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Abstract

Health care provision is a major sector of the economy in all developed

economies. Productivity in these settings impacts levels of taxation and

insurance costs, and for patients can often mean the difference between life

and death. This thesis studies the economics of health care production in a

hospital setting. I use uniquely rich administrative data from England over

the period 2006 to 2013. I present three new findings. First, the number of

patients admitted to hospital (‘crowding’) has an adverse impact on the qual-

ity of care delivered in hospitals. This features in Chapter 2, where I show

that more crowding, despite its adverse effects, can benefit consumers be-

cause it allows for shorter waiting times for hospital appointments. Second,

the number of days a patient spends in a hospital inpatient department has

a material impact on the likelihood that a patient subsequently returns to

hospital for further treatment (‘readmission’). I quantify this relationship in

Chapter 3 and argue that it partially explains the increases in readmissions

that has accompanied the adoption of price regulation through prospective

payment systems. Third, policies that constrain the amount of time patients

can spend in a hospital emergency department can induce cost-effective re-

ductions in patient mortality. This finding stems from Chapter 4, which is

joint work with Jonathan Gruber and George Stoye, where we use an in-

novative application of ‘bunching’ techniques to study a landmark policy in

emergency departments.
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Impact statement

This thesis has immediate policy relevance for the National Health Service in

England. Each chapter presents new empirical evidence that can help shape

future health care policy, potentially benefiting the huge volumes of patients

that are treated by the NHS each year. In particular, I propose specific

changes to policies that regulate: (i) waiting times for elective patients; (ii)

hospital reimbursements; and (iii) emergency department waiting times.

Many of these policy issues are not specific to England and are of wider

international interest: many countries face similar challenges with long wait-

ing times for elective care, especially Canada; the English model of hospital

reimbursement mirrors the U.S. system, which has also faced increases in

readmissions; and, pressures on emergency departments have recently been

described as an international crisis. This thesis provides a framework for

analysing these issues in a general context.

The thesis also makes novel academic contributions. The central contri-

bution is to show the importance of time in the health production process.

This theme emerges in each chapter, first in the context of the trade-off be-

tween crowding and waiting times for appointments (Chapter 2), and then

through the estimated health impacts of inpatient length of stay (Chapter

3) and emergency department waiting times (Chapter 4).

I have disseminated this research to policymakers including the U.K. De-

partment of Health and the U.K. healthcare regulator, NHS Improvement,

and to academic audiences in the U.K., U.S., Canada, and Europe. I will

further disseminate this research through scholarly publications.
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Chapter 1

Introduction

Health care provision is a major sector of the economy in all developed

economies, representing around 9% of GDP in OECD countries. The level of

spending and associated health outcomes across countries, however, varies

dramatically. Annual spending is around 3,000 USD per capita in the U.K.

and several other European nations, while in the U.S. it is approximately

three times higher. In comparison, the likelihood of death following a heart

attack, to take just one example, is similar in Italy and the U.S. but over

40% higher in the U.K. (OECD, 2015). It is clear then, that health care

productivity can have a substantive impact on levels of taxation and insur-

ance costs, and for patients can often mean the difference between life and

death.

Economics plays a central role in the delivery of health care services.

Providers are subject to a myriad of market and regulatory pressures, many

of which are based on economic considerations. Consider some of the most

prominent examples: providers compete for patients, which has long been

the case in the U.S. and pro-competitive reforms have recently been imple-

mented in several European countries; regulators determine which prod-

13



14 CHAPTER 1. INTRODUCTION

ucts can be provided to patients, sometimes according to explicit cost-

effectiveness benchmarks; provider payments are often subject to explicit

price regulations; and regulators can impose operational targets on providers,

such as maximum waiting times. These policies all shape the incentives of

health care providers.

The issues of provider productivity and economic policy are at the heart

of this thesis. I focus my attention on public hospitals in the the English Na-

tional Health Service (NHS). This is one of the most famous health services

globally, being the largest single-payer system and offering full insurance to

all U.K. residents. To set the scene for the three major chapters that follow,

I begin by briefly outlining the merits of studying the English setting to

learn about health care provision more generally, and provide a description

of how hospitals are typically organised.

A major strength of the English NHS for research purposes is that it col-

lects data centrally, meaning that data on the universe of patient visits to

public hospitals are available to researchers. The Hospital Episodes Statis-

tics (HES) is the database containing this information, and I rely on extracts

for the years 2006 through 2013. Unlike many other hospital datasets, HES

contains the entirety of a single health care system. HES therefore allows

researchers to track how each user of the service fully interacts with the

secondary health care system, linking their behaviour across time and hos-

pitals, and also allows for a complete view of how busy a hospital is at each

point in time. I exploit these features of the data several times in this thesis.

As well as the rich availability of data, England also offers an excellent

setting to study economic policy. Since the early 2000s, there has been

a wave of health care reforms in England, as command-and-control style

policies, such as waiting time targets, have been implemented alongside
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Figure 1.1: Schematic diagram of a traditional hospital

decentralised and market-based policies, such as competition for patients.

These changes provide an ideal opportunity to study and contrast policies

that are being used across health care systems globally.

Turning now to the organisation of a hospital, Figure 1.1 presents a

schematic diagram of a traditional hospital. There are two classes of patient,

emergencies and electives. Emergency patients often arrive at hospital after

an accident (e.g. fall) or health shock (e.g. heart attack), and travel to

hospital either by their own means or by ambulance. In contrast, elective

patients reach the hospital through a longer, staged process, after first vis-

iting their primary care physician and seeking a hospital referral. Elective

patients will usually have medical conditions that are not time sensitive (e.g.

hip replacement).

The hospital itself can be broadly divided into three types of department.

The emergency department (ED) is where emergency patients are first seen,
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and here patients are triaged, assessed, and initial treatment is provided.

Most hospitals have a single ED, and I study this setting in Chapter 4. An

outpatient department is another area of the hospital, and this is where

elective patients first arrive following a referral from primary care. As an

outpatient, patients are evaluated in relation to a specific illness or injury; for

example, they may receive a CT scan, an assessment for a hip replacement,

or have a number of blood tests taken. There can be several outpatient

departments in a hospital, each assigned to a specific medical specialty (e.g.

cardiology, oncology, trauma and orthopaedics).

Any patient that requires further treatment after an ED or outpatient

visit is admitted to an inpatient department. For emergency patients ad-

missions happens on the same day as the ED visit, while elective patients

will be given an appointment for admission at a future date. Inpatient de-

partments house patients during their receipt of surgical or medical care,

and for a number of days during any required recovery period. As with

outpatient departments, inpatient departments are organised by medical

specialty. In Chapters 2 and 3, I focus on trauma and orthopaedic inpatient

departments, which deal with injuries of the musculoskeletal system (e.g.

hip replacements, broken arms and legs).

Once hospital treatment is complete, whether that be in the ED, out-

patient or inpartient department, patients are discharged to their home,

another hospital, or an alternative care facility (e.g. long term care).

I now turn to a description of the three core chapters of the thesis and

outline their respective contributions. Chapter 2, entitled ‘Are Public Hos-

pitals Overcrowded? Evidence from Trauma and Orthopaedics’, studies the

trade-off that hospitals face between how many non-emergency patients to

admit each period (‘crowding’) and how long these patients must wait for
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an appointment (‘waiting’). I first exploit pseudo-random variation in emer-

gency admissions to estimate the short-run effects of crowding on patient

health outcomes. I find that crowding has adverse effects, causing the rate

of unplanned readmission to vary by at least 22%. I show that variation

in length of stay caused by binding bed constraints is a plausible mecha-

nism for these effects. I then evaluate policies which reduce crowding by

rationing elective admissions and thereby increase waiting times. I estimate

the impact of elective admissions on equilibrium waiting times by exploiting

technological change and compare this impact to the crowding effects using

a model of consumer welfare. The optimal crowding condition derived from

the model is strongly rejected by the data and the results indicate that hospi-

tals’ incentives undervalue patients’ preferences for waiting times. Policies

which increase elective admissions, reducing waiting times but increasing

readmissions, are therefore predicted to improve consumer welfare.

Chapter 3, entitled ‘Efficiency Gains or Quality Cuts? How Prospective

Payment Can Reduce Health Care Quality’, retains the same setting as the

preceding chapter and focuses attention on the relationship between length

of stay and readmission outcomes. I begin by noting that the dominant form

of price regulation for health care providers, Prospective Payment Systems

(PPS), has proven highly effective at reducing costly time spent in hospital.

Estimates range between 20 and 25%. I investigate whether these shorter

stays represent efficiency gains, such that health outcomes were unaffected,

or quality cuts such that health outcomes were impaired. For patients on the

margin of being discharged, I estimate that changes in length of stay have

a large impact on the likelihood of experiencing an unplanned readmission.

Increasing length of stay for marginal patients by around 11% is predicted

to reduce readmissions by up to 7%. This mechanism suggests that PPS
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regulation, which reduced length of stay, also led to reductions in health

care quality. Moreover, I show why recent policies that penalize hospitals

for readmissions are ineffective at reversing these effects.

Chapter 4, entitled ‘Saving Lives by Tying Hands: The Unexpected Ef-

fects of Constraining Health Care Providers’, changes tack and turns to the

emergency department (ED). This complex node of healthcare delivery is

facing market and regulatory pressure across developed economies to reduce

wait times. In this chapter, together with Jonathan Gruber (MIT) and

George Stoye (UCL), we study how ED doctors respond to such incentives,

by focussing on a landmark policy in England that imposed strong incen-

tives to treat ED patients within four hours. Using bunching techniques,

we estimate that the policy reduced affected patients’ wait times by 19 min-

utes, yet distorted a number of medical decisions. In response to the policy,

doctors increased the intensity of ED treatment and admitted more patients

for costly inpatient care. We also find a striking 14% reduction in mortality.

To determine the mechanism behind these health improvements, we exploit

heterogeneity in patient severity and hospital crowding, and find strongly

suggestive evidence that it is the reduced wait times, rather than the addi-

tional admits, that saves lives. Overall we conclude that, despite distorting

medical decisions, constraining ED doctors can induce cost-effective reduc-

tions in mortality.

Two common themes emerge from the thesis: first, the importance of

time–whether that be waiting for hospital access, or spent in different parts

of the hospital–as an input to the health production process; and second,

the way in which economic research can be utilised in a medical setting to

learn about health production and inform economic policy. I discuss these

themes more fully in the concluding remarks, and hope that the insights
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from this thesis can help other researchers and policy makers. I now present

the three, largely self-contained, chapters of research.
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Chapter 2

Are Public Hospitals

Overcrowded? Evidence

from Trauma and

Orthopaedics1

In recent years there have been dramatic changes in hospital capacity.

Across OECD countries hospital beds per capita fell by 13% between 2000

and 2013, with pronounced drops of over 30% in some countries (OECD,

2015). While partially driven by technological improvements, the downsiz-

1I am extremely grateful to Richard Blundell for advice and suggestions, and to Orazio
Attanasio, David Chan, David Cutler, Alejandro Estefan, Jonathan Gruber, Amanda
Kowalski, Neale Mahoney, Costas Meghir, Magne Mogstad, Lars Nesheim, David Oliver,
Aureo de Paula, Imran Rasul, John Van Reenen, Pasquale Schiraldi, Marcos Vera-
Hernández, and Heidi Williams for helpful discussions. I thank seminar participants at
Arizona, Cornell PAM, The Department of Health, EMCON 2016, The Institute for Fis-
cal Studies, Manchester CHE, Mannheim, McGill, NHS Improvement, Oxford HERC,
RES 2016, TADC 2017, Toulouse, and University College London. I also thank many
healthcare professionals from the English NHS for providing me with insights on the in-
dustry. This work was supported by the Economic and Social Research Council grant
number ES/J500185/1. The data was made available by NHS Digital under data sharing
agreement NIC-369748-C1Y0V.
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22 CHAPTER 2. ARE PUBLIC HOSPITALS OVERCROWDED?

ing and closures of hospitals have led to widespread concerns about hos-

pital crowding and access to hospital care. High profile examples include

emergency department crowding (Hoot and Aronsky, 2008), inpatient bed

shortages (British Medical Association, 2017), and the Veterans Health Ad-

ministration scandal (Kizer and Jha, 2014).

The notion that crowding may have adverse effects on patient health

outcomes implies a trade-off: a hospital can moderate crowding, potentially

improving the quality of care delivered, by admitting fewer patients and

thereby making some patients wait longer for admission. This type of ra-

tioning with queues is routinely used by healthcare providers although the

incentives that influence the trade-off are complex. Market pressures shape

incentives to deliver quality (Cooper et al. 2011; Gaynor et al. 2013; Chandra

et al. 2016), as can intrinsic incentives (Kolstad, 2013), and both quality and

access are highly regulated. Examples of relevant policies include quality-

based financial penalties (Gupta, 2017), malpractice liabilities (Kessler and

McClellan, 1996), mandatory quality reporting (Dranove et al., 2003), and

waiting time targets (Propper et al., 2008). An important question for pol-

icymakers in this context is whether this combination of incentives delivers

an appropriate trade off between quality of care (crowding) and access to

care (waiting).

This chapter examines this trade-off in the context of the one of the

largest public healthcare systems, the English National Health Service. The

first question I address is whether the volume of hospital admissions affects

patient health outcomes (an effect I refer to as ‘crowding’). This presents an

endogeneity problem because admissions - or any other measure of crowding

- will be correlated with unobservable patient characteristics and hospital

production inputs. I deal with this by exploiting shocks to emergency ad-
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missions which I show are pseudo-random and plausibly exogenous. I use

this variation to estimate the short-run effects of crowding and explore the

mechanisms that generate these effects using rich administrative data.

I then ask whether reductions in hospital crowding would be desirable.

I focus on consumer welfare and policies that would reduce crowding by

rationing non-emergency (‘elective’) admissions. I derive an optimal crowd-

ing condition that characterises the welfare maximising trade-off between

crowding and waiting times and test whether this condition holds empiri-

cally. This provides an assessment of whether marginal changes in elective

admissions would improve consumer welfare and the distributional impacts

of such changes.

Throughout the chapter I use linked administrative data on the universe

of medical records for publicly funded hospital visits in England during the

period 2006 to 2013. The data links hospital emergency and inpatient de-

partments, and allows me to track patients across hospitals and over time.

For each hospital visit, I observe extensive information about the patient’s

health conditions and the treatments received. This data allows for a highly

granular study of admissions, health outcomes, waiting times, and many

other dimensions of hospital care. I focus on trauma and orthopaedic de-

partments, which are one of the largest hospital inpatient departments and

treat diseases and injuries of the musculoskeletal system such as arthritis and

broken bones. The setting is well suited to the study: emergency trauma

admissions occur frequently (which I use as a source of variation in the

crowding analysis), unplanned readmissions are observed in the data (which

are a relevant health outcome for these patients), and rationing is commonly

adopted in this setting.

I begin by studying daily emergency admissions at each hospital. I show
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that after conditioning on seasonal and within-week variation, emergency

admissions closely approximate a Poisson process. This indicates that the

shocks to emergency admissions are pseudo-random and the result of a series

of low probability and independent events, consistent with the types of acci-

dents that lead to emergency trauma admissions (e.g. road traffic accidents,

falls, and sports injuries). The Poisson property implies that hospitals are

unable to forecast and plan for admission shocks and that, under certain

conditions, the shocks will be unrelated to the characteristics of admitted

patients. I use this rich source of variation in emergency admissions to assess

the short-run effects of crowding.

I find that emergency admissions have substantial adverse impacts on

patient health outcomes. A one standard deviation increase in admissions

(2.8 admissions relative to an average department size of 60 beds) increases

the likelihood of unplanned readmission by 0.163 percentage points (5.8%

per cent relative to the baseline). Using a flexible non-parametric specifi-

cation I show that these effects occur across the admission distribution and

cause the readmission rate to vary by at least 22%.

I explore several mechanisms that could drive these health impacts. I

find that bed constraints and physicians varying how soon they discharge

patients is the most plausible explanation. This is evident in correlations

between the effect of emergency admissions on length of stay and on read-

mission: bigger reductions in length of stay are consistently associated with

bigger increases in readmissions. This correlation holds across subgroups of

patients and hospitals. The implication is that hospitals do not appear to

reserve sufficient bed capacity to absorb even small variations in emergency

admissions.

The data also allows me to rule out a number of mechanisms. I analyse
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the inflows of emergency and elective patients and find that selection is

not a plausible explanation for the health impacts. I find no evidence that

emergency admissions impact ambulance diversion, admission decisions in

the emergency department, transfers to other hospitals, or the discharge

destination. I do find evidence of delays (in the emergency department and

prior to inpatient surgery) and cancellations of elective appointments but

the magnitude and timing of these effects is not sufficient to explain the

health impacts.

By investigating the heterogeneity in the crowding effects, I find that

size is important: smaller hospitals and those with smaller trauma and or-

thopaedic departments exhibit larger crowding impacts. This is consistent

with these smaller units being less able to find physical space to accommo-

date volatility in the emergency admissions. I also find that, conditional

on size, hospitals which admit higher volumes of elective patients exhibit

larger crowding impacts. By admitting these patients, departments effec-

tively leave less capacity available for emergency patients and this highlights

the importance of hospitals’ incentives with respect to elective admissions.

I then turn to a marginal welfare analysis. This asks whether consumer

welfare would be improved by marginal changes that ration the number of

elective admissions. Fewer elective admissions will reduce hospital crowding

(and thus readmissions) but increase the length of time elective patients

wait for hospital appointments. To analyse this question I set up a model of

patients and hospitals with a regulator that sets elective admissions to max-

imise consumer welfare. The model implies an optimal crowding condition

that states the marginal rate of technical substitution between waiting times

and readmission outcomes should be proportional to consumers’ relative

preferences for these outcomes. This condition provides an empirical test of
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whether hospitals’ incentives with respect to rationing maximise consumer

welfare. A particular advantage of the test is that it can be implemented

with reduced-form estimates.

To implement the test I require estimates of how equilibrium waiting

times respond to changes in elective admissions. I exploit within-region

variation in technological change for this purpose. I use the introduction of

‘fast-track surgery’ - an innovation in post-operative recovery procedures for

elective patients - which led to major reductions in length of stay without

impairing health outcomes (Kehlet, 2013). Shorter hospital stays in turn

allowed hospitals to increase elective admissions while maintaining the same

capacity. I use this plausibly exogenous shift in admissions to estimate the

response of equilibrium waiting times. I find that a one patient decrease

in hospital occupancy across a region is estimated to increase mean waiting

times for elective patients by 5.6 days (6.6% relative to baseline). This com-

pares to the crowding estimates which, under a similar change in occupancy,

imply a decrease in the likelihood of readmission by 0.058 percentage points

(2.1% relative to the baseline).

