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Abstract
This paper introduces an active inference formulation of planning andnavigation. It illustrates how the exploitation–exploration
dilemma is dissolved by acting to minimise uncertainty (i.e. expected surprise or free energy). We use simulations of a maze
problem to illustrate how agents can solve quite complicated problems using context sensitive prior preferences to form
subgoals. Our focus is on how epistemic behaviour—driven by novelty and the imperative to reduce uncertainty about the
world—contextualises pragmatic or goal-directed behaviour. Using simulations, we illustrate the underlying process theory
with synthetic behavioural and electrophysiological responses during exploration of a maze and subsequent navigation to
a target location. An interesting phenomenon that emerged from the simulations was a putative distinction between ‘place
cells’—that fire when a subgoal is reached—and ‘path cells’—that fire until a subgoal is reached.

Keywords Active inference · Bayesian · Novelty · Curiosity · Salience · Free energy · Epistemic value · Exploration ·
Exploitation

1 Introduction

The ability to navigate an uncertain world is clearly a central
aspect of most behaviour. This ability rests on the optimal
integration of knowledge about the world and the goals that
we are currently pursuing (Hauskrecht 2000; Johnson et al.
2007; Pastalkova et al. 2008; Hassabis and Maguire 2009;
Humphries and Prescott 2010; Karaman and Frazzoli 2011;
Buzsaki and Moser 2013; Pfeiffer and Foster 2013). This
paper offers both a normative and process theory for planning
and navigating in novel environments—using simulations of
subjects performing amaze task.Our objectivewas not tofind
an optimal solution to the problem at hand, rather to develop a
model of how the problem could be solved in a neurobiologi-
cally plausible fashion. In otherwords,wewanted to establish
a modelling framework within which we can compare dif-
ferent models in terms of their ability to explain empirical
responses, i.e. reaction times, saccadic eye movements and
neurophysiological responses. To accomplish this, we focus

Communicated by J. Leo van Hemmen.

B Karl J. Friston
k.friston@ucl.ac.uk

1 Wellcome Trust Centre for Neuroimaging, Institute of
Neurology, University College London (UCL),
12 Queen Square, London WC1N 3BG, UK

on a minimal model of nontrivial planning that involves
navigating a maze from a start location to a target loca-
tion. Crucially, we consider this problem under uncertainty
about the maze—thereby requiring the subject to explore the
maze (visually) and then use this information to navigate to
the target or goal. In what follows, we describe an active
inference scheme based on Markov decision processes that
accomplishes this task. This paper restricts itself to describ-
ing the scheme and generative model—and to illustrating the
model predictions, using simulated behavioural and electro-
physiological responses. Subsequentworkwill use themodel
described in this paper to characterise empirical responses
and compare different models of behaviour along the lines
described in Schwartenbeck and Friston (2016).

The contribution of thiswork is not somuch the solution to
themaze problem but the sorts of solutions that emerge under
Bayes optimality principles (i.e. active inference) when plau-
sible constraints are applied: see also Solway and Botvinick
(2015). These constraints range from general principles to
specific constraints that must be respected by real agents or
sentient creatures. For example, at a general level, we sup-
pose that all perception (i.e. state estimation) and consequent
behaviour conforms to approximate Bayesian inference—
as opposed to exact Bayesian inference. In other words,
by using a variational (free energy) bound on model evi-
dence, we implicitly assume a form of bounded rationality.
At a more specific level, realistic constraints on inference
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arise from how the environment is sampled and evidence is
accumulated. For example, we will use synthetic subjects
that have a limited working memory that can only entertain
short-term (finite horizon) policies. Furthermore, we will use
agents who have a rather myopic sampling of the environ-
ment, obliging them to forage for information to build a clear
picture of the problemwithwhich they are contending. These
constraints, particularly the limited horizon of prospective
planning, lead to, or mandate, a simple form of hierarchi-
cal planning. This basically involves identifying proximal
subgoals—within reach of a finite horizon policy—that nec-
essarily lead to distal goals in the long term; c.f., Sutton et al.
(1999).

This paper comprises three sections. The first section
reviews active inference and the form of the generative mod-
els necessary to specify normative (uncertainty resolving)
behaviour. It deals briefly with the underlying process the-
ory, in terms of evoked electrophysiological responses and
the associative plasticity of neuronal connections. The sec-
ond section describes a particular generative model apt for
solving the maze problem. This problem can be regarded
as a metaphor for any sequence of constrained state tran-
sitions that have to be selected under uncertainty about the
constraints. The final section provides some illustrative sim-
ulations to show the sorts of in silico experiments that can
be performed with these schemes. This section concludes by
considering how trajectories or paths through (state) spaces
might be encoded in the brain. In particular, we consider
the notion of ‘place cells’ and ask whether place cell-like
activity may be a subset of more generic ‘paths cells’ that
report ‘where I have come’ from, as opposed to ‘where I
am’. We conclude with a discussion of how the active infer-
ence scheme described in this paper relates to—and inherits
from—previous work in reinforcement learning and theoret-
ical neurobiology.

2 Active inference and resolving uncertainty

Over the past years, we have described active inference
for Markov decision processes in a wide range of settings.
These cover simple (two-step) choice tasks to complicated
hierarchical inference, for example, in reading sentences
(Friston et al. 2015; Mirza et al. 2016). The underlying prin-
ciples of active inference do not change. The only thing that
changes is the generative model that specifies the task or
scenario at hand. What follows is a formulation of planning
and navigation using the same scheme used previously to
explain other perceptual, behavioural and cognitive phenom-
ena.

The specific aspect of the current application rests upon
how prior beliefs are specified. By showing that planning
and navigation can be modelled with a generic (active infer-

ence) scheme, we hoped to show (i) that many aspects
of planning transcend the particular problem of spatial
navigation and (ii) the solutions that emerge speak to—
and contextualise—previous formulations: e.g. Sun et al.
(2011a); Solway et al. (2014); Stachenfeld et al. (2014);
Fonollosa et al. (2015); Maisto et al. (2015); Donnarumma
et al. (2016); Gershman and Daw (2017) and Stachenfeld
et al. (2017).

Active inference refers to the minimisation of surprise—
or resolution of uncertainty—during the active sampling of
an environment. Formally, active inference is a normative
theory, in the sense that there is a single objective function,
namelyvariational free energy. Free energyprovides anupper
bound on surprise (the improbability of some sensory sam-
ples), such that minimising free energy implicitly minimises
surprise. An alternative perspective on this optimisation fol-
lows from the fact that surprise is negative model evidence.
In other words, active inference implies some form of self-
evidencing (Hohwy 2016), in the sense that inference and
subsequent behaviour increase the evidence for an agent’s
model of its world. Clearly, to make inferences, an agent
has to entertain beliefs. In active inference, these beliefs are
constituted by an approximate posterior density, namely a
probability distribution over the causes of sensory samples
based on sensory evidence. The causes of sensory conse-
quences are generally referred to as hidden states because
they are generally hidden from direct observation and have
to be inferred. In other words, active inference entails state
estimation. Crucially, agents have beliefs about hidden states
of the world and their behaviour. This sets active inference
apart from other schemes, in the sense that inferences about
action and behaviour become an integral part of the gen-
eral inference problem. This enables state estimation and
planning as inference (Attias 2003; Botvinick and Toussaint
2012) to be subsumed gracefully under a single objective,
namely self-evidencing.

