluid flow and a surface is in the particular context
of one or more flexible three-dimensional patches in
an otherwise solid surface within a boundary layer
or vorticity region astride that surface. The model
is perhaps simplistic for a real sea-ice floe or patch
in flow but we have in mind nevertheless that the
boundary layer can be mainly in the atmospheric
flow over a patch or in the sea flow below a patch,
depending on how the motion is started up. The
patch may represent an ice floe; ice-buckling is also in
mind here when the patch shape becomes especially
distorted [1]. In terms of air flow over a patch, the
present working is on the smaller-scale patches of ice,
of length shorter than or not much greater than the
representative thickness of an atmospheric boundary
layer. Slightly longer patches involve interaction with the
flow outside the incident boundary layer and even longer
ones are dominated by inviscid effects provided no
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separation takes place. The boundary layer thickness varies with wind speed but may be typically
in the range of tens to hundreds of metres. In terms of water current under an ice patch, similar
comments apply restricting the characteristic length scale of the patch.

The incident water boundary layer in this case might be expected to also have a thickness
of order tens to hundreds of metres based on the square root of the ratio of the kinematic
viscosities for air and water being not especially large and allowing representative current speeds
not dissimilar to those of the atmosphere. We note that the issue of whether water (sea) flow or
atmospheric (air) flow dominates locally depends to a large extent on how the present background
motion originated, whether from a sea surge or from a wind surge, for example.

Related physical interactions concern dynamic fluid–body effects due to ice shards and
lumps in the atmosphere and broken-off pieces of ice floe passing under an ice-breaking ship’s
hull. Related theoretical papers are in [2–4]. The present paper focuses on the influences of
fluid-flow vorticity, wall shear, fluid viscosity and three-dimensional features within the sea-ice
mechanics area of the current theme issue, along with consideration of the many inherent scales.
The intention is to complement direct simulations in order to shed light on three-dimensional
mechanics, which enhances upstream and downstream influence of a patch, and to include
linear and nonlinear effects, viscous–inviscid interaction and the implications for flow and
surface-shape transition. The setting of storms and complex environment is also a factor here.

Section 2 describes the main configuration in non-dimensional terms for laminar unsteady
three-dimensional motion of incompressible fluid at high flow rates. Numerical method and
results are considered in §3 followed by analysis of modal aspects in §4. Section 5 addresses a
resonance which allows nonlinear unsteady effects to play a decisive part. Final comments are
presented in §6. The evolution discussed is initially slow over a flexible patch of small slope but
ever faster evolution emerges later as the slope increases markedly, leading to transition.

2. Shear flow over a hydroelastic surface patch
The three-dimensional configuration has a finite patch or patches of flexible surface which are
housed in an otherwise fixed solid surface in the plane y = 0 (figure 1). An incident flow of fluid
across the configuration has a given uniform wall shear proportional to an O(1) factor λ(t) which is
taken to be quasi-steady, varying over a slow time scale t. The flow response and the surface-shape
response are coupled and relatively local, with the incident shear being viewed as representing
the oncoming motion in the lower reaches (the sublayer) of a surrounding boundary layer, for
example, an atmospheric or sea boundary layer depending on the particular context.

In the local properties, our concern is with the so-called condensed flow [1] in which the
displacement effects on the rest of the flow field are negligible. Condensed flow occurs in a
sublayer near the surface for short length scales streamwise, and corresponding short patches,
where the pressures produced are insufficient to significantly displace the surrounding flow
outside the sublayer. Mechanically the sublayer response is dominant and the surrounding flow
responds only passively. (Longer patches are governed by triple-deck theory involving interaction
with the flow outside the incident boundary layer or by inviscid theory provided no significant
separation takes place; the latter theory connects with potential flow studies [5–10].) The fluid
velocity (u, v, w) in the Cartesian coordinate system (x, y, z) and the induced pressure difference p
used here are non-dimensional and scaled with respect to a representative length of patch in the
streamwise and spanwise directions, a representative height H∗ in the normal direction, a typical
incident shear value S∗, and the fluid density and kinematic viscosity ν∗. The characteristic slope
of the patch is taken to be comparable with 1/R2 where R2 is the Reynolds number S∗H∗2/ν∗
which is assumed to be large, and the sublayer thickness is H∗. We note that in the sublayer in
the lower depths of a boundary layer these scalings are essentially those of [1]. The governing
equations become

ux + vy + wz = 0, (2.1a)

ut + uux + vuy + wuz = −px + uyy (2.1b)
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Figure 1. An incident two-dimensional boundary layer flowing in the x-direction encounters one or more flexible three-
dimensional patches lying in the x–z plane. The incident near-surface shear flow enters a three-dimensional sublayer that
arises in the lower reaches of the surrounding boundary layer.

