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Abstract

We investigate the van der Waals interactions in solid molecular hydrogen structures. We cal-

culate enthalpy and the Gibbs free energy to obtain zero and finite temperature phase diagrams,

respectively. We employ density functional theory (DFT) to calculate the electronic structure and

Density functional perturbation theory (DFPT) with van der Waals (vdW) functionals to obtain

phonon spectra. We focus on the solid molecular C2/c, Cmca-12, P63/m, Cmca, and Pbcn struc-

tures within the pressure range of 200 < P < 450 GPa. We propose two structures of the C2/c

and Pbcn for phase III which are stabilized within different pressure range above 200 GPa. We

find that vdW functionals have a big effect on vibrations and finite-temperature phase stability,

however, different vdW functionals have different effects. We conclude that, in addition to the vdW

interaction, a correct treatment of the high charge gradient limit is essential. We show that the

dependence of molecular bond-lengths on exchange-correlation also has a considerable influence on

the calculated metallization pressure, introducing errors of up to 100GPa.
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I. INTRODUCTION

Determining the phase diagram of high-pressure hydrogen is one of the great challenges of

condensed matter physics. Since 1935, when it was predicted that molecular solid hydrogen

would become a metallic atomic crystal at 25 GPa1 high-pressure hydrogen has been studied

intensively by theory and experiment. It was also predicted theoretically the possible exis-

tence of room-temperature superconductivity2 and metallic liquid ground state3. Additional

interests rise from the relevance of solid hydrogen to astrophysics4,5.

Early infrared (IR) and Raman measurements at low temperature suggested the existence

of three solid-hydrogen phases4. Phase I, which is stable up to 110±5 GPa, is a molecular

solid composed of quantum rotors arranged in a hexagonal close-packed structure. Phase I

spans a wide pressure-temperature (P-T) range. Hence the physical properties of phase I of

hydrogen evolve extensively as the solid becomes nine times denser. It has been accepted that

the melting curve of hydrogen exhibits a maximum below 130±10 GPa at around 1000±100

K6–8,14. Extrapolating the existing data to pressures larger than 250 GPa predicts room

temperature melting at P > 300±50 GPa, but thermodynamics requires that the melt line

will become shallower above the high-entropy phase IV39. Changes in the low-frequency

regions of the Raman and infrared spectra imply the existence of phase II, also known as

the broken-symmetry phase, above 110±5 GPa. Phase II is observed at temperatures below

100±20K. The appearance of phase III at 150 GPa and below room temperature is accom-

panied by a large discontinuity in the Raman spectrum and a strong rise in the IR spectral

weight of molecular vibrons10,62. Phase IV, characterized by the two vibrons in its Raman

spectrum, was recently discovered at 300 K and pressures above 230 GPa11–13. Another new

phase has been found at pressures above 200 GPa and higher temperatures (for example, 480

K at 255 GPa)14. This phase is thought to meet phases I and IV at a triple point, near which

hydrogen retains its molecular character. The most recent experimental results15 indicate

that H2 and hydrogen deuteride at 300 K and pressures greater than 325 GPa transform to

a new phase V, characterized by substantial weakening of the vibrational Raman activity.

Other features include a change in the pressure dependence of the fundamental vibrational

frequency and the partial loss of the low-frequency excitations.

Although it is very difficult to reach the hydrostatic pressure of more than 400 GPa at

which hydrogen is normally expected to metallize, some experimental results have been in-
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terpreted as indicating metallization at room temperature below 300 GPa11. However, other

experiments show no evidence of the optical conductivity expected of a metal at any tem-

perature up to the highest pressures explored16. Experimentally, it remains unclear whether

or not the molecular phases III and IV are metallic, although it has been suggested that

phase V may be non-molecular (atomic)15. Metallization is believed to occur either via the

dissociation of hydrogen molecules and a structural transformation to an atomic metallic

phase11,17, or via band-gap closure within the molecular phases18,19. In this work we inves-

tigate the influence of van der Waals interactions on the metallization by performing finite

temperature phase diagram calculations for insulator and metallic molecular structures.

