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ABSTRACT: Alchemical free energy methods have gained much
importance recently from several reports of improved ligand−protein
binding affinity predictions based on their implementation using
molecular dynamics simulations. A large number of variants of such
methods implementing different accelerated sampling techniques and
free energy estimators are available, each claimed to be better than the
others in its own way. However, the key features of reproducibility and
quantification of associated uncertainties in such methods have barely
been discussed. Here, we apply a systematic protocol for uncertainty
quantification to a number of popular alchemical free energy methods,
covering both absolute and relative free energy predictions. We show
that a reliable measure of error estimation is provided by ensemble
simulationan ensemble of independent MD simulationswhich
applies irrespective of the free energy method. The need to use ensemble methods is fundamental and holds regardless of the
duration of time of the molecular dynamics simulations performed.

1. INTRODUCTION

A major concern in the scientific community is the lack of
reproducible results in the published literature.1 This holds
irrespective of the field of research and applies to both
experimental and computational methods. A recent survey by
Nature revealed that more than 70% of researchers failed to
reproduce another scientist’s results, and more than half were
unable to reproduce their own.2 In the case of experiments, a
variety of reasons ranging from mixed up chemicals, through
fluctuations in the environment, variations in the experimental
setup, to confirmation bias3,4 can be found responsible for
nonreproducible results.5,6 In the case of molecular simulations,
the reasons reside in a combination of theory and the model
used, including the accuracy of force fields, convergence of the
calculations, reliability of the software, and so on.7 However, for
all classical molecular dynamics (MD)-based methods, the
underlying lack of reproducibility is intrinsic and is independent
of these other issues. This is because the prediction of
macroscopic properties, such as the Gibbs free energy, requires
ensemble averaging over microscopic states. Given the
sensitivity of Newtonian dynamics to initial conditions, a
manifestation of the mixing ergodic properties of any system
that will reach an equilibrium state, two different MD
simulations exhibit trajectories that diverge rapidly over time
no matter how close their initial conditions.8 This is true for
essentially all MD simulations of complex systems; however, in
this article we shall focus only on MD-based free energy
calculation methods for determining ligand−protein binding
affinities.

In silico free energy prediction is increasingly gaining
importance given its application in drug design and
personalized medicine. However, it is necessary to perform
accurate, precise, and reliable free energy predictions rapidly to
make actionable decisions in clinical or industrial settings.4,8 A
large number of reviews are available in the literature describing
various classical molecular dynamics-based methods to calculate
free energies for macromolecules.9−20 There has been
considerable effort put into developing new sampling protocols
to accelerate phase space sampling: umbrella sampling,21

metadynamics,22 tempering approaches,23,24 steered molecular
dynamics,25,26 blue moon sampling,27 adaptive biasing force
algorithm,28 slow growth,29 fast growth,30 and Gaussian
accelerated MD31 to name a few. Numerous reviews are
available in the literature on various approaches.23,24,32−35

Among these, replica exchange molecular dynamics (REMD)
(also known as parallel tempering)36 has proved to be fruitful in
the case of biomolecular simulations. In its original form, it was
only applicable to small molecules due to the large number of
replicas required, but this problem was addressed by
Hamiltonian-replica exchange (H-REMD),37 which extended
its applicability to large solvated biomolecules. Thereafter,
several variants of H-REMD have been reported. Wang et al.
proposed an improved version of the original replica exchange
with solute tempering (REST),38 called REST2,39 as well as
FEP/REST40 (which we will refer to as λ-REST2 in this paper)
for alchemical free energy calculations. In this study, we shall
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use the latter two as a representative set for all the other
variants of H-REMD. We shall also consider the multistate
Bennett acceptance ratio (MBAR)41 free energy estimator in
this study, which has been claimed to be the best free energy
estimator by some authors.41−43

There is a wealth of evidence in the literature and in
unpublished work on in silico free energy methods that one-off
MD simulation-based methods are not reproducible for the
reasons mentioned above.44−62 To our knowledge, the idea that
multiple short MD simulations sample better than a single long
MD simulation was first mentioned a couple of decades
ago.44−46 There are several reports in the literature where this
idea has been applied to MD simulation-based free energy
calculations to obtain a meaningful uncertainty of the
results.56−58 However, the systematic application of this idea
waited until Genhenden et al.55 and Sadiq et al.47

independently published their studies using MMGBSA and
MMPBSA methods, respectively, thoroughly investigating the
effect of performing multiple (up to 50) short MD simulations
on the reported free energies and comparing their results with
those from a single long simulation. Thereafter, several studies
employing their ideas have been published leading to the
approaches named “enhanced sampling of molecular dynamics
wi th approx imat ion of cont inuum solvent (ES-
MACS)”,48−51,53,54 “velocity-induced independent trajectories
(VIIT)”, and “solvation-induced independent trajectories
(SIIT)”.59−61 Similarly, in the case of alchemical methods,
Lawrenz et al.62 reported their method called “independent
trajectory thermodynamic integration (IT-TI)” showing that
the averaged free energy from multiple independent TI
calculations yields more accurate results. Bhati et al.52 recently
published their method called “thermodynamic integration with
enhanced sampling (TIES)” using up to 105 independent short
MD simulations in combination with the concept of stochastic
integration to yield accurate and precise free energy predictions
for a variety of biomolecular systems. The underlying reason for
such variations between independent MD simulations is their
sensitivity to the initial conditions, as explained by Coveney and
Wan.8

The ESMACS and TIES approaches (mentioned above)
involve performing an ensemble simulation unlike the tradi-
tional one-off simulation approach and have been shown to
consistently improve the accuracy and precision of predicted
free energies over a range of protein systems. Ensemble
simulation in the context of ESMACS and TIES means an
ensemble of independent MD simulations (termed as
“replicas”), where independent MD simulations vary only in
their initial conditions which are randomly chosen from the
phase space. Several different approaches to vary the initial
conditions of replicas have been reported including varying
only the initial velocities44,45,47,48,52,55,57−59,62 or the initial
velocities in combination with other properties like the initial
structures, protonation states, solvation boxes, initial con-
formations, ligand charges, and so on.59,63−67 In this work, all
the replicas have identical initial configurations, and their initial
velocities were randomly drawn from a Maxwell−Boltzmann
distribution.
Statistical mechanics uses ensemble averaging over micro-

states to determine the macroscopic properties of a system. For
systems at equilibrium, if we could run a single simulation for
“long enough”, then their time-averaged properties would be
equivalent to the ensemble average via the ergodic theorem. In
such a case, the duration of the simulation would need to be of