Combining these estimates with benchmarks for preferences, I can strongly

reject the optimal crowding condition. This implies that hospitals’ incen-

tives and current levels of elective admissions do not maximise consumer

welfare. The results also show that hospitals’ incentives undervalue prefer-

ences for waiting times, and that marginal increases in elective admissions

would improve consumer welfare. As a result those policies which reduce

waiting times but increase readmissions are predicted to improve consumer

welfare. Moreover, I find that such policies, while benefiting consumer wel-

fare overall, will generate benefits disproportionately for younger males and

older females. These groups are particularly exposed to elective waiting
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times but shielded from the impacts of crowding.

This chapter contributes to two literatures. The first concerns the effects

of crowding on medical care and patient health outcomes. This has a long

history in medical research where studies typically focus on the association

between measures of hospital occupancy and patient health outcomes (see

the reviews by Hoot and Aronsky (2008) and Eriksson et al. (2017)). One

channel through which these effects can arise is if the available medical

resources per patient declines as hospitals become busier. In work related

to this same notion, economists have instead focussed directly on variation

in medical resources per patient - induced by exogenous factors other than

crowding - and examined how this affects patient health outcomes (examples

include Almond et al. (2010), Almond and Doyle (2011), Bartel et al. (2014),

Card et al. (2009), Doyle (2005), Doyle (2011), Gruber and Kleiner (2012),

and Friedrich and Hackmann (2017)). From this perspective, crowding could

be viewed purely as an instrument that creates variation in medical care.

The second literature concerns non-price rationing of hospital care. This

includes studies that have examined waiting times (Lindsay and Feigenbaum

1984, Windmeijer et al. 2005, Propper et al. 2008) and admission decisions

(Joskow 1980, Fiedler 2016, Freedman 2016).2 Of these rationing studies,

the recent papers by Fiedler (2016) and Freedman (2016) are closest to my

work. Both examine how daily variation in the occupancy of intensive care

units (ITUs) affects the likelihood of ITU admission, finding that higher

2There are three related literatures. The first concerns hospital capacity, which is the
natural alternative to rationing policies, and a series of papers have studied the impli-
cations of demand variation for capacity and hospital costs (Friedman and Pauly 1981,
Friedman and Pauly 1983, Gaynor and Anderson 1995, Keeler and Ying 1996, Hughes
and McGuire 2003). The second is from operational research, which has studied hospital
waiting times extensively and dates back to Young (1962), Shonick (1970) and Shonick
and Jackson (1973). The third is an early literature in economics that incorporated these
operational research techniques into models of service industries (De Vany 1975, De Vany
1976, De Vany and Saving 1977, De Vany and Frey 1982).
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levels of occupancy reduce the likelihood of admission. Relative to this

chapter, this type of response can be viewed as rationing when there is no

prospect of waiting (either ITU care is provided or not) or as a crowding

effect where quality of care deteriorates because of ITU capacity constraints

(non-ITU care is provided when there is no ITU care available).

I make the following two principle contributions. First, I use a novel

source of variation - shocks to emergency admissions - to estimate the causal

impact of crowding on patient health outcomes. I combine this identifica-

tion strategy with linked administrative data to provide a detailed study of

the mechanisms that generate these impacts on health outcomes and I am

able to rule out a number of mechanisms. Second, I develop a framework

for evaluating hospitals’ incentives to moderate these crowding effects by

rationing elective admissions. This connects the literature on crowding with

the literature on rationing and illustrates an important trade-off between

two dimensions of hospital production. I show that despite the adverse ef-

fects of crowding on patients, it is not optimal to reduce crowding because

the increase in waiting times this would imply more than offset the gains

in consumer welfare. More generally these results illustrate that policies

targeted at quality of care (e.g. malpractice liability) may have unintended

consequences for access to care and vice versa.

The chapter proceeds as follows. Section 2 provides information about

hospital inpatient departments and the institutional setting. Section 3 de-

scribes the data. Section 4 sets out the empirical analysis of crowding.

Section 5 sets out the marginal welfare analysis including the analysis of

waiting times. Section 6 concludes.
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2.1 Background

2.1.1 Hospital inpatient departments

Inpatient departments are where the majority of care for serious in-

juries and illnesses is provided. These departments are organised by medical

specialty, which group together related diagnoses and medical procedures.

Examples include cardiology (diagnoses relating to the heart), neurology

(brain), and trauma and orthopaedics (musculoskeletal system). Inpatient

departments account for a large part of physical hospital capacity as many

patients require accommodation for overnight stays.

Patients in inpatient departments are classified as either elective or emer-

gency cases. Elective patients are those that require treatment but it is not

urgent. A common example is a hip replacement. Elective patients obtain

an inpatient appointment after first seeking a referral from a primary care

physician and then having an initial assessment at an outpatient consulta-

tion with a secondary care physician. If treatment is required, the patient

will join a waiting list and be given an inpatient appointment at a pre-

specified time in the future, which may be several weeks or months later.

Emergency patients in contrast often have severe conditions that require

immediate treatment. Common examples include broken bones. These pa-

tients first attend the emergency department (ED), arriving by their own

means or via an ambulance. The ED provides triage and initial treatment

and then a decision is made about whether further treatment is required.

The majority of ED cases are discharged without additional treatment, but

those that do require treatment are admitted to an appropriate inpatient

department.

Upon admission, both elective and emergency patients experience a simi-
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lar overall pathway: a surgical or medical procedure is provided on or shortly

after admission, after which they are monitored and nursed through the re-

covery process until they are considered fit for discharge. The specifics of

a pathway will vary according to the diagnosis. In the case of high volume

elective surgeries, such as a total hip replacement procedure, the pathway

can be very standardised. These patients will often have set goals for each

day of their stay and will be discharged as soon as they can navigate a flight

of stairs unaided. In contrast, emergency patients with more complex and

varied health conditions require a more flexible pathway. Examples include

patients with multiple or very severe injuries, who will be assessed on a

day-by-day basis according to their needs.

Hospitals have a degree of control over the flow of patients in and out

of inpatient departments. The inflow of elective patients is primarily con-

trolled through appointments. These are set in advance but can be cancelled

or rescheduled at short notice. There is far less control over the inflow of

emergency patients, since when dealing with urgent and severe cases there is

often no option but to accept patients. For less urgent or severe cases, there

is potentially more control, as hospitals can divert ambulances to alterna-

tive hospitals or adjust the threshold for inpatient admissions from the ED,

although these responses have potential for adverse effects on patients. The

outflow of elective and emergency patients is controlled by discharge deci-

sions. Patients are evaluated daily and discharged once they are medically

fit and able to leave the hospital. Upon discharge they may either return to

their home residence or be transferred to another hospital or an alternative

care facility.

Decisions over patient flow are made by a combination of physicians

and managers. Physicians are responsible for all decisions about individual
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patients. This includes whether to admit (following an outpatient consul-

tation or an ED visit), all treatment decisions, and when a patient is fit

for discharge. Managers are responsible for operational decisions such as

when to cancel elective appointments or divert ambulances. Patient flow

is monitored closely throughout each day and managers will communicate

information to physicians through meetings and via electronic means.

2.1.2 Institutional setting

The empirical application focuses on public hospitals in the English

National Health Service. This is a single-payer healthcare system funded

through the proceeds of general taxation. All approved hospital treatments

are provided to residents for free.3 Public hospitals provide the large ma-

jority of elective inpatient care and all emergency care in England. These

hospitals are centrally managed and regulated by a number of government

departments. Policies are set that specify targets and incentives for hospi-

tals to operate by and these can apply to financial, operational, and clinical

performance. The majority of policies are set at the national level and apply

equally to all public hospitals.

The sample covers the period 2006 to 2013. During this period two poli-

cies had a major influence on the incentives of hospitals to admit elective

admissions. The first policy is the ‘Referral to Treatment’ waiting time tar-

get which specified the maximum time between a referral and admission for

all elective patients. The target was introduced in 2006, setting a maximum

of six months, and then tightened to 18 weeks from 2008. The target was

strongly enforced through senior management incentives (Propper et al.,

2008) and financial penalties (£300 per patient that waits above the thresh-

3The exception to this is prescription drugs which are subject to a small co-payment.
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old). This policy proved very effective: average waiting times fell by over

50% between 2000 and 2010 for trauma and orthopaedic elective patients.

The second policy is the ‘Payment by Results’ tariff that specifies hos-

pital reimbursements. Hospitals were paid on the basis of a prospective

payment system which, similar to the DRG system in the U.S., specified

fixed payments per admission of each diagnosis type (Department of Health,

2012). Hip replacements, for example, were reimbursed at a rate of approx-

imately £6,000 per patient. The tariff, which was implemented for most

hospitals in 2006, created a financial incentive for hospitals to treat higher

volumes of elective patients.4 This incentive was material: hospitals were

typically failing to meet their financial obligation to break even during the

sample period and increasing admissions was the primary way to raise rev-

enue. For example, by the end of 2005 hospitals were on average running

a financial deficit of 2.5% of total revenue (with 10-90th percentile range of

-8.5% to 0.5%) and this only improved marginally by 2013 when the average

deficit was still 1.6% (with 10-90th percentile range of -7.0% to 1.0%).5

There were also a number of other policy changes that were implemented

around the beginning of 2006. This includes: the removal of restrictions on

hospital choice (Cooper et al. 2011, Gaynor et al. 2013); increased moni-

toring of clinical performance, especially for elective patients (NHS Digital,

2017); and, capacity expansions achieved by enabling private hospitals to

conduct publicly-funded elective care (Kelly and Stoye, 2015).

4The tariff was implemented on a limited scale between 2003 and 2005, covering a small
number of hospitals and a limited range of activities. It was rolled out to all hospitals and
all activity over the period 2006 to 2008.

5Financial data obtained from the annual accounts of NHS Trusts. Data in 2005 was
not available for all Trusts. Financial figures exclude any financial support.
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2.2 Data

I use linked administrative data on medical records for inpatient and

ED visits from the Hospital Episodes Statistics (HES). This data provides

a complete picture of secondary care use at public hospitals in England. It

allows me to observe each patient’s care history and track each episode of

care from initiation through to discharge via any transfers. Rich informa-

tion is available for each episode, including the hospital site, admission and

discharge dates, a complete listing of diagnoses (5-digit ICD-10 codes) and

procedures (OPCS codes), and a standard set of demographic information.

I have inpatient records available for the period 2006 to 2013 and the ED

records for the period 2010 to 2013.6

The empirical application focuses on trauma and orthopaedic depart-

ments at general acute hospitals with an active ED in England. These de-

partments treat musculoskeletal conditions such as broken bones and arthri-

tis and are the third largest department measured by admissions (6.6% in

2013). The trauma and orthopaedic setting is well suited to the analysis:

they are strongly influenced by the policy pressures discussed above, relevant

outcome measures can be constructed from the data, and emergency admis-

sions, which I use as a source of identification for the analysis of crowding,

are common in these departments.

2.2.1 Sample construction

I construct three data samples for the analysis. In each sample I identify

general acute hospitals using the Estates Return Information Collection data

and define hospitals by their postcode, which references a specific geographic

6The dates refer to financial years beginning in April and ending in March the following
year. This convention is used throughout the chapter.
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location. I define an ED as active in a year if the trauma and orthopaedic

department received on average five emergency admissions per week in each

quarter of the year. Trauma and orthopaedic patients are identified by the

medical specialty that they are treated under.

The first sample, referred to as the panel dataset, contains hospital-

day level information on the number of elective and emergency admissions

to trauma and orthopaedic departments. I exclude hospital-years with in-

complete information, which can occur if the specific hospital site is not

recorded accurately.7 After making these exclusions I further exclude de-

partments with fewer than three years of data. These exclusions, which

together account for 30% of hospital-days, ensure that each department has

a reliable and reasonably long time-series of data which is important when

I decompose emergency admissions. The qualitative results are robust to

changes in these exclusion rules.8

The second sample, referred to as the inpatient dataset, contains med-

ical records for patients admitted to trauma and orthopaedic departments.

I limit this dataset to patients admitted and discharged on days contained

in the panel dataset. I construct the following variables: an indicator for

whether the primary operation received involves no overnight stay for the

median patient (‘daycase operation’); an indicator for whether surgery oc-

curred after the day of admission (‘delayed operation’); a count of the num-

ber of medical procedures received; length of stay; an indicator for discharge

7I define a hospital-year as incomplete using two rules: (i) the data contains fewer than
51 weeks in a year; (ii) the data contains a week where emergency and elective admissions
are both at least 80% below the annual average. After these exclusions I also remove four
weeks either side of any data break to ensure that the data is not missing information
from adjacent but excluded periods.

8The majority of results are also robust to removing all of the exclusion rules. One
exception to this is the analysis of elective admissions. Periods of incomplete data, which
cause elective and emergency admissions to move together simultaneously, unduly influ-
ences this analysis by forcing a positive correlation between the two types of admission.
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to another hospital (‘transfers out’); an indicator for discharge to the pa-

tient’s home residence (‘home discharge’); a count of the number of diagnoses

recorded; the Charlson co-morbidity index (a proxy for the severity of un-

derlying health conditions); the count of ED admissions in the past year

(another proxy for underlying health conditions); 7-day unplanned readmis-

sion; and, 30-day in-hospital mortality. Unplanned readmissions are defined

as any emergency inpatient admission to any hospital within a specified time

horizon from the previous discharge. I use a 7-day horizon in the baseline

analysis and conduct robustness tests using other horizons.

The third sample, referred to as the ED dataset, contains medical records

for all visits to emergency departments. I match this data to the inpatient

dataset which later allows me to evaluate how inpatient crowding affects ED

outcomes. This matching process is incomplete because the ED data does

not always contain information on the specific hospital site. I am able to

match 65% of hospitals in the ED dataset to the inpatient dataset. I also

exclude patients that visit the same ED multiple times on the same day as

these patients cannot be matched uniquely to the inpatient data (2.5% of

visits) and limit the data for matched hospitals to the days present in the

panel dataset. I compute three variables using the ED data: an indicator

for whether a patient attended their nearest hospital; the (straight-line)

distance travelled to hospital; and, an indicator for whether admission was

to the trauma and orthopaedic department (rather than another inpatient

department).

Together these three samples provide information on 149 trauma and

orthopaedic departments, 3.9 million inpatient visits (2006-2013), 97 emer-

gency departments, and 22.5 million ED visits (2010-2013). Tables B.1 to

B.3 present basic summary statistics for each sample.
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Table 2.1: Mean characteristics of patients in trauma and orthopaedics and
other specialties

T&O Other patients % diff.

Age 52.9 56.3 −6
Male, % 48.4 45.4 7
White, % 85.4 89.4 −5
Emergency, % 39.4 36.9 7
Elective waiting time, days 84.8 58.9 44
Diagnosis count 3.4 3.5 −3
Charleson index 1.7 2.8 −40
ED admissions in past year 0.8 1.1 −30
7-day unplanned readmission, % 2.8 4.1 −31
30-day in-hospital death, % 1.1 2.4 −55

Notes: (1) ‘Other specialties’ excludes paediatrics and maternity care and is based on a
1% sample of the full inpatient HES data; (2) Charleson index is a measure of
co-morbidities.

2.2.2 Descriptive statistics

Characteristics of trauma and orthopaedic patients

Table 2.1 presents the mean characteristics for trauma and orthopaedic

patients in comparison to patients from other specialties at general acute

hospitals (excluding maternity and paediatric care). Trauma and orthopaedic

patients are similar along several dimensions to patients admitted to other

specialties. The demographic mix is comparable in terms of age, gender

and ethnicity, but trauma and orthopaedic patients wait significantly longer

for elective care, and are healthier in terms of pre-existing conditions (diag-

noses, co-morbidities, past ED admissions) and health outcomes (likelihood

of unplanned readmission, in-hospital mortality). Trauma and orthopaedic

patients are on average 53 years old, with an even gender balance, and are

predominantly white.
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Figure 2.1: Heterogeneity between trauma and orthopaedic patients
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elective and emergency patients; (4) Data extracted from the inpatient dataset in 2010
for the top tertile of elective and emergency patients when sorted by diagnosis frequency.

Differences between elective and emergency patients

There is substantial heterogeneity between different trauma and or-

thopaedic patients. This is particularly evident when comparing between

elective and emergency cases and across the many different diagnosis types.

Figure 2.1 illustrates the heterogeneity between patients in the data for

2010. It shows the most common diagnosis groups for elective and emer-

gency patients, plotted by average length of stay and age with the size of

the marker indicating the number of patients. There are two notable dif-

ference between elective and emergency patients. First, they are located

in different regions of the length of stay and age space. Elective patients
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typically have shorter stays and are on average between 45 and 70 years

old. The most common elective diagnosis is arthrosis (commonly known

as osteoarthritis) and the majority of these patients will require a hip or

knee replacement. In contrast, emergency patients stay longer and the age

distribution is bimodal: there is a group with an average age of around 40

presenting with broken arms and legs, and a group with an average age of

around 80 presenting with broken hips. These emergency patients will often

receive an ‘open reduction and internal fixation’ which involves open surgery

and the use of metal places or screws to realign and secure a broken bone.

The second difference between elective and emergency patients is the degree

of heterogeneity among diagnoses: there is significantly more heterogeneity

and dispersion for emergency patients. The figure contains equal volumes of

elective and emergency patients, and the elective patients are concentrated

within 8 diagnosis groups while the emergency patients are spread over more

than 30 groups.

In some cases elective and emergency patients have a similar or the same

diagnosis. Even here there are strong differences between the two patient

types. In Table B.4 I show that hospital stays for emergency patients are

on average 94% longer than elective patients and after controlling for the

observable characteristics of patients, including the specific diagnosis, this

difference is still as large as 46%.

Health outcomes

I use unplanned readmission as my primary measure of health outcomes.

This is widely used in academic studies and by healthcare regulators (e.g.

NHS Improvement in England, Centers for Medicare and Medicaid Services

in the U.S.). Unplanned readmission is also used specifically in relation
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to trauma and orthopaedic patients by regulators and in medical research

to evaluate orthopaedic surgery (Kehlet, 2013). Common diagnoses among

readmitted trauma and orthopaedic patients include complications with in-

ternal devices (e.g. mechanical components of a hip replacement), infections,

inflammation, and bleeding (see Table B.5). The average length of stay for

a readmission is 7.3 days, which is approximately equal to the length of stay

in the index admission of readmitted patients.

Alongside readmission, I report results using 30-day in-hospital mortal-

ity. Relative to readmission this outcome has two drawbacks: first, it is a

very extreme outcome that does not occur very often in the sample; and sec-

ond, I only observe mortality that occurs within the hospital, which makes

this outcome conditional on other events such as admission and length of

stay. Across trauma and orthopaedic patients, the 7-day unplanned read-

mission rate is 2.8% and the 30-day in-hospital mortality rate is 1.1%.