The phase diagram of high-pressure solid hydrogen has mainly been investigated us-

ing density functional theory (DFT) with local and semi-local exchange-correlation (XC)

functionals20–29,38. In particular, DFT with generalized gradient approximation (GGA)

functionals has been widely applied to search for candidate low-energy crystal structures

and to calculate their vibrational properties. Recently, DFT-GGA was used to reinterpret

the IR spectrum of hydrogen-deuterium mixtures in molecular structures30,31, and it has

been found that the isotope effect leads to a completely different spectroscopic signal in

hydrogen-deuterium mixtures. More accurate quantum Monte Carlo methods32–34 are em-

ployed to calculate the static phase diagram35,36 and excitonic and quasi-particle band gaps

for molecular phases37. Just recently an interesting classical thermodynamic model that

reproduces the main features of the solid hydrogen phase diagram has been introduced39.

It was shown that the general structure types, which are found by electronic structure cal-

culations and the quantum nature of the protons, can also be understood from a classical

viewpoint.

The relative contribution of the van der Waals (vdW) interactions to the cohesive proper-

ties of the various solid molecular structures of high-pressure hydrogen has not been under-

stood. First principles study of ice phase diagram provides an important consequence, likely

to be of relevance to hydrogen-rich molecular crystals in general, which is that transition

pressures obtained from DFT-XC which neglect vdW forces are greatly overestimated40. We

have recently studied the phase diagram of compressed crystalline benzene using modern

vdW and GGA density functionals41. We found that the vdW forces play crucial role in

prediction of phase stability and transition pressure in crystalline benzene. Considering

the aforementioned results for ice and crystalline benzene, it may be expected that the
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vdW interactions are important in phase diagram calculations of low-Z hydrogen-dominant

molecular crystals. Similar to other rare gases, simple H2 molecules are weakly bounded

due to vdW forces in ambient conditions. A detailed study of the helium-nitrogen system

in a diamond-anvil cell using synchrotron X-ray diffraction, Raman scattering and opti-

cal microscopy, indicates a novel class of vdW compounds that are formed only at high

pressures42. Theoretical study of liquid-liquid insulator-metal-transition phase boundaries

for high-pressure deuterium43 predicts that the pressure-temperature phase diagram results

which are simulated by vdW functionals are in better agreement with experiment compar-

ing with conventional density functionals. Therefore, we believe that it is important to

understand the contribution of vdW interactions in static and dynamic phase diagrams of

high-pressure solid molecular hydrogen.

The main purpose of current work is to study the role of vdW forces in the proper-

ties of molecular phases of high-pressure solid hydrogen. We calculate enthalpy-pressure

static phase diagram and also the Gibbs free energy dynamic phase diagram up to room

temperature. We employ two widely used vdW functionals of vdW-DF144,45 and vdW-

DF246 and compare them with the results from conventional DFT functionals. Although

these vdW functionals are tested on a broad range of materials including traditional met-

als, ionic compounds, and insulators47,48, they were not employed before to calculate the

finite-temperatures phase diagram of high-pressure solid hydrogen. We consider five specific

molecular structures with space groups P63/m, C2/c, Pbcn, Cmca-12, and Cmca within

pressure range between 200 to 400 GPa. These structures were predicted by the ab initio

random structure searching method20. According to those calculations, the C2/c and Pbcn

structures are candidates for phases III and IV, respectively. The C2/c structure includes

weakly-bonded nearly graphene-like layers, while the Pbcn phase adopts two different layers

of nearly graphene-like three-molecule rings with elongated H2 molecules and unbound H2

molecules12,20,23. The Cmca-12 structure is similar to C2/c but slightly denser and has a

much smaller metalization pressure35. The Cmca phase shows weaker molecular bonds than

C2/c and Cmca-12 and is the only metallic molecular phase within the studied pressure

range. The structure of the P63/m differs from the other layered phases. In this phase

three quarters of the H2 molecules lie flat in the plane and one quarter lie perpendicular

to the plane. More recently, several other structures involving small symmetry-breaking

distortions from Pbcn have been proposed for Phase IV, but molecular dynamics simula-
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tions at the temperatures where Phase IV is observed show that the unbound molecules

rotate, increasing the time-averaged symmetry to P6/mmm23,39,66,67. With the PBE func-

tional, further small distortions mean that the lowest known energy candidate for phase II

is P21/c
65 and for phase III P6122

63 and C2/c−2465 below and above 200GPa respectively.

With PBE the Cmca phase is stabilised well into the pressure range where it has been ruled

out experimentally.

