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We revisit the enthalpy-pressure phase diagram of the various products from the different proposed
decompositions of H2S at pressures above 150 GPa by means of accurate diffusion Monte Carlo simu-
lations. Our results entail a revision of the ground-state enthalpy-pressure phase diagram. Specifically,
we find that the C2/c HS2 structure is persistent up to 440 GPa before undergoing a phase transition
into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m
phase of HS is more stable than the I41/amd HS structure over the whole pressure range from 150
to 400 GPa. More importantly, we predict that the Im-3m phase is the most likely candidate for
H3S, which is consistent with recent experimental x-ray diffraction measurements. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4976836]

I. INTRODUCTION

Back in 1968, Ashcroft predicted that according to the
BCS theory,1 dense hydrogen would not only be metallic2 but
more importantly also a high-temperature superconductor.3

Since recently it has been shown that dissociation is a necessary
condition for the metallization of hydrogen,4,5 the necessary
pressure to cause bandgap closure has remained impractically
high, so that metallic hydrogen has only been realized at finite-
temperature.6–10 Yet, an appealing way to circumvent the high
pressures required to metallize hydrogen is to precompress it
in hydrogen-rich systems,11,12 since, in general, the electronic
density of states is high and the electron-phonon interactions
are strong.13 In fact, pressurized hydrogen-rich materials have
demonstrated to be rather promising candidates for high-Tc

superconductivity.14–20

The possibility of high-Tc superconductivity of dense
hydrogen sulfide was first predicted based on density
functional theory (DFT) calculations.21,22 Experimentally,
Drozdov and Eremets reported that at pressures around 200
GPa, dense H2S becomes metallic and superconducting with a
critical temperature (Tc) of 203 K,23,24 which is well above the
highest Tc of 133 K and 164 K that were achieved in cuprates25

at ambient26 and high pressures,27 respectively. Recent syn-
chrotron x-ray diffraction (XRD) measurements indicate that
under these conditions H2S consists of two major phases, ele-
mental sulfur of the β-Po structure28 as well as body-centered
cubic (bcc) H3S.29 The latter immediately suggests a decom-
position via the 3H2S → 2H3S + S,29 in agreement with
previous calculations.22,30–32 The crystal structure of the super-
conducting phase of H3S was theoretically predicted to be the
body-centered cubic (bcc) R3m and Im-3m phases at pressures
above 110 GPa and 180 GPa, respectively.22 Recent Raman
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spectroscopy and synchrotron x-ray diffraction experiments
show that H2S becomes unstable with respect to either R3m
or Im3m and the Cccm phase of H3S.33,34

Numerous theoretical studies of the Im-3m H3S structure
consistently predict Tc > 200 K,30–32,35–38 in agreement with
experiment.23,24 However, experimental XRD measurements
are unable to distinguish between the two theoretically pre-
dicted bcc phases of H3S since the positions of the sulfur atoms
are almost identical and the only difference is in the positions
of the weakly scattering hydrogen atoms. Yet, the inclusion of
zero-point energy (ZPE) leads to an alternative decomposition,
namely, 5H2S → 3H3S + HS2, where both H3S and HS2 are
metallic and exhibit superconductive behavior.35

The transition from the H3S R3m phase to the H3S Im-3m
happens at about 175 GPa within DFT calculations in which
the generalized gradient approximation of Perdew-Burke-
Ernzerhof (PBE)39 is employed.22 Using the local-density-
approximation (LDA) exchange-correlation functional gives a
transition pressure of 145 GPa for the same structural transfor-
mation.32,38 In the R3m phase, the H atoms sit in an off-center
position forming a covalent bond with a S atom and a hydrogen
bond with another S, while in the Im-3m phase, the H atom is
symmetrized and sits exactly at the same distance between the
two S atoms. The ZPE modifies the pressure at which the R3m
to Im-3m transition occurs. It has been predicted that in H3S
there is a quantum hydrogen bond symmetrization, similar to
the situation in ice X.38