Practically, actions are selected from posterior beliefs
about sequences of actions or policies. Each action solic-
its a new observation from the world—leading to the next
cycle of active inference or perception. There are two key
aspects that fall out of this formulation. First, entertain-
ing beliefs about sequences of action necessarily requires
an agent to have beliefs about (i.e. approximate posteriors
over) hidden states in the future (and past). This necessarily
endows agents with a short-term memory of the proximal
future (and past) that can be used for prediction (and post-
diction). The second key aspect is that posterior beliefs
about policies rest on prior beliefs about future outcomes.
These prior beliefs can be regarded as preferred outcomes
or goals in a reinforcement learning or utilitarian (eco-
nomics) setting. In short, the heavy lifting in active inference
rests upon how prior beliefs about behaviour or policies are
formed.
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3 Prior preferences, novelty and salience

In active inference, prior beliefs about policies are pro-
portional to (negative) expected free energy. This follows
naturally from the imperative tominimise surprise as follows:
expected surprise is uncertainty (mathematically speaking,
expected self-information is entropy). It therefore follows
that surprise minimising (self-evidencing) policies must
minimise expected surprise or, in bounded or approximate
inference, they must minimise expected free energy. This is
formally equivalent to choosing policies that resolve uncer-
tainty (see “Appendix 1” for a more technical description).
When expected free energy is unpacked, several familiar
terms emerge (Friston et al. 2015). The expected free energy
for a particular policy at a particular time in the future can
be expressed as (see Table 1 and “Appendix 2” for a list of
variables and technical description):

G(π, τ ) = EQ̃[ln Q(A) − ln Q(A|sτ , oτ , π)]
︸ ︷︷ ︸

(negative) intrinsic or epistemic value−Novelty

+ EQ̃[ln Q(sτ |π) − ln Q(sτ |oτ , π)]
︸ ︷︷ ︸

(negative) intrinsic or epistemic value−Salience

− EQ̃[ln P(oτ )]
︸ ︷︷ ︸

extrinsic or expected value

Here, Q̃ = P(oτ |sτ )Q(sτ |π)Q(A) is the posterior (pre-
dictive) distribution over the probabilistic mapping A from
hidden states sτ to outcomes oτ under a particular policy π

at time τ in the future.
Intuitively, expected free energy can be divided into

epistemic, information-seeking, and pragmatic, goal-seeking
parts, corresponding to intrinsic and extrinsic value, respec-
tively. Extrinsic (pragmatic) value is simply the expected
value of a policy defined in terms of outcomes that are pre-
ferred a priori, where the equivalent cost corresponds to prior
surprise. This component is closely related to the path inte-
gral formulations of the sort introduced by Todorov (2006);
van den Broek et al. (2010); Braun et al. (2011) and Kap-
pen et al. (2012). The more interesting parts are uncertainty
resolving or epistemic in nature. These correspond to the first
two (novelty and salience) terms above. These quantities are
variously referred to as relative entropy, mutual information,
information gain, Bayesian surprise or value of information
expected under a particular policy (Barlow 1961; Howard
1966; Optican and Richmond 1987; Linsker 1990; Itti and
Baldi 2009). In short, they score the reduction in uncertainty
that would accrue under a particular policy for sampling the
world. In other words, they score the epistemic value of the
evidence that would be accumulated by pursuing a particular
sequence of actions.

Crucially, this uncertainty reduction comes in two
flavours. There is an epistemic value associated with beliefs
about the current state of the world—and how they unfold
in the future. This epistemic value is generally referred to as
the salience of sampling the world in a particular way: c.f.,
Berridge andRobinson (1998); Itti andBaldi (2009) andFris-
ton et al. (2015). The equivalent salience for the parameters of
a model (denoted by A) reflects the resolution of uncertainty
about probabilistic contingencies that endows the world with
causal structure. In other words, the epistemic value of a
policy—that rests on uncertainty about model parameters (as
opposed to hidden states)—encodes the novelty of a policy.
Put simply, a novel situation becomes attractive because it
affords the opportunity to resolve uncertainty about what
would happen ‘if I did that’. In what follows, we will call
upon novelty (the epistemic value of reducing uncertainty
about model parameters) and extrinsic value (the degree to
which predicted outcomes conform to my preferences) in
simulating goal-directed exploration of a novel maze.

Note that active inference is not simply in the game of
inferring states of the world by maximising model evidence
or marginal likelihood. Active inference goes beyond this in
a fundamental way. It also infers the policies that should be
pursued in terms of maximising the evidence expected under
different policies. Formally, this entails the evaluation of a
path integral of expected free energy that entails epistemic,
uncertainty reducing, information-seeking behaviour. This
equips active inference with a deterministic and optimal way
to explore unknown ‘spaces’. This can play out at the level
of uncertainty about hidden states (cast in terms of salience),
model parameters (cast in terms of novelty) andmodels them-
selves (cast in terms ofmodel selection or structure learning).
An illustration of all three levels operating together can be
found in Friston et al. (2017b).

In summary, active inference casts perception as optimis-
ing beliefs about the causes of sensory samples that minimise
surprise (i.e. free energy) and action in terms of policies that
minimise uncertainty (i.e. expected free energy). Expected
free energy contains the right mixture of novelty, salience
and prior preferences that constitute (Bayes) optimal beliefs
about policies, which specify action (see Table 2 for a sum-
mary of the implicit resolution of surprise and uncertainty).
Clearly, to evaluate posterior beliefs it is necessary to have
a model of how states and parameters conspire to generate
outcomes. So what does these models look like?

4 Generative models andMarkov decision
processes

Figure 1 provides a definition of a generic model that can be
applied to most (discrete state space) scenarios. The partic-
ular form of the generative model used in this paper will be
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Table 1 Glossary of variables and expressions
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Table 2 Sources of uncertainty and the behaviours entailed by its minimisation, i.e. resolution of uncertainty through approximate Bayesian
inference

described in greater detail in the next section. In brief, a gen-
erative model is necessary to optimise beliefs about hidden
states of the world and subsequent behaviour. This model
is a probabilistic specification of how sampled outcomes are
generated. For the sorts ofMarkov decision problems usually
considered, it is sufficient to distinguish among four sorts of
hidden or latent causes. These are hidden states generating
outcomes, where transitions among hidden states are spec-
ified by a policy. This means there are two sorts of hidden
states, namely states of the world and the policies currently
being pursued. As described above, beliefs over policies are
proportional to the expected free energy or uncertainty under
each policy. The constant of proportionality constitutes the
third unknown, namely the precision of beliefs about poli-
cies. This plays an interesting role in encoding the confidence
in beliefs about the policies in play. It plays the same role
as a softmax or inverse temperature parameter in classi-
cal softmax response rules and related formulations (Daw
et al. 2011). Finally, the fourth unknown quantities are the
parameters of the model. These correspond to matrices that
specify the likelihood and (empirical) priors of the model.
The first (likelihood: A) matrices encode the probability of
outcomes under each hidden state, while the probability tran-
sition (empirical prior: B) matrices encode the probability of
a subsequent state, given the current state. Crucially, there is
a separate transition matrix for each allowable action, where
a sequence of transitions is determined by the sequence
of actions or policy. Prior beliefs about allowable policies
depend on (precision weighted) expected free energy, which
depend upon prior preferences over outcomes (prior cost: C),
for each outcomemodality over time. Finally, there are priors
over the initial state (initial priors: D). When the parameters
are unknown, they are usually modelled as Dirichlet distri-
butions over the corresponding (likelihood and transition)
probabilities. In other words, the underlying concentration
parameters are essentially the frequency or number of times a

particular outcome or state is generated from the hidden state
in question. In what follows, we will only consider uncer-
tainty about the likelihood. In other words, we will assume
the agent knows the immediate consequences of action.