Comparison between experiment and theory is typically done by comparing at the same

pressure. However it is important to note that neither experiment nor theory is very reliable

in measuring pressures. Experimental pressures are estimated with respect to the diamond

absorption edge, a scale which has been frequently revised by tens of GPa49. The natural

variable for quantum calculations is volume, with pressure being a calculated quantity.

Standard DFT codes calculate the differential of the energy with respect to an affine rescaling

of the simulation cell, neglecting zero point contribution and the different compressibility of

inter- and intramolecular regions. Consequently experimental and theoretical measures are

highly self-consistent, but comparing the two is dangerous.

Crystal structure and hydrogen positions in the primitive unit-cell are the fundamental

inputs for ab initio phase diagram calculations. Due to lack of any established experimental

structure determination, there is no option but to use structures predicted by DFT. Most of

the structures have been predicted by Perdew-Burke-Ernzerhof (PBE)51 exchange correlation

(XC) functionals20,21 which has become the de facto standard in structure searching packages.

It is now generally accepted that DFT results for high-pressure hydrogen strongly depend

on the choice of exchange-correlation functional26,29,38 and although PBE performs well in

identifying candidate structures, it is poor at describing the relative energies of configurations

and the properties of the molecular bond26. The sensitivity to choice of DFT-XC functional

depends on the property being studied, and serious doubts about the accuracy of the results

persist. Is the pressure calculated correctly? How do the interatomic interaction energy,

the bond-stretch energy, the phase diagram, the metallization mechanism, and the phonon

spectrum depend on the approximation used for the XC functional? How accurate should

we expect DFT calculations of measured quantities such as infrared (IR) and Raman spectra

to be? Answering these questions is necessary to assess the reliability of the many existing

DFT simulations of high-pressure solid hydrogen. In this work, we examine the accuracy of

non-local vdW functionals in prediction of the properties of high-pressure solid hydrogen.
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The paper is organized as follows. Section II describes the details of our vdW-DF cal-

culations. The static and dynamic phase diagrams and also calculated IR intensities are

discussed in Sec. III. Section IV concludes.

II. COMPUTATIONAL DETAILS

Given that the energy differences between solid hydrogen molecular structures are small,

the calculations must be performed with the highest possible numerical precision. Our

DFT calculations were carried out within the pseudopotential and plane-wave approach

using the latest version of Quantum ESPRESSO suite of programs50. Our DFT calculations

used non-relativistic norm conserving pseudopotentials which were obtained by the Perdew-

Burke-Ernzerhof (PBE)51 exchange correlation functionals. We used a basis set of plane

waves with an energy cutoff 80 Ry. Geometry and cell optimisations employed a dense

16 × 16 × 16 k-point mesh. The quasi-Newton algorithm was used for cell and geometry

optimisation, with convergence thresholds on the total energy and forces of 0.01 mRy and

0.1 mRy/Bohr, respectively, to guarantee convergence of the total energy to less than 1

meV/proton and the pressure to less than 0.1 GPa/proton.

Vibrational frequencies and phonon spectra were calculated using density-functional per-

turbation theory as implemented in Quantum ESPRESSO50. We use quasi-harmonic ap-

proximation to calculate the vibrational free energy52:

Fph(T, V ) = kBT
∑
i,q

ln{2sinh[h̄ωi,q(V )/2kBT ]}, (1)

where kB, V , and ωi,q are Boltzmann constant, unit cell volume, and eigenvalue of the

phonon Hamiltonian, respectively. The zero point (ZP) pressure is included in our phase

diagram calculations by PZP = −(∂EZP /∂V ), where the EZP per proton at a specific cell

volume V was estimated within the quasi-harmonic approximation: EZP(V ) = h̄ω/2, where

ω =
∑

q

∑Nmode

i=1 ωi(q)/(NqNmode). Nmode and Nq are the numbers of vibrational modes

in the simulation cell and phonon wave vectors q, respectively, and the summation over q

includes all k-points on a 2× 2× 2 grid in the Brillouin zone.