However, nearly all of the recent calculations on
hydrogen-rich systems are based on the single-particle
mean-field theories such as density-functional theory
(DFT).12,15–22,30–32,35–38,40–46 Even though formally exact, the
exact exchange and correlation (XC) functional is unknown
from the outset and needs to be approximated, which affects
both the relative stabilities of the different crystal structures.
Indeed, for dense hydrogen-rich materials, a significant depen-
dence on the particular of XC functional was established.4,47–49
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Therefore, in this paper we revisit the stability of the
individual products originating from the various proposed
decompositions of H2S for pressures above 150 GPa by
means of highly accurate diffusion Monte Carlo (DMC) sim-
ulations. Using the DMC method,50,51 the electronic many-
body Schrödinger equation is solved stochastically, which
have yielded very accurate total energies for atoms,52,53

molecules,54–56 and crystals57–59 including hydrogen-rich
materials at very high pressure.5,60–62

II. COMPUTATIONAL DETAILS

At first, all of the examined structures were determined
by relaxing the internal parameters of each phase within DFT
at fixed external pressure. The DFT calculations were all con-
ducted within the pseudopotential and plane-wave approach
using the CASTEP code.63 Specifically, ultrasoft pseudopo-
tentials were employed together with an energy cutoff of
1000 eV.64 For S element, 6 electrons of 3s and 3p orbitals
are selected as the valence electrons. The exact XC functional
was substituted by the generalized gradient approximation of
Perdew-Burke-Ernzerhof (PBE).39 The same XC functional
is employed to generate the ultrasoft pseudopotentials. The
geometry and cell optimizations were conducted using the
BFGS algorithm and a dense 16 × 16 × 16 k-point mesh to
sample the Brillouin zone, while the nuclear forces and com-
ponents of the stress tensor were converged to 0.01 eV/Å
and 0.01 GPa, respectively. Our DFT-PBE results agree with
previous simulations.

The CASINO code was used to perform fixed-node DMC
simulations with a trial wave function of the Slater-Jastrow
(SJ) form,65

ΨSJ(R) = exp[J(R)] det[ψn(r↑i )] det[ψn(r↓j )], (1)

where R is a 3N-dimensional vector containing the positions
of all N electrons, r↑i the position of the ith spin-up electron, r↓j
the position of the jth spin-down electron, exp[J(R)] a Jastrow
factor, and det[ψn(r↑i )] and det[ψn(r↓j )] are Slater determinants
made of spin-up and spin-down one-electron wave functions.
These orbitals were obtained from PBE-DFT calculations per-
formed with the CASTEP plane-wave code,63 in conjunction
with Trail-Needs Hartree-Fock pseudopotentials.66,67 For the
purpose to approach the complete basis set limit,68 a large
energy cutoff of 4000 eV has been chosen. The resulting plane-
wave orbitals were subsequently transformed into a localized
“blip” polynomial basis.69

The Jastrow factor within Eq. (1) is a positive, sym-
metric, explicit function of interparticle distances. The
employed Jastrow factor includes polynomial one-body
electron-nucleus (1b), two-body electron-electron (2b), and
three-body electron-electron-nucleus (3b) terms, as well as
plane-wave expansions of the electron-electron separation
known as p terms.70 These p terms build long-ranged correla-
tions into the Jastrow factor and thus significantly improve the
wave function and variational energy. We also investigated the
effect of the inhomogenous backflow (BF) coordinate trans-
formation on the VMC and DMC total energies.71 Our BF
transformation includes electron-electron and electron-proton
terms and is given by

TABLE I. Total energies of the C2/m phase of HS2 at the DMC level of
theory for four different pressures. The energies are given in eV/atom and are
calculated for N1 = 48, N2 = 96, and N3 = 192 particles in the unit cell,
respectively. The extrapolated DMC energy at the infinite system size limit is
denoted by E(∞).

P(GPa) E(N1) E(N2) E(N3) E(∞)

150 �187.6003(8) �187.3893(6) �187.2745(6) �187.169(2)
200 �186.9612(8) �186.7573(8) �186.6484(5) �186.546(2)
250 �186.3569(9) �186.1696(8) �186.0580(6) �185.964(2)
300 �185.7804(8) �185.6074(6) �185.4851(7) �185.399(2)

Xi({rj}) = ri + ξ (e−e)
i ({rj}) + ξ (e−P)

i ({rj}), (2)

where Xi({rj}) is the transformed coordinate of electron i,
which depends on the full configuration of the system {rj}.
The vector functions ξ (e−e)

i ({rj}) and ξ (e−P)
i ({rj}) are the

electron-electron and electron-proton backflow displacements
of electron i. They are parameterized as

ξ (e−e)
i ({rj}) =

Ne∑
j,i

αij(rij)rij (3)

and

ξ (e−P)
i ({rj}) =

NP∑
I

βiI (riI )riI , (4)

whereαij(rij) and βiI (riI ) are polynomial functions of electron-
electron and electron-proton distances that contain variational
parameters. All adjustable parameters in the Jastrow factor
and backflow terms were optimized by minimizing the vari-
ance as well as the variational energy at the VMC level.72,73

If not explicitly stated otherwise, all of our calculations
were conducted using the SJ trial wave function including
1b, 2b, 3b, and p terms augmented by the BF coordinate
transformation.