the order of a Poincare ́ recurrence time, which is inordinately
long and completely out of reach of simulation on any
computer now and in the foreseeable future.8 Moreover, time
averaging is generally meaningless for systems out of
equilibrium as their properties are time-dependent. In the
case of ensemble simulations, the microstates are generated by
the replicas. Therefore, ensemble averages can be computed by
running a sufficiently large number of replicas as defined in the
following paragraph, an approach applicable for systems in as
well as out of equilibrium.
The number of replicas needed in an ensemble to obtain a

converged result is such that the result should not differ on
adding another replica to the ensemble. There is no general
theory to determine this number, which needs to be assessed
for each case under investigation.8 The size of the ensemble
one uses in practice is a trade-off between the size of the
uncertainty of the predictions and the associated computational
cost. Extensive investigations show that the properties
computed from classical molecular dynamics trajectories are
essentially those generated by a Gaussian random process.
Ensemble simulations provide a direct route to uncertainty
quantification.8 A single simulation, or a small number of
repeats, provides no control over the errors in these
calculations.48,50,52 Our previous studies have established that,
to achieve a precision of ≤1 kcal/mol in the case of ESMACS
and ≤0.5 kcal/mol in the case of TIES, no less than 25 and 5
replicas should be run for ESMACS and TIES, respectively,
where the length of each replica is 4 ns.47−54 It is worth
mentioning here that the error bars on the results can be
further reduced by increasing the number of replicas. These
numbers depend on a number of factors including the nature of
the system studied, level of precision desired, type of free
energy method employed, and so forth, and may need to be
increased. For instance, in the current study, the absolute
binding affinity method comprises a series of stages, a few of
which require 10 replicas whereas others require only 5 for the
same level of precision.
It is sometimes claimed that, by using enhanced sampling

methods, for instance REST239 and λ-REST2,40 and improved
free energy estimators such as MBAR,41 the problem of
nonreproducibility can be overcome. Yet in virtually all
reported cases only one replica, that is a single MD trajectory,
is performed from which the results are calculated. In this
study, we apply the concept of ensemble simulation from
TIES52 to a few popular alchemical free energy techniques,
thereby providing a systematic route to uncertainty quantifica-
tion in such methods. We show that the stochastic variation in
predicted free energies is intrinsic to all MD-based methods
when using one-off MD trajectories and that the correct
approach to quantify the concomitant errors is to perform
ensemble-based calculations. We also demonstrate that running
single simulations for long times does not lead to controlled
errors and is not an alternative to ensemble simulation. We
provide a comparison of TIES results for a biomolecular system
from two different sources that vary in the software and
hardware employed as well as the implementation of the
protocols used for free energy calculation. Excellent agreement
betweeen the two results proves that the reproducibility of
TIES holds irrespective of such variations in software and
hardware. Indeed, although the current study is confined to a
selected set of free energy methods, the conceptual basis laid
out here is general and is directly applicable to other methods
of calculation based on classical molecular dynamics.68
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2. METHODS

In this section, we describe the protein targets and associated
ligands chosen for the purpose of this study and the different
protocols used to calculate their free energies. We chose to
study three different classes of protein targets here to exhibit
the wide applicability of our methods. We employ the AMBER
ff99SBildn force field69 for all protein targets and GAFF70 for
all ligands in this study, which are consistent with the previous
TIES studies for comparison purpose (details in section 2.1).
These force fields are known to be reliable for the present
systems, and hence, our protein−ligand systems are well
validated.47−54

2.1. Protein Targets and Ligands. In this paper, we
consider three different protein systems (see Figure 1) that
have already been studied using the TIES method, namely,
fibroblast growth factor receptor 1 (FGFR1),51 thrombin,52 and
bromodomain-containing protein 4 (BRD4).53 FGFR1 is a

well-known therapeutic target given its involvement in the
pathology of many cancer types with most inhibitors binding to
its kinase domain (KD).
The inhibitor binding is known to be altered by mutations in

the FGFR1 KD, rendering some drugs ineffective.51 Here, we
study the transformation of FGFR1 wild-type to V561M
mutant (where, V and M denote valine and methionine,
respectively), both bound to two inhibitors, namely PD173074
and TKI258 (Dovitinib). V561M is the gatekeeper mutation. It
occurs very frequently and is responsible for resistance against
several drugs. The serine protease thrombin is involved in the
regulation of hemostasis and thrombosis, and its increased
activation may result in several disorders.71 In this paper, we
have chosen four thrombin inhibitors (two pairs corresponding
to two alchemical transformations) to study with our methods.
The development of drugs to inhibit bromodomain-

containing proteins is an area of active research due to their

Figure 1. Structures of all the target proteins (ribbon representation) studied, in each case shown bound to a ligand: (a) Fibroblast growth factor
receptor 1 (FGFR1), (b) Serine protease thrombin, and (c) Bromodomain-containing protein 4 (BRD4). The ligand is shown in stick
representation; the hybrid side chain is shown in ball-line representation for FGFR1, and the ligand is shown in ball−stick representation for the
others. The alchemically mutating atoms in the case of Thrombin and BRD4 ligand transformations are marked in red and blue. In the case of
V561M mutation, the side chains comprise the alchemical region.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01143
J. Chem. Theory Comput. 2018, 14, 2867−2880

2869

http://dx.doi.org/10.1021/acs.jctc.7b01143


application in pathologies ranging from cancer to inflamma-
tion.53 Here, we have chosen to study bromodomain-containing
protein 4 (BRD4) and three associated inhibitors (two pairs
corresponding to two alchemical transformations). In addition,
BRD4 and 15 associated inhibitors have been chosen to
perform repeat TIES calculations with GPUs using the
pmemdGTI72 software patch for the AMBER 16 package.73

The structures for all of these BRD4 inhibitors can be found in
Wan et al.53 All the parameters and pre-equilibrated structures
for the simulations as well as the alchemically modified regions
of all complexes were taken from the previous TIES
studies.51−53

2.2. Free Energy Schemes. In this paper, we use the
thermodynamic integration with enhanced sampling (TIES)
method52 to calculate the absolute or relative free energy
corresponding to an alchemical transformation (ΔGalch). We
denote the alchemical coupling parameter as λ. ΔGalch is given
by the equation

∫ λ
λ

λΔ = ∂
∂ λ

G
V x( , )

dalch
0

1

(1)

where ⟨···⟩λ denotes an ensemble average in state λ and
∂V(λ,x)/∂λ is the derivative of the hybrid potential function.
For ⟨∂V/∂λ⟩ to be calculated, an ensemble of MD simulations
is run at each window corresponding to an intermediate value
of λ. We evaluate eq 1 using a stochastic integration method
because the integrand comprises points that are Gaussian
random processes.52 In TIES analysis, the integral in eq 1 is
treated as a stochastic integral, and the associated uncertainty is
calculated accordingly, as described by Bhati et al.52 It should
be noted that this procedure is not the same as computing the
integral multiple times and assessing its error. The relative free
energy change (ΔΔG) is given by the difference in the free
energy changes associated with the alchemical transformation
in the complex (ΔGalch

complex) and apo (ΔGalch
protein/lig) states.