2.3 The impact of hospital crowding on patients

I now turn to the question of how crowding affects patients. I focus on

the relationship between the number of hospital admissions each day and

the health outcomes of patients. This relationship can in general be written

as

yiht = αh + βihtqhs + εiht (2.1)

where yiht is an outcome for patient i at hospital h in cohort t, αh is a

hospital fixed effect, qhs is the number of admissions at hospital h on day s,

and εiht is an error term.

The empirical challenge when trying to estimate the effect of qhs on yiht

is that admissions are endogenous in the sense that E[qhsεiht] 6= 0. This
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is because admissions are correlated with factors contained in εiht such as

patient composition and inputs to hospital production. These correlations

may arise because of seasonality, where the type and volume of patients pre-

senting varies during the year, and hospital scheduling decisions, where re-

sources and workload are organised to match anticipated peaks and troughs

in admissions.

I address this endogeneity problem by focusing on the variation in emer-

gency admissions. I show that these admissions can be decomposed into

‘expected admissions’ and ‘emergency shocks’, where the latter is pseudo-

random. The variation in admissions caused by the pseudo-random shocks

changes the number of patients in the hospital (the extent of ‘crowding’)

and, under conditions that I make explicit, is plausibly exogenous.

2.3.1 Pseudo-random variation in emergency admissions

I begin by decomposing emergency admissions for each hospital into sea-

sonal and within-week components and a random shock component. The

idea is that while the seasonal and within-week variation may be correlated

with patient composition and hospital scheduling decisions, the shock com-

ponent is exogenous to these factors. I decompose emergency admissions

using the panel dataset and the following additive specification

q1,hs = λhy + φhw + πhd + zhs, (2.2)

where q1,hs is the number of emergency admissions at hospital h on day s,

λhy, φhw and πhd are hospital-specific year, weekly-seasonal, and day-of-week

fixed effects (which together comprise the ‘expected emergency admissions’),

and zhs is the ‘emergency shock’.
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Figure 2.2: Example of the decomposition of daily emergency admissions
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Notes: (1) Data shown for one hospital in one year; (2) Expected emergency admissions
defined by a regression of emergency admissions on hospital-specific year, week-seasonal,
and day-of-the-week fixed effects.

Figure 2.2 provides an example of the decomposition for one hospital

in one year. Observed emergency admissions (red line) have a mean of

around five and exhibit significant variation with low admission days and

high admission days often in close succession. The expected admissions

(black line) show that the seasonal pattern is slightly higher in summer

and lower in winter, with minor variations across days of the week. This

pattern is consistent with the causes of many trauma admissions, which

involve outside activities such as road traffic accidents, slips and falls, and

sports injuries. Emergency shocks are defined as the difference between the

observed data and the expected admissions.
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Hospital responses to expected emergency admissions

I first examine the properties of the expected emergency admissions. If

expected admissions are known to the hospital then it should be apparent

that hospitals respond to these predictions. I conduct two tests of these

responses. I compare expected admissions with the number of senior physi-

cians present each day (as an example of resource scheduling) and the num-

ber of elective admissions each day (workload scheduling). If hospitals are

aware of the pattern in expected admissions, then this should show up as a

positive correlation with the number of physicians working (more physicians

are scheduled when it is expected to be busier) and a negative correlation

with the number of elective appointments (fewer elective patients are ad-

mitted to moderate overall admissions). In both cases I control for hospital

fixed effects and the alternative outcome (physicians or elective admits); the

latter is important because hospitals may schedule fewer elective appoint-

ments in periods when there is less staff availability and this may correlate

with emergency admissions (e.g. during holiday periods).

Table 2.2 presents the results of these tests. Column (1) shows that more

physicians are indeed present on days with higher expected admissions. Each

additional admission is associated with 0.34 additional senior physicians.

Column (2) also confirms that elective admissions are negatively associated

with expected emergency admissions. Each additional expected emergency

admission is associated with 0.26 fewer elective admissions. These tests in-

dicate that hospitals are at least partially aware of the seasonal pattern in

emergency admissions and plan the scheduling of physicians and elective ad-

missions around these expectations. These results highlight the importance

of controlling for seasonal variations in emergency admissions.
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Table 2.2: OLS regression estimates of hospital scheduling decisions on ex-
pected emergency admissions

Physician count Elective admits
(1) (2)

Expected emergency admits 0.339∗∗∗ −0.261∗∗∗

(0.023) (0.081)

Hospital fixed effects X X
Elective admits X
Physician count X

N 335,508 335,508

Notes: (1) Expected emergency admissions are defined using a regression of daily
emergency admissions on hospital-specific year, weekly-seasonal, and day-of-the-week
fixed effects; (2) Standard errors clustered at the hospital-level (149 clusters); (3)
∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.

Poisson property of emergency admissions

I now consider the properties of the emergency shocks. If admissions

approximate a Poisson arrivals process, it implies that the shocks are the

result of independent draws from a large series of low probability Bernoulli

trials. This interpretation fits intuitively with the types of accident that

often cause emergency trauma admissions and if this property holds then it

has a number of useful statistical implications for the analysis. I therefore

examine how the observed data compares with simulated data from a Poisson

distribution with a time-varying mean based on the seasonal and within-

week variation. To do this I simulate a Poisson process for each hospital

with a mean equal to the expected admissions from Equation (2.2). Figure

2.3 presents this simulated data alongside the observed data for hospitals

grouped into quartiles based their mean daily emergency admissions. I split

hospitals into these groups to check a key feature of the Poisson distribution:

its mean is equal to its variance. These charts confirm that the data very
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Figure 2.3: Poisson property of daily emergency admissions
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closely approximates the Poisson distribution in each case.

The Poisson property has three implications for how the variation in

emergency admissions caused by the shocks should be interpreted. First,

the emergency shock each day is the result of a series of independent events.

This rules out that the variation is being caused by large-scale events such

as major road traffic accidents, terrorist attacks, and epidemics. This in

turn mitigates the concern that the patients arriving on high-shock days

are different to those on low-shock days. Second, the emergency shocks are

independent across time, which suggests that these admissions are not being

restricted or moderated in any way (i.e. admissions today are unaffected
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by previous levels of admissions). This mitigates selection concerns that

might arise from ambulance diversion or admission decisions in the ED.

Third, independence across time also means that hospitals cannot forecast

the shocks. This renders sophisticated forecasting techniques redundant,

since there is no short-term information contained in the shocks, and implies

that hospital scheduling decisions are uncorrelated with shocks.9

These properties indicates that, after conditioning on expected admis-

sions, the variation in emergency admissions is highly suitable for the em-

pirical analysis: the realisations are pseudo-random and uncorrelated with

several key factors.

2.3.2 Empirical specifications

I use the following baseline specification

yiht = δd + xhtγ + βdxqq1,hs + uiht (2.3)

where yiht is an outcome for patient i at hospital h in cohort t (described

further below), δd is a series of fully interacted diagnosis, age category, and

emergency status fixed effects (over 45,000 patient types), xht is a vector

containing hospital-specific year, weekly-seasonal and day-of-the-week fixed

effects, q1,hs is the number of emergency admissions at hospital h on day s,

and βdxq ≡ E[βiht | di, xht, q1,hs]. This specification can be derived explicitly

by substituting Equation (2.2) into Equation (2.1) and decomposing the

error term into δd and uiht.

I also use a non-parametric specification, which replaces the linear q1,hs

term in Equation (2.3) with a series of indicators for each discrete value

9In Appendix B I illustrate directly that there is little or no serial correlation between
hospital-specific shocks (Figure B.1) and shocks in trauma and orthopaedic departments
are uncorrelated with admissions at other inpatient departments (Table B.6).



46 CHAPTER 2. ARE PUBLIC HOSPITALS OVERCROWDED?

of q1,hs. This specification allows me to examine any non-linearities in the

impact of emergency admissions on outcomes.

I use these specifications to examine four groups of outcomes: health

outcomes; inflows of emergency patients; inflows of elective patients; and

treatment and discharge decisions in the inpatient department. I am primar-

ily interested in the impact on health outcomes and the remaining outcomes

help to understand the mechanisms behind the health impacts. Depending

on the particular outcome I specify s and t accordingly, examining either

admission cohorts (t = s + 1, where s is the admission date) or discharge

cohorts (t = s, where s is the discharge date).

Identification

Under the assumption that E[q1,hsuiht] = 0, applying OLS to Equa-

tion (2.3) will identify a weighted-average of the βdxq terms (Angrist and

Krueger, 1999). I refer to this as the ‘average crowding effect’ and it pro-

vides a summary measure of the relationship between emergency admissions

and outcomes. To explore this relationship further, I later disaggregate these

estimates across the distribution of patients, hospitals, and emergency ad-

missions.

To illustrate the features of the average crowding effect, I simplify the

notation and consider a case with a single hospital and no seasonality. This

allows me to drop xht from the conditioning set and h from the notation.

In this case, first define

∆βdp ≡ E[yit | di, q1,s = p]− E[yit | di, q1,s = p− 1] (2.4)

where p = 0, ..., P are discrete value of emergency admissions. Equation
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(2.4) is the difference in expected outcome for patient type d between co-

horts that experience admissions p relative to p − 1, such that ∆βdp can

be interpreted as a ‘treatment effect on the treated’ parameter. OLS then

produces the following sample estimate,

β̂OLS =

∑
d

∑P
p=0(q1,p − q̄1,d)(ndp/n)

∑p
r=1 ∆β̂dr∑

d

∑P
p=0(q1,p − q̄1,d)2(ndp/n)

(2.5)

where r is a summation index, ndp is the sample size of patient type d and

admissions p, nd is the sample size of patient type d, n is the total sample

size, and q̄1,d ≡
∑P

p=0 q1,p(ndp/nd). I derive this result in Appendix B, and

the derivation in the more general setting with βdxq is similar but with a

larger conditioning set. Equation (2.5) shows that OLS produces a weighted

average of the treatment effect parameters across the distribution of patient

types and the distribution of emergency admissions.

The identification assumption, E[q1,hsuiht] = 0, states that the emer-

gency admissions, conditional on di and xht, are uncorrelated with other

period-specific shocks. Potential threats to this assumption include changes

in patient composition, labour and capital inputs, and admissions at other

inpatient departments. After conditioning on xht, many of these concerns

are ruled out by the Poisson property of the emergency admissions (see

Section 2.3.1).

One remaining concern is that patients arriving on high shock days may

still differ to those arriving on low shock days. For example, weather shocks

may mean that emergency admissions maintain the Poisson property but

shift both the number and type of admissions that occur in some periods

(e.g. a cold weather shock may mean fewer admissions but more slips than

sports injuries). The role of the age-diagnosis-emergency fixed effects δd is to
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mitigate against this source of correlation. These fixed effects allow for over

45,000 patient types and include five digit ICD-10 diagnosis codes, which

record the exact location of the injury (e.g. fracture of lower end of tibia)

and severity (e.g. whether the wound is open or closed). The identification

assumption therefore implies that any differences in patient composition

not accounted for by the Poisson property are uncorrelated with emergency

admissions within an age-diagnosis-emergency type.10

Estimation

I estimate the average crowding effect by regressing yiht on q1,hs and the

relevant fixed effects. Since the set of fixed effects is large (over 55,000), I

implement the estimation using an algorithm by Correia (2016).11 Standard

errors are clustered at the hospital-level (149 clusters).

2.3.3 Results

I now present the results for each group of outcomes. I begin with health

outcomes, followed by hospital responses, and conclude with a subgroup

analysis that further explores the heterogeneity in the average crowding

effects.

10This issue is limited to discharge cohorts. It arises here because some patients arrive
(affecting qht) and are discharged on the same day (affecting yiht). A change in the
composition of these ‘daycase’ patients may therefore directly affect patient outcomes.
The same issue does not arise with admission cohorts where there is a clear separation
in the timing between the shock (patients arriving at t − 1) and the outcomes (patients
arriving at t). An alternative approach to this issue is to exclude the daycase patients from
the analysis. However, this introduces selection concerns because hospitals may respond
to emergency shocks by discharging patients as a daycase when they would otherwise have
stayed overnight. Despite these concerns, the qualitative features of the results are robust
to taking this approach.

11This is implemented in Stata using the -reghdfe- command. The same analysis can
be implemented with OLS, although with extensive estimation times, and this approach
produces near-identical estimates.
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Table 2.3: Estimated effects of emergency admissions on health outcomes

Dependent variable Coeff Std error N

Panel A: Admission cohorts
7-day unplanned readmission, % 0.011∗∗∗ (0.003) 3, 940, 878
30-day in-hospital mortality, % 0.003 (0.002) 3, 940, 878

Panel B: Discharge cohorts
7-day unplanned readmission, % 0.047∗∗∗ (0.007) 3, 940, 878
30-day in-hospital mortality, % −0.001 (0.002) 3, 940, 878

Notes: (1) Reported coefficients are parameter estimates on the daily emergency
admissions variable; (2) All specifications include a fully interacted set of diagnosis, age
category, and emergency status fixed effects, and hospital-specific year, weekly-seasonal,
and day-of-week fixed effects; (3) Standard errors clustered at the hospital-level (149
clusters); (4) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.

Health outcomes

Table 2.3 presents estimates of the baseline specification using the inpa-

tient dataset for admission cohorts (Panel A) and discharge cohorts (Panel

B). For both cohorts I find that emergency admissions have a positive and

statistically significant impact on readmission but I find no statistically sig-

nificant impacts on mortality. The readmission impacts for discharge cohorts

are substantially larger than those for admission cohorts: a one standard

deviation increase in emergency admissions (2.8 patients) is estimated to in-

crease the readmission rate by 0.031 percentage points (1.1% relative to the

baseline) for admission cohorts compared to 0.132 percentage points (4.7%)

for discharge cohorts. The estimated impacts on mortality are very small in

magnitude and precisely estimated.12

I further examine these readmission effects using the non-parametric

specification. Figure 2.4 presents the estimates for discharge cohorts. This

shows that the impacts on readmissions are near linear across the distri-

12Table B.7 and B.8 shows that these estimates are robust to changes in the health
outcome horizon and the inclusion of additional control variables.
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Figure 2.4: Non-parametric estimates of the effect of emergency admissions
on 7-day unplanned readmission for discharge cohorts

2.
5

3
3.

5
4

4.
5

7-
da

y 
un

pl
an

ne
d 

re
ad

m
is

si
on

, %

0 5 10 15 20
Emergency admits

Notes: (1) Base category of 5 emergency admissions normalised to the unconditional
mean of emergency admissions; (2) Estimates for values of emergency admissions above
15 omitted from the figure and are mostly statistically insignificant; (3) N = 3,940,878;
(4) Standard errors clustered at the hospital-level (149 clusters) with 95% confidence
intervals shown in the shaded region.

bution of emergency admissions, showing that readmissions decrease when

there are low realisations of emergency admissions and increase when there

are high realisations. Across the distribution of emergency admissions the

readmission rate varies between 2.54 and 3.17 (with a mean of 2.80). The

implication is that the likelihood of readmission varies by 22% depending on

the day of discharge. The equivalent non-parametric estimates for admission

cohorts are small in magnitude and generally statistically insignificant.

Three features of these results stand out. First, the measurable im-

pact of emergency admissions on health outcomes is on readmission and
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not mortality. Second, the impact of emergency admissions is felt primar-

ily by discharge cohorts, where the impact is almost five times larger than

for admission cohorts. Third, even small variations in the number of daily

admissions have material effects on readmission, suggesting that hospitals

are making daily adjustments that affect health outcomes. I now examine

several hospital responses to emergency admissions that might be causing

these variations in readmission.

Inflows of emergency patients

Table 2.4 presents estimates of the baseline specification using the ED

dataset, where I focus on visits to the ED that occur the day after the

emergency admissions and examine three outcomes: the likelihood a pa-

tient attends their nearest ED; time spent in the ED; and the likelihood of

inpatient admission. For ED attendance, I use the number of emergency ad-

missions at the nearest ED which allows me to test whether hospital choice

is affected by the how busy trauma and orthopaedic departments are. The

estimates show that emergency admissions have no statistically significant

impact on hospital choice or inpatient admission but do have a small and

statistically significant impact on time spent in the ED. A one standard

deviation increase in emergency admissions (2.8 patients) is estimated to

increase time spent in the ED by 47 seconds on average.13

These results show that emergency admissions have only very limited

impacts on patients in the ED. This is consistent with the Poisson property

of emergency admissions, which suggested that emergency admissions are

independent across time. The implication is that the inflow of emergency

13I explore these results further in Table B.9 and show that the estimates are similar
for various subgroups of patients (e.g. those more likely to be admitted to a trauma and
orthopaedic department, ambulance arrivals).
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Table 2.4: Estimated effects of emergency admissions on inflows of emer-
gency patients

Dependent variable Coeff Std error N

Attended nearest ED, % 0.008 (0.010) 22, 519, 392
Time spent in the ED, mins 0.281∗∗∗ (0.064) 22, 519, 392
Inpatient admission, % 0.014 (0.013) 22, 519, 392

Notes: (1) Reported coefficients are parameter estimates on the daily emergency
admissions variable (time spent in ED, inpatient admission) or the daily emergency
admissions at the nearest hospital (attended nearest ED) on the day prior to the inflows
of emergency patients; (2) All specifications include a fully interacted set of diagnosis,
age category, and ambulance arrival fixed effects, and hospital-specific year,
weekly-seasonal, and day-of-week fixed effects; (3) The nearest ED is defined according
to straight-line distances from the patient’s home to the set of general acute hospitals in
the panel dataset; (4) Standard errors clustered at the hospital-level (149 clusters); (5)
∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.

patients to inpatient departments is not moderated in the ED, and emer-

gency patients arriving at the inpatient department are not subject to any

pre-selection by the hospital.14

Inflows of elective patients

Table 2.5 presents estimates using the panel dataset with daily elective

admissions as the dependent variable.15 In column (1) I report estimates

of a specification containing contemporaneous emergency admissions. The

estimates show that emergency admissions have a negative and statistically

significant effect on the number of elective admissions. In column (2), I use

the same specification but include additional lags of emergency admissions.

These estimates show that, as well as the contemporaneous effect, emergency

admissions lead to fewer elective admissions over the next four days. In

14One surprising finding here is that ambulance diversion is not used to insure hospitals
against the volatility in emergency admissions. This may be possible in some cases (e.g.
patients without time sensitive injuries and when the spatial correlation between shocks
is low).

15As this variable is measured at the hospital-day level I omit the patient-level fixed
effects from the baseline specification.
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Table 2.5: Estimated effects of emergency admissions on inflows of elective
patients

(1) (2)

Coeff Std error Coeff Std error

Emergency admits, t −0.013∗∗∗ (0.003) −0.014∗∗∗ (0.003)
Emergency admits, t− 1 −0.022∗∗∗ (0.003)
Emergency admits, t− 2 −0.017∗∗∗ (0.003)
Emergency admits, t− 3 −0.009∗∗∗ (0.003)
Emergency admits, t− 4 −0.009∗∗∗ (0.003)
Emergency admits, t− 5 −0.004 (0.003)
Emergency admits, t− 6 −0.002 (0.003)

N 338,746 321,481

Notes: (1) Dependent variable is the number of daily elective admissions at a hospital on
day t; (2) All specifications include hospital-specific year, weekly-seasonal, and
day-of-week fixed effects; (3) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10%
level.

subsequent days the effects become smaller and statistically insignificant.

