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Abstract We study two closely related problems stemming from the random wave
conjecture forMaaß forms. The first problem is bounding the L4-norm of aMaaß form
in the large eigenvalue limit; we complete the work of Spinu to show that the L4-norm
of an Eisenstein series E(z, 1/2+i tg) restricted to compact sets is bounded by

√
log tg .

The second problem is quantum unique ergodicity in shrinking sets; we show that by
averaging over the centre of hyperbolic balls in�\H, quantum unique ergodicity holds
for almost every shrinking ball whose radius is larger than the Planck scale. This result
is conditional on the generalised Lindelöf hypothesis for Hecke–Maaß eigenforms but
is unconditional for Eisenstein series. We also show that equidistribution for Hecke–
Maaß eigenforms need not hold at or below the Planck scale. Finally, we prove similar
equidistribution results in shrinking sets for Heegner points and closed geodesics
associated to ideal classes of quadratic fields.

Mathematics Subject Classification 11F12 (primary); 58J51 (secondary)

1 Introduction

1.1 Randomness of Maaß newforms

1.1.1 Random wave conjecture

Let B0(�) denote the set of Hecke–Maaß eigenforms of weight zero and level 1 on
the modular surface �\H, where � = SL2(Z) and H denotes the upper half-plane; we
normalise g ∈ B0(�) to be such that
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1498 P. Humphries

〈g, g〉 :=
∫

�\H

|g(z)|2 dμ(z) = 1,

where dμ(z) = y−2 dx dy. A well-known conjecture of Berry [1] and Hejhal and
Rackner [20] states that a Hecke–Maaß eigenform g ∈ B0(�) of large Laplacian
eigenvalue λg = 1/4 + t2g ought to behave like a random wave. Here by a random
wave, we mean a function of the form

gλ(z) =
∑

λ≤λ f ≤λ+η(λ)

c f f (z),

where η(λ) → ∞ as λ → ∞ and η(λ) = o(λ), each f is a normalised Hecke–Maaß
eigenform, and the coefficients c f are independentGaussian randomvariables ofmean
0 and variance 1. These are a randomised model of eigenfunctions of the Laplacian in
the large eigenvalue limit λ → ∞, and it is easier to prove (almost surely) results for
random waves than for true eigenfunctions.

For �\H, there are situations in which random waves do not behave precisely like
Laplacian eigenfunctions: random waves satisfy supz∈K |gλ(z)| �K

√
log λ almost

surely for every compact subset K , whereas Milićević [41, Theorem 1] proved the
existence of a dense subset of points z ∈ �\H for which a subsequence of Hecke–
Maaß eigenforms g ∈ B0(�) may be much larger. Nonetheless, it is conjectured that
Laplacian eigenfunctions should, on the whole, be well-modelled by random waves.
This (admittedly loosely defined) conjecture is known as the randomwave conjecture.

In this paper, we study two aspects of this conjecture: bounds for the L4-norm of
an automorphic form, and quantum unique ergodicity in shrinking balls. The former
is a special case of the Gaussian moments conjecture, while the latter is a refinement
of quantum unique ergodicity.

1.1.2 Gaussian moments conjecture

A particular manifestation of the random wave conjecture states that the moments of a
Hecke–Maaß eigenform g ∈ B0(�) should be identical to those of a Gaussian random
variable in the large eigenvalue limit.

Conjecture 1.1 (GaussianMoments Conjecture)Let K be any fixed compact continu-
ity set of �\H, so that the boundary of K has μ-measure zero, and let g ∈ B0(�) be a
Hecke–Maaß eigenform normalised such that 〈g, g〉 = 1. Then for every nonnegative
integer n,

1

VarK (g)n/2 vol(K )

∫

K
g(z)n dμ(z) (1.2)

converges to

1√
2π

∫ ∞

−∞
xne− x2

2 dx =

⎧
⎪⎨

⎪⎩

2n/2

√
π

�

(
n + 1

2

)
if n is even,

0 if n is odd,
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Equidistribution in shrinking sets and L4-norm bounds 1499

as tg tends to infinity. Here

VarK (g) := 1

vol(K )

∫

K
|g(z)|2 dμ(z).

When K is replaced by a noncompact set, the Gaussian moments conjecture ought
not necessarily to hold for high moments. As explained in [21, Sect. 4], using a
heuristic appearing in [19, Sect. 7], the transition range of the Whittaker function
leads to a “tidal pulse” phenomenon near the cusp of �\H; when K is replaced by
�\H, so that Var�\H(g) = vol (�\H)−1, one can thereby show that there exists a
subsequence of Hecke–Maaß eigenforms g ∈ B0(�) for which (1.2) grows like a
power of tg whenever n ≥ 12 is even. This is closely related to the fact that there
exists a subsequence of Hecke–Maaß eigenforms for which

‖g‖∞ �ε t
1
6−ε
g .

Nonetheless, it is not unreasonable to conjecture that the Gaussian moments con-
jecture holds for smaller moments when K is replaced by �\H. Indeed, the conjecture
holds by definition for n ∈ {0, 2} and is easily shown to also be true when n = 1, as
both sides vanish, while for n = 3, this can be shown to hold via the work of Watson
[46].

1.1.3 Quantum unique ergodicity

Another manifestation of the randomness of Hecke–Maaß eigenforms is quantum
unique ergodicity.

Conjecture 1.3 (quantum unique ergodicity in configuration space) Let g ∈ B0(�)

be a Hecke–Maaß eigenform normalised such that 〈g, g〉 = 1. Then the probability
measure |g(z)|2 dμ(z) converges in distribution to the uniform probability measure
on �\H as tg tends to infinity, so that for every continuity set B ⊂ �\H,

∫

B
|g(z)|2 dμ(z) = vol(B)

vol (�\H)
+ oB(1)

as tg tends to infinity.

By the Portmanteau theorem, this conjecture is equivalent to

∫

�\H

f (z)|g(z)|2 dμ(z) = 1

vol (�\H)

∫

�\H

f (z) dμ(z) + o f (1) (1.4)

for every bounded continuous function on �\H.
It behoves us to mention that there is a stronger formulation of quantum unique

ergodicity, namely quantum unique ergodicity in phase space, which is the cosphere
bundle S∗ (�\H) ∼= �\SL2(R): not only should the sequence of probability measures
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1500 P. Humphries

|g(z)|2 dμ(z) equidistribute on the configuration space �\H, but that a microlocal lift
of these measures to Wigner distributions on phase space should equidistribute with
respect to the Liouville measure.

Quantum unique ergodicity in phase space, and hence also in configuration space, is
known to be true via the work of Lindenstrauss [36] and Soundararajan [44]. However,
this proof does not quantify the rate of equidistribution; in particular, it does not give
explicit rates of decay for the terms

∫

�\H

f (z)|g(z)|2 dμ(z) (1.5)

for fixed f ∈ Cb(�\H) as tg tends to infinity. Watson [46, Corollary 1] has shown that
optimal decay rates for these integrals follow directly from the generalised Lindelöf
hypothesis.

The n = 2 case of the Gaussian moments conjecture for the set K = �\H—
namely the L4-norm of g—shares many similarities with quantum unique ergodicity
in configuration space. In fact, it is extremely closely related to a more refined version
of quantum unique ergodicity, namely equidistribution on shrinking sets.

1.1.4 Randomness of Eisenstein series

The Gaussian moments conjecture and quantum unique ergodicity ought to be true,
once suitably modified, when g(z) = E(z, 1/2 + i tg) is an Eisenstein series. Eisen-
stein series are not square-integrable, so one must use some sort of regularisation.
One method is to use Zagier’s regularisation of divergent integrals [50]; another is to
replace E(z, 1/2 + i tg) with the truncated Eisenstein series �T E(z, 1/2 + i tg) for
some T ≥ 1; this is defined for �(s) > 1 by

�T E(z, s) := E(z, s) −
∑

γ∈�∞\�
�(γ z)>T

(
�(γ z)s + �(2 − 2s)

�(2s)
�(γ z)1−s

)

and extended by meromorphic continuation to the complex plane; here �(s) denotes
the completed Riemann zeta function.

For quantum unique ergodicity, we need not deal with the truncated version of the
Eisenstein series provided that we take into account the growth of the L2-norm of an
Eisenstein series on compact sets.

Theorem 1.6 (Luo–Sarnak [39, Theorem 1.1]) For any compact continuity set K ⊂
�\H and for g(z) = E

(
z, 1/2 + i tg

)
,

∫

K
|g(z)|2 dμ(z) =

log
(
1
4 + t2g

)
vol(K )

vol (�\H)
+ oK

(
log tg

)

as tg tends to infinity.
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Equidistribution in shrinking sets and L4-norm bounds 1501

Since K is compact, one can replace g(z) with �T E
(
z, 1/2 + i tg

)
for some T

sufficiently large dependent on K . The presence of log(1/4 + t2g ) essentially stems
from the Maaß–Selberg relation; see Corollary 2.3.

Quantum unique ergodicity in phase space is also known for Eisenstein series; this
is a result of Jakobson [30, Theorem 1].

1.2 The L4-norm problem

The L4-norm problem for a Hecke–Maaß eigenform g is the second nontrivial case
of the Gaussian moments conjecture.

Conjecture 1.7 (L4-norm problem) Let g ∈ B0(�) be a Hecke–Maaß eigenform
normalised such that 〈g, g〉 = 1. As tg tends to infinity,

∫

�\H

|g(z)|4 dμ(z) = 3

vol (�\H)
+ o(1).

A similar statement can be formulated when g is an Eisenstein series, though some
care must be taken, since Eisenstein series are not square-integrable; see [9].

In general, an unconditional proof of the L4-norm problem seems quite difficult. A
weaker conjecture (see, for example, [43, Conjecture 4]) is that

‖g‖4L4(�\H)
�ε tεg . (1.8)

In certain special cases, this has been shown: when g is a dihedral Maaß eigenform,
this is a result of Luo [38], while when g is a truncated Eisenstein series, this is a
result of Spinu [45] (with the implicit constant of course dependent on the truncation
parameter T ).

Buttcane and Khan [6, Theorem 1.1] have recently given a proof, conditional on the
generalised Lindelöf hypothesis, of the L4-norm problem for a Hecke–Maaß eigen-
form g ∈ B0(�). Our first main result is to give an unconditional upper bound for the
L4-norm of a truncated Eisenstein series that is sharper than (1.8).

Theorem 1.9 Let g(z) = �T E
(
z, 1/2 + i tg

)
. We have that

‖g‖4L4(�\H)
�T

(
log tg

)2
.

Up to the implicit constant, Theorem 1.9 should be sharp, for the Maaß–Selberg
relation implies that

‖g‖4L2(�\H)
=
(
log

((
1

4
+ t2g

)
T 2
)

+ O
((
log tg

)2/3 (log log tg
)1/3)

)2

.

Remark 1.10 Theorem1.9was previously claimed bySpinu [45, Theorem1.2], aswas
a proof of (1.8) for Hecke–Maaß cusp forms by Sarnak andWatson [43, Theorem 3]; in
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1502 P. Humphries

both cases, however, the proofs are incomplete, as we shall discuss further in Remark
3.3.

Remark 1.11 Djanković and Khan [9] have recently reformulated the L4-norm prob-
lem for Eisenstein series by studying a regularised fourth moment of an Eisenstein
series in the sense of Zagier [50]; cf. Sect. 2.2. This has the advantage that one ought to
be able to prove an asymptotic for this regularised fourth moment, whereas Theorem
1.9 only provides an upper bound for the fourth moment of a truncated Eisenstein
series.

1.3 Quantum unique ergodicity in shrinking sets

Anatural strengthening of quantum unique ergodicity is to determine whether equidis-
tribution still occurs if we vary the set B with tg; in particular, if the size of B shrinks as
tg increases. This small scale equidistribution should be thought of as a reinterpretation
of determining the rate of equidistribution, as opposed to determining explicit rates of
decay for the terms in (1.5). Proving equidistribution in shrinking sets has applications
towards bounds for the L p-norms and size of nodal domains of eigenfunctions of the
Laplacian; see [22].

We denote by B = BR(w) the hyperbolic ball of radius R centred at w ∈ �\H: its
hyperbolic volume is

vol (BR) = 4π sinh2
R

2
,

which is independent of the centre w.

Question 1.12 Let g ∈ B0(�) be a Hecke–Maaß eigenform normalised such that
〈g, g〉 = 1. For what conditions on R, with regards to tg, is it still true that

1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) = 1

vol (�\H)
+ ow(1) (1.13)

as tg tends to infinity?

In the general setting of negatively curved manifolds, this question has inde-
pendently been answered by Han [16, Theorem 1.5] and Hezari and Rivière [22,
Proposition 2.1] for a full density subsequence of Laplacian eigenfunctions with the
radius R shrinking at a rate (log λg)

−β for a particular range of β > 0 dependent on
the manifold.