and wt + uwx + vwy + wwz = −pz + wyy. (2.1c)

The unsteady contributions in (2.1b,c) are included to emphasize the point that there is time-
dependence but it begins as slowly varying, with ut, wt negligible, while the main boundary
conditions are

u = v = w = 0 at y = 0, (2.1d)

u ∼ λ(t)(y + f (x, z, t)), w → 0 as y → ∞, (2.1e)

Wall relation e1(∂2
x + ∂2

z )2 f = p − p0 on the patches, (2.1f )

f = 0 outside the patches (2.1g)

and (u, v, w, p) → (λ(t)y, 0, 0, 0) as x → −∞. (2.1h)

The slow dependence on time is present through the scaled incident shear factor λ(t) which
is of order unity. The nonlinear three-dimensional interactive boundary layer equations (2.1a,c)
apply at leading order with the unknown scaled surface shape f of the patch being linked to the
scaled pressure p by means of (2.1f), whereas the wall is assumed to be flat where there is no patch
as in (2.1g). To emphasize, the interaction between the flow and the surface shape is two-way in
the sense that you cannot determine one without the other. The parameter e1 is proportional
to the flexural rigidity of the patch, it is taken to be a constant of order unity and it is usually
negative [1,11]: see remarks on the patch properties at the end of this section. Moreover, the scaled
base pressure p0 relative to the incident pressure level (the latter is taken as zero) could depend
on z spanwise. A Prandtl transposition y → y − f has been applied such that the shape effect
f (x, z, t) appears in the outer condition (2.1e), leaving the no-slip condition as (2.1d) at the wall. The
pressure response p(x, z, t) which acts in the streamwise and spanwise balances of momentum in
(2.1b,c) is also unknown and independent of y by virtue of the normal momentum balance which
is dominated by py having to be zero. The final requirement (2.1h) corresponds to the incident flow
condition. The quasi-steadiness is again noted; compare unsteady properties discussed in §5.
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The typical patch is assumed to have only small slopes at first and the incident wall shear λ(t)
to vary only slowly. That suggests we start the analysis with small quasi-steady disturbances,
indicating that solutions should be sought in the form (u, v, w, p) = (λy + hũ, hṽ, hw̃, hp̃) + · · ·
together with a given base pressure level p0 = hp̃0 + · · · while f = hf̃ + · · · denotes the unknown
patch height. Here the scaled height parameter h is small. This leads from (2.1) to the linearized
system

ũx + ṽy + w̃z = 0, (2.2a)

λyũx + λṽ = −p̃x + ũyy, (2.2b)

λyw̃x = −p̃z + w̃yy, (2.2c)

ũ = ṽ = w̃ = 0 at y = 0, (2.2d)

ũ → λf̃ (x, z, t), w̃ → 0 as y → ∞, (2.2e)

Wall relation e1(∂2
x + ∂2

z )2 f̃ = p̃ − p̃0 on the patches, (2.2f )

f̃ = 0 outside the patches (2.2g)

and (ũ, ṽ, w̃, p̃) → (0, 0, 0, 0) as x → −∞. (2.2h)

The boundary conditions at the prescribed edge of each patch take the form

f̃ = f̃n = 0 at a patch boundary, (2.3)

where n denotes differentiation in the direction normal to the patch boundary in the x–z plane.
The paper now addresses the linear system (2.2) and (2.3) (before nonlinear effects come to the
fore as described in §5).