Figure 2.5 presents estimates of the non-parametric specification for elec-

tive admissions where I include separate terms for each lag of emergency

admissions (up to three lags). The estimates show that the impacts on

elective admissions are modest, occur in response to extreme realisations

of emergency admissions, and vary with the time horizon. For example, a

high realisation of emergency admissions today has no impact on elective

admissions today but decreases elective admissions for the next two days.

This compares to a low realisation today which increases elective admis-

sions today but not thereafter. With respect to magnitude, an increase of 5

emergency admissions today (approximately 2 standard deviations) relative

to the mean number of admissions is estimated to cumulatively decrease

elective admissions by 0.3 (0.15 fewer tomorrow and the same reduction the

day after), and an equivalent decrease of 5 emergency admissions today is
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Figure 2.5: Non-parametric estimates of the effect of emergency admissions
on inflows of elective patients
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Notes: (1) Base category of 5 emergency admissions normalised to the unconditional
mean of emergency admissions; (2) Estimates for values of emergency admissions above
15 omitted from the figure and are mostly statistically insignificant; (3) N = 321,481; (4)
95% confidence intervals shown in the shaded region.

estimated to increase elective admissions by 0.5 today.

In Table B.10 I explore whether these effects on elective admissions create

selection among admitted patients. I find no evidence of selection or effects

of a negligible magnitude across a range of observable patient characteristics.

For example, a one standard deviation increase in emergency admissions

increases the observed average waiting time of admitted elective patients by

less than 1 day (0.2% of the baseline).
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These results are consistent with high realisations of emergency admis-

sions causing cancellations of elective appointments and cancelled patients

being rescheduled at short notice on days when low realisations occur. This

cancellation mechanism moderates the total number of admissions and op-

erates by shuffling patients between the extreme tails of the emergency ad-

missions distribution. However, the effects are very small and do not appear

to introduce any substantial selection to the pool of admitted elective pa-

tients.16

Inpatient care

The analysis of inflows of emergency and elective patients indicates that

the readmission effects are not being caused by selection. This leaves treat-

ment decisions in the inpatient department as a potential explanation. Table

2.6 presents estimates of the baseline specification for several aspects of in-

patient care. For admission cohorts I examine: the likelihood of receiving

a daycase operation; the likelihood of having a delayed operation; and the

number of procedures. For discharge cohorts I examine: length of stay

(logged); the likelihood of being transferred to another hospital; and the

likelihood of being discharged to home.17 The results show that increases in

emergency admissions have three statistically significant effects on inpatient

care. First, there are more delays, with a higher proportion of patients wait-

ing at least a day before receiving their primary operation. Second, patients

receive fewer procedures. Third, patients have shorter hospital stays, which

implies that physicians are discharging patients earlier. I find no statistically

16A comparison between daily elective admissions and a simulated Poisson process con-
firms that, unlike emergency admissions, the elective admissions are not pseudo-random.

17To incorporate patients with a length of stay of zero, I use log(length of stay+1).
The results are similar if instead the specification uses length of stay as a linear variable.
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Table 2.6: Estimated effects of emergency admissions on inpatient care

Dependent variable Coeff Std error N

Panel A: Admission cohorts
Daycase operation, % 0.018∗ (0.011) 3, 940, 878
Delayed operation, % 0.185∗∗∗ (0.013) 3, 940, 878
Number of procedures −0.001∗∗∗ (0.000) 3, 940, 878

Panel B: Discharge cohorts
Length of stay (log) −0.009∗∗∗ (0.000) 3, 940, 878
Transfers to other hospitals, % 0.001 (0.005) 3, 940, 878
Discharges to home, % 0.001 (0.009) 3, 940, 878

Notes: (1) Reported coefficients are parameter estimates on the daily emergency
admissions variable; (2) All specifications include a fully interacted set of diagnosis, age
category, and emergency status fixed effects, and hospital-specific year, weekly-seasonal,
and day-of-week fixed effects; (3) Standard errors clustered at the hospital-level (149
clusters); (4) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.

significant evidence for other outcomes.18

Figure 2.6 presents estimates of the non-parametric specification for de-

lays, procedures and length of stay. Across the distribution of emergency

admissions, delays and procedures vary by up to 5.7% and 1.3% (both af-

fecting admission cohorts) and length of stay varies by 11.0% (affecting

discharge cohorts). The comparatively large impact on length of stay is

especially notable and interesting to understand further since this affects

discharge cohorts which is where the majority of the readmission impacts

were identified earlier.

There are two potential explanations for the discharge effect. First, as

physicians become busier and deal with more patients, this may result in

fewer checks or tests and, in turn, more mistakes when discharging patients

(a ‘staff constraints’ effect). The second possibility is that as the hospital

becomes busier physicians are required to lower the threshold at which they

18Table B.8 shows that these results are robust to the inclusion of additional control
variables.
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Figure 2.6: Non-parametric estimates of the effect of emergency admissions
on inpatient care
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Notes: (1) Admission cohorts shown in Panel (a) and (b) and discharge cohorts shown in
Panel (c); (2) Base category of 5 emergency admissions normalised to the unconditional
mean of emergency admissions; (3) Estimates for values of emergency admissions above
15 omitted from the figure and are mostly statistically insignificant; (4) N = 3,940,878;
(5) Standard errors clustered at the hospital-level (149 clusters) with 95% confidence
intervals shown in the shaded region.

discharge patients to free up space for newly arriving patients (a ‘bed con-

straints’ effect). The staff constraints explanation suggests the effects would

be more prominent for positive realisations of emergency admissions while

the bed constraints explanation suggests that the effects would feed through

linearly to length of stay as new arrivals imply increases or decreases in bed

availability. The non-parametric estimates, which are approximately linear,
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indicate that bed constraints are the most likely explanation.19

Another test of the bed constraints hypothesis is to compare the esti-

mated length of stay effect with the implied magnitude of effect that would

occur if each new emergency admissions led to one existing patient being

discharged. To do this I first rescale the estimated length of stay effect to

give the impact of 1 emergency admission that requires a bed, which I do

by excluding the proportion of emergency admissions that did not require a

bed. This gives a length of stay impact of 0.75%. I then compute the number

of patients present in hospital on average across hospital-days, and calculate

the length of stay impact that would be observed if one of these patients was

discharged a day early relative to the mean. This gives an implied length of

stay impact of 0.63%. This is only very marginally outside the lower 95%

confidence interval of the estimated impact (0.65%) suggesting that the bed

constraints explanation is plausible.

Together these results indicate that the first-order impact of emergency

admissions on hospital treatment is to cause physicians to discharge patients

earlier from the inpatient department, and bed constraints are a plausible

reason for this happening. The reductions in length of stay that this causes

are felt by discharge cohorts, which were the same cohorts shown earlier to

suffer the larger readmission impacts.

19The bed constraints explanation implies that new arrivals effectively ‘push out’ re-
covering patients. This would be self-reinforcing if it leads to emergency readmissions that
then crowd the hospital in future periods. To assess this I estimate the impact of emer-
gency admissions on total length of stay over a 90-day period (logged). A one standard
deviation increase in emergency admissions is estimated to decrease total bed-days by
0.007% (0.45 days). This indicates that discharging patients early is not self-reinforcing:
it may create some readmissions but the net effect is to decrease total bed-days.
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Subgroup analysis

I now explore the heterogeneity in the data and probe two issues: first,

the link between the length of stay and readmission effects (mechanisms);

and second, the hospital characteristics and behaviour that may help ex-

plain the crowding effects (heterogeneity). I focus throughout on discharge

cohorts, which is where emergency admissions have the largest impacts.

Mechanisms. To explore the readmission mechanism further I eval-

uate how the average crowding effects for length of stay and readmission

correlate across groups of patients and hospitals. Table 2.7 presents the re-

sults split by elective and emergency patients. These estimates show that,

across all of the outcomes, the impacts on elective patients are more muted

than for emergency patients. Focussing specifically on the length of stay

and readmission impacts, there is no impact on length of stay for elective

patients and only a very small impact on readmission, while for emergency

patients there are substantial impacts on both outcomes. These estimates

support the notion that the changes in length of stay are a causal factor in

readmission. The difference in the length of stay impacts also suggests that

physicians do not routinely substitute beds between the two patient types.20

In Table B.11 I present an equivalent analysis that splits patients by

expected mortality risk. This also supports length of stay being a causal

factor in readmission: the effects on length of stay and readmission are

larger in magnitude for low risk patients compared to high risk patients.

This is consistent with physicians rationing care according to clinical need

or simply being unable to discharge high risk patients at short notice (e.g.

because they may require more discharge planning).21

20I show in Figure B.2 that the distinction in the length of stay effect between elective
and emergency patients is consistent across hospitals.

21I do not analyse the elective patients split by expected mortality risk since almost all
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Table 2.7: Estimated effects of emergency admissions by patient type

Electives Emergencies

Dependent variable Coeff Std err Coeff Std err

Panel A: Admission cohorts
Daycase operation, % 0.004 (0.011) −0.001 (0.006)
Delayed operation, % 0.056∗∗∗ (0.014) 0.369∗∗∗ (0.020)
Number of procedures −0.001∗∗∗ (0.000) −0.002∗∗∗ (0.000)
7-day unplanned readmission, % 0.004 (0.003) 0.020∗∗∗ (0.007)
30-day in-hospital mortality, % 0.001 (0.001) 0.004 (0.005)

Panel B: Discharge cohorts
Length of stay (log) 0.000 (0.000) −0.020∗∗∗ (0.001)
Transfers to other hospitals, % −0.002 (0.003) 0.006 (0.010)
Discharges to home, % −0.006 (0.007) 0.008 (0.014)
7-day unplanned readmission, % 0.008∗∗∗ (0.003) 0.100∗∗∗ (0.014)
30-day in-hospital mortality, % 0.001 (0.001) −0.004 (0.005)

Notes: (1) Reported coefficients are parameter estimates on the daily emergency admissions variable; (2) All specifications include a fully
interacted set of diagnosis, age category, and emergency status fixed effects, and hospital-specific year, weekly-seasonal, and day-of-week fixed
effects; (3) N = 2,387,641 and 1,553,237 for elective and emergency patients; (4) Standard errors clustered at the hospital-level (149 clusters); (5)
∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.
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Figure 2.7: Binned scatter plot of hospital-level average crowding effects for
7-day unplanned readmission and length of stay for emergency patients
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Notes: (1) Estimates of the baseline specification for length of stay and 7-day unplanned
readmission conducted separately for each hospital in the sample; (2) Each point on the
plot represents approximately 10 hospitals, where hospitals are grouped into 15 quantiles
according to the magnitude of the hospital-level readmission effects.

Finally, I show that the correlation between the length of stay and read-

mission effects is even more pronounced if the analysis is segmented by hos-

pital. Figure 2.7 presents hospital-level estimates of the length of stay and

readmission effects for emergency patients, grouping hospitals together by

the magnitude of readmission effects. This shows that hospitals which make

greater reductions in length of stay in response to emergency admissions are

the same hospitals that exhibit greater increases in readmissions.

These results indicate that bed constraints and changes in length of

stay are a plausible mechanism behind the impacts on readmission. An

elective patients have zero mortality risk.
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implication of this mechanism is that additional admissions, whether they

are elective or emergency patients, will lead to similar impacts on outcomes

because what matters is the number of admissions rather than the type.

This implication is useful for the welfare analysis that follows below.

Heterogeneity. I now consider what explains the variation in the av-

erage crowding effects. The sample size for analysing this issue in the cross-

section is limited, not only by the number of hospitals but also by the data on

hospital characteristics which is often available only for groups of hospitals.

I therefore analyse heterogeneity by examining how the average crowding

effects have changed across time and within hospital. To do this I estimate

average crowding effects at the hospital-year level and focus on the length of

stay impacts since these are estimated more precisely than the readmission

impacts.

Table 2.8 presents regression estimates of the average crowding effects

for length of stay at the hospital-year level on hospital characteristics, where

all variables are standardised. Column (1) shows that the average crowding

effects are larger in magnitude (more negative) for hospital-years with fewer

emergency admissions and more elective admissions. Column (2) includes

hospital fixed effects and shows that the same relationship holds when using

only the within-hospital variation. Column (3) includes the total number of

hospital beds in the regression and shows that larger hospitals have smaller

average crowding effects. Column (4) includes the relative size of the trauma

and orthopaedic department, measured by the proportion of total bed-days

taken up by trauma and orthopaedic patients. This shows that hospitals

with larger departments have smaller average crowding effects, and that

after controlling for department size, the number of emergency admissions

is no longer statistically significant.
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Table 2.8: OLS regression estimates of hospital-year average crowding effects
for length of stay on hospital characteristics

(1) (2) (3) (4)

Mean emergency admits 0.365∗∗∗ 0.363∗∗∗ 0.317∗∗ 0.058
(0.052) (0.128) (0.131) (0.125)

Mean elective admits −0.079∗∗ −0.365∗∗∗ −0.291∗∗ −0.361∗∗∗

(0.038) (0.129) (0.137) (0.107)
Total acute hospital beds 0.287∗∗ 0.446∗∗∗

(0.116) (0.12)
Size of T&O department 0.652∗∗∗

(0.121)

Hospital fixed effects X X X

N 960 960 937 937

Notes: (1) Dependent variable is the estimated effect of emergency admissions on the
length of stay of emergency patients based on the baseline specification for each
hospital-year; (2) All variables are standardised by their standard deviation; (3) Total
acute hospital beds is counted at the hospital-level; (4) Size of T&O department
estimated using the proportion of total bed-days at the hospital taken up by trauma and
orthopaedic patients; (5) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.

This analysis shows that the average crowding effects are larger at smaller

hospitals, smaller trauma and orthopaedic departments, and departments

that admit more elective patients. The correlation with hospital and de-

partment size is intuitive, since smaller hospitals with smaller departments

may face tighter bed constraints and have less ability to substitute resources

with other departments. The correlation with the volume of elective admis-

sions is also intuitive: admitting greater volumes of elective patients leaves

fewer beds available to accommodate the uncertain volumes of emergency

admissions. The role of elective admissions in causing crowding is especially

important and is taken up in the next section.
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2.4 Marginal welfare analysis

The results to now show that hospital crowding has adverse effects on

patients, mostly notably through increases in readmissions. I now turn to

the question of whether it would be desirable to reduce hospital crowding.

I take the perspective of consumer welfare and consider policies that ration

elective admissions. This will reduce hospital crowding and create benefits

for patients as there will be fewer readmissions and other adverse events

(delays, cancellations). But it also creates costs for patients. By decreasing

the rate at which elective patients are admitted, the waiting list and time

spent waiting for elective appointments will increase. Rationing policies

therefore trade off the effects of crowding with waiting times for elective

appointments.

I analyse this trade-off using a model of consumer welfare where a regu-

lator sets the incentives for hospitals to admit elective admissions. I use this

model to derive an optimal crowding condition that I then test empirically.

To implement the test I use the crowding estimates from earlier in the chap-

ter, combined with estimates how of equilibrium waiting times respond to

changes in elective admissions, and benchmarks from the literature of pref-

erences for waiting times and readmissions. The test allows me to evaluate

whether the current rationing incentives are optimal from the perspective

of consumer welfare, and whether marginal changes in elective admissions

would be welfare improving.

2.4.1 A model of consumer welfare

I begin by setting out a model of consumer welfare with the following

features. I consider consumers that have exogenous demand for elective and

emergency care. The utility they receive from attending hospital includes
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a health outcome (a benefit) and the waiting time before receiving care (a

cost). I focus on health outcomes purely in terms of the likelihood of read-

mission. Hospital technology is such that the volume of elective admissions

affect patients’ health outcomes (a crowding effect) and the waiting time

(a queuing effect). These two hospital characteristics are in direct conflict

because increasing the flow of admissions will increase crowding but reduce

queues. I do not explicitly specify hospital incentives but I assume that

hospitals do not fully internalise the costs for patients of waiting for care.

This provides an economic rationale for policymakers to regulate elective

admissions. A regulator is assumed to set policies that determine elective

admissions with an objective of maximising consumer welfare. The solu-

tion to the regulator’s problem gives an optimal crowding condition that

characterises the trade-off between crowding and waiting times.

Each of these features of the model is now described in more detail.

Consumer preferences

There are N consumers and consumer i demands inpatient care at a

general acute public hospital with probability ρei, where e = 0 for elective

care and e = 1 for emergency care. The probabilities are independent across

patients.22 Consumer utility from receiving inpatient care is a function of

the hospital characteristics which include the likelihood of readmission re

and a waiting time of w days. I assume that w = 0 for all emergency

patients. Utility in each state of inpatient care can be written as

u0i = −θr0 − ψiw, (2.6)

u1i = −θr1, (2.7)

22In a dynamic model these assumptions would imply Poisson demand as N →∞.
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where θ is the utility cost of a readmission (e.g. a second visit to hospital,

any additional days in hospital, any impacts of readmission on well-being

or health outcomes) and ψi is the utility cost of waiting a day for elective

care (e.g. impaired mobility, any impacts of waiting on well-being or health

outcomes). Utility when no care is demanded is normalised to zero.

Hospital technology

I model hospital technology using reduced-form functions for the like-

lihood of readmission and the equilibrium waiting times that reflect the

crowding and queuing mechanisms. These functions can be thought of as

representing a single hospital or a group of hospitals.

Likelihood of readmission. This outcome is assumed to be affected

by elective admission through a crowding mechanism. I assume that the

likelihood of readmission is increasing and convex in admissions. Let q0 be

the number of elective admissions and denote the readmission odds for elec-

tive and emergency patients as re(q0) with the properties r′e(q0) > 0 and

r′′e (q0) > 0. This function does not specify the cause of the crowding effects

but, as shown earlier, binding bed constraints are one explanation. It is on

this basis that I implicitly assume elective and emergency admissions have

the same impact on readmission outcomes since what matters for the crowd-

ing effect is the volume of admissions rather than the type of admissions.

The earlier empirical results also showed that the impact of admissions on

the likelihood of readmission was approximately linear; the assumption here

is that this relationship would be convex over a wider range of values for

q0.23

23The crowding functions could also incorporate the effect of emergency admissions,
which will also have crowding effects, but I omit this from the notation as it is not central
to the model.
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Waiting times. Equilibrium waiting times are assumed to be affected

by the number of elective admissions through a queuing mechanism. To

specify the properties of the equilibrium waiting time function I draw on

intuition from queuing theory.