We should not expect equidistribution to hold when R � t−1
g ; indeed, Hejhal and

Rackner [20, Sect. 5], writing 
n in place of g, λn in place of λg = 1/4 + t2g , and A
in place of R, state that

…in the physics literature, c/
√

λn is commonly referred to as the de Broglie
wavelength. At length scales below c/

√
λn , one expects the topography of
n to

look “essentially sinusoidal”, that is, regular. It is only when A is substantially
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Equidistribution in shrinking sets and L4-norm bounds 1503

bigger than the de Broglie wavelength that one stands any chance of seeing any
type of Gaussian distribution.

We confirm this statement by showing that if R �A t−1
g (log tg)A for any A > 0,

then there exist infinitely many points w ∈ �\H for which (1.13) does not hold, so
that the sequence of probability measures |g(z)|2 dμ(z) does not equidistribute on the
shrinking balls of radius t−1

g (log tg)A centred at these points. We think of R � t−1
g

as being the Planck scale, so that equidistribution need not occur within a logarithmic
window of the Planck scale.

Theorem 1.14 Let g ∈ B0(�) be a Hecke–Maaß eigenform normalised such that
〈g, g〉 = 1. For every fixed Heegner point w ∈ �\H, we have that

1

vol (BR)

∫

BR(w)
|g(z)|2 dμ(z) = �

(

exp

(

2

√
log tg

log log tg

(
1 + O

(
log log log tg
log log tg

))))

for R �A t−1
g (log tg)A for any A > 0 as tg tends to infinity.

Nevertheless, we should expect equidistribution to occur at every scale larger than
the Planck scale, namely R � t−δ

g for any δ < 1. Towards this, Young [47] has proved
the following.

Theorem 1.15 (Young [47, Proposition 1.5]) Let g ∈ B0(�) be a Hecke–Maaß eigen-
form normalised such that 〈g, g〉 = 1. Assume the generalised Lindelöf hypothesis,
and suppose that R � t−δ

g with δ < 1/3. Then

1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) = 1

vol (�\H)
+ ow,δ(1)

for every fixed point w ∈ �\H.
Similarly, let g(z) = E(z, 1/2 + i tg), and suppose that R � t−δ

g with δ < 1/9.
Then unconditionally

1

log
(
1
4 + t2g

)
vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) = 1

vol(�\H)
+ ow,δ(1)

for every fixed point w ∈ �\H.

In fact, with little work, we can improve the range in Young’s result for Eisenstein
series.

Theorem 1.16 Let g(z) = E(z, 1/2+ i tg), and suppose that R � t−δ
g with δ < 1/6.

Then unconditionally

1

log
(
1
4 + t2g

)
vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) = 1

vol(�\H)
+ ow,δ(1)

for every fixed point w ∈ �\H.
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1504 P. Humphries

A simpler version of Question 1.12 is to instead consider eigenfunctions of the
Laplacian on the d-torusT

d for any d ≥ 2. Hezari and Rivière [23, Corollary 1.5] give
strong bounds for equidistribution in shrinking balls along a full density subsequence
of eigenfunctions of the Laplacian on T

d with eigenvalue λ, namely equidistribution

on all balls of radius R � λ
− 1

4(d+1) . Lester and Rudnick [35, Theorem 1.1] improve

this to R �ε λ
− 1

2(d−1) +ε. Moreover, they prove [35, Theorems 3.1 and 4.1] that this
is essentially sharp, in that there exists a subsequence of eigenfunctions for which

equidistribution does not occur on shrinking balls of radius R �ε λ
− 1

2(d−1) −ε. For
d = 2, Granville andWigman [15, Corollary 3.2] have subsequently sharpened Lester
and Rudnick’s results to show there exists A > 0 such that equidistribution may not
occur on shrinking balls of radius R �A λ−1/2(log λ)A.

One can also reformulate Question 1.12 probabilistically by asking for which scales
equidistribution holds almost surely with respect to a random eigenbasis of Laplacian
eigenfunctions; positive results towards this question appear in the work of Han [17]
and Han and Tacy [18].

We study a related question: instead of demanding that equidistribution hold in
shrinking balls of radius R > 0 centred at w for every point w ∈ �\H, we relax
this requirement by instead asking whether equidistribution holds in shrinking balls
BR(w) for almost every w ∈ �\H.

1.3.1 Conditional results

We are able to give a conditional proof of equidistribution in almost every shrinking
ball when g ∈ B0(�) and R � t−δ

g for any 0 < δ < 1, that is, at all scales above the
Planck scale.

Theorem 1.17 Let g ∈ B0(�) be a Hecke–Maaß eigenform normalised such that
〈g, g〉 = 1. Assume the generalised Lindelöf hypothesis, and suppose that R � t−δ

g

for some 0 < δ < 1. Then for any c �ε t
− 1−δ

2 +ε
g ,

vol

({
w ∈ �\H :

∣∣∣∣
1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) − 1

vol (�\H)

∣∣∣∣ > c

})

converges to zero as tg tends to infinity.

1.3.2 Unconditional results

Proving unconditional results seems to be much more difficult. Nevertheless, we are
able to do so when g(z) = E

(
z, 1/2 + i tg

)
is an Eisenstein series.

Theorem 1.18 Let g(z) = E
(
z, 1/2 + i tg

)
. Suppose that R � t−δ

g for some 0 < δ <

1. Then for any c �ε t
−min

{
5
14 (1−δ),2δ, 1

12

}
+ε

g ,

vol

({
w ∈ �\H :

∣∣∣∣
1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) − D(g;w)

∣∣∣∣ > c

})
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Equidistribution in shrinking sets and L4-norm bounds 1505

converges to zero as tg tends to infinity, where D(g;w) is given by (5.7).

This result is consistent with Theorem 1.6 due to the following.

Lemma 1.19 In any compact subset K of �\H, we have that for all w ∈ K,

D(g;w) =
log

(
1
4 + t2g

)

vol (�\H)
+ OK

((
log tg

)2/3 (log log tg
)1/3)

.

In particular, we may rephrase Theorem 1.18 in the following way.

Corollary 1.20 Let g(z) = E
(
z, 1/2 + i tg

)
, and let K be a fixed compact subset of

�\H. Suppose that R �ε t−1+ε
g . Then for any fixed c > 0,

vol

⎛

⎝

⎧
⎨

⎩
w ∈ K :

∣∣∣∣∣∣

1

log
(
1
4 + t2g

)
vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) − 1

vol (�\H)

∣∣∣∣∣∣
> c

⎫
⎬

⎭

⎞

⎠

converges to zero as tg tends to infinity.

1.4 Equidistribution of geometric invariants of quadratic fields in shrinking sets

Finally, in Sect. 6, we study a similar equidistribution problem in shrinking sets.
Associated to each narrow ideal class A of the narrow class group Cl+K of a quadratic
number field K = Q(

√
D) is a geometric invariant. For D < 0, this is a Heegner point

zA, while for D > 0, this is a closed geodesic CA or a hyperbolic orbifold �A\NA

having this closed geodesic as its boundary; we explain these geometric invariants in
more detail in Sect. 6.1.

For each fundamental discriminant D, we choose a genus GK ⊂ Cl+K in the group
of genera GenK = Cl+K /(Cl+K )2, so thatGK is a coset A(Cl+K )2 of narrow ideal classes
in Cl+K . We have that GenK ∼= (Z/2Z)ω(|D|)−1, whereω(|D|) is the number of distinct
prime factors of |D|, so that #GK = #(Cl+K )2 = 21−ω(|D|)h+

K , where h+
K := # Cl+K

denotes the narrow class number of K . Duke, Imamoḡlu, and Tóth have proved the
following equidistribution theorem.

Theorem 1.21 ([11, Theorem 2]) For every continuity set B ⊂ �\H,

# {A ∈ GK : zA ∈ B}
#GK

= vol(B)

vol (�\H)
+ oB(1)

as D → −∞ through fundamental discriminants, and

∑
A∈GK

� (CA ∩ B)
∑

A∈GK
� (CA)

= vol(B)

vol (�\H)
+ oB(1),

∑
A∈GK

vol (�A\NA ∩ B)
∑

A∈GK
vol (�A\NA)

= vol(B)

vol (�\H)
+ oB(1)
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1506 P. Humphries

as D → ∞ through fundamental discriminants, where �(CA) := ∫
CA

ds, with ds2 =
y−2dx2 + y−2dy2.

If we sum over all genera, so that we are studying equidistribution associated to the
full narrow class group, then this result is due to Duke [10, Theorem 1] for Heegner
points and closed geodesics, while this result becomes trivial for hyperbolic orbifolds,
for there is no error term whatsoever in this case. Moreover, the equidistribution of
closed geodesics has a stronger realisation: instead of merely asking for the equidis-
tribution of closed geodesics on �\H, we may lift these geodesics to phase space
S∗ (�\H) ∼= �\SL2(R) and demand equidistribution with respect to the Liouville
measure. This has been proved by Chelluri [8].

It is natural to ask whether equidistribution still occurs if B shrinks as |D| grows.
Towards this, Young [48] has proved the following.

Theorem 1.22 (Young [48, Theorem 2.1]) Fix w ∈ �\H, and suppose that R �
(−D)−δ . Unconditionally, as D → −∞ through odd fundamental discriminants,

# {A ∈ ClK : zA ∈ BR(w)}
vol (BR) hK

= 1

vol (�\H)
+ ow,δ(1) (1.23)

for fixed δ < 1/24, where ClK denotes the class group of K and hK := # ClK
denotes the class number. Assuming the generalised Lindelöf hypothesis, (1.23) holds
as D → −∞ through fundamental discriminants for fixed δ < 1/8.

In fact, from the method of proof, it is clear that Young’s theorem applies to genera
mutatis mutandis, and proves equidistribution not only of Heegner points, but also of
closed geodesics and hyperbolic orbifolds.

Theorem 1.24 Fix w ∈ �\H, and suppose that R � D−δ . Unconditionally, as D →
∞ through odd fundamental discriminants,

∑
A∈GK

� (CA ∩ BR(w))

vol (BR)
∑

A∈GK
� (CA)

= 1

vol (�\H)
+ ow,δ(1) for δ < 1/18,

∑
A∈GK

vol (�A\NA ∩ BR(w))

vol (BR)
∑

A∈GK
vol (�A\NA)

= 1

vol (�\H)
+ ow,δ(1) for δ < 1/12.

Assuming the generalised Lindelöf hypothesis, these hold as D → ∞ through funda-
mental discriminants for δ < 1/6 and δ < 1/4 respectively.

Once again, we may weaken the demand that equidistribution hold in shrinking
balls of radius R > 0 centred at w for every point w ∈ �\H and instead study
whether equidistribution holds in shrinking balls BR(w) for almost every w ∈ �\H.

We prove the following conditional result.

Theorem 1.25 Suppose that R � |D|−δ . Assuming the generalised Lindelöf hypoth-

esis, we have that for 0 < δ < 1/4 and c �ε (−D)
− 1

2

(
1
4−δ

)
+ε

,

vol

({
w ∈ �\H :

∣∣∣∣
# {A ∈ GK : zA ∈ BR(w)}

vol (BR) #GK
− 1

vol (�\H)

∣∣∣∣ > c

})
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Equidistribution in shrinking sets and L4-norm bounds 1507

converges to zero as D → −∞ along fundamental discriminants, while for 0 < δ <

1/2 and c �ε D
− 1

2

(
1
2−δ

)
+ε

,

vol

({

w ∈ �\H :
∣∣∣∣∣

∑
A∈GK

� (CA ∩ BR(w))

vol (BR)
∑

A∈GK
� (CA)

− 1

vol (�\H)

∣∣∣∣∣
> c

})

converges to zero as D → ∞ along fundamental discriminants.

Unconditionally, we obtain the following weaker results.

Theorem 1.26 Suppose that R � |D|−δ . We have that for 0 < δ < 1/12 and

c �ε (−D)
− 1

2

(
1
12−δ

)
+ε

,

vol

({
w ∈ �\H :

∣∣∣∣
# {A ∈ GK : zA ∈ BR(w)}

vol (BR) #GK
− 1

vol (�\H)

∣∣∣∣ > c

})

converges to zero as D → −∞ along odd fundamental discriminants, while for

0 < δ < 1/6 and c �ε D
− 1

2

(
1
6−δ

)
+ε

,

vol

({

w ∈ �\H :
∣∣∣∣∣

∑
A∈GK

� (CA ∩ BR(w))

vol (BR)
∑

A∈GK
� (CA)

− 1

vol (�\H)

∣∣∣∣∣
> c

})

converges to zero as D → ∞ along odd fundamental discriminants, and for all δ > 0
and c �ε D−1/4+ε,

vol

({

w ∈ �\H :
∣∣∣∣∣

∑
A∈GK

vol (�A\NA ∩ BR(w))

vol (BR)
∑

A∈GK
vol (�A\NA)

− 1

vol (�\H)

∣∣∣∣∣
> c

})

converges to zero as D → ∞ along odd fundamental discriminants.