Beside the usage of twist-averaged boundary conditions
(TABC) to correct finite-size errors,74 we extrapolated the
energy per atom to the thermodynamic limit by fitting our
twist-averaged DMC results for different system sizes to
E(N)= aN−b +E(∞), where a and b are fitting parameters and
E(∞) is the eventual energy per atom in the infinite-system
limit. The corresponding energies per atom as a function of
system size are shown in Figs. 1–4 of the supplementary
material. Depending on simulation cell size, we used 8, 12,
and 16 randomly chosen twists.75 The enthalpy was evaluated
by differentiating the polynomial fit of our finite-size-corrected
DMC energies as a function of volume. Our DMC calculations
were performed using a time step of 0.005 a.u. Due to the fact

TABLE II. The DMC total energies of the C2/c HS2 structure at four distinct
pressures. The energies are calculated for N1 = 24, N2 = 96, and N3 = 192
particles in the unit cell, respectively. The extrapolated DMC energy at the
infinite system size limit is denoted by E(∞). All energies are in eV/atom.

P(GPa) E(N1) E(N2) E(N3) E(∞)

150 �187.757(1) �187.5549(8) �187.4934(6) �187.469(2)
200 �187.254(1) �186.9123(8) �186.8828(5) �186.817(2)
250 �186.767(1) �186.3066(7) �186.2809(6) �186.187(2)
300 �186.348(1) �185.7316(7) �185.6965(5) �185.572(2)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-024708
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-024708
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TABLE III. Total energies of the C2/m phase of HS at the DMC level of
theory for four different pressures. The energies are given in eV/atom and are
calculated for N1 = 64, N2 = 128, and N3 = 256 particles in the unit cell,
respectively. The extrapolated DMC energy at the infinite system size limit is
denoted by E(∞).

P(GPa) E(N1) E(N2) E(N3) E(∞)

150 �144.6139(8) �144.5199(5) �144.4455(4) �144.398(1)
200 �143.9814(7) �143.8912(6) �143.8268(5) �143.781(1)
250 �143.2503(8) �143.1232(6) �143.0780(5) �143.014(1)
300 �142.8490(7) �142.6977(6) �142.6069(5) �142.531(1)

that there is a strong tendency for the time step error to cancel
between the different phases, the resulting bias in the relative
free energies is insignificant.

III. RESULTS AND DISCUSSION
A. DMC total energies

In the following, we are revisiting the crystal structures
of Ref. 35. Specifically, we begin with investigating the mon-
oclinic C2/c and C2/m structures of HS2. The resulting total
energies as a function of pressure at the DMC level of the-
ory for the two HS2 structures at different system sizes and
the extrapolation to the thermodynamic limit are shown in
Tables I and II, respectively. Comparing the DMC results for
the C2/m and C2/c structures of HS2, we find that at the same
pressure, the total energy of the C2/c phase is throughout lower
than that of the C2/m structure. Starting from 150 GPa, the dif-
ference is as large as 299.7 meV/atom, but is strictly decreasing
to 173 meV/atom for 300 GPa.

The DMC total energies for the C2/m and I41/amd struc-
tures of HS are shown in Tables III and IV, respectively. As
before, all energies are calculated for different number of
particles in the unit cell and extrapolated to the thermody-
namic limit. Even though the difference in varying, the C2/m
structure of HS is energetically throughout lower by about
500 meV/atom than the corresponding I41/amd phase. More
precisely, at a pressure of 150, 200, 250, and 300 GPa, the
differences between the two structures are 580, 634, 479, and
582 meV/atom, respectively.