Consider the following standard ‘M/M/c’ queuing model. This model

specifies that patient arrivals follow a Poisson distribution with mean λ,

length of stay follows an exponential distribution with mean 1/µ, and c

beds are devoted to these patients. Waiting times arise in this model be-

cause of short-term mismatches between supply (available beds) and demand

(patient arrivals). If c > λ/µ then in equilibrium the expected waiting time

in this model is finite and weakly decreasing and convex in c. This is intu-

itive: increasing the number of beds means more patients can be admitted

at once, and this increase in flow will cause the equilibrium queue length

and expected waiting time to decrease, but the benefits to additional beds

will diminish as the queue tends to zero.

Another feature of this queuing model is that queues will become infinite

if c ≤ λ/µ, at which point demand exceeds supply in the long-term. This

property limits the range of beds over which this particular model predicts

variation in equilibrium waiting times; too few beds results in infinite queues,

and too many beds result in no queues. An extension to the model that

avoids the infinite queue outcome incorporates ‘baulking’: patients may

decide not to join the queue if the expected waiting time is above some

threshold. This demand property naturally moderates arrivals as the queue

grows longer and mean that the range of beds is less restricted.

Based on the intuition from this queuing model, I specify equilibrium

waiting times as a function w(q0) with the properties w′(q0) ≤ 0 and w′′(q0) ≥

0. This approach is more tractable than explicitly specifying a queuing



68 CHAPTER 2. ARE PUBLIC HOSPITALS OVERCROWDED?

model, especially when it comes to empirically estimating responses in equi-

librium waiting times.24 The function w(q0) can be interpreted as an ag-

gregation over time periods in a dynamic queuing model, where the number

of admissions q0 is the outcome of the number of beds made available and

the length of stay. Baulking in my context can be thought of as elective

patients opting for care in the private healthcare sector rather than at a

public hospital. This can be accommodated in the model by allowing for a

negative correlation between p0i (likelihood of attending a public hospital

for elective care) and ψi (preferences for waiting times).

Regulator behaviour

A regulator is assumed to maximise consumer welfare by setting a lower

bound on elective admissions for hospitals. The economic rationale for the

regulator is that the hospital does not fully internalise the effect of waiting

times, and because of this the lower bound imposed by the regulator will

always bind. The regulator problem is therefore equivalent to setting elective

admissions and can be derived as follows.

After including the hospital technology functions the expected utility of

consumer i conditional on elective admissions can be written

E[ui | q0] = E
[
− ρ0i

(
θr0(q0) + ψiw(q0)

)
− ρ1iθr1(q0) | q0

]
. (2.8)

24In particular because the full queuing process at hospitals is more complex than
an M/M/c queue and several features of the queue are not observable in the data (e.g.
arrivals, prioritisation, multiple queues, intermediate queues).
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Weighting consumers equally, consumer welfare can then be written as

U =
1

N

N∑
i=1

E[ui | q0] = −ρ0

(
θr0(q0) + ψw(q0)

)
− ρ1θr1(q0)

− cov(ρ0i, ψi)w(q0), (2.9)

where ρe and ψ are population averages. The covariance term arises when

the demand probabilities and preferences for waiting are not independent

and will be negative if patients that baulk at the queues (low p0i) are those

with high preferences for waiting times (high ψi). The regulator problem is

therefore

max
q0

− ρ0

(
θr0(q0) + ψw(q0)

)
− ρ1θr1(q0)− cov(ρ0i, ψi)w(q0), (2.10)

which has the following first order condition

−ρ0

ρ1

w′(q0)

r′1(q0)︸ ︷︷ ︸
Crowding ratio ≡ C

=
θ

ψ︸︷︷︸
Preference ratio ≡ P

+
cov(ρ0i, ψi)w

′(q0) + ρ0θr
′
0(q0)

ψρ1r′1(q0)
.

(2.11)

This is the optimal crowding condition. On the left-hand side is a term

that reflects the marginal impact of elective admissions on the likelihood of

waiting a day for elective surgery relative to the likelihood of experiencing

a readmission as an emergency patient. Ignoring readmission outcomes for

elective patients, this can be interpreted as the marginal rate of technical

substitution between expected readmissions and expected waiting times. I

refer to this term as the ‘crowding ratio’, C. The first term on the right-hand

side is the relative preferences for readmission and waiting time and I refer

to this as the ‘preference ratio’, P . Optimal crowding sets incentives such

that the crowding ratio equals the preference ratio plus an additional term,
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which is a function of the covariance in preferences and the three marginal

effects.

2.4.2 Testing the optimal crowding condition

I now test whether the optimal crowding condition holds empirically.

There are several reasons why this may not be the case. For example, the

regulator may have imperfect knowledge of preferences or hospital technol-

ogy or it may be that the policy environment is determined through an

imperfect political process. The test I conduct both establishes whether

the optimal crowding condition holds and indicates whether there would be

gains in consumer welfare from marginal increases or decreases in the level

of elective admissions.

Implementing the test

To implement the test I estimate both sides of Equation (2.11) and test

the hypothesis that these are equal. Obtaining estimates for some inputs

to Equation (2.11) is straightforward. In particular, on the assumption

that the impact of an elective and emergency admission is similar, the ear-

lier empirical results provide approximations to the crowding functions (i.e.

r′e(q0) ∼= r′e(q1)). This assumption follows directly if bed constraints and

length of stay are the primary mechanism behind the readmission impacts

since it is only the volume of patients that matters and not their type. The

crowding estimates therefore show that r′0(q0) ∼= 0 and r′1(q0) > 0 (see Table

2.7). Estimates of ρ0 and ρ1 are also easy to obtain from national pop-

ulation statistics and the HES data. I estimate that ρ0/ρ1 = 1.97 which

indicates that the average patient is twice as likely to demand elective care

than emergency care at a general acute public hospital.
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Obtaining estimates for the other inputs to Equation (2.11) requires ad-

ditional work. I directly estimate the marginal impact of elective admissions

on waiting times, w′(q0), using the HES data and I describe this analysis in

the next section. With this I can then construct estimates of the crowding

ratio C. To construct estimates of the preference ratio P , I use benchmarks

for θ and ψ from external sources and the existing literature.

This leaves the covariance term. Estimating this object directly is diffi-

cult but it is possible to gain a sense of its sign and magnitude. As noted

earlier it is is likely to be negative due to patients that baulk at the queue

length and use private sector hospitals. It is also plausible that the magni-

tude of any covariance is small: around 6% of the population have a private

medical insurance policy (Laing & Buisson, 2013) and over three-quarters

of these policies are not purchased by individuals making an active choice

but instead offered as a fringe benefit by their employer (Olivella and Vera-

Hernández, 2013). On this basis I assume that cov(ρ0i, ψi) = 0.

The optimal crowding condition can therefore be written as

C = P (2.12)

which states that the crowding ratio should approximately equal the prefer-

ence ratio. I now describe my estimates of w′(q0) which is used to construct

estimates of C and the benchmarks I use to estimate P , after which I discuss

the results of test.

Estimating the impact of elective admissions on waiting times

To estimate w′(q0) I require exogenous variation in elective admissions

that shifts equilibrium waiting times. Revisiting the intuition from queu-
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ing theory, a particular concern here is that changes in elective admissions

may be correlated with changes in the rate of arrivals which will also affect

equilibrium waiting times. For example if the rate of arrivals (demand for

hospital care) increases then hospitals may respond by increasing elective

admissions. This type of response would bias OLS estimates of a regression

of waiting times on elective admissions. Examples of these trends in the sam-

ple period include the decline of the private healthcare sector (Competition

and Markets Authority, 2014) and the increasing use of private hospitals for

publicly funded care (Kelly and Stoye, 2015). To mitigate these concerns I

use an IV strategy and exploit a technological change that shifted elective

admissions and is plausibly unrelated to demand for hospital care.

To set up the empirical specification, I first aggregate the HES data

to the regional-year level and include all hospitals that treat trauma and

orthopaedic patients. This includes some hospitals that were previously ex-

cluded from the analysis (e.g. private hospitals conducting publicly-funded

work, specialist hospitals with no ED) and I use a regional definition corre-

sponding to the 28 local government healthcare authorities at the start of

the sample period. The estimating equation is

wrt = κr + τqGrt + ηqNG
rt + vrt (2.13)

where wrt is the mean waiting time in days for elective surgery at public

hospitals in region r during year t, κr are regional fixed effects, qGrt is the

number of elective admissions at general acute public hospitals, and qNG
rt is

the number of elective admissions at other publicly-funded hospitals (e.g.

private hospitals conducting publicly-funded work, specialist public hospi-

tals without an ED). The parameter of interest is τ , which is the (average)
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impact of elective admissions at general acute public hospitals on the waiting

times for elective surgery at public hospitals. I control for qNG
rt since these

admissions will also impact equilibrium waiting times and may be correlated

with admissions at general acute public hospitals.25

I use an IV strategy that exploits a technological innovation called ‘fast

track surgery’ (FTS). FTS revolutionised post-surgical care for elective pro-

cedures and led to substantial reductions in length of stay without impairing

health outcomes (Kehlet, 2013). As FTS was rolled out across general acute

public hospitals throughout the sample period it led to increases in elective

admissions. The validity of the FTS instrument rests on the assumption

that its roll-out was uncorrelated with changes in demand for elective care

at public hospitals; this will hold if the roll-out was idiosyncratic across time

and FTS did not impact purchase decisions for private medical insurance.

I do not observe FTS directly in the data but do observe elective length of

stay which I use as a proxy for FTS. I therefore instrument for qGrt using

mean length of stay of elective patients at general acute hospitals, lGrt. The

identification assumption is that lGrt is uncorrelated with other factors that

affect waiting times contained in vrt.

Table 2.9 presents estimates of Equation (2.13). In the first column I

present OLS estimates. These indicate that elective admissions have a neg-

ative and statistically significant impact on elective waiting times: 1,000

additional admissions in a region over a year is estimated to reduce average

waiting times by around 2 days. In the second and third columns I present

the first-stage and reduced-form regressions. These show that the FTS in-

strument is relatively strong, with an F-statistic of 8.3 in the first-stage

25As with the variable of interest, this admissions variable is also potentially endoge-
nous. Using an equivalent instrument to the one I describe below, and instrumenting for
both admissions variables, produces similar results.
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Table 2.9: OLS and IV estimates of the effect of elective admissions on elective waiting times

Waiting time Elective admits Waiting time

OLS First-stage Reduced-form IV

GAH elective admits, 000s −2.152∗∗∗ −6.764∗∗∗

(0.690) (2.140)
Length of stay, days −3.164∗∗∗ 21.404∗∗∗

(1.096) (3.892)

Regional fixed effects X X X X
Non-GAH elective admits X X X X

N 220 220 220 220

Notes: (1) GAH = general acute hospital (i.e. those included in the panel dataset); (2) Standard errors clustered at the regional level (28 clusters);
(6) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.
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regression, and it has a statistically significant positive impact on waiting

times in the reduced-form regression. In the final column I present the IV

estimates. Similar to the OLS estimates, these estimates indicate a negative

and statistically significant impact of admissions on waiting times but the

effect is larger in magnitude: 1,000 additional admissions is estimated to

reduce elective waiting times by around 7 days. The difference between the

IV and OLS estimates suggests that the OLS estimates are upward biased,

which is consistent with usage of the private market being an omitted vari-

able.26 I use these IV estimates to help construct estimates of the crowding

ratio C for use in the optimal crowding test.

Benchmarks of the preference ratio

The preference ratio is defined as P = θ/ψ, where θ is the utility cost of

a readmission event and ψ is the utility cost of waiting one day for elective

surgery. Both of these are difficult objects to measure accurately and I

therefore adopt two benchmarks, each based on a different source and set of

assumptions.

The first benchmark is from Beckert and Kelly (2017). This study es-

timates mixed logit demand models to study the hospital choices of hip

replacement patients in England during 2012. This sample overlaps sub-

stantially with my data, where hip replacement patients are a large category

of orthopaedic patient. From their reported results I obtain estimates of the

mean preference for waiting times and unplanned readmission. I divide these

two parameters to obtain an approximate estimate of the preference ratio.

26In Figure B.3 I show non-parametric estimates of Equation (2.13). These show that
the estimated relationship does exhibit some non-linearities, most notably indicating that
waiting times are decreasing and convex in elective admissions as queuing theory would
predict, but that marginal effects are negative through the sample variation and do not
reach zero. As an alternative specification I also estimate Equation (2.13) using a log
dependent variable and this produces similar results.
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One potential source of bias in these estimates is that the readmission rate

at the hospital-level, which features in the demand model, may be corre-

lated with other dimensions of hospital quality and this could overstate the

magnitude of preferences for readmissions. This gives PBK = 115.27

The second benchmark is based on opportunity cost. For this I assume

that readmissions causes patients to spend additional days in hospital rela-

tive to their hospital stay in the absence of a readmission. This assumption

implies that readmissions have an opportunity cost, although it does not

incorporate any welfare impact outside of opportunity cost (e.g. health im-

pacts). I use the mean length of stay for readmissions as an upper bound

of this potential opportunity cost and quantify it using estimates of post-

tax median earnings from the national statistics authority. This gives an

estimate of θ. I then take estimates of ψ from a study by Propper (1990),

which used contingent valuation survey methods to estimate the willing-

ness to pay for reductions in waiting times. Together these estimates give a

second benchmark of POC = 235.

This gives two benchmarks of the preference ratio, PBK < POC , to

compare with my estimates of the crowding ratio. These benchmarks are

approximate, both potentially overvaluing readmissions relative to waiting

times.

Results

To test the optimal crowding condition all that remains is to construct

estimates of the crowding ratio C using the reduced-form crowding and

waiting time estimates. Doing this requires rescaling the estimates since

the crowding estimates are at the hospital-day level and the waiting time

27This is taken from the ‘Distance choice set’ results in Table 5 of Beckert and Kelly
(2017).
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estimates are at the region-year level.28 I rescale to a scenario where hos-

pitals on average accommodate one additional patient per day throughout

the year. The crowding estimates already satisfy this, so it only involves

rescaling the waiting time estimates.29 After rescaling, a one patient in-

crease in hospital occupancy is estimated to decrease mean waiting times

for elective patients by 5.6 days (6.6% relative to baseline) and increase the

likelihood of readmission for emergency patients by 0.120 percentage points

(2.3% relative to baseline).

Assembling estimates of the crowding ratio, I find that Ĉ = 9, 267.

This clearly exceeds the two benchmarks of the preference ratio (PBK =

115, POC = 235). The data strongly reject the hypothesis that C = P which

indicates that the readmission and waiting time allocations do not satisfy

the optimal crowding condition.30,31 Since C > P it implies that hospitals’

incentives undervalue preferences for waiting times relative to readmission.

In turn this implies that policies which increase elective admissions, thereby

reducing waiting times but increasing readmissions, are predicted to improve

consumer welfare.

28In principle there are two additional scaling factors to consider. The first is the
weighting in each regression. The different levels of aggregation imply differences in the
weighting and it is possible to re-weight both regressions on a comparable basis (e.g. by
regional population). In practice I find this makes little difference. The second factor
is the potential impact on occupancy of the readmission events themselves. Since the
majority of patients are not readmitted I do not incorporate this second-order effect.

29The waiting time estimates give the impact of 1,000 admissions in a region-year. I
scale this by the average number of hospitals per region and the number of elective patients
required to occupy one bed throughout the year (i.e. 365 divided by the average length of
stay). For the crowding estimates I use the sum of the impacts on admission and discharge
cohorts from the baseline specification.

30I test the hypothesis that C = P by taking a log transformation and applying the
Delta method, treating ρ0/ρ1 as fixed and assuming that cov

(
ln(w′(q0), ln(r′1(q0))

)
= 0.

This gives a p-value of 0.000.
31The same conclusions hold if the OLS estimates for the waiting time effect are used

as a lower bound. This gives Ĉ = 2, 948. An alternative way to do the calculation is
to consider what waiting time effect would be optimal relative to the benchmarks for P .
Taking PBK as the benchmark, the marginal impact of elective admissions on waiting
times that would be optimal is approximately 1.5% of the magnitude of my IV estimate.
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It is possible to dissect the estimate of C to gain further intuition for

this result. Two factors contribute to the welfare conclusion. First, while

the crowding effect is a sizeable magnitude when considered in isolation, it

is small relative to the reductions in waiting times that can be achieved by

increases in crowding (i.e. w′(q0)/r′1(q0) is large). Second, the proportion

of the population that affected by the adverse effects of crowding (emer-

gency patients) is small relative to the proportion that benefit from the

reductions in waiting times (elective patients) (i.e. ρ0/ρ1 is also large). For

a randomly selected consumer prior to any hospital admission, this means

that the marginal benefit from the reduction in expected waiting times ex-

ceeds the marginal cost from the increase in the likelihood of experiencing

a readmission.

The results can also be further understood by disaggregating across de-

mographic groups. Figure 2.8 presents estimates of C across the population

split by gender and age categories.32 Looking first at the left panel for

females, it shows that the policies implicitly assume older females value

readmissions relative to waiting times more highly than younger females, by

a factor of around three. This is plausible if readmissions have worse health

impacts for older patients. In comparison, the results in the right panel

for males, shows the opposite result: the policies implicitly assume younger

males value readmissions relative to waiting times more than older males.

Even without knowledge of the true preferences of these sub-populations,

the opposing gradients for males and females in the estimates of C is hard

to rationalise. This suggests another potential inefficiency in the policies

that regulate this trade-off: the distributional allocation of readmissions

and waiting times may also be misallocated across the population.

32These estimates assume that w′(q0) is constant across the population.
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Figure 2.8: Revealed preference estimates of C across the patient population
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Notes: (1) Estimates assume w′(q0) are constant across the population; (2) Size of the
market indicates the proportion of the population in each category.

There are two potential sources of bias in the optimal crowding test. The

first is from the assumption that the covariance term in Equation (2.11) is

negligible. If this covariance is negative and substantial in magnitude, for

example because of baulking, then since w′(q0) < 0 the optimal crowding

condition would state that C > P . In this situation, finding that C > P

does not necessarily indicate that the optimal crowding condition is violated.

The second potential bias is from crowding effects that are not observed in

the data. I focus on readmission outcomes but there may be other crowding

effects in the short-run (e.g. patient satisfaction) and long-run (e.g. hospital-

transmitted infections). Depending on how these other crowding effects

impact elective relative to emergency patients then it may bias my estimates

of C upwards or downwards. Notwithstanding these issues, the magnitude

of the estimated crowding ratio is such that it seems unlikely that these

biases would undermine the marginal welfare conclusion.



80 CHAPTER 2. ARE PUBLIC HOSPITALS OVERCROWDED?

To summarise, the estimates of C and P indicate that the optimal crowd-

ing condition does not hold empirically. This implies that hospitals are not

overcrowded in the sense that further increases in elective admissions are pre-

dicted to improve consumer welfare despite the adverse effects that crowding

would have on patients. These policies changes, however, will have strong

distributional impacts and are predicted to disproportionately benefit older

females and younger males.