The fact that these geometric invariants equidistribute on almost every ball of dif-
ferent scales should not come as a surprise, and essentially boils down to the fact that
a Heegner point has dimension 0, a closed geodesic has dimension 1, and a hyperbolic
orbifold has dimension 2. For Heegner points, we need roughly R2 balls to cover�\H,
so we require the number of Heegner points #GK corresponding to the genus GK to
be at least R2 in order to expect equidistribution; this is the scale R � (−D)−1/4. For
closed geodesics, on the other hand, R balls will cover roughly 1/R of �\H, but a
closed geodesic may intersect more than one ball, so we only require the total length∑

A∈GK
� (CA) of closed geodesics corresponding to the genus GK to be at least R;

this is the scale R � D−1/2. Finally, we should expect equidistribution at all scales
for hyperbolic orbifolds, since these are just (possibly uneven) coverings of �\H.
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1.5 Idea of proof

The chief idea behind the proof of the aforementioned small scall equidistribution the-
orems is to use Chebyshev’s inequality to reduce the problem to bounding a variance.
For example,

vol

({
w ∈ �\H :

∣∣∣∣
1

vol (BR)

∫

BR(w)
|g(z)|2 dμ(z) − 1

vol (�\H)

∣∣∣∣ > c

})
≤ 1

c2
Var(g; R)

with

Var(g; R) :=
∫

�\H

(
1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) − 1

vol (�\H)

)2

dμ(w).

The method of bounding the variance in order to show equidistribution in almost
every shrinking ball is also used in [15, Theorem 1.6] for eigenfunctions of the Lapla-
cian on T

2, as well as in both [13, Theorem 1.3] and [4, Theorem 1.8], where the
problem investigated is not quantum unique ergodicity, but rather the equidistribution
of lattice points on the sphere.

The variance is an inner product of functions in L2(�\H), as is the fourthmoment of
a truncated Eisenstein series; both are thereby amenable to being spectrally expanded
via Parseval’s identity. The resulting spectral sumoverHecke–Maaß forms f occurring
in the spectral expansion Var(g; R) when g is an Eisenstein series is essentially the
same as the spectral sum for fourth moment of a truncated Eisenstein series in the
range 0 < t f �ε R−1+ε, whereas for t f � 1/R, it is much smaller.

Finally, we use the Watson–Ichino formula to write |〈|g|2, f 〉|2 as a product of
L-functions. This reduces the problem to bounding certain moments of L-functions,
with the length of thesemoments corresponding inversely to the radius of the shrinking
ball.

Though not a manifestation of the random wave conjecture, the equidistribution
problems in Sect. 1.4 nonetheless involve equidistribution on �\H, and the proofs
of Theorems 1.25 and 1.26 contain many of the same ingredients as the proofs of
Theorems 1.17 and 1.18. The chief difference is that in place of |〈|g|2, f 〉|2, we have
Weyl sums; akin to the Watson–Ichino formula, these can be expressed as a product
of L-functions via the work of Duke, Imamoḡlu, and Tóth [11].

1.6 Connections to subconvexity

The rate of equidistribution for quantum unique ergodicity for Hecke–Maaß eigen-
forms g ∈ B0(�) can be quantified via explicit rates of decay for

∫

�\H

f (z)|g(z)|2 dμ(z),
∫

�\H

E(z, ψ)|g(z)|2 dμ(z)
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for fixed f ∈ B0(�) and ψ ∈ C∞
c (R+) as tg tends to infinity. Via the Watson–Ichino

formula, this is equivalent to obtaining subconvex bounds of the form

L

(
1

2
, sym2 g ⊗ f

)
� f t

1−δ
g , L

(
1

2
+ i t, sym2 g

)
�t t

1
2 (1−δ)
g

for some absolute constant δ > 0. Similarly, quantifying the rate of equidistribution
for quantum unique ergodicity for g(z) = E(z, 1/2 + i tg) is equivalent to obtaining
subconvex bounds of the form

L

(
1

2
+ 2i tg, f

)
� f t

1
2 (1−δ)
g , ζ

(
1

2
+ i(2tg ± t)

)
�t t

1
4 (1−δ)
g

for some absolute constant δ > 0.
For quantumunique ergodicity in almost every shrinking ball of radius R forHecke–

Maaß eigenforms g ∈ B0(�), on the other hand, we will show that we require bounds
of the form

∑

H≤t f ≤2H

L
( 1
2 , f

)
L
( 1
2 , sym

2 g ⊗ f
)

L(1, sym2 f )
�δ Ht1−δ

g

for some absolute constant δ > 0 uniformly in 1 � H � 1/R. That is, we require
subconvex moment bounds for L-functions uniformly in two parameters: t f and tg .
Thus this is a problem of hybrid subconvexity. Proving such bounds unconditionally
seems to be currently out of reach for moments involving GL3×GL2 Rankin–Selberg
L-functions. For g(z) = E(z, 1/2 + i tg), on the other hand, the required subconvex
moment bounds are

∑

H≤t f ≤2H

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg

)∣∣2

L(1, sym2 f )
�δ Ht1−δ

g ,

and the fact that these moments only involve GL2 L-functions makes this problem
tractable. It is for this reason that we are able to prove Theorem 1.18 unconditionally,
whereas Theorem 1.17 is conditional.

2 Integrals of automorphic forms and L-functions

2.1 The Maaß–Selberg relation

The Eisenstein series E(z, 1/2+ i t) is not square-integrable for any t ∈ R. However,
this is no longer the case when we replace the Eisenstein series with the truncated
Eisenstein series

g(z) = �T E

(
z,

1

2
+ i tg

)
,
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since �T E(z, s) is of rapid decay at the cusp of �\H. Note that

�T E(z, s) =
{
E(z, s) if 1/T ≤ �(z) ≤ T ,

E(z, s) − �(z)s + ϕ(s)�(z)1−s if �(z) > T ,

where

ϕ(s) = �(2 − 2s)

�(2s)
.

The following explicit formula for the inner product of two truncated Eisenstein series
is known as the Maaß–Selberg relation.

Proposition 2.1 ([28, Proposition 6.8]) For T ≥ 1, and s �= r , s + r �= 1,

∫

�\H

�T E(z, s)�T E(z, r) dμ(z)

= T s+r−1

s + r − 1
+ ϕ(r)

T s−r

s − r
+ ϕ(s)

T r−s

r − s
+ ϕ(s)ϕ(r)

T 1−s−r

1 − s − r
. (2.2)

Corollary 2.3 We have that

∫

�\H

∣∣∣∣�
T E

(
z,

1

2
+ i tg

)∣∣∣∣

2

dμ(z) = log

((
1

4
+ t2g

)
T 2
)

+ O
((
log tg

)2/3 (log log tg
)1/3)

.

Proof We take s = r = 1/2 + i tg + ε with ε > 0 in the Maaß–Selberg relation (2.2)
to obtain

∫

�\H

∣∣∣∣�
T E

(
z,

1

2
+ i tg + ε

)∣∣∣∣

2

dμ(z) = T 2ε

2ε
−
∣∣∣∣ϕ
(
1

2
+ i tg + ε

)∣∣∣∣

2 T−2ε

2ε
.

Using the Taylor expansions

T 2ε = 1 + 2ε log T + O
(
ε2
)

,

ϕ

(
1

2
+ i tg + ε

)
= ϕ

(
1

2
+ i tg

)
+ εϕ′

(
1

2
+ i tg

)
+ O

(
ε2
)

,

together with the fact that |ϕ(1/2 + i tg)| = 1 and that

ϕ′

ϕ

(
1

2
+ i tg

)
= −4�

(
�′

�

(
1 + 2i tg

))

= 2 logπ − 2�
(

�′

�

(
1

2
+ i tg

))
− 4�

(
ζ ′

ζ

(
1 + 2i tg

))
, (2.4)
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we find that

∫

�\H

|g(z)|2 dμ(z) = 2 log T − 2 logπ + 2�
(

�′

�

(
1

2
+ i tg

))
+ 4�

(
ζ ′

ζ

(
1 + 2i tg

))
.

It remains to use Stirling’s formula to find that

2�
(

�′

�

(
1

2
+ i tg

))
= log

(
1

4
+ t2g

)
+ O

(
1

tg

)
, (2.5)

and [29, Theorem 8.29] to give the bound

ζ ′

ζ

(
1 + 2i tg

) � (
log tg

)2/3 (log log tg
)1/3

. (2.6)

��

2.2 The Watson–Ichino formula

To deal with spectral sums involving terms of the form |〈|g|2, f 〉|2, one can use the
Watson–Ichino formula, which essentially states that the square of the integral over
�\H of the product of three automorphic forms is equal to a product of completed
L-functions involving those automorphic forms. In particular, if f, g ∈ B0(�), then
from [26, Theorem 1.1] and [46, Theorem 3],

∣∣∣
〈
|g|2, f

〉∣∣∣
2 = �

( 1
2 , g ⊗ g̃ ⊗ f

)

�(1, sym2 g)2�
(
1, sym2 f

) .

Here �(s, π) denotes the completed L-function of an automorphic representation π

of GLn(AQ): this is of the form

�(s, π) = qs/2π L∞(s, π)L(s, π), (2.7)

where qπ denotes the conductor of π , L∞(s, π) is the archimedean part of �(s, π),
which is of the form π−ns/2∏n

j=1 �(
s+κπ, j

2 ) for some κπ, j ∈ C, and L(s, π) is the
usual nonarchimedean part of �(s, π). Note that the numerator in the Watson–Ichino
formula factorises:

�(s, g ⊗ g̃ ⊗ f ) = �(s, f )�
(
s, sym2 g ⊗ f

)
.

Similar results also hold when either f or g is replaced with an Eisenstein series.

Proposition 2.8 ([6, Equations (2.2) and (4.2)]) For f, g ∈ B0(�),

∣∣〈|g|2, f
〉∣∣2 = 1

8

�
( 1
2 , f

)
�
( 1
2 , sym2 g ⊗ f

)

�
(
1, sym2 g

)2
�
(
1, sym2 f

) ,
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∣∣∣∣

〈
|g|2, E

(
·, 1
2

+ i t

)〉∣∣∣∣

2

= 1

4

�
( 1
2 + i t

)
�
( 1
2 − i t

)
�
( 1
2 + i t, sym2 g

)
�
( 1
2 − i t, sym2 g

)

�
(
1, sym2 g

)2
�(1 + 2i t)�(1 − 2i t)

.

A similar result also holds when g is an Eisenstein series.

Proposition 2.9 ([39, Equation (17)], [45, Theorem 4.1]) For f ∈ B0(�),

∣∣∣∣∣

〈∣∣∣∣E
(

·, 1
2

+ i t

)∣∣∣∣

2

, f

〉∣∣∣∣∣

2

= 1

2

�
( 1
2 , f

)2
�
( 1
2 + 2i tg, f

)
�
( 1
2 − 2i tg, f

)

�(1 + 2i tg)2�
(
1 − 2i tg

)2
�
(
1, sym2 f

) .

Finally, when f is also an Eisenstein series, the integral is no longer convergent.
One can work around this issue by replacing this integral with a regularised integral.
This is defined by Zagier [50] in the followingway. Let F : �\H → C be a continuous
function of moderate growth, so that there exists c j , α j ∈ C and nonnegative integers
n j such that

F(z) =
�∑

j=1

c j
n j ! y

α j (log y)n j + ON

(
y−N

)

for all N ≥ 0 at the cusp at infinity, with no α j equal to 0 or 1. Then there exists
a function E(z) that is a linear combination of Eisenstein series and derivatives of
Eisenstein series E(z, α), each satisfying �(α) > 1/2, such that for some δ > 0,

F(z) − E(z) = O
(
y

1
2−δ

)

at the cusp at infinity. The regularised inner product of two functions f, g such that
f g = F is continuous and of moderate growth is defined to be

〈 f, g〉reg :=
∫

�\H

(F(z) − E(z)) dμ(z).

Moreover, if f and g depend on complex parameters, then we may extend both sides
via analytic continuation where possible.

Proposition 2.10 ([50, Equation (44)])We have that

〈E(·, s1)E(·, s2), E (·, s)〉reg
= �(s + s1 + s2 − 1) � (s + s1 − s2)� (s − s1 + s2) � (s − s1 − s2 + 1)

� (2s) � (2s1)� (2s2)
.

(2.11)

In practice, it is the nonarchimedean part L(s, π) of a completed L-function�(s, π)

that is difficult to dealwith; this is because the asymptotic behaviour of the archimedean
part of a completed L-function can be inferred via Stirling’s approximation.
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Lemma 2.12 The product of the archimedean parts of the completed L-functions in
Propositions 2.8, (2.9) (with t = t f ), and (2.10) (with s1 = s2 = 1/2 + i tg and
s = 1/2 + i t f ) is equal to

8π2e−π�(t f ,tg)

(1 + t f )(1 + 2tg + t f )1/2(1 + |2tg − t f |)1/2

×
(
1 + O

(
1

1 + t f
+ 1

1 + 2tg + t f
+ 1

1 + |2tg − t f |
))

, (2.13)

where

�(t f , tg) :=
{
0 if 0 < t f ≤ 2tg,

t f − 2tg if t f > 2tg.