Our electronic structure and lattice dynamic results are calculated by vdW-DF144 and

vdW-DF246 functionals. The Slater exchange and Perdew-Wang (PW)53 correlation func-

tionals are used in both vdW-DF1 and vdW-DF2 which means the correlation energy is
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FIG. 1. (Color online) Relative enthalpy per atom as a function of pressure calculated using two

different vdW functionals of vdW-DF1 and vdw-DF2. The static lattice (no phonon contributions)

enthalpies of molecular crystal structures are presented relative to the enthalpy of the metallic

Cmca structure.

approximated by local density approximation (LDA). In vdW-DF1 the gradient correction

on exchange energy uses the revised version of PBE54, whereas vdW-DF2 uses an optimized

version of PW8655 which is named PW86R56. These functionals use different kernel for

non-local energy term which accounts approximately for the non-local electron correlation

effects. The non-local term is obtained using a double space integration, which represents

an improvement compared to local or semi-local functionals, especially in the case of layered

structures57.

III. RESULTS AND DISCUSSION

A. Static enthalpy-pressure phase diagram

Figure 1 illustrates static lattice enthalpy-pressure phase diagram calculated using the

vdW-DF1 and vdW-DF2 functionals. According to our vdW-DF1 results the C2/c, Cmca−

12, and metallic Cmca phases are stable in the pressure ranges < 200-340, 340-450, and >

450 GPa, respectively. Our vdW-DF2 calculations predict that the P63/m is stable below

210 GPa and the C2/c is the most stable insulator phase until it transits to metallic Cmca at

pressure of 625 GPa. The relative stability of phases predicted by vdW-DF1 and vdW-DF2

is not similar. The vdW-DF1 and vdW-DF2 functionals predict that the molecular insulator

to molecular metallic phase transition occurs at pressures 450, and 625 GP, respectively. Our
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static enthalpy-pressure phase diagram obtained by vdW functionals differ from the previous

results which are calculated by conventional DFT functionals29. PBE static lattice phase

diagram predicts that the P63/m, C2/c,Cmca-12, and metallic Cmca phases are stable in

the pressure ranges < 110, 110245, 245370, and > 370 GPa, respectively. The semi-local

Becke-Lee-Yang-Parr (BLYP) functional58 enthalpy-pressure phase diagram indicates that

the P63/m, C2/c,Cmca-12, and metallic Cmca phases are stable in the pressure ranges

of < 160, 160370, 370430, and > 430 GPa, respectively. Calculations using Local density

approximation and PBEsol59 also give diverse properties38.

It has been proven that DFT electronic structure results in the case of high-pressure solid

molecular hydrogen dramatically depend on the XC functional. In our previous work29, we

argued that the self-interaction (XC-SI) error present in the XC functionals plays crucial role

in the study of H2 systems. For instance, the XC-SI errors of the LDA, GGA, and BLYP

total energies of a single H2 molecule are 1.264, -0.126, and 0.0846 eV, respectively60. These

values are more than two orders of magnitude larger than the conventional DFT enthalpy

differences between the crystal structures of high-pressure solid hydrogen. Consequently

DFT is highly dependent on cancellation of XC-SI errors: this is reasonable when comparing

different molecular structures

The XC energy in vdW functionals, in general, can be expressed as: EXC = EGGA
X +

ELDA
C + Enon−local

C where the EGGA
X is revPBE54 and PW86R56 for vdW-DF1 and vdW-

DF2, respectively. The non-local part of correlation energy Enon−local
C by definition does not

suffer from the Coulomb self-energy of each electron. The local correlation energy ELDA
C is

identical in vdW functionals considered in this work. Hence, the XC-SI errors of vdW-DF1

and vdW-DF2 are mostly related to the X-SI errors. It was reported that61 the PW86

functional, shows the most consistent agreement with exact-exchange Hartree-Fock (HF)

interaction energies for H2 clusters. In the next section we discuss the overall behaviour of

vdW-DF1 and vdW-DF2 for large density limit. It has been comprehensively discussed that

properties such as molecular bond-length and interactions energies calculated by vdW-DF2

are improved61. However, at this stage we can not comment that this improvement is due to

a lower SIE rather than other limits being obeyed. The study of SIE in DFT-XC functional

demands a separate work.

To obtain a deep understanding of the static phase diagram and also for comparing

our results with experiment, we calculate pressure-density equation of state using vdW-

8
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FIG. 2. (Color online) Pressure-density equation of state for the C2/c, Cmca-12, Pbcn, Cmca, and

P63/m phases calculated using vdW-DF1 and vdW-DF2 functionals. The inset shows evolution

of δP, the difference between vdW-DF2 pressure and vdW-DF1 pressure, as a function of density.