5 Belief propagation in the brain

Equipped with this generative model, we can now derive
update equations that minimise free energy. If this is done
with careful respect for neurobiological constraints on the
implicit Bayesian belief updating, one can derive a relatively
straightforward process theory (Friston et al. 2015, 2016).
The ensuing Bayesian belief updates are summarised in
Fig. 2.A detailed description of the belief update equations—
and how they might be implemented in the brain—can be
found in Friston et al. (2017a). A complementary treatment
that focuses on learning model parameters can be found in
Friston et al. (2016). The contribution of this paper is the
form of the prior beliefs that underwrite policy selection. We
therefore focus on these priors and how they inform policy
selection through expected free energy. “Appendix 2” derives
the form of the subsequent belief updates (shown in Fig. 2)
for interested readers.

In brief, a belief propagation scheme is used to update
the expected hidden states using a gradient descent on free
energy. Crucially, posterior beliefs are over states from the
beginning to the end of a trial or sequence of actions. This
means that belief updating involves expectations about the
past and future, enabling both prediction and postdiction
separately under each policy. The second equation in Fig. 2
(perception and state estimation) is an ordinary differential
equation describing how expected hidden states are updated.
The form of this equation—that falls out naturally from the
form of the generativemodel—has a nice biological interpre-
tation: this is because the updating involves the rate of change
of a log expectation that is a sigmoid (softmax) function of
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Fig. 1 Generative model and (approximate) posterior. A generative
model specifies the joint probability of outcomes or consequences and
their (latent or hidden) causes. Usually, the model is expressed in terms
of a likelihood (the probability of consequences given causes) and priors
over causes. When a prior depends upon a random variable, it is called
an empirical prior. Here, the likelihood is specified bymatricesAwhose
components are the probability of an outcome under each hidden state.
The empirical priors in this instance pertain to transitions among hidden
states B that depend upon action, where actions are determined prob-
abilistically in terms of policies (sequences of actions denoted by π ).
The key aspect of this generative model is that policies are more proba-
ble a priori if they minimise the (path integral of) expected free energy
G. Bayesian model inversion refers to the inverse mapping from conse-

quences to causes, i.e. estimating the hidden states and other variables
that cause outcomes. In variational Bayesian inversion, one has to spec-
ify the form of an approximate posterior distribution, which is provided
in the lower panel. This particular form uses a mean field approxi-
mation, in which posterior beliefs are approximated by the product
of marginal distributions over unknown quantities. Here, a mean field
approximation is applied both posterior beliefs at different points in
time, policies, parameters and precision. Cat and Dir referred to cate-
gorical and Dirichlet distributions, respectively. See the main text and
Table 2 for a detailed explanation of the variables. The insert shows a
graphical representation of the dependencies implied by the equations
on the right

log expectations (plus a decay term). This means that we can
associate log expectations with depolarisation and implicit
message passingwith neuronal firing rates (that are a sigmoid
activation function of depolarisation). In turn, this allows one
to simulate electrophysiological responses in terms of fluc-
tuations in log expectations.

These fluctuations occur at a number of timescales. At
the fastest timescale they correspond to optimisation as the
updates converge on a free energy minimum. This occurs
following every new observation that, we assume, is sam-
pled every 256 ms or so. These expectations are reset after
a sequence of observations that we will refer to as a trial.
In other words, a trial comprises a sequence of epochs in
which an action is taken and a new outcome is observed.
The length of a trial corresponds to the depth or horizon
of the policies entertained by the agent. In what follows,
we will use policies of two actions (that correspond to eye

movements) and will call a two-action sequence a trial or
subpath.

Expectations about policies rest upon the posterior pre-
cision and expected free energy. Expected free energy in
turn depends upon the expected states under the policy in
question. This is a softmax function of expected free energy
with a precision or inverse temperature parameter producing
a conventional softmax response rule. Note that this form
of probabilistic response emerges naturally fromminimising
variational free energy. The precision updates are effectively
driven by the difference between the expected free energy
over policies, relative to the equivalent expected free energy
prior to observing outcomes. This is closely related to reward
prediction error formulations and speaks to the similarity
between precision updates and dopaminergic responses that
wewill appeal to later (Schultz et al. 2008; Friston et al. 2014;
FitzGerald et al. 2015). Finally, the updates for the likeli-
hood (concentration) parameters correspond to associative
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Fig. 2 Schematic overview of belief updating: the left panel lists the
belief updates mediating perception, policy selection, precision and
learning, while the left panel assigns the updates to various brain
areas. This attribution is purely schematic and serves to illustrate an
implicit functional anatomy. Here, we have assigned observed out-
comes to representations in the pontine–geniculate occipital system,
with visual (what) modalities entering an extrastriate stream and pro-
prioceptive (where) modalities originating from the lateral geniculate
nucleus (LGN) via the superficial layers of the superior colliculus. Hid-
den states encoding location have been associatedwith the hippocampal
formation and association (parietal) cortex. The evaluation of policies,
in terms of their (expected) free energy, has been placed in the caudate.

Expectations about policies—assigned to the putamen—are used to cre-
ate Bayesian model averages of future outcomes (e.g. in the frontal or
parietal cortex). In addition, expected policies specify the most likely
action (e.g. via the deep layers of the superior colliculus). Finally, the
precision of beliefs about—confidence in—policies rests on updates
to expected precision that have been assigned to the central tegmental
area or substantia nigra (VTA/SN). The arrows denote message passing
among the sufficient statistics of each marginal as might be mediated
by extrinsic connections in the brain. The red arrow indicates activity-
dependent plasticity. Please see appendix and Table 2 for an explanation
of the equations and variables

plasticity with trace and decay terms as discussed elsewhere
(FitzGerald et al. 2015; Friston et al. 2016).

In short, we have a set of simple update rules for the four
unknown quantities (namely, hidden states, policies, preci-
sion and parameters) that provide a process theory for state
estimation, policy selection, confidence and learning, respec-
tively. Note that these equations are completely generic. In
other words, they are exactly the same equations used in
all previous illustrations of active inference under Markov
decision process models: e.g. Friston et al. (2014, 2015,
2016), FitzGerald et al. (2015) and Mirza et al. (2016). In
the next section, we will see examples of this updating cast
in terms of simulated neuronal and behavioural responses.
The key point of these simulations is to show how prag-
matic (goal-seeking) behaviour is contextualised by—and
contextualises—epistemic (information-seeking) behaviour.

The first simulations illustrate epistemic behaviour (in the
absence of preferences), while the second set of simulations
show the effect of putting goals in play (that necessarily
delimit exploratory behaviour). However, before simulating
behaviour and its neuronal correlates, it is necessary to spec-
ify the precise form of the generative model.