Proof The product of the archimedean parts of the completed L-functions is

π
�
(
1
4 + i(2tg+t f )

2

)
�
(
1
4 + i(2tg−t f )

2

)
�
(
1
4 − i(2tg+t f )

2

)
�
(
1
4 − i(2tg−t f )

2

)

�
( 1
2 + i tg

)2
�
( 1
2 − i tg

)2

×
�
(
1
4 + i t f

2

)2
�
(
1
4 − i t f

2

)2

�
( 1
2 + i t f

)
�
( 1
2 − i t f

) .

The result then follows directly from Stirling’s approximation. ��
On occasion, we also need to deal with lower bounds for L(1, sym2 f ). This is less

complex than values of L-functions within the critical strip 0 < �(s) < 1; indeed,
the following is known.

Lemma 2.14 (Hoffstein–Lockhart [24]) For f ∈ B0(�),

L
(
1, sym2 f

)
� 1

log(t f + 3)
.

3 Sharp bounds for the L4-norm of a truncated Eisenstein series

3.1 The spectral expansion of the L4-norm

We wish to determine sharp bounds for

‖g‖4L4(�\H)
=
∫

�\H

|g(z)|4 dμ(z)

with g(z) = �T E(z, 1/2+ i tg) in terms of tg . Our first step is to express this quantity
as a spectral sum, which requires the spectral decomposition of L2 (�\H).
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Lemma 3.1 ([29, Theorem 15.5]) Let

f0(z) := 1√
vol (�\H)

,

so that 〈 f0, f0〉 = 1, and let B0(�) be an orthonormal basis of Maaß cusp forms in
L2 (�\H). Then a function g ∈ L2 (�\H) has the spectral expansion, valid in the
L2-sense, of the form

g(z) = 〈g, f0〉 f0(z) +
∑

f ∈B0(�))

〈g, f 〉 f (z)

+ 1

4π

∫ ∞

−∞

〈
g, E

(
·, 1
2

+ i t

)〉
E

(
z,

1

2
+ i t

)
dt.

Moreover, Parseval’s identity holds:

〈g1, g2〉 = 〈g1, f0〉 〈 f0, g2〉 +
∑

f ∈B0(�)

〈g1, f 〉 〈 f, g2〉

+ 1

4π

∫ ∞

−∞

〈
g1, E

(
·, 1
2

+ i t

)〉 〈
E

(
·, 1
2

+ i t

)
, g2

〉
dt

for g1, g2 ∈ L2 (�\H).

In particular, the following spectral expansion of the L4-norm of g is simply Par-
seval’s identity with g1 = g2 = |g|2.
Corollary 3.2 Let g ∈ L2 (�\H) be of rapid decay. Then

‖g‖4L4(�\H)
= ∣∣〈|g|2, f0

〉∣∣2 +
∑

f ∈B0(�)

∣∣〈|g|2, f
〉∣∣2 + 1

4π

∫ ∞

−∞

∣∣∣∣

〈
|g|2, E

(
·, 1
2

+ i t

)〉∣∣∣∣
2

dt.

This is reduced to understanding bounds for the inner product of |g|2 with eigen-
functions of the Laplacian. The first term in this expansion is the inner product of |g|2
with the constant function

f0(z) = 1√
vol (�\H)

,

and Corollary 2.3 shows that

∣∣∣
〈
|g|2, f0

〉∣∣∣
2 =

(
log

(
1
4 + t2g

))2

vol (�\H)
+ OT

((
log tg

)5/3 (log log tg
)1/3)

.

It remains to treat the cuspidal and continuous spectra.
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3.2 Ranges of the spectral decomposition for the L4-norm

We divide the spectral expansion of the L4-norm of g(z) = �T E(z, 1/2+ i tg) given
in Corollary 3.2 into different parts, then analyse each part individually.

There are two main ranges of the continuous spectrum to consider, which depend
on a small fixed parameter δ > 0:

• the initial range 0 ≤ |t | ≤ 2tg + t1−δ
g , and

• the tail range |t | > 2tg + t1−δ
g .

Both of these ranges will be shown to contribute a negligible amount via subconvexity
estimates for the L-functions appearing in the integral.

For the contribution from the cuspidal spectrum, the summation over B0(�) may
be broken up into different ranges depending on t f . There are four main ranges of the
cuspidal spectrum left to consider, which depend on a fixed small parameter δ > 0:

• the short initial range 0 ≤ t f ≤ t1−δ
g ,

• the bulk range t1−δ
g < t f < 2tg − t1−δ

g ,
• the short transition range 2tg − t1−δ

g ≤ t f ≤ 2tg + t1−δ
g , and

• the tail range t f > 2tg + t1−δ
g .

We divide the spectral sum into these particular ranges due to the size of the product
of analytic conductors of L-functions. The analytic conductor of

L

(
1

2
, f

)2

L

(
1

2
+ 2i tg, f

)
L

(
1

2
− 2i tg, f

)

is approximately

(
1

4
+ t2f

)2 (1
4

+
(
2t2g + t2f

))(1
4

+
∣∣∣2t2g − t2f

∣∣∣
)

,

which is large when t f lies in the bulk range, but is small in the short initial range,
and drops in the short transition range. For this reason, the main contribution will be
shown to arise from the bulk range, while the contribution from the two short ranges
will be shown to be negligible. Assuming the generalised Lindelöf hypothesis, this
can be proven directly; see [6, Sect. 5]. Finally, the exponential decay in (2.13) arising
from the archimedean components of the completed L-functions indicates that the tail
range contributes a negligible amount.

Remark 3.3 In [45, Chapter 6], Spinu sketches an unconditional proof of Theorem1.9.
The proof, however, only treats the spectral sum in the range αtg < t f < 2(1−α)tg for
any fixed α > 0 (essentially the bulk range), in which the contribution of the spectral
sum ought to be nonnegligible. The remaining ranges, which all ought to contribute a
negligible amount, are left unaddressed.

This same issue is present in a claim of Sarnak and Watson [43, Theorem 3(a)] of
the bound ‖g‖L4(�\H) �ε tεg for Hecke–Maaß cusp forms, under the assumption of
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the Selberg eigenvalue and Ramanujan conjectures (but not the generalised Lindelöf
hypothesis, as in [6, Theorem 1.1]). Sarnak (personal communication) subsequently
has retracted this claim, and instead only claims this bound for the contribution of the
spectral sum in the bulk range, as the method he uses is unable to treat the short initial
range.

We are able to treat the short initial and transition ranges, left untreated by Spinu,
by applying the work of Jutila [32], Ivić [27], and Jutila andMotohashi [33] on certain
hybrid moments of L-functions. We do not know how to treat these ranges when g is
a Hecke–Maaß cusp form.

3.3 Spectral methods to bound the continuous spectrum

From Corollary 3.2, we must bound

1

4π

∫ ∞

−∞

∣∣∣∣

〈
|g|2, E

(
·, 1
2

+ i t

)〉∣∣∣∣

2

dt. (3.4)

Lemma 3.5 ([45, Theorem 3.3]) There exists a positive constant c > 0 such that (3.4)

is bounded by 108T + O
(
t−c
g

)
.

Here c is any constant less than 1/2− 2θ , where θ is a positive constant such that

ζ

(
1

2
+ i t

)
�ε (|t | + 1)θ+ε.

The best bound known is θ = 13/84, due to Bourgain [3, Theorem 5].

3.4 Reduction to untruncated Eisenstein series for the cuspidal spectrum

From Corollary 3.2, we must bound

∑

f ∈B0(�)

∣∣∣
〈
|g|2, f

〉∣∣∣
2
.

First, we observe that g(z) = �T E
(
z, 1/2 + i tg

)
can be replaced by E

(
z, 1/2 + i tg

)
.

Lemma 3.6 ([45, Theorem 4.2])We have that

∑

f ∈B0(�)

∣∣∣
〈
|g|2, f

〉∣∣∣
2 ≤

∑

f ∈B0(�)

∣∣∣∣∣

〈∣∣∣∣E
(

·, 1
2

+ i tg

)∣∣∣∣

2

, f

〉∣∣∣∣∣

2

+ OT

((
log tg

)2)
.

This allows us to use Proposition 2.9 and Lemma 2.12. We divide the cuspidal
spectrum into four ranges, as discussed in Sect. 3.2. The convexity bound for the asso-
ciated L-functions together with the Weyl law shows that the tail range is negligible.
So it remains to bound the first three ranges.
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3.5 Weaker bounds via the large sieve

In [45, Chapter 5], Spinu proves the following moment bounds in dyadic intervals, a
corollary of which is the bound ‖g‖L4(�\H) �ε tεg .

Lemma 3.7 ([45, Proposition 5.4]) We have that

∑

H≤t f ≤2H

L

(
1

2
, f

)2 ∣∣∣∣L
(
1

2
+ 2i tg, f

)∣∣∣∣

2

�ε Ht1+ε
g

uniformly in H ≤ 2tg − t1−δ
g .

Lemma 3.8 ([45, Proposition 5.5]) We have that

∑

H<|t f −2tg |<2H

L

(
1

2
, f

)2 ∣∣∣∣L
(
1

2
+ 2i tg, f

)∣∣∣∣
2

� H1/2t
3+δ
2

g

uniformly in 1 ≤ H � t1−δ
g .

Remark 3.9 Spinu uses the large sieve only to prove Lemma 3.7 and employs a more
complex method in proving Lemma 3.8; nonetheless, one can in fact use the local
large sieve, as stated in [38, Lemma], to prove the latter; see [38, Proof of Theorem].

3.6 Spectral methods to bound the short initial range

From [29, Theorem 8.29], we have that bound

1

ζ(1 + i t)
� (log t)2/3(log log t)1/3.

It therefore suffices to show that

∑

0<t f <t1−δ
g

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

(
1 + t f

) (
1 + 2tg + t f

)1/2 (1 + 2tg − t f
)1/2

L
(
1, sym2 f

) � t−δ′
g

for some δ′ > 0. We divide the short transition range 0 < t f < t1−δ
g into dyadic

intervals H ≤ t f < 2H , of which there are roughly log tg intervals, on which

(1 + t f )(1 + 2tg + t f )
1/2(1 + 2tg − t f )

1/2 � Htg.

It then suffices to show that for H � t1−δ
g ,

∑

H≤t f ≤2H

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

L
(
1, sym2 f

) � Ht1−δ′
g .
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1518 P. Humphries

This bound follows from the work of Jutila [32], Ivić [27], and Jutila and Motohashi
[33]. It is worth noting that the purpose of these works is to obtain Weyl-type subcon-
vexity bounds

L

(
1

2
+ i t, f

)
�ε q

(
f,
1

2
+ i t

) 1
6+ε

for Hecke–Maaß eigenforms f ∈ B0(�), so long as |t | is not too close to t f ; here
q( f, s) denotes the analytic conductor of L(s, f ). Conveniently, their methods to
obtain such bounds involve obtaining bounds for the exact type of spectral sum that
we are studying.

Lemma 3.10 For t ≥ 0 and H � 1, we have that

∑

H≤t f ≤2H

L
( 1
2 , f

)2 ∣∣L
( 1
2 + i t, f

)∣∣2

L
(
1, sym2 f

) �ε

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H2+ε if H ≥ t2/3,

t
4
3+ε if t1/2 ≤ H ≤ t2/3,

H
8
3+ε if t1/3 ≤ H ≤ t1/2,

H
2
3+εt

2
3+ε if H ≤ t1/3.

Proof For H ≥ t1/2, this follows from [33, Theorem 2], which states that for t ≥ 0
and H � 1,

∑

H≤t f ≤2H

L
( 1
2 , f

)2 ∣∣L
( 1
2 + i t, f

)∣∣2

L
(
1, sym2 f

) �ε

(
H2 + t4/3

)1+ε

.

For H ≤ t1/2, this follows from the subconvexity bound

L

(
1

2
, f

)
�ε t

1
3+ε

f

of Ivić [27, Corollary 2], and from [32, Theorem], which states that for t ≥ 0 and
1 � G � H ,

∑

H≤t f ≤H+G

∣∣L
( 1
2 + i t, f

)∣∣2

L
(
1, sym2 f

) �ε

(
GH + t2/3

)1+ε

.

��
Corollary 3.11 For any δ > 0, we have that

∑

0<t f <t1−δ
g

�
( 1
2 , f

)2
�
( 1
2 + 2i tg, f

)
�
( 1
2 − 2i tg, f

)

�(1 + 2i tg)2�(1 − 2i tg)2�
(
1, sym2 f

) �ε t
−min

{
δ, 16

}
+ε

g .
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3.7 Spectral methods to bound the short transition range

In [5, Sect. 1], Buttcane and Khan state for a dihedral Maaß newform g,

…the range [2tg − t1−δ
g < t f < 2tg] can be handled by applying Hölder’s

inequality as Luo does and then applying Jutila’s [31] and Ivić’s [27] bounds for
moments of L(1/2, f ) in short intervals of t f close to 2tg .