We now describe the different schemes used in this study to
calculate absolute as well as relative binding free energies for
the systems described in section 2.1. Note that the original
TIES method (as employed in our previous studies) does a
very good job of computing rapid, accurate, precise, and
reproducible binding free energies.51−53 However, employing
further enhanced sampling methods, such as REST2 and λ-
REST2, may be useful in cases where there are multiple energy
minima separated by energy barriers that are inaccessible at
room temperature. Therefore, in this study, we employ the
enhanced sampling versions of TIES wherein REST2 and λ-
REST2 simulations are performed, unlike in the case of original
TIES where standard MD simulations are used.
It should be noted that the term “replica” in the context of

ensemble simulation means an independent calculation
initiated from a randomly selected initial condition. It is
different from the use of the term “replica” within the context
of replica-exchange simulation. In this paper, the term replica
will always be used to refer to the former, whereas the latter will
be denoted as a “REST2 replica”.
2.2.1. Relative Binding Affinity Calculation. The calculation

of relative binding affinities is based on two popular versions of
the Hamiltonian replica-exchange method, namely, replica
exchange with solute tempering (REST2)39 and λ-REST2.40

We categorize these free energy calculation methods into four
schemes as described below:

I. TIES-REST2. This performs an ensemble of REST2
simulations at each window with a fixed value of the alchemical
parameter λ. Each REST2 simulation involves running a
predefined number of parallel REST2 replicas varying only in
their solute potential scaling factors (i.e., effective temperatures,
Teff) with regular exchange of configurations attempted
between neighboring replicas. Only samples from the REST2
replica at Teff = 300 K are used to obtain ∂V/∂λ at each window
for each REST2 simulation followed by standard TIES
analysis52 to yield ΔGalch and associated uncertainty.

II. TIES-REST2-M. In this scheme, MBAR41 is employed as a
reweighting technique to calculate ∂V/∂λ using samples from
REST2 replicas at all Teff values from scheme I at each λ
window for each REST2 simulation. Standard TIES analysis
then follows. It should be noted that scheme II amounts to
reanalyzing the simulation output from scheme I and does not
require any additional molecular dynamics simulation. It is
designed to provide more precise results by utilizing all the
REST2 replicas generated from these replica exchange
simulations unlike scheme I, where all but the ones from Teff
= 300 K are discarded.

III. TIES-λ-REST2. An ensemble of λ-REST2 simulations is
performed. Each λ-REST2 simulation involves running a
predefined number of parallel REST2 replicas varying in both
their Teff as well as λ with regular exchange of configurations
attempted between neighboring λ replicas. The λ value varies
linearly from 0 to 1 with replicas, whereas Teff varies such that it
attains its maximum for the middle λ value and has minima at
the end-points. Samples from a specific REST2 replica are used
to calculate ∂V/∂λ at that state (the state here being defined by
the pair (λ,Teff)) for each λ-REST2 simulation followed by
standard TIES analysis to yield ΔGalch and associated
uncertainty.

IV. TIES-λ-REST2-M. Here, the simulation output from
scheme III is analyzed such that for each λ-REST2 simulation
MBAR is employed so as to include samples from multiple
REST2 replicas to calculate ∂V/∂λ at a given state (the state
here again being defined by the pair (λ,Teff)). Standard TIES
analysis then follows. Note that no further simulations in
addition to scheme III are needed for scheme IV. The latter
maximizes utilization of the available REST2 replicas from
scheme III to obtain more precise results.
For schemes I and II, we use a total of 13 λ-windows: 0.00,

0.05, 0.10, 0.20,···, 0.80, 0.90, 0.95, and 1.00. At each window,
10 REST2 replicas are taken with Teff varying from 300 to 600
K. This amounts to a total of 130 MD simulations per REST2
simulation. Therefore, a single TIES-REST2 run (taking
ensemble size as 5) requires performing 650 MD simulations.
For schemes III and IV, we use a total of 13 REST2 replicas

with λ varying linearly between 0 and 1 for them. Teff
corresponding to λ = 0.5 is 600 K, and it symmetrically goes
to 300 K at both end-points, that is, for λ = 0 and 1. This
amounts to 13 MD simulations per λ-REST2 simulation and 65
MD simulations for a single TIES-λ-REST2 run (taking the
ensemble size to be 5).

2.2.2. Absolute Binding Affinity Calculation. As for the
relative free energy calculations, the absolute binding affinity
calculation method is based on a double annihilation technique
that was first proposed nearly three decades ago.74 It had until
recently not been applied to druglike ligands and pharmaco-
logically relevant proteins. In this study, the thermodynamic
cycle approach shown in Figure 2 is used, as described by
Aldeghi et al.75 Five nonphysical processes are involved, linking
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the unbound state to the bound state through a series of
intermediate alchemical states. Insertion or annihilation of the
ligand from both its bound and unbound states is performed in
several steps as described below. Corrections for electrostatic
finite-size effects76,77 were made for charged ligands as they
involve perturbing the net charge of the system along the
alchemical path. The five processes are
1. Decoupling the ligand from solution (i.e., from physically

solvated ligand to one with no interaction with its environ-
ment), for which a free energy difference ΔGvdw+elec

lig is
calculated by an alchemical approach.
2. Introducing a set of restraints to keep the position and

orientation of the noninteracting ligand at a conformation close
to that of the bound state, associated with a free energy
difference (ΔGrestr

lig ) that can be calculated analytically, as
described by Boresch et al.78

3. Transferring the noninteracting ligand from an aqueous
environment to the protein in which no free energy changes are
introduced as the two states are effectively equivalent (the
ligand has no interaction with its environment in both states).
4. Turning on the ligand’s interactions with the environment