At a fixed density, vdW-DF2 predicts larger pressure than vdW-DF1.

DF1 and vdW-DF2. Figure2 illustrates pressure-density equation of state for the C2/c,

Cmca-12, Pbcn, Cmca, and P63/m molecular structures which are obtained by vdW-DF1

and vdW-DF2 functionals. Insets show the difference between pressure calcation at same

density (δP ), which increases with density and for all the studied structures. δP is in the

range 10-20GPa, and vdW-DF2 gives systematically larger pressures than vdW-DF1.
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B. Lattice dynamics and Bondlengths

Figure 3 illustrates phonon density of states (DOS) of the C2/c, Pbcn, Cmca-12, P63/m,

and Cmca structures which are obtained by vdW-DF1 and vdW-DF2 at four different pres-

sures. Both vdW functionals predict that in all the studied molecular structures the phonon

dispersion increases by increasing the pressure. The vibron frequencies predicted by vdW-

DF1 are smaller than vdW-DF2. This difference is strongly related to the optimized H−H

molecular bond-length (BL) predicted by vdW functionals. Precise values of optimized

molecular bond-length for all the studied structures, which are calculated by vdW-DF1 and

vdW-DF2 at same density, are presented in table I, respectively.

In the primitive unit cell of C2/c there are twelve H2 molecules with two kinds of H −H

molecular bond-length named BL1 and BL2 in figure 4. The C2/c−BL1 which is shorter

than C2/c−BL2 corresponds to higher vibron frequencies. vdW-DF1 and vdW-DF2 produce

different results for the C2/c−BL1 and C2/c−BL2. According to vdW-DF1 results both

C2/c−BL1 and C2/c−BL2 increase with density, whereas vdW-DF2 predict that C2/c−BL1

and C2/c−BL2 slightly decrease by increasing the pressure (Table I). The C2/c−BL1 and

C2/c−BL2 obtained by vdW-DF1 are larger than those calculated by vdW-DF2 at the same

density. Therefore, vdW-DF2 functional predict higher frequency vibrons. Same argument

can be applied on the Cmca−12 phase. The difference between Cmca-12−BL1 and Cmca-

12−BL2 is larger than the difference between C2/c−BL1 and C2/c−BL2. Hence, the Cmca-

12 phonon vdW’s DOS results predict lower frequencies for vibrons than C2/c. Cmca-

12−BL1 and Cmca-12−BL2 obtained by vdW-DF1 both increase by density. But vdW-DF2

optimized molecular bond-length indicate that Cmca-12−BL1 and Cmca-12−BL2 decreases

and increases by pressure, respectively. All the H −H molecular bond-lengths in the Cmca

phase are identical and consequently one vibron can be observed in phonon DOS (Figure 4).

The vdW-DF1 and vdW-DF2 predict that Cmca-BL increases by rising pressure. Cmca-BL

is larger than C2/c and Cmca-12 molecular bond-lengths and therefore the vibron frequency

of the Cmca is smaller than C2/c and Cmca-12 structures.

Recently we have used many-body wave-function based quantum Monte Carlo methods

to calculate excitonic and quasi-particle band gap and also electronic band-structure of the

C2/c, Pbcn, and P63/m phases37. We have discovered that many properties of solid molec-

ular hydrogen are strongly correlated with H −H molecular bond-length. For instance, the

10
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FIG. 3. (Color online) The phonon density of states of the C2/c, Pbcn, Cmca-12, P63/m, and

Cmca phases calculated using vdW-DF1 and vdW-DF2 functionals at four different pressures.
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FIG. 4. (Color online) The optimized H − H molecular bond-length (BL) of the C2/c, Pbcn,

Cmca-12, P63/m, and Cmca phases calculated using vdW-DF1 and vdW-DF2 functionals at

different pressures. In the primitive unit cells of the C2/c, Pbcn, Cmca-12, P63/m, and Cmca

structures there are two, four, two, two, and one categories of H2 molecules with different H −H

bond-lengths.

gradient of the P63/m band gap with respect to molecular BL is ∼ 27.3 eV/Å indepen-

dent of the XC functional. As illustrated in Figure 4, the twenty four H2 molecules in the

unit cell of the Pbcn phase adopt four non-equivalent H −H molecular bond-lengths, and

thus four vibron frequencies are obtained. Pbcn−BL1 and Pbcn−BL2, which shorten with

pressure are shorter than Pbcn−BL3 and Pbcn−BL4, which lengthen with pressure(Table
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I). This behaviour correlates with the Pbcn phonon DOS where increasing the pressure re-

duces the two low vibron frequencies and increases two high vibron frequencies. The P63/m

structure has eight H2 molecules per primitive unit cell with two inequivalent bond-lengths

P63/m−BL1 and P63/m−BL2 with difference of ∼ 4mÅ. VdW-DF1 and vdW-DF2 results

indicate that P63/m−BL1 and P63/m−BL2 are reduced by increasing density.