A similar idea works when g is a truncated Eisenstein series. We must show that

∑

2tg−t1−δ
g ≤t f ≤2tg+t1−δ

g

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

(
1 + t f

) (
1 + 2tg + t f

)1/2 (1 + |2tg − t f |
)1/2

L
(
1, sym2 f

) � t−δ′
g

for some δ′ > 0. We use the Cauchy–Schwarz inequality to see that this spectral sum
is bounded by t−3/2

g times the square root of the product of

∑

2tg−t1−δ
g ≤t f ≤2tg+t1−δ

g

L
( 1
2 , f

)4

(
1 + |2tg − t f |

)1/2
L
(
1, sym2 f

)

and

∑

2tg−t1−δ
g ≤t f ≤2tg+t1−δ

g

∣∣L
( 1
2 + 2i tg, f

)∣∣4

(
1 + |2tg − t f |

)1/2
L
(
1, sym2 f

) .

The first sum is bounded by

�t2/3−δ
g �∑

k=0

1
(
1 + kt1/3g

)1/2
∑

2tg−(k+1)t1/3g ≤t f <2tg−kt1/3g

L
( 1
2 , f

)4

L
(
1, sym2 f

)

+
�t2/3−δ
g �∑

k=0

1
(
1 + kt1/3g

)1/2
∑

2tg+kt1/3g ≤t f <2tg+(k+1)t1/3g

L
( 1
2 , f

)4

L
(
1, sym2 f

) ,

and a similar expression holds for the second sum.We then apply the following lemma

to show that each sum is bounded by a constant multiple dependent on ε of t
3−δ
2 +ε

g ,
from which the result follows.

Lemma 3.12 ([31, Theorem], [33, Theorem 1]) For H � 1 and 1 � G � H, we
have that

∑

H≤t f ≤H+G

L
( 1
2 , f

)4

L
(
1, sym2 f

) �ε

(
H1/3 + G

)
H1+ε.
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Similarly, for H � 1, 0 ≤ t � H3/2−ε, and 0 ≤ G ≤ (H + t)4/3H−1+ε, we have
that

∑

H≤t f ≤H+G

∣∣L
( 1
2 + i t, f

)∣∣4

L
(
1, sym2 f

) �ε (H + t)4/3H ε.

Corollary 3.13 For any 0 < δ < 2/3, we have that

∑

2tg−t1−δ
g ≤t f ≤2tg+t1−δ

g

�
( 1
2 , f

)2
�
( 1
2 + 2i tg, f

)
�
( 1
2 − 2i tg, f

)

�(1 + 2i tg)2�(1 − 2i tg)2�
(
1, sym2 f

) �ε t
− δ

2+ε
g .

3.8 Spectral methods to bound the bulk range

In [45, Chapter 6], Spinu proves the bound

∑

2αtg≤t f ≤2(1−α)tg

�
( 1
2 , f

)2
�
( 1
2 + 2i tg, f

)
�
( 1
2 − 2i tg, f

)

�(1 + 2i tg)2�(1 − 2i tg)2�
(
1, sym2 f

) �α

(
log

(
1

4
+ t2g

))2

for any small α > 0. Via the methods of Buttcane and Khan [5,6] (the chief difference
of which is using a different test function in the Kuznetsov formula), this extends to the
full bulk range t1−δ

g < t f < 2tg − t1−δ
g , which thereby completes the unconditional

proof of Theorem 1.9.

4 Failure of equidistribution at the Planck scale

4.1 The Selberg–Harish–Chandra transform

For z, w ∈ H, set

u(z, w) := |z − w|2
4�(z)�(w)

= sinh2
ρ(z, w)

2
,

where

ρ(z, w) := log
|z − w| + |z − w|
|z − w| − |z − w|

denotes the hyperbolic distance onH. The function u : H×H → [0,∞) is a point-pair
invariant. From this, a function k : [0,∞) → C gives rise to a point-pair invariant
k(z, w) := k(u(z, w))onH. TheSelberg–Harish-Chandra transformmaps sufficiently
well-behaved functions k : [0,∞) → C to functions h : R → C. This transform is
given in three steps as follows:
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q(v) :=
∫ ∞

v

k(u)√
u − v

du, g(r) := 2q
(
sinh2

r

2

)
, h(t) :=

∫ ∞

−∞
g(r)eirt dr.

Note that h(t) is real whenever t is real.
We shall take k(z, w) = kR(z, w) equal to the indicator function of a small ball of

radius R centred at a point w,

BR(w) := {z ∈ H : ρ(z, w) ≤ R} =
{
z ∈ H : u(z, w) ≤ sinh2

R

2

}
,

normalised by the volume of this ball. So

k(u) = kR(u) :=

⎧
⎪⎨

⎪⎩

1

4π sinh2 R
2

if u ≤ sinh2
R

2
,

0 otherwise,

(4.1)

and consequently

h(t) = hR(t) := R

π sinh R
2

∫ 1

−1

√√√√1 −
(
sinh Rr

2

sinh R
2

)2

ei Rrt dr.

We require the following asymptotics for hR(t), which are extremely similar to the
analogous result for T

2; see [15, Lemma 2.1].

Lemma 4.2 (Cf. [7, Lemma 2.4]) As R tends to zero, we have that

hR(t) ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if Rt tends to zero,

2J1(Rt)

Rt
if Rt ∈ (0,∞),

1√
π

(
2

Rt

)3/2

sin
(
Rt − π

4

)
if Rt tends to infinity.

Proof If R and Rt both converge to zero, then the dominated convergence theorem
implies that

hR(t) ∼ 2

π

∫ 1

−1

√
1 − r2 dr = 1.

If R converges to 0 and Rt converges to some value in (0,∞), then similarly

hR(t) ∼ 2

π

∫ 1

−1

√
1 − r2ei Rrt dr = 2J1(Rt)

Rt
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via [14, 8.411.10]. So it remains to prove the case that R converges to 0 and Rt tends
to infinity. To do this, we let

h(R, x) := R

π sinh R
2

∫ 1

−1

√√√√1 −
(
sinh Rr

2

sinh R
2

)2

eirx dr.

We show that

x3/2h(R, x) − 2

√
2

π

R

sinh R
sin
(
x − π

4

)

is pointwise convergent as R tends to zero and is uniformly convergent to 0 as x
tends to infinity, from which the Moore–Osgood theorem allows us to interchange the
order of limits taken in order to obtain the desired asymptotic. Indeed, the dominated
convergence theorem once again shows that h(R, x) converges to

2

π

∫ 1

−1

√
1 − r2eirx dr = 2J1(x)

x

as R tends to zero. For the uniform convergence as x tends to infinity, we integrate by
parts and make the substitution r = 2

R arsinh
(
sin v sinh R

2

)
, yielding

h(R, x) = R

2 sinh R
2

2

π i x

∫ π/2

−π/2
sin ve

ix 2
R arsinh

(
sin v sinh R

2

)

dv.

Using stationary phase, with the two critical points being the endpoints ±π/2, we
find that there exists some R0 > 0 such that

sup
R∈(0,R0)

∣∣∣∣∣
x3/2h(R, x) − 2

√
2

π

R

sinh R
sin
(
x − π

4

)
∣∣∣∣∣
� 1

x
.

��
For a function k : [0,∞) → C, we may form the automorphic kernel

K (z, w) :=
∑

γ∈�

k(γ z, w),

which is �-invariant in both variables. When k(u) = kR(u), we write K (z, w) =
KR(z, w).

Lemma 4.3 If f : �\H → C is an eigenfunction of the Laplacian with eigenvalue
1/4 + t2f , then

1

vol (BR))

∫

BR(w)

f (z) dμ(z) = 〈 f, KR(·, w)〉 = hR(t f ) f (w).
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Proof This follows from [28, Theorem 1.14]. Note that there it is assumed that not
only is k(u) compactly supported, but that it is smooth; this, however, is not essential
to the proof. Instead, we merely require that k(z, w) be twice differentiable in both
variables μ-almost everywhere. ��

4.2 Proof of theorem 1.14

Proposition 4.4 ([41, Theorem 1]) For every fixed Heegner point w ∈ H,

|g(w)| = �

(

exp

(√
log tg

log log tg

(
1 + O

(
log log log tg
log log tg

))))

as tg tends to infinity.

Proof of Theorem 1.14 For g ∈ B0(�),

1

vol (BR)

∫

BR(w)

g(z) dμ(z) =
∫

�\H

KR(z, w)g(z) dμ(z) = hR(tg)g(w).

It follows by the Cauchy–Schwarz inequality that

∣∣hR
(
tg
)∣∣2 |g(w)|2 ≤ 1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z).

Theorem 1.14 then follows from Lemma 4.2 and Proposition 4.4. ��
Remark 4.5 Theorem 1.14 also holds for Maaß newforms g ∈ B∗

0(�0(q)) for any
q > 1, for Proposition 4.4 is proved in this generality (and in fact in even further
generality).

Remark 4.6 Since it is conjectured that maxw∈K |g(w)| �K ,ε tεg for every compact
subset K of �\H, we cannot expect any significant improvement to Theorem 1.14 via
this line of reasoning.

5 Equidistribution in almost every shrinking ball

5.1 Proof of conditional results

In this section, we prove the following.

Proposition 5.1 Let g ∈ B0(�) be a Hecke–Maaß eigenform normalised such that
〈g, g〉 = 1. For R > 0, let

Var(g; R) :=
∫

�\H

(
1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) − 1

vol (�\H)

)2

dμ(w).
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Assume the generalised Lindelöf hypothesis, and suppose that R � t−δ
g for some

δ > 0. Then for 0 < δ < 1,

Var(g; R) �ε t−(1−δ)+ε
g

as tg tends to infinity, while for δ > 1,

Var(g; R) ∼ 2

vol (�\H)
= 6

π

as tg tends to infinity.

Theorem 1.17 then follows directly via Chebyshev’s inequality. Our starting point
towards proving Proposition 5.1 is the following spectral expansion of Var(g; R).

Proposition 5.2 Let g ∈ B0(�) be a Hecke–Maaß eigenform normalised such that
〈g, g〉 = 1. Then Var(g; R) is equal to

∑

f ∈B0(�)

∣∣hR(t f )
∣∣2
∣∣∣
〈
|g|2, f

〉∣∣∣
2 + 1

4π

∫ ∞

−∞
|hR(t)|2

∣∣∣∣

〈
|g|2, E

(
·, 1
2

+ i t

)〉∣∣∣∣

2

dt,

where

hR(t) := R

π sinh R
2

∫ 1

−1

√√√√1 −
(
sinh Rr

2

sinh R
2

)2

ei Rrt dr.

Proof Via Lemmata 3.1 (namely Parseval’s identity) and 4.3, 〈|g|2, KR(·, w)〉 is equal
to

〈g, g〉
vol (�\H)

+
∑

f ∈B0(�)

hR(t f ) f (w)
〈
|g|2, f

〉

+ 1

4π

∫ ∞

−∞
hR(t)E

(
w,

1

2
+ i t

) 〈
|g|2, E

(
·, 1
2

+ i t

)〉
dt.

Upon squaring and integrating over w, we obtain the desired identity. ��
Proof of Proposition 5.1 for 0 < δ < 1We use Propositions 5.2 and 2.8 and Lemmata
4.2 and 2.12. We then divide the spectral expansion in Proposition 5.2 into various
ranges.

Just as in Sect. 3.2, there are twomain ranges of the continuous spectrum to consider:

• the initial range 0 ≤ |t | < 2tg + tδg , and
• the tail range |t | > 2tg + tδg .

The division of the cuspidal spectrum into parts depends on δ. When R � t−δ
g with

0 < δ < 1, the ranges are:
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Equidistribution in shrinking sets and L4-norm bounds 1525

• the short initial range 0 < t f ≤ tδg ,
• the polynomial decay range tδg < t f < 2tg + t1−δ

g ,
• the tail range t f ≥ 2tg + t1−δ

g .