2.5 Conclusion

This chapter shows that hospital crowding has adverse effects on patient

health outcomes but that reducing crowding by rationing elective admissions

would have negative impacts on consumer welfare. I identify the crowding

effects from pseudo-random variation in emergency admissions and explore

these effects using rich, linked administrative data. This shows that in-

creases in admissions (‘crowding’) causes patients to be discharged sooner

and readmitted more often. I evaluate hospitals’ incentives to moderate

crowding with rationing elective admissions in a model of consumer welfare.

The data strongly rejects an optimal crowding condition I derive from the

model, implying that the benefits of reducing crowding (fewer readmissions)

do not outweigh the costs of increased waiting times.

These findings highlight an important trade-off that healthcare providers

face when allocating capacity: by admitting more patients the hospital be-

comes more crowded, which has adverse effects on quality of care, but this

reduces the equilibrium queue length, which improves waiting times and

access to care. In the present setting, hospitals’ incentives with respect

to quality of care and access to care do not maximise consumer welfare.

More generally this highlights that policies which target quality or access



2.5. CONCLUSION 81

may have unintended consequences for hospitals managing this trade-off.

A malpractice policy, for example, designed to safeguard quality of care

may encourage hospitals to limit access to care and thereby increase waiting

times; while a policy designed to reduce waiting times, in contrast, may

have negative effects on quality of care because of crowding. These types of

policies can therefore act as substitutes when regulating certain aspects of

hospital quality and access.
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Chapter 3

Efficiency Gains or Quality

Cuts? How Prospective

Payment Can Reduce Health

Care Quality1

Over the past several decades, the reimbursement of healthcare providers

has seen a sharpening of financial incentives. This trend, beginning with

the adoption of Prospective Payment System (PPS) reforms in the U.S.

in the 1980s, has quickened pace in recent years as European health care

systems have adopted similar policies. PPS is a reimbursement scheme that

provides zero compensation on the margin for providing care, and marked

a sharp change from the previous Fee-For-Service (FFS) scheme which fully

compensated providers. Alongside the widespread adoption of PPS, the U.S.

1I thank many healthcare professionals from the English NHS for providing me with
background about the medical procedures I discuss in this chapter. This work was sup-
ported by the Economic and Social Research Council grant number ES/J500185/1. The
data was made available by NHS Digital under data sharing agreement NIC-369748-
C1Y0V.
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and other nations have also began to impose policies that penalise providers

based on performance metrics such as readmission.

Stronger financial incentives have been associated with significant im-

provements along several margins. It has been robustly demonstrated that

PPS led to major reductions in the length of patients’ hospital stays (Cut-

ler and Zeckhauser, 2000; Dranove, 2012), and the Readmission Reduction

Program in the U.S. has at least partially achieved its aims (Gupta, 2017).

Yet there have been long standing concerns with PPS policies (Ellis and

McGuire, 1986) and penalizing outcomes in a health care setting naturally

raises multitasking concerns (Holmstrom and Milgrom, 1991).

Disentangling how these policies have impacted quality is difficult. Causal

evidence is somewhat limited (Acemoglu and Finkelstein, 2008), and hospi-

tals often respond to these policies through a variety of margins. For ex-

ample, in response to readmission penalties, hospitals responded by denying

future admissions (Gupta, 2017) and extending out-of-hospital care (Kocher

and Adashi, 2011), although there is less evidence about their responses

through in-hospital care. Even where there is clear evidence that certain

margins have responded, such as with length of stay and PPS, the paucity

of knowledge on hospitals’ production functions makes it difficult to eval-

uate the impact on quality. Understanding these impacts is important for

the design of future health care policy.

In this chapter I investigate a key aspect of hospital production: the

effects of length of stay in inpatient departments on the likelihood of a

readmission event. I illustrate first how the time spent in hospital can itself

be an important input to the production process, as patients naturally heal

from surgery and likelihood of a future health shock disrupting the recovery

reduces. I then address an identification problem that arises because length
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of stay is set by doctors and is therefore correlated with unobservable patient

characteristics. I deal with this by exploiting the empirical variation in

emergency admissions discussed in Chapter 2. I conclude by discussing the

relevance of these estimates for our understanding of PPS and readmission

penalty policies. In particular, I show that the reductions in length of stay

achieved by PPS may explain a sizeable fraction of the observed increases in

readmissions, and that the incentives created by readmission penalties are

ineffective at mitigating these increases.

Estimating the impact of length of stay on readmission requires address-

ing a standard identification problem in the study of production functions

(Ackerberg et al., 2007). Consider a patient-level production function, where

the patient’s health status is an output and the inputs include length of

stay and hospital treatments (e.g. surgery, nursing care). In a regression

of outputs on inputs, the latter will be endogenous as health care person-

nel allocate inputs to patients based on a number of unobservable patient

characteristics. Even for two identical admitted patients, their health status

may evolve differently during a hospital stay, and this will lead doctors to

allocate more resources to the patient with greater marginal benefits. This

is comparable to the behaviour of a multiproduct firm that allocates inputs

to products with the highest marginal profits.

To resolve the identification problem, I retain the setting of Chapter 2

and exploit variation in the number of emergency admissions each day. As

shown earlier, the shocks to emergency admissions in England induce quasi-

experimental variation in the length of stay of trauma patients. Here I argue

that this variation is suitable for identifying the Local Average Treatment

Effect (LATE) of length of stay on readmission odds. The compliers in this

setting are those patients that are discharged early from hospital due to the



86 CHAPTER 3. EFFICIENCY GAINS OR QUALITY CUTS?

variation in emergency admissions. These patients are the policy relevant

population and the LATE estimates thus provide the appropriate input to

evaluate PPS and readmission penalty policies.

I first present OLS estimates, which suggest length of stay has a statis-

tically significant, positive, but negligible impact on readmission. This is

consistent with the medical literature that has generally found only a weak

correlation between readmission and length of stay (Kaboli et al., 2012;

Vorhies et al., 2011). As I demonstrate in a simple economic model, the

unobservable patient information that doctors use when making discharge

decisions will attenuate the OLS estimates towards zero. Moving to the IV

approach, the results confirm the attenuation bias, and the LATE estimates

show that length of stay has a substantial negative impact on readmission

odds. A one-day increase in length of stay for marginal patients is estimated

to reduce the likelihood of readmission by 1.3 percentage points which, given

some assumptions on the population of marginal patients, amounts to a 6.6%

reduction in the number of readmissions.

To characterise the treatment group implicit in these LATE estimates,

I compare the first-stage estimates across the distribution of patient sever-

ity. I measure severity using predictions from a patient-level regression of

mortality on an exceptionally rich set of individual-level information in the

data. I show a clear pattern in the first-stage estimates: in response to the

emergency shocks, hospitals discharge low-severity patients early while the

length of stay of high-severity patients is generally unchanged. By exploring

the patient-level regression that generates my severity measure, I show that

the compliers are younger than average patients (between 40 and 50 years

old) with injuries such as fractured lower legs and forearms.

Finally, I consider the implications of these estimates for PPS and read-
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mission penalty policies. PPS policies have been shown to reduce length

of stay by up to 25% (Cutler and Zeckhauser, 2000). The estimates here

suggest that reversing these increases may reduce readmissions by around

0.64 percentage points. While this estimate is for a specific patient group,

and part of the reduction in length of stay following PPS is driven by tech-

nological change, the estimate is of a comparable magnitude to the change

in readmissions that followed the introduction of PPS in the U.S. and the

U.K. The implication is that length of stay is one channel through which

PPS may have partially driven the increases in readmission, consistent with

early predictions (Ellis and McGuire, 1986) and evidence (Cutler, 1995).

The implications for readmission penalties are also notable. Using the

estimates, I compute the financial costs and benefits to a hospital of reducing

its readmissions by increasing length of stay. Costs accrue because extend-

ing length of stay leaves less capacity available for discretionary, elective

admissions. This opportunity cost is compared to the benefits that accrue

through fewer readmissions penalties. I show that readmission penalties

create no incentive to adjust length of stay, and in order do so penalties

would need to be at least an order of magnitude higher. This highlights a

drawback of the readmission penalty policy: it may induce low-cost changes

that reduce observable readmissions (e.g. out-of-hospital care) but fail to

induce high-cost changes that improve the quality of care during the initial

hospital visit (e.g. extending length of stay).

These findings underline the importance of the hospital production func-

tion for designing and improving hospital incentive schemes. It makes two

principle contributions to the existing literature. First, by characterising

the length of stay mechanism, I show an important channel relevant to PPS

and readmission penalty policies. These policies have been widely studied
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in past work, with notable examples including Cutler (1995), Acemoglu and

Finkelstein (2008), Gupta (2017), and Kristensen and Sutton (2016). Cut-

ler (1995) studies the introduction of PPS to U.S. hospitals by Medicare,

finding that it led to a trend-increase in readmissions. Gupta (2017) and

Kristensen and Sutton (2016) study the impact of readmission penalties in

the U.S. and U.K. respectively, finding that it reduced readmissions in the

former but had no impact in the latter. Neither readmission penalty study

finds an impact on length of stay. The present chapter offers a convincing

explanation of how PPS may have led to increases in readmissions, and why

readmission penalties may have lacked impact through this causal channel.

The second literature is the study of production functions. From its ori-

gins in firm production (Ackerberg et al., 2007), this framework has proved

exceptionally useful for studying a range of other settings including child

development (Attanasio et al., 2012; Heckman et al., 2010) and education

(Macartney et al., 2015). It is perhaps surprising that there have been fewer

examples in a health care setting, and this chapter provides an example of

how within-firm variation can be used to study these production functions.

The chapter proceeds as follows. Section 3.1 provides background infor-

mation on the policy context and institution setting. Section 3.2 sets out

a simple economic framework of discharge decisions. Section 3.4 presents

the empirical specifications I use. Section 3.5 presents the empirical re-

sults. Section 3.6 discusses the policy implications of the results for PPS

and readmission penalties. Section 3.7 concludes.

3.1 Background

The link between length of stay and readmission is especially relevant

to two major healthcare policies present in the U.S. and a number of other
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countries. In this section I first describe those two policies and the related

evidence, and then turn to the setting in England that I focus on for the

empirical application.

3.1.1 Prospective payment systems

A Prospective Payment System (PPS) is a form of price regulation for

hospitals. It specifies that hospitals receive fixed prices for hospital admis-

sions, where the price depends on the diagnosis of the patient. PPS was first

introduced for Medicare payments in U.S. hospitals in 1983 and has since

been adopted in other areas of U.S. healthcare provision (e.g. psychiatric

care, long-term care) as well as in other healthcare systems. In England,

for example, a PPS tariff was implemented for the majority of hospital pay-

ments in 2006.

The prevalent reimbursement system in the U.S. and England prior to

PPS was Fee-For-Service (FFS). FFS tariffs specify that hospitals costs are

fully reimbursed. The adoption of PPS therefore marked a major change in

incentives: under FFS providers were compensated on the margin for care,

whereas under PPS there is zero marginal compensation. As one might

expect, PPS was introduced to control growing healthcare costs owing to

the cost-control incentives it places on providers.

Numerous empirical studies have assessed the impact of PPS adoption,

a literature comprehensively reviewed by Cutler and Zeckhauser (2000) and

Dranove (2012). One of the most consistent findings from this literature is

that PPS is associated with major reductions in length of stay. As Cutler and

Zeckhauser (2000) write, ‘The effect of prospective payment on hospital stays

is uniformly strong and impressive; many studies find reductions of 20 to 25

percent over a period of 5 years or less. These studies provide among the
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clearest evidence that supply-side reimbursement changes do affect medical

treatments.’

A common concern with PPS reimbursement, however, is that it may

lead hospitals to discharge patients ‘quicker and sicker’ (Morrisey et al.,

1988). This concept was formalised by Ellis and McGuire (1986), who

showed unless physicians act as perfect agents for their patients, then they

will have an incentive to underprovide levels of care. These concerns have

only been partially borne out in empirical studies. Cutler and Zeckhauser

(2000) and Dranove (2012) both conclude that, under certain conditions,

PPS has been shown to impact quality negatively. Yet as Acemoglu and

Finkelstein (2008) point out, much of this evidence comes from studies that

rely on aggregate data and time-series comparisons. Cutler (1995) is a no-

table exception, and studies the roll-out of PPS to U.S. hospitals by exploit-

ing the differential impact of PPS across hospitals. He finds that PPS led

to a change in the time profile of patient mortality but did not affect the

overall level of mortality, and PPS led to a trend-increase in the number of

readmissions.

Alongside these length of stay and readmission impacts, Cutler and Zeck-

hauser (2000) and Dranove (2012) report a multitude of evidence on other

responses to PPS adoption. This includes labour inputs and admissions, and

Acemoglu and Finkelstein (2008) also find evidence of increased technology

adoption. This combination of responses to PPS adoption make it difficult

to uncover the mechanisms through which PPS impacts readmissions.

3.1.2 Readmission penalties

The impact of PPS on readmissions is related to recent policy changes

that have seen ‘unplanned readmission’ increasingly used as a measure of
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quality. Unplanned readmission events (‘readmissions’ hereafter) are de-

fined as occurring when a patient returns to hospital and is admitted as

an emergency inpatient within a narrow window (often 30 days) after being

discharged from an initial hospital admission. Under PPS, readmissions gen-

erate additional revenue for the hospital. To the extent that readmissions

are a marker of poor quality of care in the initial admission, PPS therefore

rewards these episodes of poor quality.

Healthcare regulators have recently endorsed readmission as a quality

measure by imposing penalties based on these measures. The Centres for

Medicare and Medicaid Services (CMS) in the U.S. and NHS Improvement

(NHSI) in England have both implemented policies in recent years. These

policies aim to withdraw PPS payments associated with readmission events

for hospitals with ‘high’ levels of readmissions. While the CMS and NHSI

policies share this common principle, they differ in how the penalty is imple-

mented particularly with regard to how ‘high’ is defined.2 The penalties can

be large: the CMS policy, for example, can be up to 3 per cent of hospital

revenues, and in 2015 this resulted in fines totalling $420 million.3,4

These policies have been controversial. Proponents argue that it acts to

correct incentive problems with readmissions under PPS, and that readmis-

sions are a proxy for quality of care in the initial visit. Critics argue that

readmission is a poor quality measure and is simply a measure of resource

2The CMS penalty calculates the ‘excess readmissions’ at a given hospital rel-
ative to a national benchmark after adjusting for observable patient character-
istics. For further details, see: https://www.cms.gov/Medicare/Medicare-Fee-for-
Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html. The NHSI
penalty in contrast, calculates the excess of ‘avoidable readmissions’ at a given hospital on
the basis of a clinical review of past cases at the same hospital. There are also differences
in scope: the CMS penalty is imposed on a narrow list of conditions (e.g. heart failure, hip
replacement), while the NHSI penalty is imposed on most admissions with only a small
number of carve-outs (e.g. child birth, cancer care).

3https://khn.org/news/a-guide-to-medicare-readmissions-penalties-and-data/
4https://khn.org/news/half-of-nations-hospitals-fail-again-to-escape-medicares-

readmission-penalties/
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utilisation that varies with socio-demographic factors (Kangovi and Grande,

2011). Consistent with this second interpretation, studies have shown that

a substantial proportion of readmits are unavoidable (Axon and Williams,

2011).

Despite numerous studies of readmissions and readmission penalties, it

remains unclear which factors under the control of physicians and hospitals

affect readmission. Gupta (2017), for example, studies the CMS penalty

and finds that the policy reduced the readmission rate for Medicate patients

by 1 percentage point (5% of the baseline). Half of the reduction is caused

by hospitals denying admission to returning patients, but the mechanisms

responsible for the remaining half are unclear. In contrast, Kristensen and

Sutton (2016) study the NHSI policy and find that the policy had no impact

on readmissions or other outcomes.

Intuitively, it seems very plausible that length of stay could drive some

of the readmissions since patients that are discharged very early in their

recovery process would inevitably return to hospital. Yet this does not

preclude there being very little returns to length of stay on the margin, and

this may explain the low correlation between length of stay and readmissions

in existing studies (Kaboli et al., 2012; Vorhies et al., 2011). In this chapter, I

evaluate the relationship between length of stay and readmission using quasi-

experimental variation and test for a causal relationship. To the extent that

there is a causal impact of length of stay on readmission, this has important

implications for the design of readmission penalties, and for how we interpret

the impact of PPS on quality of care.



3.1. BACKGROUND 93

3.1.3 Institutional and medical setting

I study the length of stay and readmission relationship in the context

of the English National Health Service (NHS). A description of the English

system is given in Chapter 2, and it is notable that the payment incentives

include PPS from 2006 and readmission penalties from 2009.

The medical setting that I focus on is the experience of emergency pa-

tients in trauma and orthopaedic departments (‘trauma patients’). These

patients are typically suffering from broken bones. I choose these patients

because the recovery process of the patients is simple and, in combination

with empirical variation I describe below, this setting allows me to examine

how doctor’s discharge decisions influences readmissions.

The most common type of medical intervention for emergency trauma

patients is an ‘open reduction and internal fixation’ (ORIF). This is highly

intrusive surgery that requires exposing the broken bone, reassembling the

bone pieces, and then fixing these pieces together with metal implants (e.g.

screws, plates, pins or rods). The recovery process is then very gradual.

It involves an extended period of not using the injured body part (often a

limb), while it heals over a period of time. For leg injuries this involves bed

rest. The healing process is aided by a course of pain management (e.g.

opioid-based painkillers), regular wound care, and (towards the end of the

process) a course of physiotherapy.

From the perspective of a doctor managing ORIF patients, the post-

surgical recovery process involves monitoring and deciding when to discharge

the patient. The discharge considerations include how well the wound has

healed, the patient’s general health, and the support available outside of the

hospital (e.g. informal care at home, or any transfer to formal care that

is required). Each discharge decision involves a risk assessment that the
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patient can cope without further hospital care.

3.2 Economic framework

I set out a simple model of discharge decisions below and use it to mo-

tivate the empirical analysis. Let the health status of an individual patient

i in hospital after surgery evolve according to

h∗ir = gi(r), (3.1)

where r is the number of periods since surgery and gi(r) is the patient’s

health production function while in hospital. The function gi(r) is assumed

to have the properties g′i(r) > 0 and g′′i (r) < 0, which reflects both the

medical treatments given each period and the natural healing process over

time.

For a patient i discharged in period s, let health status evolve according

to

h∗i,s+t = gi(s) + hi(t) + εit, (3.2)

where t is the number of periods since discharge, gi(s) is the total health pro-

duction prior to discharge, h(t) is the patient’s health production function

outside of hospital, and εit are iid health shocks that occur each period after

discharge. The function hi(t) is assumed to have the properties h′i(t) > 0,

h′′i (t) < 0 and hi(0) = 0.