Among the various potential products of the decompo-
sition of hydrogen sulphide, H3S is a particular intriguing
candidate for conventional, but high-temperature BCS super-
conductivity. Interestingly, recent DFT-based crystal structure
prediction simulations suggested that at high-pressure, H3S
in its trigonal R3m and cubic Im-3m structures are the most

TABLE IV. The DMC total energies of the I41/amd HS structure at four
distinct pressures. The energies are calculated for N1 = 32, N2 = 64, and
N3 = 128 particles in the unit cell, respectively. The extrapolated DMC energy
at the infinite system size limit is denoted by E(∞). All energies are in eV/atom.

P(GPa) E(N1) E(N2) E(N3) E(∞)

150 �145.251(1) �144.5755(8) �144.1563(5) �143.819(2)
200 �144.988(1) �144.1049(9) �143.5889(5) �143.147(2)
250 �144.671(1) �143.6350(9) �143.0537(6) �142.535(2)
300 �144.332(1) �143.1536(9) �142.5379(5) �141.948(2)

TABLE V. Total energies of the R3m phase of H3S at the DMC level of
theory for four different pressures. The energies are given in eV/atom and are
calculated for N1 = 48, N2 = 96, and N3 = 192 particles in the unit cell,
respectively. The extrapolated DMC energy at the infinite system size limit is
denoted by E(∞).

P(GPa) E(N1) E(N2) E(N3) E(∞)

150 �80.0626(6) �79.8131(5) �79.7489(3) �79.624(1)
200 �79.7696(6) �79.5045(5) �79.4268(3) �79.294(1)
250 �79.4855(7) �79.2093(4) �79.1287(3) �78.991(1)
300 �79.1996(7) �78.9137(5) �78.8325(3) �78.689(1)

likely products of the decomposition of H2S,22 which is why
they are also revisited here by means of DMC calculations.
The corresponding total energies, as computed by DMC, are
listed in Tables V and VI, respectively. We find that in ther-
modynamic limit, the Im-3m structure is energetically more
favorable than the R3m phase of H3S over the whole pressure
range considered here.

B. Backflow wavefunction

However, due to the necessary fixed-node approximation
in order to cope with the infamous fermion sign-problem,76,77

the fixed-node DMC method samples the variationally optimal
many-electron wave function, which is consistent with an a
priori given nodal surface of a presumed trial wave function,
instead of the exact ground-state wave function.50 [The nodal
surface of an N-electron wave function Ψ(r1, r2, . . . , rN ) is
the (3N − 1)-dimensional hypersurface on which Ψ is zero.]
Therefore, the accuracy of the presumed trial wave function
critically determines the quality of the eventual results via the
nodal surface, which represents the sole approximation of the
employed fixed-node DMC method.

As already alluded to above, using the so-called BF coor-
dinate transformation,78–80 the orbitals in the Slater determi-
nant are evaluated not at the actual electron positions, but on
quasi-electron positions that are functions of all the particle
coordinates. However, the BF function, which describes the
offset of the quasi-electron coordinates relative to the actual
coordinates, contains free parameters, which are determined
by a variational optimization of the trial wave function. In this
way, the nodes of the BF trial wave function are no longer
fixed, but do have some flexibility to move during the trial
wave function optimization in order to further minimize the
variational energy.

Here, we have employed a large variety of different
trial wave functions within our VMC and DMC energies of

TABLE VI. The DMC total energies of the Im-3m H3S structure at four
distinct pressures. The energies are calculated for N1 = 64, N2 = 128, and
N3 = 256 particles in the unit cell, respectively. The extrapolated DMC energy
at the infinite system size limit is denoted by E(∞). All energies are in eV/atom.

P(GPa) E(N1) E(N2) E(N3) E(∞)

150 �79.3944(5) �79.6212(4) �79.6717(3) �79.785(1)
200 �79.0955(5) �79.3326(4) �79.3767(3) �79.495(1)
250 �78.7941(5) �79.0420(4) �79.0851(3) �79.209(1)
300 �78.4924(4) �78.7555(4) �78.7934(3) �78.925(1)
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TABLE VII. The VMC and DMC total energies for the C2/m phase of
HS2 as calculated using the SJ(1b + 2b), SJ(1b + 2b + p), SJ(1b + 2b + 3b),
SJ(1b + 2b + 3b + p), and BSJ(1b + 2b) and BSJ(1b + 2b + 3b + p) trial wave
functions. All energies are in Hartree per primitive unit cell.