6 A generative model for planning

This section describes the particular form of the genera-
tive model—in terms of its parameters, hidden states and
policies—that will be used in the remainder of this paper.
This model captures the bare essentials of a maze foraging
task under novelty or uncertainty. In brief, the (synthetic)
subject sees a maze specified on an 8 × 8 grid. The sub-
ject initially fixates on a starting location and then has to
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Fig. 3 Explorative, epistemic behaviour. Left panel: This figure reports
the results of epistemic exploration for 32 (twomove) trials (e.g. 64 sac-
cadic eye movements). The maze shown in terms of closed (black) and
open (white) locations. The magenta dots and lines correspond to the
chosen path, while the large red dot denotes the final location. The agent
starts (in this maze) at the entrance on the lower left. The key thing to
observe in these results is that the trajectory very seldom repeats or
crosses itself. This affords a very efficient search of state space, resolv-
ing ignorance about the consequences of occupying a particular location
(in terms of the first—what—outcome; black vs. white). Right panel:

this figure reports the likelihood of observing an open state (white),
from each location, according to the concentration parameters of the
likelihood matrix that have been accumulated during exploration (for
the first—what—outcomemodality). At the end of search, the posterior
expectations change from 50% (grey) to high or low (white or black) in,
and only in, those locations that have been visited. The underlying con-
centration parameters effectively remember what has been learned or
accumulated during exploration—and can be used for planning, given
a particular task set (as illustrated in Fig. 5)

navigate to a target location deep within the maze. Notice
that we are simulating a maze that can be interrogated with
a visual search—as opposed to simulating a physical maze
of the sort that a rat would explore. This is because we
hope to use this model to explain empirical responses from
(human) subjects performing the task. Having said this, we
imposed constraints on the sampling of themaze so that itwas
isomorphic with a (myopic) rat exploring a physical maze.
This was implemented by restricting movements or actions
to single steps in four directions (or remaining at the same
location). Furthermore, the sensory (visual) outcomes were
limited: the subject could only see whether the current loca-
tion was accessible (open—white) or not or (closed—black).
These constraints meant that—in the absence of any knowl-
edge about the maze that has been accrued through previous
learning or experience—the subject had to forage for local
information to build an internal model of the maze structure,
using short sequences of saccadic eye movements. Crucially,
the agent could only entertain shallow policies of twomoves.
In other words, they could only consider (25) policies corre-
sponding to all combinations of five actions (up, down, left,
right or stay). This is an important constraint that precluded
an exhaustive (deep) search to identify the best policy for
reaching the goal. In effect, this enforces a chunking of the
problem into subgoals entailed by prior beliefs about out-
comes or preferences.

In addition to visual input, we also equipped agents with
positional information, namely the current location that they
occupied. This meant that there were two outcome modali-
ties: what (open vs. closed) and where (among 64 locations).
The generativemodel of these outcomeswas very simple: the
hidden states corresponded to the location (with 64 possibil-
ities). The likelihood mapping from location to outcomes
comprised two A matrices, one for each outcome modal-
ity. The first simply specified the probability of observing
open versus closed at each location, while the second was
an identity mapping returning the veridical location for each
hidden state. The (empirical) prior transition probabilities
were encoded in five B the matrices. Again, these were very
simple and moved the hidden (where) states to the appro-
priate neighbouring location, unless the action was stay or
transgressed the boundary of the maze—in which case the
location did not change.

This generative model can be used in two modes. We can
either assume that the subject has had a lot of experience with
a particular maze and has accrued sufficient evidence to learn
the mapping between location and outcome. In other words,
knowledge about themaze is encoded in terms of what would
be seen at each location. The subject can use this informa-
tion to plan or navigate through the maze from the starting
location to a target as described below—providing we instil
the necessary prior beliefs. Alternatively, we could assume
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that the maze is novel. In this context, the (concentration)
parameters of the likelihood mapping to what outcomes will
be uniformly very small for all locations (we used 1/8). In
this instance, the subject has to first learn the maze before
she can perform the task.

Figure 3 shows the learning of the maze over 64 eye
movements, using high values (128) of the concentration
parameters for the mapping between location and the where
modality. Learning is shown in terms of the accumulated con-
centration parameters for thewhatmodality that are garnered
by epistemic foraging. The key aspect of this behaviour is that
the movements are driven by novelty, successively exploring
unexplored regimes of the maze until all epistemic value or
information gain has been consumed. In other words, once
a location has been visited it is no longer novel or attrac-
tive, thereby rendering the probability that it will be sampled
again less likely: c.f., inhibition of return (Wang and Klein
2010). This epistemic foraging is driven entirely by the nov-
elty afforded by ignorance about the first (what) modality.
In other words, noise or stochastic fluctuations are unnec-
essary for generating explorative behaviour. The reason that
exploration was driven entirely by novelty is that there is
no uncertainty about hidden states (given the precise and
ambiguous outcomes in the where modality—and the fact
that there were no prior preferences to constitute place pref-
erences). In short, the selection of policies with epistemic
affordance provides a sufficient and principled account of
exploratory behaviour, in which redundant exploration (of
familiar regimes) is automatically precluded. This follows
because familiar outcomes are no longer novel, i.e. afford
epistemic value. Notice that this behaviour does not, in bio-
logical terms, require the agent to ‘remember’ where it has
been. The ‘memory’ is encoded by short-term plasticity of
connection strengths in the likelihood mapping as evidence
is accumulated. In other words, there is a form of cumulative
place coding within (presumably) synaptic connections.

Figure 4 shows the simulated electrophysiological res-
ponses during the exploration above. These predicted res-
ponses are based upon the optimisation of expected hidden
states and precision, described by the differential equations
thatmediate belief propagation (see Fig. 2). It is these sorts of
responses that are underwritten by the process theory onoffer.
The results in Fig. 4 serve to illustrate the potential for gen-
erating predictions of behavioural, electrophysiological and
dopaminergic responses that could be used in empirical stud-
ies. See Schwartenbeck et al. (2015) for an example of using
these sorts of simulated responses in computational fMRI.

The upper panel shows the simulated firing rates of units
encoding the expected location over the three epochs that
surround the two eye movements that constitute succes-
sive trials. The fluctuations in transmembrane potential that
drive these firing rates can be used to simulate induced
responses (second panel) or evoked responses (third panel).

The induced or time–frequency responses over all units
(second panel) are interesting from the point of view of
theta–gamma coupling in the hippocampus during explo-
ration (Dragoi and Buzsaki 2006; Colgin et al. 2009; Lisman
and Redish 2009; Jezek et al. 2011; Buzsaki and Moser
2013). This coupling arises naturally as the fast (gamma)
optimisation of posterior expectations is entrained by a slow
(theta) sampling of the environment (Friston and Buzsaki
2016). Finally, the lower panel shows simulated dopamin-
ergic responses in terms of the rate of change of precision
(plus an offset). Note how posterior precision fluctuatesmore
markedly as the maze becomes more familiar and the subject
becomesmore confident aboutwhat she is doing.Wewill take
a closer look at predicted electrophysiological responses in
the last section. First, we consider how goal-seeking emerges
when we add prior preferences.

7 Prior preferences, constraints and goals

To simulate navigation per se, we need to consider the
prior beliefs about outcomes that engender goal-directed
behaviour. In this paper, we will adopt a particular scheme,
noting that many other plausible priors (i.e. heuristics) could
have been used. We embrace this plurality because, ulti-
mately, we want to adjudicate among different priors when
trying to explain the empirical responses of real subjects.
However, here, we will focus on one straightforward but effi-
cient formulation.