in which a free energy difference ΔGvdw+elec
protein is calculated by an

alchemical approach.
5. Removing the set of restraints through a series of

simulations that progressively reduce restraint strengths with a
free energy difference ΔGrestr

protein being calculated.
Five replicas were used for the calculations of ΔGvdw+elec

lig and
ten replicas for ΔGvdw+elec

protein as well as ΔGrestr
protein to attain the

desired precision (<1 kcal/mol). The latter quantity exhibits
larger fluctuations and hence needs more replicas compared to
the former terms to attain a similar level of precision. Thirteen
λ windows were used for the processes of turning on/off the
van der Waals and electrostatic interactions with λ = 0.0, 0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 (the electrostatic
and van der Waals components are scaled differently with λ; see

section 2.3 for details) and 12 λ windows for the removal of
restraints in the ligand−protein complexes with λ = 1.0, 0.75,
0.5, 0.3, 0.2, 0.15, 0.1, 0.075, 0.05, 0.025, 0.01, 0.0. Both of these
series of λ windows are more closely spaced near the λ = 0 end-
point due to the steeper energy gradient in that region of the
phase space.
Once all of the free energy differences for the nonphysical

processes have been calculated, the physical binding free energy
(ΔGcalc) of the ligand can be determined and compared with
the experimental data (ΔGexp).

51 All ΔG values and associated
uncertainties are computed using the standard TIES analysis
method.52

2.3. Simulation Setup. All the pre-equilibrated solvated
structures and corresponding parameters for FGFR1, thrombin,
and BRD4 were taken from the previous TIES studies.51−53

The systems were maintained at a temperature of 300 K and a
pressure of 1 bar in an NPT ensemble using the standard
NAMD protocol of Langevin dynamics (with a damping
coefficient of 5 ps−1) and a Berendsen barostat (compressibility
of 4.57 × 10−5 bar−1 and relaxation time of 100 fs). A time step
of 2 fs was used. The simulation length of 4 ns and ensemble
size of 5 were taken as per the standard TIES protocol.52 Van
der Waals contributions were perturbed using linearly varying λ
across the full range (0 to 1). A soft core potential was used for
the van der Waals interactions of all atoms in the alchemical
space to avoid divergent potential energy due to the sudden
appearance of atoms close to the end points of the alchemical
transformation, often called “end point catastrophes”.79,80

Moreover, the electrostatic interactions of the disappearing
atoms were linearly decoupled from the simulations between λ
values of 0 and 0.55 and completely turned off beyond that,
whereas those of the appearing atoms were linearly coupled to
the simulations from λ values of 0.45 to 1 and completely
extinguished otherwise.

2.3.1. Relative Binding Affinity Calculation. The custom-
ized version of the NAMD 2.11 package,81 based on the patch
developed by Jo and Jiang82 to implement the REST2
algorithm in NAMD, was used for all the REST2 and λ-
REST2 simulations using three-dimensional periodic boundary
conditions. An exchange was attempted after every 1 ps, and
conformations were saved after every 10 ps. The dual topology
scheme as described by Bhati et al.52 was employed for
alchemical hybrid parameters and structures. In the case of the
ligand alchemical transformations, the REST2 region for
unbound ligand calculations is defined as being all the
alchemically mutating atoms. For bound ligand calculations,
the REST2 region comprises all alchemically mutating atoms
and all protein residues within 3 Å distance of the former. In
the case of protein mutations, the REST2 region for unbound
protein calculations is defined as the mutant residue and all
protein residues within 3 Å distance of the former. For bound
protein calculations, it is defined as the mutant residue, all
protein residues within 3 Å of the mutant residue and 4 Å of
the ligand, and all ligand atoms within 4 Å of the mutant
residue.

2.3.2. Absolute Binding Affinity Calculation. All simulations
were performed using NAMD 2.1281 with three-dimensional
periodic boundary conditions imposed. The set of restraints
used here consists of six harmonic potentials for one distance,
two angles, and three dihedrals (refer to Boresch et al.78 for
details) with force constants of 10 kcal mol−1 Å−2 for the
distance and 500 kcal mol−1 rad−2 for the angles and dihedrals.

Figure 2. Thermodynamic cycle employed for the absolute binding
free energy calculations. The process of binding is divided into a series
of nonphysical transformations each with an associated ΔG. The
binding free energy, ΔGbinding, is the sum of all these ΔG values. Three
of them (corresponding to the transformations denoted by bold
orange arrows) are computed using ensemble simulations. The
noninteracting ligand is represented with faded colors. A set of
restraints (denoted by a push pin) is used to restrict the position and
the orientation of the noninteracting ligand.
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2.4. Simulation Setup for Binding Affinity Calcula-
tions Using pmemdGTI. The pmemdGTI software package
is an implementation of the thermodynamic integration (TI)
free energy method within the pmemd module of the AMBER
16 package, which runs on GPUs.72 It is available as a patch to
the AMBER 16 software package (http://lbsr.rutgers.edu/
software-downloads). In this study, we performed relative
binding affinity calculations employing the original TIES
protocol for a set of BRD4 inhibitor transformations using
pmemdGTI and compared the results with those obtained
using the NAMD 2.9 software package taken from a previous
TIES study by Wan et al.53 The initial structures and
parameters for the protein and inhibitors were taken from
the previous TIES study53 and so were the definitions of
alchemical regions for all inhibitor transformations studied. The
single topology method was employed for all TI calculations.
The ligands and complexes were neutralized with Na+ and Cl−

ions and then solvated in a TIP3P water box extending at least
11 Å in each direction from the solute. A time step of 1 fs was
used for the integration of the equations of motion, and a cutoff
of 9 Å was used for long-range electrostatic interactions with
the particle-mesh Ewald method (PME). Softcore potentials
were applied to all atoms in the alchemical domain for both
electrostatic as well as van der Waals interactions. Eleven λ-
windows were used, where the λ value varied from 0.0 to 1.0
with Δλ = 0.1, and the electrostatic and van der Waals forces
were coupled/decoupled simultaneously. All the starting
structures were first minimized and relaxed at 300 K with the
NVT ensemble. The initial conformations for each λ window
were sequentially generated with 1.4 ns equilibration for each λ-
window such that the equilibrated conformation of the current
λ-window was used as the starting conformation for the next λ-
window. Ten replicas were run at each λ-window to calculate
the ensemble averages using the TIES analysis. Each replica was
run for 5 ns, and the last 4 ns data were collected at a sampling
frequency of 1 ps to calculate free energies.
2.5. Computational Resources. Note that each of the