The averaged molecular bond-length by vdW-DF1, which is defined asBLave = 1/n
∑n

i BLi

where n is the number of bond-lengths, of all the studied phases increase by pressure except

the P63/m. vdW-DF2 calculations show that BLave reduction of the C2/c and P63/m due

to increasing the pressure are 1mÅ and 9mÅ, respectively. Similar to vdW-DF1 results the

BLave of other structures calculated by vdW-DF2 are increases by dense. By increasing

the pressure both low energy lattice phonon frequencies and high frequency vibron modes

become larger. Decreasing the P63/m-BLave with pressure causes an instability in the

system which is also found from imaginary phonon frequencies. It should be noted that at

high enough pressures molecular to atomic phase transition occurs. The Raman spectra and

MD simulations suggest that phase IV is a mixture elongated H2 dimers experiencing large

pairing fluctuations, and unbound H2 molecules12. This matches very well with the altering

of Pbcn molecular bond-lengths with pressure. The Pbcn−BL1 and Pbcn−BL2 decrease

with increasing the pressure whereas Pbcn−BL4 and Pbcn−BL3 dissociate by increasing

the pressure. Benchmarking DFT-XC functionals for high pressure solid hydrogen using

quantum Monte Carlo (QMC) simulations indicate that, at static level, optimized molecular

bond-length for the C2/c which is calculated by vdW-DF1 functional agrees with QMC

results26.

The molecular bond-length, which is also the nearest-neighbour distance, is strongly cor-

related with electronic energy band gap. We do not present DFT band gap results here

as our recent extensive study of energy band gap of solid molecular hydrogen is reported

in reference 37. At constant pressure, the P63/m band gap is larger than other molecular

phases. As it is shown in figure 4, the P63/m−BLave is smaller than other studied struc-

tures. Shortening molecular bond-length localises the electrons and increase localised charge

density and consequently, according to the band theory, opening the energy band gap is ex-

pected. Hence, a precise bond length is necessary for an accurate prediction of the properties

of solid molecular phases. We propose a rule of thumb of the shorter molecular bond-length

the larger electronic band gap the higher vibron frequencies which is independent of the XC

13



vdW-DF1 C2/c Cmca Cmca-12 Pbcn P63/m

P BL1 BL2 BL BL1 BL2 BL1 BL2 BL3 BL4 BL1 BL2

215 0.71179 0.71664 0.73683 0.72164 0.73165 0.69731 0.70211 0.75279 0.75361 0.70085 0.70219

265 0.71265 0.71784 0.74240 0.72222 0.73371 0.69447 0.69833 0.76352 0.76427 0.69565 0.69802

316 0.71341 0.71865 0.74370 0.72233 0.73511 0.69193 0.69505 0.77351 0.77394 0.69537 0.69780

370 0.71386 0.71912 0.74491 0.72272 0.73795 0.68958 0.69224 0.78263 0.78283 0.69309 0.69707

vdW-DF2

230 0.69058 0.69496 0.71141 0.69985 0.70846 0.67994 0.68557 0.72442 0.72514 0.68358 0.68459

282 0.68979 0.69457 0.71311 0.69924 0.70916 0.67625 0.68102 0.73063 0.73129 0.67712 0.67888

335 0.68945 0.69440 0.71719 0.69868 0.70980 0.67324 0.67727 0.73666 0.73730 0.67633 0.67835

390 0.68927 0.69421 0.71771 0.69804 0.71029 0.67061 0.67413 0.74261 0.74325 0.67364 0.67587

TABLE I. Precise values of molecular bond-length in Å for the C2/c, Cmca, Cmca-12, Pbcn, and

P63/m structures calculated by vdW-DF1 and vdW-DF2 at various pressures (in GPa). First

column shows the pressure (P) in GPa. Notice how the shorter bond lengths become shorter with

pressure, while longer BLs become longer.

functional in DFT calculations study of high-pressure solid molecular hydrogen. We have

recently calculated the scissor operator for solid molecular hydrogen structures and we have

demonstrated that the scissor operator is also independent of DFT XC functional29.