Thus Var(g; R) is bounded by a constant multiple dependent on ε of

t−1+ε
g

∑

0<t f ≤tδg

L
( 1
2 , f

)
L
( 1
2 , sym

2 g ⊗ f
)

t f L
(
1, sym2 f

)

+ t
3δ− 1

2+ε
g

∑

tδg<t f <2tg+t1−δ
g

L
( 1
2 , f

)
L
( 1
2 , sym

2 g ⊗ f
)

t4f (1 + |2tg − t f |)1/2L
(
1, sym2 f

)

+ t3δ+ε
g

∑

t f ≥2tg+t1−δ
g

e−π(t f −2tg)
L
( 1
2 , f

)
L
( 1
2 , sym

2 g ⊗ f
)

t
9
2
f (1 + t f − 2tg)1/2L

(
1, sym2 f

)

+ t
− 1

2+ε
g

∫ 2tg+tδg

0

∣∣L
( 1
2 + i t

)
L
( 1
2 + i t, sym2 g

)∣∣2

(1 + t)(1 + |2tg − t |)1/2|ζ(1 + 2i t)|2 dt

+ t
− 1

2+ε
g

∫ ∞

2tg+tδg

e−π(t−2tg)

∣∣L
( 1
2 + i t

)
L
( 1
2 + i t, sym2 g

)∣∣2

(1 + t)(1 + |2tg − t |)1/2|ζ(1 + 2i t)|2 dt.

• From [6, Lemma 2.1], the initial and tail ranges of the continuous spectrum are
bounded by t−1+ε

g .
• The convexity bounds for L(1/2, f ) and L(1/2, sym2 g ⊗ f ) show that the tail
range of the cuspidal spectrum is rapidly decaying.

• For the other two ranges, the generalised Lindelöf hypothesis implies that the
product of these two L-functions is bounded by a constant multiple dependent
on ε of tεg , and then the Weyl law for �\H and partial summation imply that the
contribution of the cuspidal spectrum is bounded by tδ−1+ε

g .

This completes the proof. ��
Proof of Proposition 5.1 for δ > 1 In this case, the division of the cuspidal spectrum
into parts involves an additional range, and there is a dependence on an small fixed
parameter δ′ > 0:

• the short initial range 0 < t f ≤ t1−δ′
g , which once again is bounded by t−δ′/2+ε

g
via the generalised Lindelöf hypothesis,

• the bulk range t1−δ′
g < t f < 2tg − t1−δ′

g , which is asymptotic to 6/π from the
proof of [6, Proposition 2.2],

• the short transition range 2tg − t1−δ′
g ≤ t f ≤ 2tg + t1−δ′

g , again bounded by

t−δ′/2+ε
g , and

• the tail range t f > 2tg + t1−δ′
g , which is negligible.

This completes the proof. ��
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Remark 5.3 Just as with Theorem 1.14, the bound Var(g; R) �ε t−(1−δ)+ε
g for R �

t−δ
g with 0< δ < 1 in Proposition 5.1 also holds for Maaß newforms g ∈ B∗

0(�0(q))

for any q > 1. Indeed, [29, Theorem 15.5] gives the spectral decomposition of
L2(�0(q)\H), though there are Eisenstein series corresponding to each cusp and
the orthonormal basis of Maaß cusp forms are no longer necessarily Hecke–Maaß
eigenforms. Nonetheless, Blomer and Milićević have given an orthonormal basis of
B0(�0(q)) involving linear combinations of oldforms and newforms [2, Lemma 9],
and a similar basis exists for the space of Eisenstein series [49], and these can be
coupled with the work of Hu on the Watson–Ichino formula in this generality [25].

Remark 5.4 In fact, the method of proof of [6, Proposition 2.2] together with Lemma
4.2 show that if R ∼ (Ctg)−1 for some positive constant C , then

Var(g; R) ∼ 12C

π2

∫ 1

0

J1
( 2t
C

)

t
√
1 − t2

dt = 6

π

(

J0

(
1

C

)2

+ J1

(
1

C

)2
)

by [14, (8.473.1) and (6.552.4)], which converges to 6/π as C tends to infinity.

5.2 Proof of unconditional results

We first sketch how to prove Theorem 1.16.

Proof of Theorem 1.16 In [47], after [47, (4.24)], we use Lemma 3.10 instead of the
subconvexity bound L(1/2+ i t, f ) �ε (t f + t)1/3+ε. Using this, the right-hand side
of [47, (4.26)] is improved to T−1/6+ε‖φ‖2, which yields the result. ��

Next,we cover the proof of the following, fromwhichTheorem1.17will be derived.

Proposition 5.5 Let g(z) = E
(
z, 1/2 + i tg

)
. For R > 0, let

Var(g; R) :=
∫

�\H

(
1

vol (BR)

∫

BR(w)

|g(z)|2 dμ(z) − C(g; R;w)

)2

dμ(w),

where C(g; R;w) is given by (5.8). Suppose that R � t−δ
g for some 0 < δ < 1. Then

Var(g; R) �ε t
−min

{
5
7 (1−δ), 16

}
+ε

g .

To begin, we wish to calculate

1

vol(BR)

∫

BR(w)

|g(z)|2 dμ(z),

where g(z) = E
(
z, 1/2 + i tg

)
. However, we cannot use Parseval’s identity because

|g|2 /∈ L2 (�\H). Instead, we replace |g(z)|2 with E(z, s1)E(z, s2) and subtract away
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a linear combination of Eisenstein series E such that the resulting function is square-
integrable. After applying Parseval’s identity, we finally send s1 to 1/2+ i tg and s2 to
1/2 − i tg .

Lemma 5.6 (Cf. [47, Lemma 4.1]) For 1/2 < �(s1),�(s2) < 3/4,

1

vol(BR)

∫

BR(w)

E(z, s1)E(z, s2) dμ(z)

is equal to

hR

(
i

(
s1 + s2 − 1

2

))
E(w, s1 + s2)

+ hR

(
i

(
1

2
− s1 + s2

))
�(2 − 2s1)

�(2s1)
E(w, 1 − s1 + s2)

+ hR

(
i

(
1

2
+ s1 − s2

))
�(2 − 2s2)

�(2s2)
E(w, 1 + s1 − s2)

+ hR

(
i

(
3

2
− s1 − s2

))
�(2 − 2s1)�(2 − 2s2)

�(2s1)�(2s2)
E(w, 2 − s1 − s2)

+
∑

f ∈B0(�)

hR(t f ) f (w) 〈E(·, s1)E(·, s2), f 〉

+ 1

4π

∫ ∞

−∞
hR(t)E

(
w,

1

2
+ i t

) 〈
E(·, s1)E(·, s2), E

(
·, 1
2

+ i t

)〉

reg
dt.

Proof Let F(z) := E(z, s1)E(z, s2) and let

E(z) := E(z, s1 + s2) + �(2 − 2s1)

�(2s1)
E(z, 1 − s1 + s2)

+�(2 − 2s2)

�(2s2)
E(z, 1 + s1 − s2) + �(2 − 2s1)�(2 − 2s2)

�(2s1)�(2s2)
E(z, 2 − s1 − s2).

Since the constant term of F(z) is

ys1+s2 + �(2 − 2s1)

�(2s1)
y1−s1+s2 + �(2 − 2s2)

�(2s2)
y1+s1−s2 + �(2 − 2s1)�(2 − 2s2)

�(2s1)�(2s2)
y2−s1−s2 ,

we have that F(z) − E(z) = O(y1/2−δ) for some δ > 0 at the cusp at infinity, and
consequently F − E ∈ L2 (�\H). Lemmata 3.1 (namely Parseval’s identity) and 4.3
then imply that

〈F − E, KR(·, w)〉 = 〈F − E, 1〉
vol (�\H)

+
∑

f ∈B0(�)

hR(t f ) f (w)〈F − E, f 〉

+ 1

4π

∫ ∞

−∞
hR(t)E

(
w,

1

2
+ i t

) 〈
F − E, E

(
·, 1
2

+ i t

)〉
dt.
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The left-hand side is equal to 〈F, KR(·, w)〉−〈E, KR(·, w)〉, and Lemma 4.3 allows
us to calculate 〈E, KR(·, w)〉 explicitly. On the right-hand side, the inner product
〈E, f 〉 vanishes whenever f ∈ B0(�), being the linear combination of inner products
of Eisenstein series with a cusp form, and similarly 〈F −E, 1〉 vanishes via [50, Equa-
tion (36) and Sect. 2]. Finally, we claim that the inner product 〈F − E, E

(·, 1
2 + i t

)〉
is equal to

�
(
s2 − s1 + 1

2 + i t
)

�
(
s1 + s2 − 1

2 + i t
)

�
(
s2 − s1 + 1

2 − i t
)

�
(
s1 + s2 − 1

2 − i t
)

� (2s1)� (2s2) � (1 − 2i t)
.

Indeed, we may add and subtract a linear combination of Eisenstein series E ′ such that
both FE (·, 1/2 − i t)− E ′ and EE (·, 1/2 − i t)− E ′ are integrable. Then the integral
of EE (·, 1/2 + i t) − E ′ vanishes via [50, Equation (36) and Sect. 2], and the integral
of FE (·, 1/2 + i t) − E ′ is equal to the desired product of completed zeta functions
via [50, Equation (44)]. ��

We now define

D(g;w) := 2

vol (�\H)

(
2�

(
�′
�

(
1 + 2i tg

))+ 2γ0 − 12ζ ′(2)
π2 − log

∣∣∣4�(w)η(w)4
∣∣∣
)

.

(5.7)
Here γ0 is the Euler–Mascheroni constant and

η(w) := e
( w

24

) ∞∏

m=1

(1 − e(mw))

denotes the Dedekind eta function; note that �(w)6η(w)24 is a Maaß cusp form of
weight 12 and level 1 that is nonvanishing outside the single cusp of �\H. That
D(g;w) is, in some sense, the “true” average of |E(z, 1/2 + i tg)|2 on compact sets,
rather than

log
(
1
4 + t2g

)

vol (�\H)
,

has previously been observed by Young [47, Sect. 4.2] and also Hejhal and Rackner
[20, p. 300], though in the latter case, their expression does not include the Dedekind
eta function.

Proof of Lemma 1.19 This follows from (2.4), (2.5), and (2.6), together with the fact
that �(w)6η(w)24 is nonvanishing in K . ��

We define

C(g; R; w) := D(g;w) +
2ih′

R

(
i
2

)

vol (�\H)
+ 2�

(
hR

(
2tg + i

2

)
�(1 − 2i tg)

�(1 + 2i tg)
E
(
w, 1 − 2i tg

))
.

(5.8)
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Lemma 5.9 Let g(z) = E
(
z, 1/2 + i tg

)
. Then

1

vol(BR)

∫

BR(w)

|g(z)|2 dμ(z) = C(g; R;w) +
∑

f ∈B0(�)

hR(t f ) f (w)
〈
|g|2, f

〉

+ 1

4π

∫ ∞

−∞
hR(t)E

(
w,

1

2
+ i t

) 〈
|g|2, E

(
·, 1
2

+ i t

)〉

reg
dt.

Proof This follows from Lemma 5.6 upon taking s1 = 1/2 + i tg + ε and s2 =
1/2 − i tg + ε and using the expansions

hR

(
i

(
1

2
+ 2ε

))
= 1 + 2ih′

R

(
i

2

)
ε + O(ε2),

�(1 − 2i tg − 2ε)�(1 + 2i tg − 2ε)

�(1 + 2i tg + 2ε)�(1 − 2i tg + 2ε)
= 1 − 8�

(
�′

�

(
1 + 2i tg

))
ε + O(ε2),

vol (�\H) E(w, 1 + 2ε) = 1

2ε
+ 2γ0 − log

∣∣∣4�(w)η(w)4
∣∣∣

− 12ζ ′(2)
π2 + O(ε),

where the last line is the Kronecker limit formula. ��
With this in hand, we can finally give the spectral expansion of Var(g; R).

Proposition 5.10 Let g(z) = E
(
z, 1/2 + i tg

)
. Then Var(g; R) is equal to

∑

f ∈B0(�)

∣∣hR(t f )
∣∣2
∣∣∣
〈
|g|2, f

〉∣∣∣
2 + 1

4π

∫ ∞

−∞
|hR(t)|2

∣∣∣∣∣

〈
|g|2, E

(
·, 1
2

+ i t

)〉

reg

∣∣∣∣∣

2

dt.

Proof This follows directly fromLemma 5.9 after an application of Parseval’s identity
in Lemma 3.1. ��
Proof of Proposition 5.5 Weuse Propositions 5.10 and 2.9 and Lemmata 4.2 and 2.12.
We then divide the spectral expansion in Proposition 5.10 into various ranges.

The two ranges of the continuous spectrum are:

• the initial range 0 ≤ |t | < 2tg + tδg , and
• the tail range |t | > 2tg + tδg .

The cuspidal spectrum can be broken into five ranges, which depend on a small fixed
parameter 0 < δ′ < 1 − δ:

• the short initial range 0 < t f ≤ tδg ,

• the short initial polynomial decay range tδg < t f < t1−δ′
g ,

• the bulk polynomial decay range t1−δ′
g ≤ t f ≤ 2tg − tδg ,

• the short transition polynomial decay range 2tg − tδg < t f < 2tg + tδg ,
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• the tail range t f ≥ 2tg + tδg .