above calculations requires a large number of MD simulations
to be performed. However, given the architecture of modern
large-scale high-performance computers, all simulations can be
run in parallel and completed in the same wall clock time as
needed to complete a single MD simulation. Thus, the time to
solution remains short (∼6−8 h; using GPUs, one can reduce
this to as little as 1−2 h (see below)), which is a further major
advantage of the above-mentioned schemes. It should also be
noted that, in the case of the relative free energy calculations,
schemes I/II are an order of magnitude more expensive
computationally compared to schemes III/IV. The latter are
slightly more expensive than standard TIES calculations. Table
1 provides a comparison of computational costs for the
different types of calculations. All simulations for the relative
free energy calculations were run on SuperMUC at the Leibniz
Supercomputing Center (LRZ; https://www.lrz.de/english/)
in Germany and on the UK supercomputer ARCHER (http://
www.archer.ac.uk/).
For the absolute free energy calculations, all three simulation

steps (steps 1, 4, and 5) were performed on the BlueWaters
machine at the National Center for Supercomputing
Applications, University of Illinois at Urbana−Champaign
(https://bluewaters.ncsa.illinois.edu). Note that step 2 was
done analytically and did not require any HPC resources. Five
replicas of step 1 required negligible resources as compared to
the ten replicas of steps 4 and 5 (ΔGvdw+elec

protein and ΔGrestr
protein; 10 ns

each), which collectively required 661,419 core hours (32000
cores for 20.67 h; these numbers correspond to thrombin−
ligand complex, ∼60k atoms). It is important to note that these
numbers correspond to 10 ns simulation duration using 10
replicas as compared with 4 ns and 5 replicas in the case of
relative free energy calculations. All replicas can be run in
parallel, and the results can be obtained within 1 day. Given the
estimate of computational cost involved, it is evident that the
absolute free energy calculations performed using ensemble
simulation are very expensive calculations (they are ∼3-times
more expensive than standard TIES calculations with the same
number of replicas and simulation length and ∼1 order of
magnitude more expensive than ESMACS calculations).
All the simulations for the pmemdGTI calculations were

performed using Merck’s GPU resources comprising NVIDIA
Tesla K80 and P100 nodes. A single GPU chip was used for
each replica. For the L3-L4 ligand alchemical transformation
bound to BRD4 (∼33k atoms), a single P100 chip needed 2 h
to complete a 5 ns long simulation.

2.6. Uncertainty Quantification. The error bars reported
on all of the results in this paper are derived from the
bootstrapped standard error from the ensemble of potential
derivatives produced by the ensemble simulation (see section
3.3 of Bhati et al.52). Recall that the TIES analysis does not
amount to merely running five (or ten) versions of the
conventional TI calculation, computing the integral five (or
ten) times and assessing its error. As explained earlier, it
involves evaluating that integral as a stochastic one, so we
compute it by numerical quadrature such that the error in the
integral is given by the convolution of the errors in the
integrand at the various points within the quadrature. Such
error bars furnish a statistical estimate of the reproducibility of
our results. This approach provides a reliable quantification of
uncertainty, which is missing in most of the existing
publications on free energy calculations.

3. RESULTS
Table 2 contains the ΔΔG values for all of the protein−ligand
systems studied using all four schemes. We borrow the notation
of “forward” and “reverse” transformations from our earlier
FGFR1 TIES study,51 where “forward” denotes the V → M
mutation and “reverse” denotes the M → V mutation, and their
initial structures are taken from different PDB files. Calculating
ΔΔG in both directions eliminates the “hysteresis effect”, where
hysteresis is the difference between the ΔΔG values in forward
and reverse directions, which should theoretically be zero.51,83

The variation in ΔΔG for 5 replicas is also shown. Note that
each replica here is an independent calculation and should not
be confused with the notion of a REST2 replica, as per
terminology discussed above. Unsurprisingly, on the basis of

Table 1. A Comparison of Computational Costs for
Different Free Energy Calculations Using L1-L9 Ligand
Alchemical Transformation Bound to Thrombin (∼60k
Atoms)a

calculation type number of cores wall clock time (hrs) core hours

TIES 8320 5.75 47840
schemes I/II 83200 6.82 567424
schemes III/IV 8320 6.82 56742

aAll the data are taken from 4 ns duration production MD simulations
performed on SuperMUC, a machine at the Leibniz Supercomputing
Center (LRZ).
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our earlier work, the results vary by 0.8−1.3 kcal/mol for all
schemes in the case of FGFR1 complexes, whereas in the case
of thrombin and BRD4, the variation goes up to as high as 1.6
and 1.2 kcal/mol, respectively. The limits of this range are the
differences between the largest value of ΔGalch

complex and the
smallest value of ΔGalch

protein, and vice versa. These values are
provided in Table S1. It is important to note that such variation
is system-dependent and could be larger for more flexible
protein−ligand systems and larger alchemical transformations.
This is due to the fact that MD simulations are sensitive to the
initial configuration of the system.8 As is evident from Figure 6,
in the case of the FGFR1 V561M mutant, one of the replicas
may get trapped within a region of conformational space.
Figure 3 shows a comparison of the absolute binding affinity

predictions (ΔG) with the corresponding experimental values.

The predictions are of modest accuracy with mean unsigned
errors (MUEs) of 1.3, 1.9, and 2.7 kcal/mol for BRD4, FGFR1,
and thrombin, respectively. Although a smaller MUE was
reported in the literature for broad-spectrum inhibitors to
bromodomain families,84 similar or larger MUEs were obtained
for other molecular systems, including fragmentlike ligands
binding to a T4 lysozyme,85,86 druglike ligands to FK506-
binding protein,87 and ATP-competitive inhibitors to CDK2
and ERK2 kinases.88 Our calculations correctly predict the
resistance of PD173074 for the gatekeeper mutation V561M.
The calculations cannot distinguish the binding affinities for
dovitinib for which experiments report the same binding affinity
within errors for both variants. The calculations also correctly
predict the free energy differences for selected pairs of ligands
and for the FGFR1 variants (see Figure 5). The largest
uncertainties in these calculations arise from the step where the
interactions of the ligands are turned on/off in the ligand−
protein complexes (see Table S2). This is not surprising as, in
this alchemical step, there are large conformational changes
occurring in the protein and relatively large-scale water
molecular redistribution. The ΔGvdw+elec

protein and ΔGrestr
protein terms

are correlated, which account for the annihilation of the ligand
from the complex. The sum of these two terms (ΔGvdw+elec

protein +
ΔGrestr

protein) differs by up to 2.5, 6.2, and 7.1 kcal/mol for ligand
binding to BRD4, FGFR1, and thrombin systems, respectively,
from the 10 replica simulations. The finite size electrostatic
corrections are important and significantly improve the
predicted binding free energies (Table S2).77