WF VMC DMC variance

SJ(1b + 2b) �81.9882(5) �82.1819(5) 6.97(2)
SJ(1b + 2b + p) �82.0508(3) �82.1848(5) 6.22(4)
SJ(1b + 2b + 3b) �82.0150(4) �82.1886(5) 6.54(3)
SJ(1b + 2b + 3b + p) �82.0772(3) �82.1932(4) 5.82(2)
BSJ(1b + 2b) �82.0806(3) �82.2259(4) 5.10(3)
BSJ(1b + 2b + 3b + p) �82.1683(3) �82.2423(4) 4.17(4)

HS2 and H3S, which are the systems with of lowest and
highest hydrogen densities we have considered. Specifically,
we applied SJ-type trial wave functions including one- and
two-body terms (SJ(1b + 2b)), an additional three-body term
(SJ(1b + 2b + 3b)), as well as the respective versions that
are augmented by a p-term denoted as SJ(1b + 2b + p)
and SJ(1b + 2b + 3b + p), respectively. In addition, Backflow-
Slater-Jastrow (BSJ) trial wave functions including one-
and two-body terms (BSJ(1b + 2b)) and the subsequent vari-
ant including an additional three-body and the p term
(BSJ(1b + 2b + 3b + p)) are considered. The resulting VMC
and DMC total energies for the C2/m phase of HS2 and Im-3m
H3S structure are listed in Tables VII and VIII, respectively.
The energy gain of the various trial wave functions with respect
to the SJ(1 + 2b) approach using the VMD and DMC methods
for the two different systems are shown in Fig. 1. It is apparent
that the addition of the three-body term and more so the p term
substantially reduces the VMC energy, but the DMC is only
marginally affected since the initial nodal structure is identi-
cal. The usage of the BF transformation, however, improves
the nodal surface and hence entails an energy lowering at the
VMC and the DMC levels. Interestingly, the gain in energy for
HS2 is much more pronounced than for H3S, which demon-
strates the importance of an accurate trial wave function for
the former. For the Im-3m phase of H3S the energy gain is
�1.634 and �0.56 eV at the VMC and DMC levels of theory,
while for the C2/m HS2 structure, the energy gain can be as
high as �4.898 and �1.643 eV, respectively.

The increased accuracy of the BF wave function, how-
ever, comes at a rather high computational cost, which is
due to the necessity to evaluate the orbitals and their first
two derivatives and moreover also the collective BF coor-
dinates, because every element of the Slater matrix must be

TABLE VIII. The VMC and DMC total energies of the Im-3m H3S struc-
tussre as calculated using the SJ(1b + 2b), SJ(1b + 2b + p), SJ(1b + 2b + 3b),
SJ(1b + 2b + 3b + p), and BSJ(1b + 2b) and BSJ(1b + 2b + 3b + p) trial wave
functions. All energies are in Hartree per primitive unit cell.

WF VMC DMC variance

SJ(1b + 2b) �23.1044(3) �23.1650(2) 4.21(4)
SJ(1b + 2b + p) �23.1223(2) �23.1663(2) 3.75(1)
SJ(1b + 2b + 3b) �23.1134(2) �23.1674(3) 3.90(2)
SJ(1b + 2b + 3b + p) �23.1307(2) �23.1680(2) 3.54(1)
BSJ(1b + 2b) �23.1381(2) �23.1803(3) 2.81(2)
BSJ(1b + 2b + 3b + p) �23.1645(2) �23.1856(1) 2.278(9)

FIG. 1. The reduction of variational energy for the HS2 and H3S systems
using different trial wave functions with respect to the SJ(1b + 2b) approach
using the VMC and DMC methods.

updated every time a single electron is moved. Even though
this is partially compensated by the fact that the less com-
plex BSJ(1b + 2b) trial wave function is equally accurate than
the much more complex SJ(1b + 2b + 3b + p) calculations, we
have elected to use the former instead of the latter in the follow-
ing DMC calculations of the enthalpy-pressure phase diagram
calculations.

C. DMC enthalpy-pressure phase diagram

In order to compute the enthalpy-pressure phase diagrams
for the different structures, we fitted our extrapolated DMC
total energies as a function of volume V against a model equa-
tions of state E(V ). We found that a quadratic polynomial is a
sufficiently accurate representation of our actual DMC ener-
gies. Using this model, it is straightforward to calculate the
pressure P(V ) = −dE(V )/dV as a function of V and thus also
the enthalpy per atom H = E +PV .