We also calculated active IR modes for the solid molecular phases, C2/c, Pbcn, Cmca-

12, P63/m, and Cmca structures which are calculated by vdW-DF1 and vdW-DF2 at four

different pressures ( Figure 5 ). The main difference between vdW IR spectra and those

simulated using conventional semi-local functionals is the position of peak. The position

of IR peaks depends on the optimized BL predicted by XC functional. The gradient of IR

peak with respect to BL is ∼ 14.95 ± 0.5(cm.mÅ)
−1

which is independent of pressure and

is also identical for the studied molecular structures. It indicates that altering bond-length

by 0.1Å, which equals to accuracy of DFT functionals in prediction of optimized BL for H2

molecule, shifts the IR peak by 1495 ± 5(cm)−1. This value is almost same as the gap in

phonon density of states.
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FIG. 5. (Color online) IR frequencies and relative intensities for the C2/c, Pbcn, Cmca-12, P63/m,

and Cmca phases calculated using vdW-DF1 and vdW-DF2 functionals at four different pressures.
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C. Finite temperature phase diagram

We calculated the quasiharmonic Gibbs free energy for high pressure solid molecular hy-

drogen phases utilising the vdW functionals. Figure 6 illustrates the Gibbs free energy as a

function of pressure at T = 10, and 310 K. Lattice vibrations and zero point (ZP) contribu-

tions play a crucial role in determining phase boundaries. Our low-temperature vdW-DF1

phase diagram is rather similar to previous work with PBE. It predicts that the C2/c is

the most stable phase up to 289 GPa where it transforms to metallic Cmca phase. Increas-

ing the temperature to 310 K reduces the C2/c to Cmca phase transition pressure to 275

GPa. Comparing to previous DFT phase diagram results, this is the lowest DFT molecular

insulator to molecular metallic phase transition pressure. vdW-DF1 phase diagram pre-

dicts that metallization of high-pressure solid hydrogen occurs through molecular-molecular

phase transition at pressure below 300 GPa, whereas experiments12,13,16,62,68 suggest that

the metallization of solid hydrogen takes place at pressures larger than 350 GPa. Including

the lattice dynamic contribution to the vdW-DF1 phase diagram increases the discrepancy

between vdW-DF1 outcomes and experimental observations as well as our recently reported

QMC results37.

Our vdW-DF2 Gibbs free energy calculations (figure 6) indicate two low temperature

phase transitions of C2/c to Pbcn at 291 GPa and Pbcn to Cmca at 402 GPa. Whatever

functional is used, the effects of nuclear quantum and thermal vibrations play a crucial role

in the stabilization of phase III and IV. Recent DFT calculations report a new hexagonal

structure with P6122 symmetry for phase III of solid molecular hydrogen, which is more

stable than C2/c at pressures below 200 GPa63. We suggest that two molecular insulator

structures with molecular positions close to hcp could be stabilized above 200 GPa in the

region ascribe to phase III: monoclinic C2/c up to 291 GPa, and Pbcn up to 402 GPa pres-

sure. By increasing the temperature to T = 310 K the insulator Pbcn to metallic Cmca

phase transition occurs at 366 GPa. Our previous QMC results17 predict that molecular

to atomic phase transition takes place at about 374 GPa. Our recent quasi-particle and

excitonic band gap study37 also suggests that band-gap closure of best candidates for solid

molecular structures occurs within pressure range of 350-400 GPa. This work predicts that

insulator to metallic phase transition happens at 366 GPa. Based on our extensive study

of the metallisation of high pressure solid hydrogen, we conclude that all three scenarios
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FIG. 6. (Color online) Relative Gibbs free energy per atom as a function of pressure at T = 10,

and 310 K calculated using vdW-DF1 and vdw-DF2. The Gibbs free energy of molecular crystal

structures are presented relative to the metallic Cmca structure.

of metallisation, which are molecular-atomic structural transformation, band-gap closure

and insulator molecular to metallic molecular phase transition, indicate that solid hydro-

gen become a metal at pressure range of 350-400 GPa. This prediction agrees well with

experiments12,13,62.