The binding free energies, calculated from a random
combination of 10 replicas of complex simulations and 5
replicas of ligand-only simulations, can vary by as much as 2.6,
6.5, and 7.6 kcal/mol for BRD4, FGFR1, and thrombin,
respectively (Figure 4). The accuracies and the precisions of
these calculations appear to depend on the flexibility of the
proteins and the ligands, the conformational changes upon

Table 2. Relative Binding Affinity Predictions for All Complexes Using the Four Schemes (I−IVa)b

system scheme range using 5 replicas ΔΔGTIES ΔΔGexp
c

V561M mutant (forward) with PD173074 I 2.86 to 3.95 (1.09) 3.56(0.18) 2.73(0.13)
II 2.80 to 4.08 (1.28) 3.54(0.17)
III 2.84 to 3.70 (0.86) 3.23(0.08)
IV 2.82 to 3.61 (0.79) 3.19(0.06)

V561M mutant (reverse) with PD173074 I 2.20 to 2.97 (0.70) 2.65(0.13)
II 2.14 to 3.17 (1.03) 2.65(0.12)
III 2.91 to 3.87 (0.96) 3.42(0.10)
IV 3.00 to 3.82 (0.82) 3.42(0.09)

V561M mutant (forward) with TKI258 III −0.67 to 0.25 (0.92) −0.15(0.09) −0.60(0.82)
IV −0.73 to 0.31 (1.04) −0.19(0.08)

L1-L9 with thrombin III 0.29 to 1.14 (0.85) 0.67(0.10) 0.43
IV 0.38 to 1.14 (0.76) 0.67(0.08)

L4-L11 with thrombin III 0.29 to 1.82 (1.53) 1.06(0.14) 1.08
IV 0.24 to 1.82 (1.58) 1.05(0.12)

L3-L6 with BRD4 III −1.60 to −0.45 (1.15) −1.14(0.10) −1.65(0.05)
IV −1.61 to −0.38 (1.23) −1.14(0.08)

L3-L7 with BRD4 III −0.07 to 0.61 (0.68) 0.27(0.10) −1.37(0.10)
IV −0.18 to 0.67 (0.85) 0.27(0.09)

aIn scheme IV, the samples from states which are electrostatically fully decoupled from the state of interest are excluded from MBAR analysis. This is
because the energies of such samples at the state of interest may approach infinitely high values due to overlapping atoms by virtue of the
nonsoftcore electrostatic potential used in these simulations. bThe range of ΔΔG values is derived from the differences between the largest
ΔGalch

protein/lig and smallest ΔGalch
complex and vice versa, whose values are provided in Table S1. ΔGalch

complex and ΔGalch
protein/lig are the free energy changes

associated with the alchemical transformation in the complex and apo states, respectively. All values are in kcal/mol. cThe experimental error bar is
the standard error of repeated measurements. It is unavailable for thrombin complexes.

Figure 3. Comparison of calculated and experimental absolute binding
free energies of dovitinib (black) and PD173074 (red) with wild-type
and V561M mutant FGFR1, three ligands with BRD4 (orange), and
four ligands with thrombin (blue).
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binding, the accessibility of water molecules to the binding sites,
and so on. The BRD4 systems exhibit the most consistent
results from different replicas along with FGFR1 complexed
with dovitinib; thrombin has the largest variations for all four
ligands studied here. All of these findings are based on the 10 ns
production runs. There is no doubt that further studies on a
broad data set, consisting of both diverse ligands and various
proteins, are necessary to determine the most optimal
simulation protocol, the length of the various simulations,
and the number of replicas to achieve desired statistical
significance.
Our results show, yet again, the variation that can occur

between replicas using the same structure and parameters but
with different initial velocities. This phenomenon is intrinsic to
classical molecular dynamics and is independent of the force
field used for the calculations.8

It is interesting to note from Table 2 that the predicted ΔΔG
values obtained using schemes II and IV are very close, if not

identical, to those using schemes I and III, respectively.
However, the former always have marginally lower uncertainties
than the latter. This implies that MBAR has no effect on the
accuracy of results but improves their precision, although only
very slightly in our case. It is important to highlight here that
the precision of our results is an indicator of the distribution of
free energies across replicas. It should be noted that all proteins
we study are small and compact. Larger proteins might benefit
from MBAR in a way these do not. In addition, a comparison of
results from scheme I with III tells us that the differences
between ΔΔG values for V561M mutant bound with
PD173074 are 0.33(0.20), 0.77(0.16), and 0.22(0.26)
kcal/mol for the forward direction, reverse direction, and
their average, respectively. The results from schemes II and IV
are also almost identical. This suggests that REST2 and λ-
REST2 give the same results within the error bars in the
forward direction as well as on averaging results in both
directions. However, the results in the reverse direction are

Figure 4. Box plots of calculated absolute binding free energies for ligand binding to BRD4 (black), FGFR1 (red), and thrombin (blue). The binding
free energies are generated by combining results from all steps in the thermodynamic cycle (Figure 2); there are 500 possible combinations from the
replicas used in the three simulation steps. The graph displays the distribution of data based on the five number summary: minimum, first quartile,
median, third quartile, and maximum. The central rectangles span the first quartile to the third quartile: the interquartile range.