An array of patches periodic in z is supposed of scaled spanwise distance O(b) between the
middle of each patch. If b is large, then the solution near each patch is expected to become
that of a quasi-isolated patch. On the other hand, an increased spanwise length of patch may
produce quasi-two-dimensional behaviour whereas a decrease in that length accentuates the
three-dimensional nature of the configuration. Concerning the wall relation (2.1f) and hence (2.2f)
it contains no unsteady terms proportional to ft and ftt since the mass density and the damping
constant are supposed comparatively small and likewise contributions from lower derivatives
such as (δ2

x + δ2
z )f and f itself are neglected on the grounds of negligible longitudinal tension and

spring stiffness in effect.

3. Numerical method and results

(a) Methodology
Extra ellipticity is present because of the three-dimensional effects [12], in the form of significant
upstream influence; in the two-dimensional case the upstream influence ahead of the x-station of
the first patch is insignificant at leading order. So strictly extra boundary conditions are required
but these become clear as we proceed.

We proceed by successively iterating between the flow and shape problems. First, the skewed
shear method [12] is used for the flow. The momentum balances are combined by adding the x-
derivative of (2.2b) to the z-derivative of (2.2c) which, taking (2.2a) also into account and using the
quasi-shears defined by U = ũx + w̃z and V = ṽx, yields the formulation

Ux + Vy = 0 (3.1a)

and

λyUx + λV = −Px + Uyy. (3.1b)
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(The unknown response P has a Laplacian form; see (3.3a).) This is together with the conditions

U = V = 0 at y = 0, (3.1c)

U → λf̃x as y → ∞ (3.1d)

and (U, V, P) → (0, 0, 0) in the far field. (3.1e)

Here the individual patch shape f̃ is treated as known at this stage of iteration whereas the quasi-
pressure P is a response to be found. Further, the formulation above is that of a two-dimensional
flow problem in which z acts only as a parameter. The solution at each z can be obtained by a
transform approach and gives the quasi-pressure result [1] explicitly as

P(x, z) = 0 for x < x1(z), (3.2a)

P(x, z) = −γ ∗
∫ x

x1

f̃s(s, z)(x − s)−2/3 ds for x1(z) < x < x2(z) (3.2b)

and P(x, z) = −γ ∗
∫ x2

x1

f̃s(s, z)(x − s)−2/3 ds for x > x2(z), (3.2c)

with the (so far) passive t-dependence suppressed. Here the constant γ ∗ = −3Ai′(0)λ5/3/Γ (1/3) is
positive, approximately 0.289838λ5/3, and x1, x2 denote the x-values of the front and rear of the
patch, respectively, at a fixed z; if the fixed z-plane does not intersect any patch then (3.2a) applies
throughout. Hence P(x, z) can be determined directly everywhere in the x–z plane. On the other
hand, the manipulation leading to (3.1b) shows that

(∂2
x + ∂2

z )p̃ = Px. (3.3a)

So the pressure p̃(x, z) is then to be found by solving the forced Laplace equation (3.3a) for p̃, for
example, by an iteration method, with the right-hand side defined by derivatives of (3.2a,c) and
with the requirement that

p̃ → 0 in the far field, or prescribed periodicity in z, (3.3b)

depending on the context.
Second, a relaxation method is used for the shape problem which consists of (2.2f), (2.2g), (2.3)

with p̃(x, z) assumed given by the latest update as in the previous paragraph and with a specified
constant p̃0 value. The field equation is treated as

(∂2
x + ∂2

z )f̃ = g̃ and (∂2
x + ∂2

z )g̃ = (p̃ − p̃0)
e1

in the patches. (3.4)

These two equations are solved iteratively for f̃ , g̃ subject to second-order accurate representations
of the edge conditions (2.3) and subject to relaxation. The shape f̃ thus obtained is fed back
into the flow problem of (3.2) and (3.3) to deduce a new pressure, which is fed again into
the shape problem, and so on until the overall iterations converge. The above reasoning is
presented mostly for a single patch but similar considerations apply for multiple patches and
periodic configurations. Note Fourier transform methods might be considered but these tend to
be hindered in their practicability by the patches being of finite length.