The prior preferences that lead to purposeful navigation—
i.e. task set—can be specified purely in terms of prior
preferences over location outcome.These reflect the subject’s
beliefs about what are plausible and implausible outcomes
and the constraints under which she operates. To accom-
modate these constraints, we used the following heuristic:
namely, that a subject believes that she will occupy locations
that are themost accessible from the target. If these prior pref-
erences are updated after each trial, the subjectwill inevitably
end up at the target location. To evaluate the accessibility of
each location from the target location, the agent can simply
evaluate the probability it will be occupied under allowable
state transitions from the target location. Formally, this can
be described as follows:

C1
τ = − ln P(o1τ )

= 16 · [Ts1 < e−3] − lnTsT

The first term assigns a high cost to any location that is occu-
pied with a small probability, when starting from the initial
location. The second term corresponds to the (negative) log
probability a given state is occupied, when starting from the
target location (encoded by sT ). Prior beliefs about allow-
able transitions T are based upon posterior beliefs about the
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Fig. 4 Simulated electrophysiological responses during exploration:
this figure reports the simulated electrophysiological responses dur-
ing the epistemic search of the previous figure. Upper panel: this panel
shows the activity (firing rate) of units encoding the expected location—
over 32 trials—in image (raster) format. There are 192 = 64 × 3 units
for each of the 64 locations over the three epochs between two saccades
that constitute a trial. These responses are organised such that the upper
rows encode the probability of alternative states in the first epoch, with
subsequent epochs in lower rows. The simulated local field potentials
for these units (i.e. log state prediction error) are shown in the middle
panels. Second panel: this panel shows the response of the first hid-
den state unit (white line) after filtering at 4 Hz, superimposed upon

a time–frequency decomposition of the local field potential (averaged
over all units). The key observation here is that depolarisation in the 4
Hz range coincides with induced responses, including gamma activity.
Third panel: these are the simulated local field potentials (i.e. depo-
larisation) for all (192) hidden state units (coloured lines). Note how
visiting different locations evokes responses in distinct units of vary-
ing magnitude. Alternating trials (of two movements) are highlighted
with grey bars. Lower panel: this panel illustrates simulated dopamine
responses in terms of a mixture of precision and its rate of change (see
Fig. 2). There phasic fluctuations reflect changes in precision or con-
fidence based upon the mismatch between the free energy before and
after observing outcomes (see Fig. 2) (colour figure online)
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structure of the maze, namely whether any location is open
or closed.

T = exp(T )

Tij =

⎧

⎪
⎨

⎪
⎩

1 − ∑

i
Tij i = j

Ai ∃u : Bu
ij > 0

0 otherwise

The probability transitionmatrixT plays the role of aGreen’s
function based upon the graph Laplacian T . Intuitively, T
encodes the probability that any statewill be occupied follow-
ing diffusion from any other state during one time step—and
the graph Laplacian encodes allowable paths based upon
the posterior beliefs about the maze. Specifically, the graph
Laplacian comprises the posterior probability that a state is
open and can be reached by an action from another state.

This particular heuristic was chosen to formalise the
intuition that we decompose distal goals into intermediate
subgoals and, in particular, attainable subgoals under an
admixture of constraints. In other words, we tend to select
those states that can be reached that can also be reached from
the target state: see discussion and Dijkstra (1959). This sug-
gests we contextualise our subgoals using knowledge about
the ultimate goal so that the (forward and backward) passes
through some problem space ‘meet in the middle’. Note the
formal similarity between backwards induction and optimi-
sation of state action policies under the Bellman optimality
principle (1952) and the diffusion heuristic above. However,
this heuristic goes a bit further and augments the implicit
(extrinsic) value function of location with a reachability
cost. This acknowledges the fact that, in active inference,
agents are already prospective in their policy selection, even
if the time horizon of these policies is not sufficient to reach
the ultimate goal. Technically, active inference for Markov
decision processes entails sequential policy optimisation—as
opposed to optimising state action policies. Having said this,
state action policies can be learned as habits under active
inference, provided they are fit for purpose (Friston et al.
2016). Here, we effectively use a simple form of backwards
induction to contextualise sequential policies with a limited
horizon.

As noted above, there are probably many schemes or
heuristics that one could use. The diffusion heuristic appears
to be remarkably efficient and is sufficient for our purposes,
namely to show how prior preferences about (where) out-
comes can subsume all the prior beliefs necessary for instan-
tiating a task set necessary for navigation. Figure 5 shows
the results of a typical navigation when the maze is famil-
iar; that is, it is known a priori. The middle panels show the
prior preferences (extrinsic value) over locations during nav-
igation. Note how the locations with greatest extrinsic value

effectively lead the agent towards the target location, thereby
playing the role of subgoals. This simulation used concen-
tration parameters—encoding the structure of the maze—of
128. This corresponds to 128 exposures to each location. One
might now ask how navigation depends upon experience.

The right panel of Fig. 5 shows navigation performance
(in terms of the time taken to secure the goal and transgres-
sions into closed locations) as a function of familiarity with
the maze. Familiarity was simulated using the accumulated
concentration parameters from the exploratory simulations
above. In other words, we effectively expose the subject
to the maze for increasing durations of time (2–16 s of
simulated—and roughly computer—time). The degree to
which familiarity supported task performance was then
assessed by recording the path taken to the target when start-
ing from the initial location. These results show that the
subject was able to navigate to the goal, without making any
mistakes, after about 16 s of exploration. (No mistakes were
made after 16 s in this example.) Note that the time taken to
reach the target is paradoxically the shortest when the maze
is unfamiliar (i.e. on the first exposure), because the subject
took shortcuts along illegal paths. In the final section, we
ask what would happen when behaviour is driven by both
epistemic and pragmatic value at the same time.

8 Goal-directed exploration

Finally, we turn to the integration of intrinsic (epistemic)
and extrinsic (pragmatic) value by equipping the agent with
goal-directed prior beliefs (i.e. task set) during the epis-
temic foraging. The main purpose of this simulation is to
show active inference dissolves the exploration–exploitation
dilemma by absorbing extrinsic and intrinsic imperatives into
a single objective function (i.e. expected free energy).Heuris-
tically, the ensuing behaviour is initially driven by epistemic
imperatives until sufficient uncertainty has been resolved to
realise the pragmatic or extrinsic imperatives. This is pre-
cisely what we see in the current set-up.

Figure 6 shows the results of foraging for information
under the goal-directed prior beliefs above. Here, we see that
the exploration is now (goal) directed. In other words, as
soon as there is sufficient information about the structure of
the maze, it is used to constrain epistemic foraging, until the
target is reached. In these simulations, the subject navigated
to the target location during four successive searches that
were limited to eight trials or 16 eye movements. It can be
seen that perfect (shortest path) performance is attained by
the fourth attempt. Prior to this, there are excursions into
closed locations. Interestingly, when the maze is still novel,
curiosity gets the better of the subject and the target location
is largely ignored in favour of resolving uncertainty about
nearby locations.
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Fig. 5 Planning and navigation: this figure shows the results of navi-
gating to a target under a task set (i.e. prior preferences), after the maze
has been learned (with concentration parameters of 128). These prior
preferences render the closed (black) locations surprising and they are
therefore avoided. Furthermore, the agent believes that it will move to
locations that are successively closer to the target—as encoded by sub-
goals. Left panels: the upper panel shows the chosen trajectory that takes
the shortest path to the target, using the same format as Fig. 3. The lower
panel shows the final location and prior preferences in terms of prior
probabilities. At this point, the start and end locations are identical—and
themost attractive location is the target itself.As earlier points in naviga-
tion, themost attractive point is within the horizon of allowable policies.
Middle panels: these show the prior preferences over eight successive
trials (16 eye movements), using the same format as above. The pre-

ferred locations play the role of context sensitive subgoals, in the sense
that subgoals lie within the horizon of the (short-term) policies enter-
tained by the agent—and effectively act as a ‘carrot’ leading the agent
to the target location. Right panel: these report the planning or goal-
directed performance based upon partially observed mazes, using the
simulations reported in Fig. 3. In other words, we assessed performance
in terms of the number of moves before the target is acquired (latency)
and the number of closed regions or disallowed locations visited en
route (mistakes). These performance metrics were assessed during the
accumulation of concentration parameters. This corresponds to the sort
of performance one would expect to see when a subject was exposed to
the maze for increasing durations (here, from one to 16 s of simulated
time), before being asked to return to the start location and navigate to
a target that is subsequently revealed