Figure 5. Comparison of the relative binding affinities for all complexes using (a) scheme III, (b) the absolute free energy calculation method, and
(c) the original TIES scheme with normal MD simulations without REST2. The correlation coefficients (Pearson (rp) and Spearman (rS)) for all the
three schemes are good (>0.9). The root mean squared error (RMSE) and mean unsigned error (MUE) for scheme (b) are almost double those of
schemes (a) and (c).
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statistically different. The data set presented here is too small to
make any general conclusion on the relative accuracies of the
different schemes. Nevertheless, it is clear that λ-REST2
provides similar results to REST2 for an order of magnitude
less computational cost and is, hence, preferable. Thus, on the
basis of the data in Table 2, we can conclude that scheme IV
provides the most cost-effective way of obtaining reliable
predictions. Because in this study the results from schemes III
and IV are almost identical, we have used the results from the
former in further discussions hereafter. The results from
scheme III have a high degree of accuracy with the differences
from the experimental values of all but one transformation lying
in the range of 0.0−0.7 kcal/mol. Figure 5(a) shows the
excellent agreement of ΔΔG values predicted from scheme III
with those reported experimentally.
It is worth noting that the hysteresis in ΔΔG for FGFR1

V561M mutant bound to PD173074 (that is the difference
between the forward and reverse transformations) has vanished
(0.2 kcal/mol, in the case of scheme III, which is essentially the
same within error bars) from 0.8 kcal/mol in the case of the
previous TIES study (ref 51; based on 5 replicas; note,
however, that a larger number of replicas reduces it further).
For ligand alchemical transformation L4-L11 bound to
thrombin, the difference between predicted and experimental
ΔΔG values has been brought down from 1.1 kcal/mol in the
case of the previous TIES study (ref 52) to 0.0 kcal/mol (in the
case of scheme III). This shows that replica exchange, in
combination with the TIES methodology, can accelerate
convergence of results from different initial structures and
improve the accuracy of results.
Figure 5 shows a comparison of the relative binding affinities

for all protein−ligand complexes using scheme III, the absolute
free energy calculation method, and the original TIES (without
REST2). All of them are reasonably accurate (correlation
coefficients >0.9) with scheme III having the smallest error bars

as expected for any REST2 simulation. However, RMSE and
MUE for the absolute free energy calculation method are
almost double those for scheme III and for the TIES (∼0.7 and
0.6 kcal/mol, respectively). In the case of thrombin, REST2
improves the accuracy of predictions over the straightforward
TIES scheme. For other proteins, there is no substantial change
except the L3-L7 transformation bound with BRD4, where the
results from scheme III are less accurate. This suggests that,
unlike thrombin, the other complexes do not have multiple
local minima separated by an energy barrier. The absolute free
energy calculation method has the largest error bars as it
involves disappearance of the entire ligand, unlike the other two
methods.
Another important remark is that, although the methods

discussed in this study are all based on thermodynamic
integration, our conclusions are general and apply equally to
other alchemical methods such as FEP because FEP is merely a
simple variant on this. For instance, the recently published
methods by Wang et al.89 and Aldeghi et al.75 are both very
similar to the methods used in this study and are expected to
exhibit similar variation in results from different replicas, which,
however, have not been reported.
In the case of relative free energy calculations, it is not

uncommon for practitioners to perform calculations over a
closed thermodynamic cycle and to use the magnitude of the
hysteresis, which in this case is the sum of all ΔΔG values in the
closed cycle, to adjust the individual ΔΔG values.89 However,
there is no sense in using such closed cycles to attempt to
control errors. This procedure is itself unreliable because it may
distribute a large error arising in one prediction over the entire
thermodynamic cycle, thereby distorting other correct
predictions.52 The hysteresis value of 0 is a necessary but not
sufficient condition for convergence of predictions. In addition,
when only a single replica is computed, the magnitude of the
hysteresis itself may fluctuate considerably, just like the ΔΔG

Figure 6. Variation of cumulative ΔGalch
complex with simulation length for five replicas of relative free energy calculations (shown in different colors) and

their combined TIES analysis result (shown in black with error bars) for all four schemes. The simulations were extended up to 10 ns for schemes I
and II and up to 20 ns for schemes III and IV. Some of the replicas are highlighted (thick lines) to show how a single replica may fluctuate
substantially or become trapped in a local potential minimum, whereas the ensemble average overcomes such problems.
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values themselves. Performing only a single replica calculation
gives no control over errors in the predictions.
3.1. Dependence of Free Energies on Duration of

Simulation. Figure 6 shows the variation of predicted relative
free energies with simulation time for simulations extended up
to 10 ns for schemes I and II (top panel) and up to 20 ns for
schemes III and IV (bottom panel). The cumulative ΔGalch

complex

for individual replicas as well as their ensemble average
calculated using TIES analysis is shown. A similar representa-
tion corresponding to the predicted absolute free energies is
exhibited in Figure 7 for simulation time extended up to 40 ns.
In Figure 7, the top panel shows the variation of cumulative free
energies with simulation time for the two complexes with
maximum and minimum spread in results from individual
replicas for simulation length up to 10 ns (similar plots up to 10
ns for all complexes are shown in Figure S1), and the bottom
panel shows the results of extending simulations to 40 ns for
three complexes, one from each biomolecular system. For both
relative and absolute binding affinity calculations, the results do
not vary significantly for simulations extended beyond 4 ns
except for two complexes that require longer simulation lengths
for their absolute binding affinities to converge (see bottom
panel of Figure 7). As can be seen in the top panel of Figure 7,
the calculated ΔG values at 4 ns are −31.1 ± 0.2 and
−69.0 ± 0.7 kcal/mol, which become −31.0 ± 0.1 and
−68.9 ± 0.7 kcal/mol at 10 ns for BRD4-L3 and thrombin-L1,

respectively. Not surprisingly, longer simulations do not change
the predictions, which are already stable within 4 ns simulation
length, as shown for BRD4-L6 in Figure 7. However, extension
of simulations led to converged predictions for the two
complexes (PD1-V561M and thrombin-L4), which did not
converge within 4 ns duration. It should be noted that, for some
complexes, although the ΔG value has converged using the
TIES analysis, some of the individual replicas have not reached
convergence in the whole 40 ns duration (see the bottom panel
of Figure 7). Figure 6 exhibits similar behavior (see black line)
for all schemes with the difference between ΔGalch

complex values at
4 and 10 ns being less than 0.2 kcal/mol for schemes I/II and
less than 0.1 kcal/mol for schemes III/IV. The error bars are
also reduced marginally with simulation time for all cases. It is
worth mentioning here that this behavior is system-dependent.
For more flexible protein targets/ligands or for larger
alchemical transformations, the number of replicas and/or
simulation length may need to be increased to achieve a similar
level of precision.
The most important thing to note in both Figures 6 and 7 is

the variation of individual replica behavior with simulation
length. The colored lines (corresponding to results from
individual replicas) fluctuate much more than the black lines
(the results from TIES analysis of all 5 or 10 replicas). This
means that a single replica consistently generates a larger
variation in results. The highlighted lines in both of these