A readmission will occur after discharge at any point t if

gi(s) + hi(t) + εit ≤ κi, (3.3)

where κi is a threshold at which the patient feels sufficiently unwell to return
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to hospital for further treatment. Readmissions can thus be caused by a

patient being patently discharged too soon, when gi(s) − κi ≤ 0, or by a

substantially large adverse health shock after discharge, when gi(s)−κi > 0

but gi(s) + hi(t)− κi ≤ −εit.

Over a given time period T , the likelihood of a readmission is

Pri(r
T
i = 1 | si, κi) = Pri(h

∗
i,s+0 ≤ κi, h∗i,s+1 ≤ κi,

. . . , h∗i,s+T < κi | si, κi) (3.4)

=
T∏
t=0

Pri(h
∗
i,s+t ≤ κi | si, κi) (3.5)

=
T∏
t=0

Fi(κi − gi(si)− hi(t)), (3.6)

where the second line follows from the iid health shocks and Fi(.) is the cdf

of the health shocks.

I assume doctors maximise an unspecified utility function by deciding

when to discharge patients. The utility function contains the costs and

benefits associated with discharge decisions. Benefits could include the rev-

enues associated with discharging patients (the option value of empty beds)

while costs could include any lost health production that doctors internalise

(such as through readmission penalties). The solution to the doctor problem

will be to discharge patients once the probability of readmission is below a

certain threshold. Specifically doctors set s for each patient such that

Pri(r
T
i = 1 | si, κi) ≤ τ(φ), (3.7)

where τ is a function of a vector of parameters φ that characterise doc-

tors’ preferences and the relevant incentive schemes. For example, φ could

contain the marginal revenue associated with treatment (zero under PPS)
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or the marginal cost of readmissions (positive above the threshold under a

readmission penalty).

It is clear from Equation (3.7) that doctors’ preferences and incentive

schemes, through the function τ(φ), play a key role in shaping discharge

decisions. Take the change to PPS from FFS as an increase in φ. This

reduces the marginal benefit from retaining patients in hospital and will

increase the discharge threshold, τ ′(φ) > 0. By increasing the discharge

threshold, doctors will take more risk by discharging patients earlier and this

will increase readmissions. The link between length of stay and readmission

can be seen directly by differentiating Equation (3.6) to give

∂Pri(r
T
i = 1 | si, κi)
∂si

= −g′i(si)
T∑
t=0

fi(κi − gi(si)− hi(t))

∏
r 6=t

Fi(κi − gi(si)− hi(r)) (3.8)

< 0, (3.9)

where fi(.) is the pdf of the health shocks, and the second line follows by the

assumptions on gi(s). The impact of length of stay on readmission can arise

directly through gi(s), as well as through the properties of the distribution

of εit if this were to depend on s.5 While Equation (3.8) is predicted to be

negative, depending on the shape of the gi(s), the magnitude of the effect

at current levels of s may be close to zero.

The goal of this chapter is to test and quantify this anticipated effect of

length of stay on unplanned readmission. The above model predicts that

this effect will be negative. If this is the case, then it is a mechanism by

which the adoption of PPS tariffs would lead to increases in readmissions,

5For example, the variance of εit may be decreasing in s.
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and a margin by which hospitals could avoid readmissions and readmission

penalties.

3.3 Data

I use administrative data on medical records for inpatient visits from the

Hospital Episodes Statistics (HES). The data sample is taken from Chapter 2

and restricted to emergency patients in trauma and orthopaedic departments

(‘trauma patients’).

Table 3.1 presents summary statistics for the sample of trauma patients.

The average patient is 52 years old, 50% of patients are male, and 85%

are white. Relative to the general population of hospital patients, trauma

patients are generally sicker, with more diagnoses, more previous ED ad-

missions, and a higher likelihood of readmission and death. As discussed

earlier, trauma patients spend substantial time in hospital. The average

length of stay around 8 days, which is around three times longer than the

average hospital patient.

Table 3.1: Summary statistics

Trauma Other Difference, %

Age 52.2 56.3 −7
Male, % 50.3 45.4 11
White, % 85.4 89.5 −5
Diagnosis count 4.2 3.5 21
Co-morbitidities 2.6 2.8 −8
Past ED admits 1.6 1.1 40
Length of stay 7.7 2.6 193
30-day unplanned readmission, % 9.6 8.1 19
30-day in-hospital death, % 2.6 2.4 9

Notes: (1) Trauma patients are defined as those admitted via the emergency department
into trauma and orthopaedic inpatient departments; (2) Co-morbidities defined by the
Charleson index; (3) Past ED admits measured over a 12 month period.
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3.4 Empirical specification

Identifying the impact of length of stay on readmission is complicated by

two issues. The first is that the available data includes only discharged pa-

tients and, because of the discharging process, this results in an endogeneity

problem. To see this, consider a simple regression of readmission (rTi ) on

length of stay (si) that is identified from cross-patient heterogeneity. Here

si will be endogenous because the discharge decision, shown in Equation

(3.7), is based on individual-level factors that will be unobservable in the

regression equation. In general this bias will attenuate the estimated effects

towards zero. The intuition behind this result is that doctors will allow

sicker patients to stay longer, inducing variation in si, but will discharge all

patients at a similar likelihood of readmission. Observable variations in si

are therefore not associated with variations in readmission odds.6

The second issue is one of interpretation since length of stay is a mea-

sure that encapsulates both time and resource use. The potential benefits of

resource inputs are clear since medical treatments are specifically designed

to improve health. But, holding resources constant, time itself may also

be a valuable input to the health production process. Patients naturally

heal while in hospital and as this happens a patient’s health status increases

(through gi(s) in the model) and may also become more stable upon dis-

charge (through F (.) in the model). These returns to time can reduce the

6Consider a simple example where gi(s) = αi ln(s) and there are two otherwise-
identical groups of patients with αa < αb. According to the discharge rule, type b will be
discharged sooner than type a. In the data, there will be variation in si, with sa > sb, but
no variation in readmission odds since both groups are discharged at the same readmis-
sion threshold. In this example a regression of rTi on si will return a coefficient of zero.
In more realistic settings, the same problem will attenuate the estimated effect towards
zero. An alternative approach to dealing with this problem might try to control for the
heterogeneity between patients through observables. Yet even if this were to successfully
control for patient heterogeneity, there would be no variation left in (conditional) length
of stay and the effect of interest would not be identified.
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risk of a health shock outside of hospital causing a readmission. In settings

where the time spent in hospital coincides with intensive medical care, it

can therefore be difficult to interpret how length of stay affects readmission

odds since both time and resources are changing. This interpretation issue

matters because the policy recommendations vary depending on whether

time or resources are important.

The setting adopted here offers an ideal opportunity to address these

issues. With respect to the first issue, as Chapter 2 shows, admission shocks

from new arrivals in trauma and orthopaedic departments create exogenous

variation in trauma patients’ length of stay. This mitigates the first problem

by providing a quasi-experiment: the arrival shocks cause the option value

of empty beds (a component of φ) to vary, and this means that comparable

patients are discharged at different points in their recovery process. The

identification strategy essentially compares the readmission likelihood across

these patients with different hospital stays.

The setting also mitigates the second factor, since emergency trauma pa-

tients have a remarkably simple production function. As explained in section

3.1.3, once surgery has been completed, the recovery process of trauma pa-

tients is largely focussed around recovery time with minimal resource usage.

This provides a simple interpretation of the impact of length of stay: it is

the benefit of further time spent in the hospital healing prior to discharge

while holding resources (approximately) constant.

3.4.1 Baseline specification

I use the following linear specification

rTiht = αd + βdsiht + uiht (3.10)
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where rTiht is an indicator equal to one if patient i at hospital h that is

discharged on day t is readmitted within T days, αd is a fully interacted set

of age-category and diagnosis codes, siht is the length of stay of patient i at

hospital h discharged on day t, and uiht is an error term.

The parameter of interest is βd which is the impact of length of stay

on readmission odds, averaged across patient type d. This parameter is an

approximation to the partial effect shown in Equation (3.8). I use a linear

probability model rather than a non-linear model (e.g. Probit) on the basis

that both offer approximations to Equation (3.8) and the linear probability

model requires fewer assumptions on gi(s) and the error term.

3.4.2 Identification

In general length of stay and the error term will be correlated because of

the discharge decisions of doctors. This implies E[sihtuiht] 6= 0 and precludes

identification of βd from cross-patient heterogeneity. For identification, I in-

stead exploit variation in the emergency admissions each day. As in Chapter

2, I define emergency shocks using the following regression

qht = λhy + φhw + πhd + zht, (3.11)

where q1,hs is the number of emergency admissions at hospital h on day t,

λhy, φhw and πhd are hospital-specific year, weekly-seasonal, and day-of-week

fixed effects (which together comprise the ‘expected emergency admissions’),

and zhs is the ‘emergency shock’.

I use these emergency shocks as an instrument for length of stay in

Equation (3.10). The IV estimator with heterogeneity in βd, and under

appropriate assumptions, will identify the Local Average Treatment Effect
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(LATE). The LATE estimate in this setting can be interpreted as the average

causal effect of length of stay on readmission for compliers, where compliers

are the marginal patients that are discharged as a result of the emergency

shocks. This is the specific group of patients that has policy relevance in

this setting.

The identification assumptions required to obtain the LATE are that: (i)

emergency shocks are random; (ii) emergency shocks are excluded from the

readmission equation; and (iii) emergency shocks have a monotonic effect

on length of stay.

The first of these assumptions is addressed in Chapter 2, where I show

that the shocks are serially uncorrelated and approximate a Poisson process.

The second assumption is also partially addressed in Chapter 2, where I

show that emergency shocks do not affect a number of margins that could

affect readmission outcomes. For example, it shows that hospitals do not

adjust the composition of admitted patients in response to shocks, either

through through ambulance diversion or selective admission decisions in

the ED. It also shows that patients are discharged to the same locations

irrespective of the emergency shock.

There are, however, several margins through which hospitals could re-

spond to emergency shocks that are not observable in the data. My iden-

tification assumption rules out responses along these margins. Examples

include changes to the discharge process, such as the amount of information,

drugs, or equipment provided to the patient at discharge. The responses I

am ruling out include deliberate responses, such as doctors and nurses re-

allocating their time from discharge activities, and other responses such as

mistakes being made during the discharge process.

The final assumption of monotonicity implies that increases in emergency



102 CHAPTER 3. EFFICIENCY GAINS OR QUALITY CUTS?

shocks only cause patients to be discharged early and not late. This is highly

plausible, since hospitals discharge patients to free up capacity in response

to emergency shocks. Delaying discharge would offer no benefits to doctors

trying to alleviate capacity constraints.

Under these assumptions, IV will deliver LATE estimates that reflect

the average causal effect of length of stay on readmission for the marginal

patients discharged by doctors.

3.4.3 Estimation

I estimate the model using standard IV techniques. I regress rTiht on αd,

siht and the fixed effects in Equation (3.11), and instrument for siht with

qht. This is equivalent to computing zht from Equation (3.11) and then using

this as an instrument for siht in Equation (3.10). Owing to the large number

of fixed effects, I implement the IV estimator using the reghdfe package in

Stata (Correia, 2016). Standard errors are clustered at the hospital level

(149 clusters).

3.5 Results

I begin by report estimates from the baseline specification of the LATE.

I then explore variation in patient severity to characterise the compliers that

the treatment effects I estimate relate to.

3.5.1 Baseline estimates

Table 3.2 presents the baseline regression estimates. Column 1 and

2 report OLS estimates, and Columns 3 through 5 report the first-stage,

reduced-form and IV estimates. Column 1, which is the baseline specifi-

cation excluding all fixed effects and estimated by OLS, reports a positive
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and statistically significant impact of length of stay on readmission, but the

magnitude of this effect is negligible. A one-day increase in length of stay is

estimated to increase readmission odds by 0.12 percentage points (1.3% of

baseline). A similar result is shown in Column 2, which is the OLS estimates

of the full baseline specification. The OLS estimates therefore suggest that

either there is no return to length of stay on the margin, either suggesting

that hospitals are inefficient (such that they could achieve similar readmis-

sion outcomes with shorter stays) or that the OLS estimates being biased

towards zero (as hypothesised in Section 3.4).

The IV estimates explore these two possibilities. Column 3 reports the

first-stage regression of length of stay on emergency admissions. The es-

timates show that the emergency shock instrument is strong: there is a

negative and statistically significant impact of emergency shocks on length

of stay, and with a large F-statistic of over 200. Column 4 reports the

reduced-form regression, which mirrors the key result in Chapter 2, showing

that emergency shocks are associated with increases in readmissions. Fi-

nally, Column 5 presents the IV estimates which show that the impact of

length of stay on readmission is negative and statistically significant. The

magnitude of the estimate is large: the LATE estimate indicates that a one-

day increase in length of stay across marginal patients is estimated to reduce

readmission odds by 1.3 percentage points.

These IV estimates show that length of stay does have a causal impact

on readmission at least for the marginal patients. The OLS estimates in

contrast, which indicated no causal impact, are biased towards zero in a

manner consistent with the model of discharge decisions in Section 3.2. This

provides one explanation for why estimates in the medical literature have

found no association with readmissions and length of stay.
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Table 3.2: Estimated effects of emergency admissions on health outcomes

Dependent variable Readmission Length of stay Readmission

Specification OLS First stage Reduced form IV
(1) (2) (3) (4) (5)

Length of stay, days 0.120∗∗∗ 0.042∗∗∗ −1.274∗∗∗

(0.006) (0.004) (0.234)
Emergency admissions per day −0.064∗∗∗ 0.081∗∗∗

(0.004) (0.015)

Age-diagnosis fixed effects X X X X
Hospital-season fixed effects X X X X

N 1,553,278 1,540,716 1,540,716 1,540,716 1,540,716

Notes: (1) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level; (2) Standard errors clustered at the hospital-level (149 clusters).
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3.5.2 Compliers

I now turn attention to the marginal patients that are implicit in the

IV estimate. These patients are the compliers in the LATE delivered by

the IV estimator. To help characterise these patients, I estimate the first-

stage regression across quantiles of patient severity. To proxy for severity, I

calculate predicted mortality using a regression of 30-day in-hospital death

on a fully interacted set of age and diagnosis fixed effects, as well as controls

for ethnicity, co-morbidities, past ED admits, and the number of diagnoses.

I then group patients into 50 quantiles.

Figure 3.1 presents the results of this exercise. The plot shows that the

magnitude of the first-stage coefficient declines with predicted mortality.

Those with very low risk of death have an estimated first-stage coefficient of

around -0.1, while those at the high end of risk have an estimated coefficient

near to zero. This is consistent with hospitals discharging patients according

to the expected mortality risk.

The implication for the interpretation of the IV estimates is that the

compliers are generally patients at low risk of death. To further characterise

these patients, Figure 3.2 plots the average age of each diagnosis group across

the severity distribution, where I aggregate the previous severity quantiles

into 10 categories. The size of the markers in the plot shows the number

of admissions for each diagnosis. The largest four diagnosis groups–injuries

to the hip/thigh, knee/lower leg, elbow/forearm, and wrist/hand–are high-

lighted in colour.

At the lower end of the severity distribution, patients are typically aged

40 to 60, and most often suffering from knee/lower leg and elbow/forearm

injuries. Most of these patients will have fractured bones and have received

ORIF procedures. These are the compliers for whom the LATE estimates
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Figure 3.1: First-stage estimates by patient severity
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Notes: (1) Severity defined as predicted 30-day in-hospital mortality, calculated from a
regression of mortality on a series of fully interacted age and diagnosis categories, as well
covariates for age, ethnicity, diagnosis count, past ED admits, and co-morbidities.

relate to.

At the high end of the severity distribution, patients are older, on av-

erage above 70, and most are suffering from hip and thigh injuries. The

most common injury is a broken hip. These elderly and high risk patients

are rarely being discharged in response to the emergency shocks and thus

contribute very little to the LATE estimates.

3.6 Policy implications

I now assess the quantitative importance of the estimated relationship

for PPS and readmission penalty policies. While I do not characterise the
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Figure 3.2: Diagnosis types by patient severity and age
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Notes: (1) Each circle corresponds to a two-digit ICD-10 diagnosis category, where the
size of the circle represents the number of admissions; (2) Highlighted circles correspond
to the most common categories of injury, and these commonly involve fractures and
ORIF procedures; (3) Severity defined as predicted 30-day in-hospital mortality,
calculated from a regression of mortality on a series of fully interacted age and diagnosis
categories, as well covariates for age, ethnicity, diagnosis count, past ED admits, and
co-morbidities; (4) Severity aggregated into 10 quantiles for illustration purposes.

weighting function implicit in the average causal responses I estimate (An-

grist and Krueger, 1999), for the purposes of these calculations I assume that

compliers can be roughly characterised as the patients with below-median

predicted mortality (i.e. those patients with the largest first-stage estimates

in Figure 3.1). These patients have a readmission rate of 8.2% and a length

of stay of 4.2 days.
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3.6.1 Prospective payment systems

The LATE estimates highlight a mechanism by which PPS can drive

increases in readmissions. To get a sense of the potential magnitude of the

PPS impact, consider the benchmark from Cutler and Zeckhauser (2000)

that PPS is estimated to have reduced length of stay by 20 to 25%. I as-

sume that this reduction in hospital stays came from efficiencies and not

technological change. This approach will overstate the impact of PPS, since

some technological change reduced length of stay without impairing read-

mission outcomes (Kehlet, 2013), and so the estimates I discuss provide an

upper bound estimate on the potential impact of PPS on readmissions.

Reducing length of stay by 25% for marginal patients is roughly equiv-

alent to a one-day decrease. This is predicted to increase the likelihood

of readmission for these patients by around 1.3 percentage points, or 16%

relative to their baseline readmission rate. At the aggregate, given the as-

sumptions on marginal patients and if the readmission rate of other patients

is unchanged, the readmission rate would drop by 0.64 percentage points

(6.6% relative to baseline).

Comparing this estimate to trends in readmissions around the introduc-

tion of PPS in the U.S. and the U.K. is intriguing. The increase in 30-day

readmission in England for trauma patients was 1.6 percentage points over

2006 through 2013, while the increase in 6-month readmission for Medicare

patients in the U.S. was approximately 1.4 percentage points over 1981 to

1988 (Cutler, 1995). These changes are of a similar magnitude to the esti-

mates presented in this chapter. It is therefore at least plausible that the

length of stay mechanism may explain a sizeable fraction of the growth in

readmissions since PPS was imposed.
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3.6.2 Readmission penalties

The estimates also have important implications for the design of read-

mission penalties. With length of stay being a salient mechanism that deter-

mines readmissions, it is possible to evaluate whether the penalties create a

sufficient incentive to cause hospitals to respond through the length of stay

margin.