The right-hand panels of Fig. 6 show the correspond-
ing simulated physiological responses, using the format of
Fig. 4. In this example, we see systematic and progressive
changes in (simulated) electrophysiological and dopamin-

ergic responses. The latter are particularly interesting and
reflect the fact that as the subject engages with novel oppor-
tunities, she resolves uncertainty and therefore suppresses
fluctuations in precision or confidence. To our knowledge,

123



Biological Cybernetics

Fig. 6 Goal-directed exploration: this figure illustrates behavioural,
mnemonic and electrophysiological responses over four searches, each
comprising 8 trials (or 16 eye movements). Crucially, the agent started
with a novelmaze butwas equippedwith a task set in terms of prior pref-
erences leading to the goal-directed navigation of the previous figure.
Each rowof panels corresponds to a successive search. Left panels: these
report the path chosen (left) and posterior expectations of the likelihood
mapping (right) as evidence is accumulated. However, here, the epis-
temic search is constrained by prior preferences that attract the target.
This attraction is not complete and there are examples where epistemic
value (i.e. novelty of a nearby location) overwhelms the pragmatic value
of the target location—and the subject gives way to curiosity. However,
having said that the subject never wanders far from the shortest path

to the target, which she acquires optimally after the fourth attempt.
Right panels: these show the corresponding evoked responses or simu-
lated depolarisation in state units (upper panels) and the corresponding
changes in expected precision that simulate dopaminergic responses
(lower panels). The interesting observation here is the progressive atten-
uation of evoked responses in the state units as the subject becomesmore
familiarwith themaze. Interestingly, simulated dopaminergic responses
suggest that the largest phasic increases in confidence (i.e. a greater than
expected value) are seen at intermediate points of familiarity, while the
subject is learning the constraints on her goal-directed behaviour. For
example, there are only phasic decreases in the first search, while phasic
increases are limited to subsequent searches
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this has not been addressed empirically and represents a pre-
diction of the current simulations. Namely, one would expect
to see more phasic dopamine responses (or fMRI responses
in the target regions of the dopaminergic projections) during
the initial exploration of a maze, relative to later periods that
may be more exploitative in nature. This is a somewhat para-
doxical prediction that, in principle, could be confirmed with
human subjects and fMRI: c.f., Bunzeck and Duzel (2006),
D’Ardenne et al. (2008) and Schwartenbeck et al. (2015).

9 Place cells or path cells or both?

As noted in Introduction, the purpose of this work was to
formulate spatial navigation in terms of active inference,
using the same scheme that has been used to model several
other decision-making, cognitive and perceptual paradigms.
This scheme has a fairly well-established process theory
that allows one to make specific predictions about electro-
physiological and psychophysical responses. There aremany
avenues that one could pursue in light of the simulations
described in this paper. For example, the encoding of hidden
states in terms of location leads naturally to a formulation in
terms of place cells and the attendant spatiotemporal encod-
ing of trajectories through space. In this setting, one could
associate the encoding of policies with direction selective
neuronal responses (Taube 2007)—and consider how sim-
ulated place cell activity (expectations about hidden states)
depends upon direction cells (i.e. expectations about poli-
cies) (Lisman and Redish 2009). These predictions would
speak against a simple (orthogonal) encoding of place and
direction and would predict particular forms of joint peris-
timulus time histogram responses—that reflect the message
passing between representations of state (i.e. place) and pol-
icy (i.e. directed trajectory). We will pursue this elsewhere
and focus here on an even simpler insight afforded by the
above simulations.

In virtue of inferring the best policy, in terms of its
consequences for latent states of the world, there is a nec-
essary encoding of future states under allowable policies.
This brings something quite interesting to the table, namely
the encoding trajectories or paths through state space. In
particular, it means that certain units will encode the loca-
tion at the start of any sequence of movements—and will
continue doing so until a subgoal is attained. Conversely,
units that encode future states will only respond when
there is clear evidence that the subgoal has been reached.
This dissociation—between the predicted firing patterns of
units encoding hidden states at the beginning and ends of
subpaths—means that there must be a continuum of place
specificity that could present itself as place cell-like activity
of greater or lesser precision. In other words, if one sub-
scribes to the neuronal process theories above, then place

cell responses can be regarded as the limiting case of a more
general encoding of local paths (Knierim et al. 2014; Friston
and Buzsaki 2016).

This is illustrated in Fig. 7, which plots the activity of
several units as a function of location in the maze (see mid-
dle panels). Crucially, cells encoding the initial location at
the beginning of each subpath maintain their firing during
the course of the path to the subgoal. Conversely, cells that
encode hidden states towards the end of each subpath have
a spatial specificity, because they are only engaged when
the location is reached. It is tempting to think of neuronal
encoding in terms of ‘path cells’ that encode where the (syn-
thetic) agent has been recently, such that a proportion of
these path cells—encoding hidden states at the end of a local
trajectory—become ‘place cells’ proper. Paralleling the role
of boundary vector cells in the hippocampal formation that
represent the distance and direction that an animal is from
an environmental boundary (Burgess et al. 2000; Hartley
et al. 2000; Solstad et al. 2008), ’path cells’ may contain
more information for reconstructing spatial trajectories than
canonical place cell activity (Guger et al. 2011). Indeed, hip-
pocampal neurons that selectively encode reward locations
in a context-invariant manner have recently been observed
(Gauthier and Tank 2017), which speaks to a characterisation
of neuronal responses in terms of both the position of a rat and
its local trajectory in temporal frames of reference that might
be anchored to subgoals (Pfeiffer and Foster 2013). Clearly,
this would be a challenging but interesting possibility that
might nuance our understanding of spatiotemporal encod-
ing, in particular, scheduling in temporal frames of reference
that transcend our normal conception of the past and future
(Eichenbaum 2014).

10 Discussion

In what follows, we consider related approaches and previ-
ous computational formulations of spatial planning. We then
briefly consider the known functional neuroanatomyengaged
by these sorts of tasks. This discussion is presented as a pre-
lude to subsequent work that will use the current model to
fit the behavioural and fMRI responses elicited by spatial
planning in humans (Kaplan et al. 2017a).

11 Relationship to previous work

Many of the assumptions entailed by the priors of the gen-
erative model in this paper are inherited from previous
work using the principles of optimal control and dynamic
(reinforcement) learning to understand navigation through
(state) spaces and implicit deep tree searches. In terms of
systems and cognitive neuroscience, reinforcement learning
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Fig. 7 Path and place cells: this figure revisits the simulation in Fig. 4
but focusing on the first 6 s of exploration. As in Fig. 4, the upper panel
shows the simulated firing of the (192) units encoding expected hid-
den states, while the lower panel shows the accompanying local field
potentials (obtained by band-pass filtering the neuronal activity in the
upper panel). The key point made in this figure is that the first 64 units
encode the location at the start of each local sequence of moves and
maintain their firing until a subgoal has been reached. Conversely, the
last 64 units encode the location at the end of the local sequence and
therefore only fire after the accumulation of evidence that a subgoal
has been reached. This leads to an asymmetry in the spatial temporal
encoding of paths. In other words, the first set of units fire during short
trajectories or paths to each subgoal, while the last set fire only when a

particular (subgoal) location has been reached. This asymmetry is high-
lighted by circles in the upper panel (for the third subpath), which shows
the first (upper) unit firing throughout the local sequence and the second
(lower) unit firing only at the end. The resulting place preferences are
illustrated in the middle panels, in terms of path cell (left panel) and
place cell (right panel) responses. Here, we have indicated when the
firing of selected units exceeds a threshold (of 0.8 Hz), as a function of
location in the maze during exploration (the dotted red line). Each unit
has been assigned a randomcolour. The key difference between path and
place cell responses is immediately evident, path cells respond during
short trajectories of paths through space, whereas place cell responses
are elicited when, and only when, the corresponding place is visited
(colour figure online)