(b) Numerical results
There are many system parameters. We chose certain specific parameter values to illustrate the
major points of interest here, for a spanwise periodic array of rectangular patches. The base
pressure level p̃0 was set as unity without loss of generality. The computations kept the spanwise
period b equal to 5, the streamwise length of the patch fixed at 2, the coefficient e1 = −1 and the
incident shear λ as unity (compare §4 below). We varied the spanwise length l of the patch and
also the properties of the numerical grid.
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Figure 2. Solutions with a patch of scaled length 2, span 1.25, base pressure p0 = 1 and incident shear λ = 1. Effects of x,
z grid sizes (201, 201 points; 401, 401; 401, 201) for end values (−4, 4), (−4, 4), (−8, 8) in x, respectively, are also included.
(a) Scaled shape f . (b) Scaled pressure difference p − p1, where p1 is the pressure at the origin; horizontal lines indicate the
values obtained at the ends of the grid; z = −2.5(0.125)2.5.
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Figure 3. As in figure 2a but with a span of 2.5. Grid has 201 points in x, z with z-step of 0.025.

Results are shown in figures 2 and 3. The interactive shapes f̃ and pressure difference
distributions p̃ are given in figure 2 for the case of a spanwise extent l = 1.25. The f̃ solutions
are similar to those in the two-dimensional scenario [1] but now vary with z, with a maximum
occurring along the centreline and only small values arising near the spanwise edges. The
pressure difference solutions p̃(x, z) − p̃(0, 0) at each z-value are likewise reminiscent of the two-
dimensional results but, in the spanwise direction, are maximal at the centreline and they display
the spread of pressure outside the patch, to the sides as well as ahead and behind the patch.
Grid tests given in figure 2 show f̃ agreeing well from grid to grid throughout, whereas the p̃
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solutions are shifted up or down while maintaining their basic shape. Figure 3 is for the same
parameter values except that the spanwise extent l is doubled to 2.50. Here f̃ , p̃ in particular are
both increased significantly in magnitude.

Upstream influence appears in all cases as anticipated earlier. There is in addition a
considerable wake effect downstream. The latter appears to affect the level of the pressure
solutions throughout. These findings indicate the potential value of conducting a mode analysis
for the sake of understanding the shape and pressure features more.

4. Mode analysis and resonance
The following modal approach is found to shed light on the interactions above. The base pressure
p̃0 is supposed now to depend on z according to cos(βz) say where the periodicity coefficient β

is a prescribed constant. Considering all z-dependence to be in the modal form exp(iβz) or more
generally a summation of such terms, thus

p̃ = Re

⎧⎨
⎩

∑
β

p̃β (x, t) exp(iβz)

⎫⎬
⎭ , (4.1)

we see that the relations (3.2) between P, f̃ then remain intact with x1, x2 being constants. The
relation (3.3a) linking p̃, P however is transformed to

p̃′′
β − β2p̃β = P′

β , (4.2a)

where the prime denotes a derivative with respect to x. Also the wall equation (2.2f) or (3.4)
becomes

e1{f̃ ′′′′
β − 2β2 f̃ ′′

β + β4 f̃β} = p̃β − p̃β0 inside any patch. (4.2b)

Here f̃β , p̃β , Pβ are complex functions of x in general and p̃β0 is a given complex constant. The
latter could vary from patch to patch in principle. The boundary conditions are

(p̃β , Pβ ) → (0, 0) as x → ±∞, (4.3a)

f̃β = 0 outside the patch (4.3b)

and f̃β = f̃ ′
β = 0 at x = x+

1 , x−
2 . (4.3c)

This is currently for a single patch in the streamwise direction; thus (4.3b) applies for x < x1 and
x > x2. The task is to solve (4.2), (4.3) together with (3.2).

To solve we address the streamwise ranges ahead of the patch, in the patch and downstream
of the patch in turn. Ahead of the patch (4.2a) holds but with P identically zero by virtue of (3.2b).
So from (4.2a) the pressure is simply

p̃β = A0 exp(βx) for x < x1, (4.4a)

where the constant A0 is to be determined and condition (4.3a) is satisfied at −∞ as required. In
the patch itself the solution can be written in the form

p̃β = Q + β

∫ x

x1

Q(σ ) sinh(β(x − σ )) dσ + r1 exp(βx) + r2 exp(−βx). (4.4b)

Here r1, r2 are unknown constants while Pβ is expressed as dQ/dx with Q unknown. Thus (3.2)
gives the relations

Q(x) = 0 : x < x1 (4.4c)

Q(x) = −3γ ∗
∫ x

x1

f̃ ′
β (s)(x − s)1/3 ds : x1 < x < x2 (4.4d)

and Q(x) = −3γ ∗
∫ x2

x1

f̃ ′
β (s)(x − s)1/3 ds : x > x2. (4.4e)



8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170348

.........................................................