Thus Var(g; R) is bounded by a constant multiple dependent on ε of

t−1+ε
g

∑

0<t f ≤tδg

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

t f L
(
1, sym2 f

)

+ t3δ−1+ε
g

∑

tδg<t f <t1−δ′
g

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

t4f L
(
1, sym2 f

)

+ t
3δ− 1

2+ε
g

∑

t1−δ′
g ≤t f ≤2tg−tδg

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

t4f (1 + |2tg − t f |)1/2L
(
1, sym2 f

)

+ t
3δ− 9

2+ε
g

∑

2tg−tδg<t f <2tg+tδg

L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

(1 + |2tg − t f |)1/2L
(
1, sym2 f

)

+ t3δ+ε
g

∑

t f ≥2tg+tδg

e−π(t f −2tg)
L
( 1
2 , f

)2 ∣∣L
( 1
2 + 2i tg, f

)∣∣2

t
9
2
f (1 + t f − 2tg)1/2L

(
1, sym2 f

)

+ t
− 1

2+ε
g

∫ 2tg+tδg

0

∣∣∣ζ
( 1
2 + i(2tg + t)

)
ζ
( 1
2 + i t

)2
ζ
( 1
2 + i(2tg − t)

)∣∣∣
2

(1 + t)(1 + |2tg − t |)1/2 |ζ (1 − 2i t)|2 dt

+ t
− 1

2+ε
g

∫ ∞

2tg+tδg

e−π(t−2tg)

∣∣∣ζ
( 1
2 + i(2tg + t)

)
ζ
( 1
2 + i t

)2
ζ
( 1
2 + i(2tg − t)

)∣∣∣
2

(1 + t)(1 + |2tg − t |)1/2 |ζ (1 − 2i t)|2 dt.

The continuous spectrum is readily dealt with:

• From [45, Proposition 3.4] and [3, Theorem 5], the initial and tail ranges of the

continuous spectrum are bounded by a constant multiple dependent on ε of t
− 13

84+ε
g .

For the cuspidal spectrum, we have the following:

• The convexity bounds for L(1/2, f ) and L(1/2+2i tg, f ) show that the tail range
is rapidly decaying.

• The short initial range is bounded by a constant multiple dependent on ε of
t−min{1−δ,1/6}+ε
g upon dividing into dyadic intervals and applying Lemma 3.10.

• The samemethodbounds the short initial polynomial decay rangeby t
−min{δ′,1/6}+ε
g .

• For the bulk polynomial decay range, we divide into dyadic intervals and use

Lemma 3.7, which shows that this range is bounded by t
− 5

2 (1−δ−δ′)+ε
g .

• We divide the short transition polynomial decay range into intervals of length
t1/3g , use the Cauchy–Schwarz inequality, and apply Lemma 3.12, which gives the

bound t
− 7

2 (1−δ)+ε
g .

Proposition 5.5 is proven upon taking δ′ = 5
7 (1 − δ). ��
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Proof of Theorem 1.18 By Chebyshev’s inequality and Proposition 5.5,

vol

({
w ∈ �\H :

∣∣∣∣
1

vol(BR)

∫

BR(w)

|g(z)|2 dμ(z) − C(g; R;w)

∣∣∣∣ > c

})

�ε

t
−min

{
5
7 (1−δ), 16

}
+ε

g

c2
.

Again by Chebyshev’s inequality,

vol

({
w ∈ �\H :

∣∣∣∣hR

(
2tg + i

2

)
E
(
w, 1 − 2i tg

)
∣∣∣∣ > c

})

≤ vol ({w ∈ �\H : �(w) > T }) +
∣∣hR

(
2tg + i

2

)∣∣2

c2

∫

�\H

∣∣∣�T E
(
w, 1 − 2i tg

)∣∣∣
2
dμ(z)

for any T ≥ 1, which, by the Maaß–Selberg relation (2.2), is equal to

1

T
+
∣∣hR

(
2tg + i

2

)∣∣2

c2

(

T + 2�
(

�(1 − 4i tg)

�(2 − 4i tg)

T 4i tg

4i tg

)
+
∣∣∣∣
�(1 − 4i tg)

�(2 − 4i tg)

∣∣∣∣

2 1

T

)

.

Using stationary phase as in the proof of Lemma 4.2, or alternatively using [7,
Lemma 2.4], we have that |hR

(
2tg + i

2

) |2 � t−3(1−δ)
g , while Stirling’s approxi-

mation implies that

�(1 − 2i tg)

�(2 − 4i tg)
�ε t

− 1
2+ε

g .

Next, we note that

ih′
R

(
i

2

)
= R2

π

∫ 1

−1
r

√√√√1 −
(
sinh Rr

2

sinh R
2

)2
sinh Rr

2

sinh R
2

dr ∼ R2

8
� t−2δ

g ,

so if c �ε t−2δ+ε
g , then for all sufficiently large tg ,

∣∣∣∣∣
2ih′

R

( i
2

)

vol (�\H)

∣∣∣∣∣
< c.

So piecing everything together, we find that if c �ε t−2δ+ε
g ,

vol

({
w ∈ �\H :

∣∣∣∣
1

vol(BR)

∫

BR(w)

|g(z)|2 dμ(z) − D(g;w)

∣∣∣∣ > c

})

�ε

t
− 5

7 (1−δ)+ε
g

c2
+ t

− 1
6+ε

g

c2
+ 1

T
+ t−3(1−δ)

g T

c2
.
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Taking T = ct
3
2 (1−δ)
g yields the result. ��

6 Equidistribution of geometric invariants of quadratic fields

6.1 Geometric invariants of quadratic fields

Let K = Q(
√
D) be a quadratic field of discriminant D. We denote by h+

K := # Cl+K
the narrow class number of K and hK := # ClK the (wide) class number of K ; note
that Cl+K = ClK , so that h

+
K = hK , except when D > 1 andO×

K contains no elements
of norm −1, in which case h+

K = 2hK . Each narrow ideal class A of Cl+K is associated
to an SL2(Z)-equivalence class of binary quadratic forms Q(x, y) = ax2+bxy+cy2

of discriminant D.
Associated to equivalence classes of binary quadratic forms are geometric invari-

ants: if D < 0, this is a Heegner point zA ∈ �\H, while if D > 0, these are a closed
geodesic CA ⊂ �\H and a hyperbolic orbifold �A\NA whose boundary is CA. This
last geometric invariant was introduced by Duke, Imamoḡlu, and Tóth in [11].

6.1.1 Heegner points zA

Given a binary quadratic form Q(x, y) = ax2+bxy+cy2 of discriminant b2−4ac =
D < 0, the point

z = −b + i
√−D

2a

lies in H. The equivalence class of binary quadratic forms containing Q(x, y), and
hence the corresponding ideal class A ∈ ClK , thereby corresponds to a point z = zA
in �\H, which we call a Heegner point.

6.1.2 Closed geodesics CA

Given a binary quadratic forms Q(x, y) = ax2+bxy+cy2 of discriminant b2−4ac =
D > 0, the points

−b ± √
D

2a

determine the endpoints of a closed geodesic in H. The equivalence class of binary
quadratic forms containing Q(x, y) thereby corresponds to a closed geodesic C = CA

in �\H. The length

�(CA) :=
∫

CA

ds

123
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of CA, with ds2 = y−2dx2+y−2dy2, is equal to 2 log ε+
K , where ε+

K > 1 is the smallest
unit with positive norm in the ring of integers OK of K , so that ε+

K = (x + y
√
D)/2

with (x, y) ∈ R
2+ the fundamental solution to the Pell equation x2 − Dy2 = 4. Note

that ε+
K is equal to εK , the fundamental unit of K , ifO×

K contains no elements of norm
−1, whereas ε+

K = ε2K if O×
K does contain elements of norm −1.

6.1.3 Hyperbolic orbifolds �A\NA

Let K = Q(
√
D) be a real quadratic field of discriminant D > 1. Associated to a

narrow ideal class A ∈ Cl+K is an invariant ((n1, . . . , n�A )), where �A is a positive
integer and n1, . . . , n�A are integers; this is the primitive cycle, unique up to cyclic
permutations, occurring in the minus continued fraction expansion of each point w ∈
K for which 1 > w > σ(w) > 0 and wZ + Z ∈ A. We define the elements

S := ±
(

0 1
−1 0

)
, T := ±

(
1 1
0 1

)

of PSL2(Z), which generate PSL2(Z) as the free product of S and T . For each k ∈
{1, . . . , �A}, define

Sk := T n1+···+nk ST−n1−···−nk .

This is an elliptic element of order 2 in PSL2(Z). We set

�A := 〈
S1, · · · , S�A , T

n1+···+n�A
〉
,

which is a thin subgroup of PSL2(Z). The Nielsen region NA of �A is the smallest
nonempty PSL2(Z)-invariant open convex subset of H. Then �A\NA is a hyperbolic
orbifold, which naturally projects onto �\H. The boundary of �A\NA is a simple
closed geodesic whose image in �\H is CA, and the volume of �A\NA is π�A.

Remark 5.1 In fact, �A depends on the choice ofw. The resulting hyperbolic orbifold
�A\NA ends up being only unique up to translation; however, the projection of�A\NA

onto �\H is independent of the choice of w.

6.2 Weyl sums

6.2.1 Variances and Weyl sums

We define

Var (GK (zA); R) :=
∫

�\H

(
# {A ∈ GK : zA ∈ BR(w)}

vol (BR) #GK
− 1

vol (�\H)

)2

dμ(w),

Var (GK (CA); R) :=
∫

�\H

(∑
A∈GK

� (CA ∩ BR(w))

vol (BR)
∑

A∈GK
� (CA)

− 1

vol (�\H)

)2

dμ(w),
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Var (GK (�A\NA); R)

:=
∫

�\H

(∑
A∈GK

vol (�A\NA ∩ BR(w))

vol (BR)
∑

A∈GK
vol (�A\NA)

− 1

vol (�\H)

)2

dμ(w).

The proofs of Theorems 1.25 and 1.26 follow via Chebyshev’s inequality from the
following two propositions.

Proposition 5.2 Suppose that R � |D|−δ . Assuming the generalised Lindelöf hypoth-
esis, we have that as D → −∞ along fundamental discriminants,

Var (GK (zA); R) �ε (−D)
−
(
1
4−δ

)
+ε

for 0 < δ < 1/4,

while as D → ∞ along fundamental discriminants,

Var (GK (CA); R) �ε D
−
(
1
2−δ

)
+ε

for 0 < δ < 1/2.

Proposition 5.3 Suppose that R � |D|−δ . Then as D → −∞ along odd fundamental
discriminants,

Var (GK (zA); R) �ε (−D)
−
(

1
12−δ

)
+ε

for 0 < δ < 1/12,

while as D → ∞ along odd fundamental discriminants,

Var (GK (CA); R) �ε D
−
(
1
6−δ

)
+ε

for 0 < δ < 1/6,

Var (GK (�A\NA); R) �ε D− 1
2+ε for all δ > 0.

Webegin by determining the spectral expansions of these variances. For f ∈ B0(�),
we define the Weyl sums

WGK (zA), f :=
∑

A∈GK

f (zA) ,

WGK (CA), f :=
∑

A∈GK

∫

CA

f (z) ds,

WGK (�A\NA), f :=
∑

A∈GK

∫

�A\NA

f (z) dμ(z).

We define WGK (zA),∞(t), WGK (CA),∞(t), and WGK (�A\NA),∞(t) similarly with f
replaced by E(·, 1/2 + i t).

123



Equidistribution in shrinking sets and L4-norm bounds 1535

Proposition 5.4 We have that

Var (GK (zA); R) =
∑

f ∈B0(�)

∣∣hR
(
t f
)∣∣2

∣∣WGK (zA), f
∣∣2

(#GK )2

+ 1

4π

∫ ∞

−∞
|hR(t)|2

∣∣WGK (zA),∞(t)
∣∣2

(#GK )2
dt,

Var (GK (CA); R) =
∑

f ∈B0(�)

∣∣hR
(
t f
)∣∣2

∣∣WGK (CA), f
∣∣2

(∑
A∈GK

� (CA)
)2

+ 1

4π

∫ ∞

−∞
|hR(t)|2

∣∣WGK (CA),∞(t)
∣∣2

(∑
A∈GK

� (CA)
)2 dt,

Var (GK (�A\NA); R) =
∑

f ∈B0(�)

∣∣hR
(
t f
)∣∣2

∣∣WGK (�A\NA), f
∣∣2

(∑
A∈GK

vol (�A\NA)
)2

+ 1

4π

∫ ∞

−∞
|hR(t)|2

∣∣WGK (�A\NA),∞(t)
∣∣2

(∑
A∈GK

vol (�A\NA)
)2 dt.

Proof This follows from the spectral expansion of KR and Parseval’s identity. ��
To bound these variances, we require upper bounds for the Weyl sums as well as

lower bounds for #GK ,
∑

A∈GK
� (CA), and

∑
A∈GK

vol (�A\NA).

Lemma 5.5 We have that

(−D)
1
2−ε �ε #GK � √−D log(−D),

D
1
2−ε �ε

∑

A∈GK

� (CA) � √
D log D,

D
1
2−ε �ε

∑

A∈GK

vol (�A\NA) � √
D log D.