Figure 7. Convergence of the absolute binding free energy calculations. ΔGvdw+elec
protein has the largest variance and requires the longest time to converge

among all of the steps for the absolute binding free energy calculation and hence is used to display the convergence in the calculation. An ensemble
of 4 ns production trajectories is capable of producing well-converged free energy estimates for most of the molecular systems studied here. The top
panel displays the representative convergence behavior for systems with the smallest (BRD4-L3) and the largest (thrombin-L1) differences between
replicas, and the complete figure is provided in Figure S1. The bottom panel shows that longer simulations do not change the estimates for those
complexes that are already stable within 4 ns, as shown for BRD4-L6, whereas extension of simulations can lead to improved convergence behavior
for the ones (PD1-V561M and thrombin-L4) that are not converged within 4 ns. Some of the replicas are highlighted (thick lines) to show how a
single replica may fluctuate substantially or become trapped in a local potential minimum, whereas the ensemble average overcomes such problems.
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figures show that a single replica may fluctuate considerably or
get trapped in a local potential minimum; the ensemble
average, however, can overcome such behavior. Although single
replica variation is small for the FGFR1-PD173074 complex
(on the order of 0.5 kcal/mol; Figure 6) and ∼6 kcal/mol for
the thrombin-L1 complex (Figure 7), it might be larger for
other biomolecular systems and hence is unreliable. Thus, it is
clear that ensemble simulations are needed irrespective of the
length of the simulation. As noted earlier, such a variation in
results from one-off MD simulations has been reported in the
literature for other in silico free energy methods.44−55,58,59,62

Moreover, running a single replica does not allow any
meaningful assessment of statistical uncertainty associated
with results. In addition, a single replica may become trapped
within a region of conformation space. For instance, REST2
simulations (schemes I and II) could not bring the blue line in
Figure 6 closer to the black one. A similar observation can be
made from Figure 7. However, when TIES analysis is
performed by applying the ensemble simulation approach to
combine the output from all 5 or 10 replicas (denoted by the
black line in Figures 6 and 7), the results are very precise.
3.2. Reproducibility of the TIES Protocol Under

Variation of Topology, Code, Software, and Hardware.
To exhibit the reproducibility of the TIES protocol, we
performed TIES calculations for a set of BRD4 inhibitor
transformations in this study using the method described in
section 2.4 and compared the results with those from our
previous TIES study53 (referred to as the original TIES study
here). The two differ in the software and hardware employed
for the calculations as well as the simulation setup. Table 3

provides the details of the differences in the two methods. The
key differences to be noted are those in the MD engines
employed (NAMD vs AMBER), the hardware used (CPU vs
GPU), and the topology schemes employed (dual vs single).
Figure 8 shows a comparison of the predicted relative binding
affinities from both methods with the corresponding exper-
imental data as well as with each other. Both methods display
good accuracy with Pearson correlation coefficients of 0.84 and
0.79 for the original TIES method and the pmemdGTI method,

respectively, when compared with the experimental data.
Moreover, a correlation coefficient of 0.92 is obtained when
comparing the results from both methods with each other,
confirming that the TIES protocol has excellent reproducibility
irrespective of the variations in the software, hardware, and
implementation of the free energy method employed.

4. CONCLUSIONS

In this article, four approaches to predict relative binding free
energies, namely TIES-REST2, TIES-REST2-M, TIES-λ-
REST2, and TIES-λ-REST2-M, and one approach to predict
absolute binding free energies, all based on thermodynamic
integration, are described. All these approaches rely upon
ensemble simulations and are conceptually identical to the
TIES method recently proposed by Bhati et al.52 They are
shown to be accurate and precise with in-built control of errors
for a range of target proteins and ligands. The importance of
ensemble simulations for proper assessment of statistical
uncertainty has been emphasized here yet again by providing
an account of the variation in results between different replicas
of the ensemble. In the case of relative free energy calculations,
TIES-λ-REST2 is shown to yield similar results for an order of
magnitude less computational cost compared to TIES-REST2,
indicating that the former scheme is clearly preferable. The free
energy estimator, MBAR,41 does not affect the accuracy of the
predictions but offers a marginal improvement in their
precisions. Replica exchange simulations are found to improve
the accuracy of results over normal MD simulations for some
cases. Results from an ensemble of longer simulations are
presented and enable us to conclude that ensemble simulation
is a requirement irrespective of the simulation length. The TIES
protocol is shown to reproduce the relative binding affinity
predictions for a set of BRD4 inhibitor transformations when
the calculations are repeated using a different MD code,
different hardware, and a different topology scheme.
The absolute free energy calculation method is found to have

larger error bars compared to the relative free energy
calculation methods. This is not surprising given that the
former involves the complete disappearance of the ligand. The
former is computationally a very expensive calculation, which is
∼1 order of magnitude more costly than other ensemble
simulation-based approaches for calculating absolute free
energies, namely ESMACS,48,53,54 VIIT, and SIIT.59−61

However, the absolute free energy method described here is
an alchemical one and in principle is able to predict accurate
free energies unlike the others, which involve several
approximations and are primarily of value for ranking purposes
as their results are often highly precise albeit inaccurate.
This study provides a systematic approach to uncertainty

quantification based on ensemble simulations, which is
generally applicable to all free energy calculation methods
that draw on classical molecular dynamics. Owing to the
intrinsic instability of molecular dynamics trajectories, there is
no escape from it even when using other forms of enhanced
sampling method; rather, they need to be combined with
ensemble averaging. Indeed, ensemble averaging should
become an integral aspect of scientific results reported from
the use of molecular dynamics as it is the one reliable way in
which errors may be estimated from these kinds of
calculations.68

Table 3. Comparison of Different Parameters Used by Wan
et al.53 for the Original TIES Calculations of the BRD4
Inhibitor Transformations with Those Used in This Study
for the TIES Calculations Using the pmemdGTI Software
Package

parameter original TIES pmemdGTI

MD engine NAMD AMBER
processor CPU GPU
method dual topology single topology
ensemble NPT (300 K, 1 bar) NVT (300 K)
timestep 2 fs 1 fs
electrostatic cutoff 12 Å 9 Å
electrostatic
decoupling/coupling

0−0.55/0.45−1 (see
ref 53)

0−1

softcore potential vdW vdW + elec
buffer size 14 Å 11 Å
number of λ-windows 13 (0, 0.05, 0.1, ···,

0.9, 0.95, 1)
11 (0,0.1, ···, 0.9,1)

initial structures for
each λ

minimization minimization, sequential
equl. (1.4 ns/λ)

simulation run 2 ns equl., 4 ns prod. 1 ns equl., 4 ns prod.
number of replicas 5 10
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