Figure 7 illustrates temperature-pressure phase diagram for solid molecular hydrogen

which is predicted by vdW-DF2. The metallisation transition to Cmca is strongly affected

by quantum zero point fluctuations and occurs above 400GPa,consistent with experiment.

Zero point fluctuations also destabilize C2/cwith respect to Pbcn around 300GPa with either

functional. Increasing the temperature reduces the metal-insulator phase transition pressure.

The stability of phase III, at room temperature has been observed experimentally12. The

Raman and visible transmission spectroscopy measurements at 300 K and up to 315 GPa

indicate the phase transformation to phase III around 200 GPa.

Finally we argue that the vdW-DF2 functional provides better results at high density

limit than vdW-DF1 for the same reason that BLYP performs better than PBE. The GGA
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FIG. 7. (Color online) Predicted temperature-pressure phase diagram for solid molecular hydrogen

obtained by vdW-DF2. The zero point fluctuations are the influential term in the Gibbs free

energy calculations which stabilises the Pbcn and metallic Cmca phases. The main contribution

to zero-point comes from the vibrons, while the thermal-phonon effects depend more on the lattice

modes

functional, which is used in both vdW-DF1 and vdW-DF2, can be given by

EGGA
x [n(r),∇n(r)] = −(3/4)(3/π)1/3

∫
d3rn4/3AGGA

x (s) (2)

where s = (∇n)/(2kFn), and kF = (3π2n)1/3 is the local Fermi wave vector. The PBE and

revPBE enhancement factor formula , which is used in vdW-DF1, is

Ax(s) = 1 +
µs2

1 + µs2/κ
(3)

where both PBE and revPBE use µ = 0.2195 which correctly describes the low s limit but

and PBE and revPBE become insensitive to s in the high-s limit. For H2 dimers, significant

values of s as large as 25 is obtained61, which can yield spurious exchange attractions in

PBE and vdW-DF1.

The PW86, which is almost linear in s, gives an enhancement factor proportional to s2/5

at large s, and provides net repulsive interaction for exchange energy64. Detailed analysis
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of GGA functionals61,64 indicate that PW86 (as used in vdW-DF2) is the best for systems

dominated by large s such as high pressure hydrogen.

IV. CONCLUSION

We have employed non-local vdW functionals to revisit the phase diagram of high-pressure

solid hydrogen within pressure range of 200 < P < 450 GPa. We studied the best candi-

dates for phase III previously discovered by structure searching using the PBE approach. In

phase III the H2 bond weakens with pressure as electrons delocalize, and there is competition

between insulating and metallic, molecular and atomic structure. Consequently, the can-

cellation of exchange-correlation errors which typically allows DFT to give accurate energy

differences is most sorely tested here. In previous work it was shown that, compared with

experiment and QMC calculation, PBE obtains over-long BLs, too-low vibron frequencies,

and too-low transition pressure to the molecular metallic phase (Cmca). By considering a

range of XC functionals, we have shown that these failings are all related.

To examine the importance of the long-range vdW interactions in solid molecular struc-

tures of high-pressure hydrogen, we made use of two widely applied vdW functionals of

vdW-DF1 and vdW-DF2 to calculate static-enthalpy and finite-temperature dynamic Gibbs

free energy as functions of pressure. The vdW-DF1 gives erroneous results similar to PBE,

while vdW-DF2 gets bond lengths, frequencies and transition pressures close to QMC and

experimental results.

The distinguishing feature of the more successful functionals is the treatment of semi-local

exchange rather than in inclusion of vdW. In particular those functionals which correctly fit

the limit of high charge density gradient give better-defined molecules. Interestingly, this

effect is most pronounced in the molecular metallic phase (Cmca) which is overly stable in

PBE due to the low vibron frequency and consequent low zero-point energy.

The sensitivity of the metallization pressure to choice of XC functional is likely to be

a feature of all hydrogen phases. Our results suggest that previous DFT calculations of

metallization pressure, including the metallization of the liquid, will have an uncertainty of

order ±100 GPa, with the widely used PBE functional giving especially low values.

19



V. ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC) Grant ”Hecate”

reference No. 695527. Computing facilities were provided through DECI-13 PRACE project

”QMCBENZ15” and the Dutch national supercomputer Cartesius. S. Azadi acknowledges
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