Proof We have that #GK = 21−ω(|D|)h+
K and �(CA) = 2 log ε+

K , while it is shown in
[11, Proposition 1] that

#GK log ε+
K

log D
�

∑

A∈GK

vol (�A\NA) � #GK log ε+
K .

The class number formula states that

h+
K =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
DL (1, χD)

log ε+
K

if D > 0,

wK
√−DL (1, χD)

2π
if D < 0,
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where

wK := #O×
K ,tors =

⎧
⎪⎨

⎪⎩

4 if D = −4,

6 if D = −3,

2 otherwise.

The result then follows from the Landau–Siegel theorem and the bound L(1, χD) �
log |D|. ��

6.2.2 Genus characters

The character group ĜenK of GenK is the group of real characters of Cl+K . These
genus characters are indexed by unordered pairs of coprime fundamental discriminants
d1, d2 ∈ Z satisfying d1d2 = D. To each pair d1, d2, we let χ = χd1,d2 denote the
genus character corresponding to d1, d2: this is a real character of the narrow class
group Cl+K that extends multiplicatively to all nonzero fractional ideals via

χ(p) :=
{

χd1(N (p)) if (N (p), d1) = 1,

χd2(N (p)) if (N (p), d2) = 1,

for any prime ideals p � dK , where χd1 , χd2 are the primitive real Dirichlet characters
modulo d1, d2 respectively. In particular, χ is a quadratic character unless either d1 or
d2 is 1, in which case it is the trivial character.

Lemma 5.6 For any narrow ideal classes A1, A2 ∈ Cl+K , we have that

1

2ω(|D|)−1

∑

χ ∈̂GenK
χ(A1A2) =

{
1 if A2 ∈ A1(Cl

+
K )2,

0 otherwise.

Proof This is character orthogonality for finite abelian groups. ��

We abuse notation and write GK for an element in the coset of Cl+K corresponding
to the genus GK . This allows us to write

WGK (zA), f = 1

2ω(−D)−1

∑

χ ∈̂GenK
χ(GK )

∑

A∈ClK
χ(A) f (zA),

WGK (CA), f = 1

2ω(D)−1

∑

χ ∈̂GenK
χ(GK )

∑

A∈Cl+K
χ(A)

∫

CA

f (z) ds,

WGK (�A\NA), f = 1

2ω(D)−1

∑

χ ∈̂GenK
χ(GK )

∑

A∈Cl+K
χ(A)

∫

�A\NA

f (z) dμ(z),
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and analogous identities for WGK (zA),∞(t), WGK (CA),∞(t), and WGK (�A\NA),∞(t).
This has the advantage that we are able to show in each case that the square of the sum
over A ∈ Cl+K is essentially equal to a product of L-functions.

6.2.3 Maaß form Weyl sums

Lemma 5.7 We have that

∣∣WGK (zA), f
∣∣2 � √−D

∑

χ ∈̂GenK

L
( 1
2 , f ⊗ χd1

)
L
( 1
2 , f ⊗ χd2

)

L
(
1, sym2 f

) ,

∣∣WGK (CA), f
∣∣2 �

√
D

1
4 + t2f

∑

χ ∈̂GenK
d1,d2>0

L
( 1
2 , f ⊗ χd1

)
L
( 1
2 , f ⊗ χd2

)

L
(
1, sym2 f

) ,

∣∣WGK (�A\NA), f
∣∣2 �

√√√√
D

(
1
4 + t2f

)3
∑

χ ∈̂GenK
d1,d2<0

L
( 1
2 , f ⊗ χd1

)
L
( 1
2 , f ⊗ χd2

)

L
(
1, sym2 f

) .

Proof For χ = χd1,d2 and even f ∈ B0(�), it is shown in [11, Theorem 4 and Equa-
tion (5.17)] that the quantity

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣

∑

A∈ClK
χ(A)

4
√

π

wK
f (zA)

∣∣∣∣∣∣

2

if d1d2 < 0,

∣∣∣∣∣∣∣

∑

A∈Cl+K
χ(A)

∫

CA

f (z) ds

∣∣∣∣∣∣∣

2

if d1, d2 > 0,

∣∣∣∣∣∣∣

∑

A∈Cl+K
χ(A)

1
4 + t2f
2

∫

�A\NA

f (z) dμ(z)

∣∣∣∣∣∣∣

2

if d1, d2 < 0

(6.8)

is equal to

1

2

�
( 1
2 , f ⊗ χd1

)
�
( 1
2 , f ⊗ χd2

)

�
(
1, sym2 f

) .

Here we recall the definition (2.7) of the completed L-function, and in particular that
this includes the conductor. This identity also holds when f is odd, because in this
case L(1/2, f ⊗ χd) = 0. Finally, it is also shown that

∑

A∈Cl+K
χ(A)

∫

�A\NA

f (z) dμ(z)
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vanishes if d1, d2 > 0, and similarly

∑

A∈Cl+K
χ(A)

∫

CA

f (z) ds

vanishes if d1, d2 < 0. The result then follows from the Cauchy-Schwarz inequality
and Stirling’s approximation. ��
Remark 5.9 The terms (6.8) can be viewed as toric integrals in the sense of [40,
Sect. 2.2.1], and these can be generalised to involve Hecke Größencharaktere χ

of K that are not necessarily genus characters. The resulting toric integral in this
generalised setting will essentially be equal to the completed Rankin–Selberg L-
function �(1/2, f ⊗ gχ ), where gχ denotes the automorphic induction of the Hecke
Größencharakter χ to a Maaß newform gχ . When χ is a genus character χd1,d2 , this
Rankin–Selberg L-function factorises as �(1/2, f ⊗χd1)�(1/2, f ⊗χd2), while the
case of χ being an ideal class character of an imaginary quadratic field K and its appli-
cations towards equidistribution of Heegner points in conjugates of �\H in �0(q)\H

is investigated in [37].

6.2.4 Eisenstein series Weyl sums

Lemma 5.10 We have that

∣∣WGK (zA),∞(t)
∣∣2 � √−D

∑

χ ∈̂GenK

∣∣∣∣∣
L
( 1
2 + i t, χd1

)
L
( 1
2 + i t, χd2

)

ζ(1 + 2i t)

∣∣∣∣∣

2

,

∣∣WGK (CA),∞(t)
∣∣2 �

√
D

1
4 + t2

∑

χ ∈̂GenK
d1,d2>0

∣∣∣∣∣
L
( 1
2 + i t, χd1

)
L
( 1
2 + i t, χd2

)

ζ(1 + 2i t)

∣∣∣∣∣

2

,

∣∣WGK (�A\NA),∞(t)
∣∣2 �

√
D

( 1
4 + t2

)3
∑

χ ∈̂GenK
d1,d2<0

∣∣∣∣∣
L
( 1
2 + i t, χd1

)
L
( 1
2 + i t, χd2

)

ζ(1 + 2i t)

∣∣∣∣∣

2

.

Proof This follows from [11, Theorem 3], akin to the proof of Lemma 5.7. ��

6.3 Bounds for the variances

Proof of Proposition 5.2 For R � (−D)−δ , Var (GK (zA); R) is bounded by a con-
stant multiple dependent on ε of

(−D)−
1
2+ε

∑

χ ∈̂GenK

∑

0<t f <2(−D)δ

L
( 1
2 , f ⊗ χd1

)
L
( 1
2 , f ⊗ χd2

)

L
(
1, sym2 f

)
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+ (−D)−
1
2+3δ+ε

∑

χ ∈̂GenK

∑

t f ≥2(−D)δ

L
( 1
2 , f ⊗ χd1

)
L
( 1
2 , f ⊗ χd2

)

t3f L
(
1, sym2 f

)

+ (−D)−
1
2+ε

∑

χ ∈̂GenK

∫ 2(−D)δ

0

∣∣L
( 1
2 + i t, χd1

)∣∣2 ∣∣L
( 1
2 + i t, χd2

)∣∣2

|ζ(1 + 2i t)|2 dt

+ (−D)−
1
2+3δ+ε

∑

χ ∈̂GenK

∫ ∞

2(−D)δ

∣∣L
( 1
2 + i t, χd1

)∣∣2 ∣∣L
( 1
2 + i t, χd2

)∣∣2

t3 |ζ(1 + 2i t)|2 dt

via Proposition 5.4 and Lemmata 5.5, 5.7, and 5.10; an analogous bound also holds for
Var(GK (CA); R). Making use of the generalised Lindelöf hypothesis in each expres-
sion and using the Weyl law yields Proposition 5.2. ��

For unconditional results, we make use of the following bounds.

Lemma 5.11 ([27, Theorem]) For T � 1,

∑

T≤t f ≤T+1

L
( 1
2 , f

)3

L(1, sym2 f )
�ε T 1+ε,

∫ T+1

T

∣∣ζ
( 1
2 + i t

)∣∣6

|ζ(1 + 2i t)|2 dt �ε T 1+ε.

Lemma 5.12 ([48, Theorem 1.1]) For odd fundamental discriminants D �= 1 and
T � 1,

∑

T≤t f ≤T+1

L
( 1
2 , f ⊗ χD

)3

L(1, sym2 f )
�ε (|D|T )1+ε,

∫ T+1

T

∣∣L
( 1
2 + i t, χD

)∣∣6 dt

|ζ(1 + 2i t)|2 �ε (|D|T )1+ε.

Proof of Proposition 5.3 We bound the variance by breaking up into ranges as in the
proof of Proposition 5.2. Instead of applying the generalised Lindelöf hypothesis,
we use the generalised Hölder inequality with exponents (3, 3, 3). Via the bounds in
Lemmata 5.11 and 5.12, together with the Weyl law, we obtain the result. ��

6.4 Representations of integers by indefinite ternary quadratic forms

We briefly describe how the results in this section can be interpreted in terms of
indefinite ternary quadratic forms. For simplicity, we only discuss the case of nega-
tive discriminant and summing over all genera; for positive discriminant, a detailed
presentation can be found in [12, Sect. 2].
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Consider the indefinite ternary quadratic form

Q(a, b, c) = b2 − 4ac.

We are interested in the level sets

VQ,D(Z) :=
{
(a, b, c) ∈ Z

3 : b2 − 4ac = D
}

,

where D < 0 is a fundamental discriminant; these sets parametrise the different ways
that the integer D can be represented by the ternary quadratic form Q. The normalised
level set GD := (−D)−1/2VQ,D(Z) lies inside the two-sheeted hyperboloid

VQ,−1(R) :=
{
(a, b, c) ∈ R

3 : b2 − 4ac = −1
}

.

It is natural to askwhether the normalised level setsGD coverVQ,−1(R) randomly as
D tends to−∞ along fundamental discriminants. Each level set VQ,D(Z) is countably
infinite, and VQ,−1(R) is isomorphic to C\R, which is not of finite volume, so one
cannot immediately rephrase this random covering as equidistribution.

On the other hand, the group

SOQ(Z) :=
{
A ∈ SL3(Z) : Q(Ax) = Q(x) for all x = (a, b, c) ∈ Z

3
}

acts transitively on VQ,D(Z), and the quotient space SOQ(Z)\GD is finite for all funda-
mental discriminants D, with cardinality equal to hK . Moreover, SOQ(Z) is a discrete
subgroup of SOQ(R) of finite covolume, and VQ,−1(R) ∼= SOQ(R)/K with K equal
to the maximal compact subgroup of SOQ(R), and so the space SOQ(Z)\VQ,−1(R)

is of finite volume.
Thus to ask whether the normalised level sets GD randomly cover VQ,−1(R) can

be rephrased as asking whether the finite sets SOQ(Z)\GD equidistribute in the finite
volume space SOQ(Z)\VQ,−1(R). This has a positive answer by naturally realising
this result in terms of the equidistribution ofHeegner points on�\H, as proved byDuke
[10, Theorem 1]. Indeed, the fact that Q is indefinite implies that SOQ is isomorphic
to the split special orthogonal group SO1,2, and we have the accidental isomorphism
SO1,2 ∼= PGL2, while K ∼= SO2(R). From this, we see that SOQ(Z)\VQ,−1(R) ∼=
PGL2(Z)\PGL2(R)/SO2(R) ∼= �\H, while SOQ(Z)\GD is naturally identified with
the set of Heegner points {zA ∈ �\H : A ∈ ClK }.

With this reinterpretation in mind, we now see that Proposition 5.2 implies that
under the assumption of the generalised Lindelöf hypothesis, almost every shrinking
ball of radius R � (−D)−δ with 0 < δ < 1/4 in SOQ(Z)\VQ,−1(R) contains a
normalised equivalence class of points (a, b, c) ∈ Z

3 that represent the integer D by
the indefinite ternary quadratic form Q(a, b, c) = b2 − 4ac. This complements [4,
Theorem 1.8], where the analogous result is proved for the definite ternary quadratic
form Q(a, b, c) = a2 + b2 + c2.
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