In previous DFT calculations including ZPE correction, it
was predicted that at 200 GPa 5H2S decomposes into 3H3S and
HS2, where HS2 adopts C2/c symmetry, but undergoes a phase

FIG. 2. The DMC enthalpy as a function of pressure of the C2/c HS2 structure
relative to the C2/c phase. The estimated uncertainties in the DMC enthalpies
due to statistical and systematic errors are represented by the widths of the
corresponding lines.
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FIG. 3. The DMC enthalpy of the C2/m and I41/amd phases of HS as a
function of pressure. The corresponding error bars are smaller than the size
of the data points.

transition to the more stable C2/m structure at 250 GPa.35 How-
ever, the present DMC enthalpies indicate that the C2/c HS2

structure is more stable than the C2/m phase up to 440 GPa, as
it is shown in Fig. 2. In fact, the enthalpy difference between
the C2/c and C2/m phases of HS2 is much larger than the
ZPE correction as estimated by DFT.35 Moreover, DFT-based
crystal structure searches predict that the energetically most
favorable phase of HS at 200 GPa is I41/amd and at 300 GPa
C2/m.35 The present DMC enthalpy-pressure curves of HS
are shown in Fig. 3. At variance to DFT, they suggest that the
C2/m phase of HS is more stable than the I41/amd HS struc-
ture over the whole pressure range from 150 to 400 GPa. In
fact, the difference in enthalpy between the C2/m and I41/amd
phases is more than 600 meV/atom and is even larger with
increasing pressure. Previous crystal structure prediction cal-
culations using DFT indicate that the R3m H3S structure is
stable at 130 GPa and that the Im-3m phase of H3S is the most
likely candidate at pressures larger than 200 GPa. Our DMC
enthalpy-pressure phase diagram for H3S system is illustrated
in Fig. 4.

Our DFT-PBE results indicate that the enthalpy differ-
ence between the Im-3m and R3m structures of H3S is less
than 3 meV/atom in the studied pressure range. This small

FIG. 4. The DMC enthalpy of the Im-3m and R3m phases of H3S as a function
of pressure. The corresponding error bars are smaller than the size of the data
points.

energy difference agrees with previous DFT-PBE calculations
where it is stated that the Im-3m and R3m structures are almost
identical in energy at pressures above 175 GPa.22,32 Deter-
mining the corresponding enthalpy-pressure phase diagram
on such a tiny energy scale based on stochastic DMC simula-
tions is a very daunting task and computationally tremendously
demanding. We estimate that the statistical and systematic
errors in our DMC enthalpy simulations are larger than the
DFT-PBE energy difference between the Im-3m and R3m
phases. Although, our DMC enthalpy-pressure calculations
predict that the Im-3m H3S structure is enthalpically more
favorable up to pressures of at least 320 GPa, which is in agree-
ment with very recent experimental results,29 this prediction
needs further investigation.

IV. CONCLUSION

In summary, our DMC results lead to a revision of
the enthalpy-pressure phase diagram between 150 and 320
GPa. Specifically, we find that the C2/c HS2, C2/m HS and
Im-3m H3S structures are energetically most favorable within
the considered pressure range. However, it is well known that
the ZPE corrections play an important role in the numeri-
cal determination of the phase diagram hydrogen-rich sys-
tems.5,47,61 Nevertheless, DFT calculations of others have
shown that the energy difference between H2S and S + H2 due
to ZPE is about 6 meV/f.u. at 160 GPa,41 which is much smaller
than our DMC enthalpy differences. We thus predict that the
effect of ZPE on our DMC results is negligible. We conclude
by noting that the present DMC results are compatible with
very recent DFT results including ZPE,38 so that in the most
important case of H3S, two state of the art calculations at rather
different levels of theories provide similar results that are in
agreement with experiment.

SUPPLEMENTARY MATERIAL

In the supplementary material, we provide the details of
the fitting of E(N) and E(V ), where E is the DMC total energy,
N the number of atoms in the unit cell, and V the corresponding
volume. We fitted the twist-averaged DMC results for three
system sizes to E(N) = aN−b +E(∞), where a and b are fitting
parameters, while E(∞) is the energy per atom in the infinite-
system limit.
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