paradigms provide a nice taxonomy within which to place
the current active inference formulation. Put simply, spa-
tial navigation, and more generally planning, presents an
intractable deep tree search into the future. There are at
least six ways in which one can avoid full tree searches
(Mehdi Keramati—personal communication). First, one can
formulate the problem in terms of habit learning. That is,
avoid planning altogether and rely upon state action policies

that are accrued in the usual way through caching the value
of actions from any given state (Sutton and Barto 1998).
Some key theoretical papers in this setting include Sutton and
Barto (1998), Daw et al. (2005) and Keramati et al. (2011).
Empirical evidence—for habits in the brain—derives from
neuroimaging and the use of normative models based upon
reinforcement learning (Daw et al. 2011; Lee and Keramati
2017). Second, one can prune or limit the depth of the tree
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search. See Huys et al. (2012) for a discussion of how a
(Pavlovian) system could sculpt choices by pruning deci-
sion trees. A nuanced version of pruning involves planning
until a certain depth and then switching to habitual value
estimation at the leaves of the search tree, i.e. plan until
habit (Keramati et al. 2016). This combines the efficiency
of habit learning, yet still retains a degree of context sensi-
tivity via planning. An alternative approach—bidirectional
planning—rests upon parallel searches of decision trees: one
search starting from the current (inferred) state and another
from the goal state (Dijkstra 1959). An alternative, known as
hierarchal decision-making, involves planning on an abstract
representation of a Markov decision process (known as the
‘option’ framework in the hierarchal reinforcement litera-
ture). This is reviewed in Botvinick et al. (2009) and enjoys
a degree of empirical support (Ribas-Fernandes et al. 2011;
Collins and Frank 2016). Finally, successor representation
involves caching successor states that can be reached from
each state action pair (Dayan 1993). These representations
can be used to estimate the value of state action pairs when
combined with the reward associated with each state. Again,
there is some experimental evidence for this formulation
(Momennejad et al. 2017; Russek et al. 2017).

These reinforcement learning approaches are formally
distinct from active inference because they do not accom-
modate the effects of policies or action on belief states that
may nuance optimal sequences of behaviour. This is a fun-
damental distinction that can be reduced to the following:
active inference optimises a functional of beliefs about states,
namely the expected free energy above. This contrasts with
reinforcement learning—and related approaches based upon
theBellman optimality principle—that try to optimise a func-
tion of states per se—as opposed to beliefs about states
(Friston et al. 2015). This distinction is highlighted by the dif-
ference between MDP models and partially observed MDP
(POMDP) schemes that replace states with belief states. In
other words, instead of trying to optimise controlled tran-
sitions among states, one can apply the Bellman optimality
principle to transitions among belief states (Duff 2002; Silver
and Veness 2010). Note that a belief MDP is defined over a
continuous (belief) state space, which can make them hard
to solve using reinforcement learning or dynamic program-
ming (Oliehoek et al. 2005). Heuristic solutions range from
ignoring the observation model to using function approxi-
mators. See Duff (2002) for a treatment of POMDPs based
on a Bayesian formulation that exploits techniques from
reinforcement learning, such as Monte Carlo simulations.
Related approaches have been pursued in the setting of tem-
poral difference models: Rao (2010) provides a treatment of
belief states in this context,whileDawet al. (2006) andStark-
weather et al. (2017) speak to a putative role for dopamine in
predicting ‘reward using the results of [this] inference rather
than raw sensory data’ (Daw et al. 2006, p. 1637).

There are many aspects of reinforcement learning formu-
lations that we have appealed to in this paper. For example,
there are elements of hierarchal decision-making and succes-
sor representations implicit in the deep temporal (generative)
model that underlies inferences about policies and subse-
quent policy selection. Furthermore, bidirectional planning
is, in a loose sense, implicit in the bidirectionalmessage pass-
ing between active inference representations of the past and
future: see also Gershman (2017). As in pruning approaches,
this bidirectional aspect is kept to a manageable size by the
induction of subgoals that allow for a chunking or decompo-
sition of the tree search. It remains an interesting and chal-
lenging exercise to migrate reinforcement learning schemes
into the world of belief states (e.g. partially observedMarkov
decision processes). The current treatment is an attempt to
leverage these ideas in the setting of active inference.

The imperative to resolve epistemic uncertainty, under
active inference, fits comfortably with recent work using
variational inference in Bayesian neural networks to max-
imise information gain during exploration (Houthooft et al.
2016). Artificial curiosity in simulated agents is an essential
aspect of spatial planning (Vigorito and Barto 2010). Curi-
ous, uncertainty resolving behaviour arises in our scheme
via the selection of policies that not only reduce uncertainty
about hidden states of theworld (i.e. salience) but also reduce
ignorance about hidden contingencies encoded by the param-
eters of the agent’s generative model, i.e. novelty (Friston
et al. 2017b). The ensuing resolution of uncertainty through
information gain is exactly as articulated in terms of planning
to be surprised: see Sun et al. (2011b). In the current formu-
lation, the information gain in question is a constituent of
expected free energy, namely the epistemic value that under-
writes exploratory behaviour.

Our formulation contributes to an emerging literature on
multi-step planning in novel environments. Here, we focused
on a spatial planning task that involves a myopic agent mak-
ing saccadic eyemovements, while learning the quickest path
to a goal location. Other studies have investigated planning
in novel environments (McNamee et al. 2016) or puzzle-like
tasks (Solway et al. 2014; Maisto et al. 2015). Despite these
differences, all of these studies entail hierarchical problems
that are solved by chunking action sequences (Fonollosa et al.
2015). In the context of planning, this chunking is known as
subgoaling (van Dijk and Polani 2011; Van Dijk and Polani
2013; Maisto et al. 2015; Donnarumma et al. 2016), where
the agent locates subgoals/bottlenecks en route to achiev-
ing a goal. Due our use of a graph Laplacian—in forming
prior preferences—the imperative to reach subgoals emerges
without any explicit marking of subgoals in the environment
(e.g. explicitly informing the agent where a choice point is
located). In other words, the agent behaves ‘as if’ it was
securing a succession of subgoals; however, these subgoals
are essentially phenomenological.
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One prominent advantage of locating subgoals within an
environment, regardless of whether a subgoal is spatial or
abstract, is that it affords modularisation of a state space, in
the service of focusing on relevant subtasks (Solway and
Botvinick 2012, 2015; Solway et al. 2014). State space
modularisation is particularly important during online spa-
tial planning in novel environments (McNamee et al. 2016).
Recent work suggests that the type of online state spacemod-
ularisation captured byMcNamee et al. (2016) might rely on
the hippocampal formation and anterior prefrontal cortex—
brain areas thought to signal the current location within a
state space, relative to a goal (Kaplan et al. 2017b).

In neurobiology, a well-studiedmodularisation of space at
the level of single neurons occurs in grid cells located in the
dorsomedial entorhinal cortex (Hafting et al. 2005). Some
modelling work has already made substantial progress in
that direction—by showing that populations of grid cells can
guide goal-directed navigation (Erdem and Hasselmo 2012;
Bush et al. 2015). Systems level models have been proposed
to address complex spatial planning behaviour; for example,
Martinet et al. (2011) modelled a prefrontal–hippocampal
network that could perform multi-level spatial processing,
encode prospective goals and evaluate the distance to goal
locations.