99

50

x

f

−7.5 × 10−3

−5.0 × 10−3

–2.5 × 10−3

0

2.5 × 10−3

5.0 × 10−3

0 0.2 0.4 0.6 0.8 1.0

b = 0 

l = 1

b = 4

0.2

1

x

p

−5

−4

−3

−2

−1

0

1

0 0.5 1.0 1.5 2.0 2.5 3.0

(b)(a)

Figure 4. Modal analysis. (a) Shape f̃β (denoted f ) for λ = 1, 50, 99 whenβ = 1; resonance occurs at a λ value between 50
and 99 (figure 5). (b) Pressure p̃β (denoted p) for varyingβ withλ = 50.

The flow properties (4.4) are coupled with the wall properties of (4.2b) to determine the scaled
wall pressures and shapes numerically, bearing in mind that p̃β , dp̃β/dx are continuous at the start
of the patch and f̃β , df̃β/dx are zero at both ends of the patch. It follows that r1 = A0 while r2 is
zero. The iterative method used marches forward in x, given a guessed p̃β = A0 at x = x−

1 , and the
march continues to a downstream location x∞ sufficiently far beyond x = x2 to reveal exponential
growth in x downstream of the patch at any typical iteration. The value of A0 is then adjusted
by means of Newton iteration to produce zero such growth downstream. Solutions are shown
in figure 4.

Figure 4a shows the shape solutions for a fixed β of unity with the incident shear λ taking the
values 1, 50, 99 and p̃β0 again being unity. Here (x1, x2) = (0, 1). More phenomena of interest are
found to occur as λ increases. We observe that the typical f̃β value increases monotonically with
λ until a certain critical value between 50 and 99 is reached, after which f̃β becomes negative:
this leads on to the investigation of resonance below. Figure 4b gives the pressure results for
various β values with λ fixed at 50. For higher values of β, the pressure variation is relatively slight
but it increases monotonically with decreasing β and the upstream and downstream influences
become more apparent. For β values greater than about unity a moderate downstream end x∞ is
sufficient, whereas lower values require a much increased end range, with pronounced pressure
responses arising then, and the computation becomes more sensitive. Decreasing β eventually
leads to increased streamwise extent, decreased amplitude of upstream influence and increased
downstream influence. The two-dimensional solution associated with zero β is also shown for
comparison.

Small β values corresponding to relatively large spanwise length scales admit further
analytical insight. Bearing in mind that zero β produces no upstream influence at this level we
find a two-tiered response holds: for x of O(1) the two-dimensional result with p̃β = Q applies,
giving p̃β decaying as x−2/3 downstream, whereas further downstream for larger x of O(β−1) the
three-dimensional nature reasserts itself. From (4.2a) with Q′′ on the right-hand side and scaling
x = β−1X the pressure is

p̃β = μ̂β2/3

{
X−2/3 +

∫X

0
S−2/3 sinh(X − S) dS

}
+ r1 eX, where μ̂ = −γ ∗

∫ 1

0
f̃β (s) ds. (4.5)
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Figure 5. The mid-height f (= fmid) at x = 1
2 versus λ for fixed β = 1. Dotted curves: from medium grid. Solid: finer grid.

Dashes: resonant value from finer grid.

Here μ̂ stems from the two-dimensional zero-β result, where the dependence on the cross-
sectional area of the distorted patch is notable, and (x1, x2) = (0, 1) again. The condition of no
exponential growth at large positive X therefore yields the prediction

r1 = −( 1
2 )μ̂β2/3Γ ( 1

3 ), (4.6)

to leading order. A calculation of μ̂ based on the two-dimensional shape f̃β in (4.5) leads to
the numerical value r1 = 0.603 from (4.6) for the case β = 0.2. Also this three-dimensional effect
determines the upstream influence that occurs over the long O(β−1) length scale in view of (4.4a)
with A0 given by r1. As an approximation the numerical value just above is not far from the
pressure values obtained in the earlier results of figure 4 at the beginning of the patch for a β of
0.2. In addition the relative correction of order β2/3 coupled with the two length scales in x helps
to account for the sensitivities in computing at small β values (and explains pressure sensitivity
in figure 2b).

Large β values similarly allow analysis. Upstream influence lengths are small of order β−1

here. The main response takes place over the patch where the shape f̃β is given approximately by
e1β

4 f̃β = −p̃β0 from (4.2b), since p̃β is of order β−6, except near the ends where there are thin zones
in which the x-variation is of order β−1. Results for β = 4 in figure 4 tie in with the approximation
in terms of the f̃β maximum value.

Resonance is found to occur. For a representative fixed β of unity, the results of varying the
incident wall shear λ are presented in figure 5. These indicate a critical value λ = λ1 (about 83.0) at
which the shape and pressure response become unbounded on linear grounds, or ‘intensification’
takes place (giving a weakly nonlinear stage followed by a strongly nonlinear one, depending
on details, see below). In fact, an infinite sequence of such critical values or eigenvalues λ = λn is
obtained. Such resonance is present for any β value.

5. Resonance leads to nonlinear evolution and transition
The resonance phenomenon has an interpretation in terms of flow transition as depicted in
figure 6. Clearly when the wall shear λ(t) of the incident flow acquires certain critical values
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maximal magnitude
of wall shear stress
and patch height

c

b

a

supercritical

subcritical

(iv)(iii)(ii)(i)
t

Figure 6. Effects of changing incident shearλ. Curve a showsmaximal local wall shear and patch height whenλ varies slowly
as in b from subcritical to supercritical. When λ variation is as in c the response remains close to c. Time scales (i–iv) are slow,
fast, faster, faster and increasingly nonlinear.

the flexible patch, after some delay due to initially slow variation, rises or falls to a magnitude
much greater than is otherwise the case. This intensification along with a nonlinear blowup
which is accompanied by a shortening time scale as in [1] points to a turbulent trip effect
being produced over a wide parameter range. Both shear and wall flexibility are required for
the present intensifications and fast growth mechanisms to occur. The intensification present
here leads to a non-standard path into transition from low amplitudes, as figure 6 indicates by
showing schematically the process of accelerating effects that yield strongly nonlinear evolution.
During that evolution the full governing equations (2.1a–c) re-enter play. This is followed by finite-
time blowup as in Smith [13] and Peridier et al. [14] which provokes the even faster evolution
described by Bowles et al. [15] (see also [16,17]) with further restructuring and deep transition
towards turbulence taking place. The boosted nonlinear behaviour here arises directly from the
intensification associated with a critical λ, which represents variation in the surrounding flow
conditions.

6. Further comments
The study of incident shear effects seems unusual for flow over three-dimensional flexible patches
and in the sea-ice context especially. This may be shear in the sea or wind shear in the air,
depending on the setting, and there could even be interaction between the sea and the air
through kinematic conditions. When the incident shear varies slowly the initial effects with small
disturbances allow analytical insight. More significant however are the implications for transition:
in brief at critical (resonant) shear values considerable unsteadiness enters first via a weakly
nonlinear behaviour at or near resonance and secondly through blowup yielding fully nonlinear
behaviour, as in [1]. The distortion of the patch shape also becomes intensified, which may be
relevant to the buckling of ice sheets. Other nonlinear physical features also enter in various
ways, for instance, through flow separations arising. All of this nonlinearity is alternative to the
interesting nonlinearity in [8–10].
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.........................................................

Cases of many patches and periodic arrays, which have biomedical application as well,
deserve further attention. It would be interesting to examine influences from mass density,
damping, longitudinal tension and spring stiffness [1,11], while there is a clear need for more
three-dimensional interaction studies to admit realistic shapes and shorter time scales. Models
of storm effects are also of interest here. One such is concerned with wall-bounded shear flow
containing freely moving bodies, giving dynamic fluid–body interactions [2–4], where nonlinear,
many-body and flow-separation effects have still to be incorporated.
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