As in the maze foraging tasks simulated here, one of our
fMRI studies required participants to search visually for the
shortest path to a goal location in novel mazes containing
one (shallowmaze) or two (deep maze) choice points or sub-
goals (Kaplan et al. 2017a). Interestingly, we observed two
anterior prefrontal responses to demanding choices at the
second choice point: one in rostro-dorsal medial prefrontal
cortex (rd-mPFC)—that was also sensitive to demanding ini-
tial choices—and another in lateral frontopolar cortex—that
was only engaged by demanding choices at the second choice
point. This suggests that, in deep mazes, these regions are
engaged by belief updating during planning to identify the
most promising subgoal (Kaplan et al. 2017b). Subsequent
work could potentially use the active inference scheme above
to fit different anterior prefrontal responses—and how they
reflect robust subgoal identification. Interestingly, a recent
modelling initiative showed that strong grid cell represen-
tations could lead to better calculation of subgoals, when
navigating an environment (Stachenfeld et al. 2014, 2017).
Althoughwe did notmeasure robust entorhinal cortex signals
in our experiment, our spatial planning fMRI study revealed
increased hippocampal coupling with rd-mPFC when sub-
goals had to be identified. In the future, we hope to use the
model described in this paper to elucidate the precise com-
putational roles of the hippocampus, entorhinal cortex and
anterior prefrontal regions when formulating plans in novel
environments.

Akey challenge in the computational neuroscienceof rein-
forcement learning is real-world learning, in state spaces that

are high-dimensional, continuous and partially observable.
To meet this challenge, a recent proposal endowed reinforce-
ment learning systemswith episodicmemory (Gershman and
Daw 2017). Interestingly, this approach produces equations
that are formally similar to the updates in active inference
(because they both involvemessage passing among represen-
tations of hidden or latent states in the future and past). This
speaks to the construct validity of both approaches, in terms
of each other, and the possibility that reinforcement learning
with episodic memory can be cast as active inference—and
vice versa. Given the overlap betweenneuronal systemsguid-
ing spatial navigation and episodic memory (Burgess et al.
2002), an interesting future area of study will be to create
agents that can navigate one environment and draw upon
their previous experience when exploring another.

12 Conclusion

In conclusion, we have described an active inference scheme
for epistemic foraging and goal-directed navigation using a
minimal set-up. The key contribution or insight afforded by
these simulations is to show that purposeful, goal-directed
behaviour can be prescribed through simple prior beliefs
about the outcomes that will be encountered under allowable
policies. Furthermore, we have described a plausible process
theory for exploratory behaviour and associated neurophysi-
ological responses that can be tested empirically in behaving
subjects. An interesting aspect of these simulations is the
pursuit of long-term goals under the constraint of short-term
policies. The apparent problem of failing to use appropri-
ately distant policy horizons (i.e. deep tree searches) is easily
finessed by contextualising prior beliefs such that they natu-
rally offer attainable subgoals. Finally, we have shown that
the resulting decomposition of long-term goals can operate
online, even in the context of epistemic foraging. This means
that goal-directed behaviour and the resolution of uncertainty
work hand in hand to underwrite predictable (minimally sur-
prising) outcomes.

13 Software note

Although the generative model—specified by the (A,B,C,D)
matrices—changes fromapplication to application, the belief
updates in Fig. 2 are generic and can be implemented using
standard routines (here spm_MDP_VB_X.m). These rou-
tines are available as annotated MATLAB code in the SPM
academic software: http://www.fil.ion.ucl.ac.uk/spm/. The
simulations in this paper can be reproduced (and customised)
via a graphical user interface: by typing>>DEMand select-
ing the Maze learning demo.
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Appendices

Appendix 1: Expected free energy

Variational free energy is a functional of a distribution over
states, given observed outcomes. We can express this as a
function of the sufficient statistics of the posterior:

F(s) = EQ(s|s)[ln Q(s|s) − ln P(o, s)] (A.1)

In contrast, the expected free energy is the average over
(unobserved) outcomes, given some policy that determines
the distribution over states. This can be expressed as a func-
tion of the policy:

F(π) = EP(o,s|π)[ln P(s|π) − ln P(o, s|π)]
= EP(o,s|π)[ln P(s|π) − ln P(o|s) − ln P(s|π)]
= EP(s|π)[H [P(o|s)]] (A.2)

The expected free energy is therefore just the expected
entropy or uncertainty about outcomes under a particular pol-
icy. Things get more interesting if we express the generative
model terms of a prior over outcomes that does not depend
upon the policy

F(π) = EP(o,s|π)[ln P(s|π) − ln P(s|o, π) − ln P(o)]
= EP(o,s|π)[ln P(s|π) − ln P(s|o, π)]

−EP(o|π)[ln P(o)] (A.3)

This is the form used in active inference, where all the proba-
bilities in (A.3) are conditioned upon past observations. This
enables one to replace the posterior in (A.3) with the approx-

imate posterior that minimises variational free energy based
on (observed) outcomes in the past: see (A.5).

Appendix 2: Belief updating

Bayesian inference corresponds to minimising variational
free energy, with respect to the expectations that constitute
posterior beliefs. Free energy can be expressed as the (time-
dependent) free energy under each policy plus the complexity
incurred by posterior beliefs about (time-invariant) policies
and parameters, where (with some simplifications):

F = [Q(x)||P(x)] − EQ[ln P(ot |x)]
=

∑

τ
EQ[F(π, τ )] + D[Q(π)||P(π)]

+D[Q(γ )||P(γ )] + D[Q(A)||P(A)] + · · ·
= π · (lnπ + F + γ · G) + βγ − ln γ

+
∑

i
(a·i − a·i ) · �

A·i − ln B(a·i ) + · · ·

The free energy of hidden states in this expression is given
by:

Fπ = F(π)

F(π)=
∑

τ
F(π, τ )

F(π, τ )= EQ[ln Q(sτ |π) − ln P(sτ , oτ |sτ−1, π)]
= EQ[D[Q(sτ |π)||P(sτ |sτ−1, oτ , π)]]

︸ ︷︷ ︸

relative entropy

− ln P(oτ )
︸ ︷︷ ︸

log evidence

= sπτ ·
(

ln sπτ − �

B
π

τ−1s
π
τ−1−

�

A · oτ

)

(A.4)

The expected free energy of any policy has a homologous
form but the expectation is over both hidden states and—yet
to be observed—outcomes Q̃ = P(oτ |sτ )Q(sτ |π)Q(A):

Gπ = G(π)

G(π) =
∑

τ
G(π, τ )

G(π, τ ) = EQ̃[ln Q(A, sτ |π) − ln P(A, sτ , oτ |õ, π)]
= EQ̃[ln Q(A) − ln Q(A|sτ , oτ , π)]

︸ ︷︷ ︸

(negative) mutual information (parameters)

+ EQ̃[ln Q(sτ |π) − ln Q(sτ |oτ , π)]
︸ ︷︷ ︸

(negative) mutual information (states)

− EQ̃[ln P(oτ )]
︸ ︷︷ ︸

expected value

= oπ
τ · (

W · sπτ + ln oπ
τ + Cτ

) + H · sπτ
H = −diag(A · �

A)

W = a−1
0 − a−1 (A.5)
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Figure 2 provides the update rules based upon minimising
variational free energy via a gradient descent:

∂sF = vπ
τ −

(
�

A · oτ + �

B
π

τ−1s
π
τ−1 + �

B
π

τ · sπτ+1

)

(A.6)

The auxiliary variables νπ
τ = ln sπτ can be regarded as

transmembrane potential in a biological setting, while the
resulting firing rate is a sigmoid function of depolarisation.
A similar formalism can be derived for the precision (c.f.,
dopamine) updates. The remaining update rules are derived
in a straightforward way as the solutions that minimise free
energy explicitly.
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