To evaluate this I estimate the financial consequences of extending length

of stay for marginal trauma patients. A revenue loss occurs because increas-

ing hospital stays for emergency patients means less capacity is available

for elective admissions and fewer admissions will mean a reduction in the

associated PPS payments. A revenue gain occurs because longer hospital

stays will reduce readmissions and the hospital will therefore incur fewer

penalties.

I adopt a scenario in which hospitals increase the average length of stay

of marginal patients by 0.43 days. This is equivalent to the change in length

of stay caused by a one standard deviation emergency shock, a benchmark

that captures the variation in length of stay that hospitals routinely make.

A change of this magnitude is predicted to reduce readmissions for marginal

patients by 0.55 percentage points or, given the volume of marginal patients,

534 readmission events per annum. At an average readmission PPS payment

of £2,014, and assuming full incidence of the penalty, hospitals will avoid

penalties of around £1 million per annum. Fewer readmissions also pro-

vides some spare capacity in the future, since less patients are returning to

hospital, and this is estimated to create an additional 3,912 bed-days per

annum.

To obtain the net impact on the required bed-days, the increase in spare

capacity needs to be offset by the longer stays of trauma patients. These
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longer stays are estimated to increase the required by bed-days by 41,744

per annum, meaning there is a net increase in bed-days of 37,832 per annum.

Given an average elective patients length of stay (1.9 days) and the average

PPS payment for these patients (£2,507), by extending the length of stay of

trauma patients hospitals would forgo approximately £50 million in revenue

(0.07% of total revenue across all NHS hospitals).

Readmission penalties, as currently designed, therefore create no incen-

tive to increase length of stay to avoid readmissions: the costs of doing this

are approximately 50 times as high as the benefits. This calculation also

overstates the benefits, since readmission penalties in practice operate at

less than full incidence.

This exercise highlights two policy implications for the design of read-

mission penalties. First, to influence the length of stay margin readmission

penalties would need to be at least an order of magnitude higher. Second,

the penalty for readmissions should be linked to the value of PPS payments

for patients that are substitutable for readmissions (elective admissions)

rather than the PPS payments of the readmission events themselves.

3.7 Conclusion

Health care providers are increasingly being subject to stronger financial

incentives. This has led to major successes, often interpreted as efficiency

gains, but has also raised concerns about the potential impacts on quality

of care. Underlying many of these concerns is the multitasking idea: the

difficulties measuring health outcomes could mean health care providers re-

spond to strong incentive schemes by switching effort away from tasks that

benefit unobservable dimensions of health towards tasks that benefit the ob-

servable dimensions of health specified in the incentive scheme (Holmstrom



3.7. CONCLUSION 111

and Milgrom, 1991).

I study one part of the production process: how length of stay affects

the likelihood of readmission. Understanding this relationship is important

for how we think about two major reforms: PPS-style reimbursement tariffs

and readmission penalties. Identifying the impact of length of stay requires

quasi-experimental variation in this input, analogous to the study of firm

production functions. I exploit variation in the emergency admissions which,

under capacity constraints in the English setting, generate the required vari-

ation in length of stay. I argue that this variation meets the requirement

needed to identify local treatment effects of early discharge.

I find that length of stay is a critical input to readmission outcomes. In-

creasing length of stay can substantially reduce the frequency of readmission

events, and thus represents a straightforward adjustment to the production

process that improves quality of care. Increasing length of stay by one-day

for marginal patients could reduce readmissions by as much as 6.6%. The

marginal patients that these estimates relate to in my setting are typically

patients aged between 40 and 60 suffering from injuries such as fractured

forearms and lower legs.

These estimates provide a convincing explanation for how PPS and read-

mission penalty policies have affected quality of care. The reductions in

length of stay spurred by the adoption of PPS tariffs may have caused at

least part of the subsequent increase in readmissions observed in the U.S.

and U.K.. In contrast, length of stay has proven to be unaffected by the

introduction of readmission penalties, a surprising fact once it is acknowl-

edged that this is one margin for reducing readmissions. I show that these

penalties are too weak to incentivise responses through the length of stay

margin, primarily because the opportunity cost of scarce bed-capacity is
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high.

Overall this chapter underlines the importance of understanding the

health care production process for designing policies and understanding the

effects on welfare. The increasing availability of administrative data has

begun to shed light on these processes although much remains to be done.



Chapter 4

Saving Lives by Tying

Hands: The Unexpected

Effects of Constraining

Health Care Providers1

Perhaps the most complicated node of health delivery in any modern

health care system is the emergency department (ED). Patients arrive at

the ED with a wide array of different problems. ED nurses and physicians

must quickly assess where patients should slot in what can be a very large

queue, deciding almost instantly who needs to be treated right away and who

can wait. And ultimately these providers need to decide whether those going

1This chapter is joint work with Jonathan Gruber (MIT) and George Stoye (UCL).
Each author contributed equally. We thank Richard Blundell, Aureo de Paula, Eric
French, Peter Hull, and Henrik Kleven for useful comments, as well as seminar partic-
ipants at the Institute for Fiscal Studies, MIT, and UCL. The authors thank NHS Digital
and the Office for National Statistics for access to the Hospital Episode Statistics and
official mortality statistics under data sharing agreement CON-205762-B8S7B. Hoe and
Stoye gratefully acknowledge financial support from the UK Economic and Social Research
Council through the Centre for the Microeconomic Analysis of Public Policy (CPP) at
IFS (ES/M010147/1).
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to the ED are to be admitted to the hospital or sent back to their homes –

a decision that can, in many instances, have life or death consequences.

Despite its critical role, EDs often face budgetary pressures and a short-

fall in resources. These pressures have been especially acute in recent years,

with ED performance having been described as an international crisis in

several developed economies (Hoot and Aronsky, 2008). Practising doctors

are especially vocal, referring to ‘battlefield medicine’ and ‘third world con-

ditions’ caused by ED overcrowding in England.2 Alongside these tensions,

EDs are increasingly facing public pressure to advertise and reduce their

wait times. U.S. cities are replete with digital billboards highlighting wait

times at local EDs. And other nations use regulatory and financial tools to

reward reductions, or penalize increases, in wait times.

Many are concerned that external pressures on wait times could reduce

the ability of EDs to maximize the quality of the care that they provide. At

the same time, however, it is not clear that ED personnel would maximize

patient quality in the absence of such pressures. Emergency rooms are not

compensated on the margin based on wait times. Moreover, while health-

maximizing ED personnel will internalize the costs of waiting to the extent

that they impact patient outcomes, this will be imperfect in the presence

of uncertainty and may not account for patient well-being beyond health

outcomes. Theoretical ambiguities such as this have motivated a growing

number of empirical studies of hospital production in the ED setting (Chan,

2016, 2017; Gowrisankaran et al., 2017; Silver, 2016).

The ‘four-hour wait’ policy in the England provides a natural environ-

ment in which to address this critical question. This policy was first an-

nounced in 2000 as part of a wide ranging set of government pledges to

2https://www.nytimes.com/2018/01/03/world/europe/uk-national-health-
service.html?smid=tw-share& r=0
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decrease wait times for different types of care, and came into force in all

English public hospitals in 2004.3 The policy set arbitrary targets for wait

times, initially requiring that 98% of all patients be treated within four hours

of arrival. The ability of hospitals to meet this target became an important

part of overall hospital evaluation in England, with managers in some cases

losing their jobs because of poor wait time performance. In addition, there

were strong financial penalties associated with breaching the target – hos-

pitals were penalized by an amount that was more than twice the average

revenue of an ED patient, and total fines for missing ED and elective wait

time targets were equivalent to a third of hospital deficits.

This policy has been controversial. Some stakeholders have argued that

the focus on patient wait times has improved patient care. As one ED nurse

quoted in Mortimore and Cooper (2007) said, “it was worse [before the

targets were introduced], definitely it just seemed to be more hectic, there

were people on trolleys for 12 hours and you’d leave here at 8pm and come

back in the morning and there would still be some patients here”. Others

have argued that care quality has been sacrificed. One medical student

stated, “patients are no longer known by their names or by their conditions,

they’re not even known by a number, patients are referred to by their time.

By this I mean how long they’ve been in the department, as soon as a patient

ticks past 3 hours their name lights up like a Christmas tree. If their stay

approaches 3 hours 30, the managers start to appear, they don’t actually

care about Mr Jones who is having a heart attack. He’s got to go, wherever

it may be, as long as it’s not ED”.

Despite the controversy, there is little consistent evidence from either the

UK or other nations that have introduced wait time targets on the impact

3Other targets included maximum limits on wait times for elective surgery.
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of those targets on patient costs and health outcomes. This is because the

policies are generally introduced nation-wide, with no ‘hold-out’ or control

populations, making it impossible to apply quasi-experimental methods such

as difference-in-difference estimation. An additional challenge in the case of

the English wait time policy is that no systematic data on wait times are

available before the policy was introduced in 2004.

In this chapter we take a different approach. We apply the bunching

techniques that have been used widely in other contexts (see Kleven, 2016)

to analyze wait times and outcomes. This approach allows us to model how

the four-hour target impacts wait times, costs and outcomes, conditional on

the underlying hospital technology in place to monitor patient wait times.

That is, we estimate here the short term impact of changing wait times, but

hold constant the underlying technological changes that might be associated

with the introduction or removal of a wait time target. This counterfactual

focuses attention on the impact of incentives rather than technology adop-

tion.

We initially examine the distribution of wait times around the four-hour

target, finding a very large spike right at four hours. We then turn to es-

timating counterfactual distributions of wait times in order to measure the

effect of the four-hour policy. We estimate that, relative to the counterfac-

tual, the four-hour target led wait times to be 19 minutes (8%) lower for

patients affected by the policy.

We then use these data to study the impact of the policy on patient

treatment and outcomes. Without pre-period data and exogenous variation

in policy effects across hospitals, we cannot directly use data on treatments

and outcomes to identify policy effects. But we argue that under a set of

minimal and testable assumptions we can directly identify policy effects from
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bunching at the four-hour target.

In particular, to assess the impact of the target on outcomes such as

hospital admissions and mortality, we need to separate a ‘composition effect’

(because some patients are moved from after to before four hours of wait time

due to the target, and they may not be randomly chosen) and a ‘distortion

effect’ (the target itself may have a direct distortion on the treatment of

randomly chosen patients). To separately identify the distortion effect, we

estimate a ‘composition-adjusted counterfactual outcome’ by imposing a

‘no-selection’ assumption on the distribution of patients that obtain shorter

wait times because of the policy. We can test this assumption directly

using patient observables, showing that along multiple dimensions there is

no difference between these and other patients.

We estimate that there is a significant distortion effect of the English

policy. We find that there is more intensive testing of patients in the ED,

leading to a modest rise in ED costs. We also find that there is a significant

increase in hospital admissions as a means of meeting the target, with cor-

responding reductions in those discharged to home. Among those marginal

admits, inpatient resource use is insignificant, suggesting that such admis-

sions were just placeholders to meet the four-hour target. These admissions

were not costless, however, and we estimate that inpatient payments from

the government to hospitals rose by roughly 5% due to the target.

Most interestingly, we find significant improvements in patient outcomes

associated with the four hour policy. We estimate that 30-day patient mor-

tality falls by 14% among patients who are impacted by the wait time change,

a very sizeable positive effect. This effect falls slightly over time while base-

line mortality rises, so that by one year after ED admission this amounts to

a 3% mortality reduction, which is still quite large.
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We then turn to understanding the mechanism behind the outcome im-

provement that we observe. To do so we exploit heterogeneity across patient

groups that are affected along different margins. The first is patients of dif-

ferent severity: across severity groups, the four-hour policy is associated

with differential impacts on wait times, but not admission probabilities.

The second is patients facing different levels of crowding of the inpatient de-

partment when they arrive at the ED: across different levels of crowding, the

four-hour policy is associated with differential impacts on admission prob-

abilities but little variation in the wait times impacts. We then show that

the mortality effect we estimate varies strongly across patient severity, but

not across inpatient crowding. Taken together, this evidence suggests that

it is the wait time mechanism, and not the admissions mechanism, that is

driving our mortality effect.

We contribute to two literatures. First, there is a growing literature that

has begun documenting features of hospital production relevant for incentive

setting (Chan, 2016, 2017; Gowrisankaran et al., 2017; Silver, 2016). Chan

(2016) and Chan (2017), for example, study how ED physicians respond to

team environments and work schedules, while Silver (2016) studies peer ef-

fects in the ED. Gowrisankaran et al. (2017) also study the ED and estimate

different measures of physician skill. Adjacent to these studies, a medical

literature has documented robust correlations between mortality rates and

measures of ED crowding and wait times (Hoot and Aronsky, 2008). Our

contribution is to show how ED production is affected when doctors are put

under pressure to make decisions quicker. We find that the wait time pol-

icy generated cost-effective mortality improvements through reduced wait

times but at the expense of distorting medical decisions. These findings

are consistent with the medical literature and highlight that ED wait times



4.1. BACKGROUND 119

are an important input to the health production process. The findings also

illustrate how constraining healthcare providers through regulatory inter-

ventions can improve health outcomes even in the presence of significant

distortions.

The second contribution we make is to the literature using bunching

estimators. From its origins in the tax setting (Saez, 2010; Chetty et al.,

2013; Kleven and Waseem, 2013), these estimators have now been deployed

in other settings such as health insurance (Einav et al., 2015, 2017, 2018),

mortgage markets (Best et al., 2017; Best and Kleven, 2018) and education

(Diamond and Persson, 2016). We apply these estimators in a healthcare

provision setting, adapting them to study outcomes indirectly affected by

a discontinuity in the incentives associated with the running variable, and

devise new empirical tests to evaluate the credibility of the bunching as-

sumptions required in our context.

The chapter proceeds as follows. Section 4.1 provides background infor-

mation on emergency care in England and on the four-hour target policy.

Section 4.2 describes the data. Section 4.3 sets out our methodology, be-

ginning with an overview and followed by the details of our analysis of wait

times, treatment decisions, and health outcomes. Section 4.4 describes our

results for wait times, treatment decisions and health outcomes. Section 4.5

explores heterogeneity and mechanisms. Section 4.6 concludes.

4.1 Background

4.1.1 Emergency care in England

Emergency care in England is publicly funded and is available free at the

point of use for all residents. There is no private market for emergency care.
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The majority of care is provided at emergency departments (EDs) attached

to large, publicly owned hospitals. These major emergency departments

are physician-led providers of 24-hour services, based in specifically built

facilities to treat emergency patients that contain full resuscitation facilities.

In 2011/12, 9.2 million patients made 13.6 million visits to 174 emergency

departments. In addition, 2.1 million patients made an additional 2.7 million

visits to specialist emergency clinics and ‘walk in’ or minor injury centres

where simple treatment is provided for less serious diagnoses; as discussed

below, we exclude patients from these centres due to the minor nature of

their injuries and our results are unaffected if they are included.

EDs provide immediate care to patients. Hospitals are reimbursed by the

government for the care they provide, receiving a nationally fixed payment

for providing certain types of treatment.4 In 2015/16, there were 11 separate

tariffs for ED treatment depending on the severity of the patient and the

type of treatments administered.5 These tariffs ranged from $77 to $272 per

visit.6 Revenue from the ED accounted for 5.3% of total hospital income in

2015/16.7

Treatment in the ED follows one of two pathways depending upon the

method of arrival. Non-ambulance patients register at reception upon ar-

rival, where they must identify themselves and provide basic details of their

condition. Patients then undergo an initial assessment to establish the se-

4Treatments are assigned to a Healthcare Resource Group (HRG), similar to DRGs in
the US, with a set of national tariffs for each HRG announced each year by the Department
of Health.

5https://www.gov.uk/government/publications/confirmation-of-payment-by-results-
pbr-arrangements-for-2012-13

6All cost figures in 2017/18 US Dollars. Figures are deflated using
the UK GDP deflator, and then converted from sterling to dollars using
an exchange rate of 1GBP:1.35USD (US Treasury, 31st Dec 2017, https :
//www.fiscal.treasury.gov/fsreports/rpt/treasRptRateExch/currentRates.htm).

7Figures calculated from the 2015/16 UK Department of Health Reference Costs. See:
https://www.gov.uk/government/publications/nhs-reference-costs-2015-to-2016
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riousness of their condition. This triage process is carried our either by a

specialist triage nurse or doctor, and includes taking a medical history, and,

where appropriate, conducting a basic physical examination of the patient.

Patients are then prioritized according to severity.

Alternatively, patients can arrive at the ED by ambulance following an

emergency call out. In 2011/12, 29.4% of ED patients arrived by ambulance.

For these patients, ambulance staff collect medical details en route, and

report these details to hospital staff upon arrival.8 This information feeds

into a separate triage process, where patients will be categorized by their

severity.

These triage processes sort patients into ‘minor’ and ‘major’ cases. Mi-

nor cases require relatively simple treatment, and can often be treated in

a short space of time. Major cases are often those who arrive by ambu-

lance, although there are some exceptions to this (for example, a patient

with chest pain may arrive independently at the hospital). Major cases will

receive treatment more quickly, as they often present with more severe symp-

toms, but will usually require more treatment and investigations within the

ED, and are therefore likely to spend longer in the ED. Treatment of the

two types often requires the use of different resources (including staff and

machines), and in most large hospitals, treatment for minor conditions will

take place in a separate part of the emergency department (for example, in

the hospital’s ‘urgent care centre’).

Following triage, patients are placed into a queue on the basis of their

severity and time of arrival. Patients are not aware of their position in the

queue. Patients are assigned to individual doctors as they become available.

These doctors will carry out a series of further examinations and tests. The

8Ambulance staff also provide emergency treatment in the ambulance to patients where
required.



122 CHAPTER 4. SAVING LIVES BY TYING HANDS

nature of these investigations depend on the symptoms presented by the

patients, and range from physical examinations to tests such as x-rays or

MRI scans. Patients can also receive treatment in the ED, ranging from

sutures to resuscitation, before being admitted for further treatment in an

inpatient ward, or discharged from the hospital.

4.1.2 The 4-hour target

All public hospitals with EDs in England are subject to a wait time

target. This target specifies that 95% of ED patients must be admitted for

further inpatient treatment, discharged or transferred to another hospital

within four hours of their arrival. The target level was initially set at 98%

when it was first introduced in December 2004, before being relaxed to its

current level in November 2010.9

This target is important to hospitals in two ways. First, the target is

widely used by policy makers and the media as a measure for the wider

performance of the public health service in England.10 Hospital managers

who consistently fail to meet this target are likely to be fired, and therefore

have a strong incentive to organise emergency care in a way that minimises

the number of patients who take more than four hours to treat.

Second, hospitals face significant financial incentives to meet the tar-

get. As the target came into force between March 2004 and March 2005,

hospitals were offered payments (to be used only for hospital investment)

9Interviews with hospital managers, doctors and regulators suggest that it is the ‘four-
hour’ component of the target that matter to hospitals rather than the absolute level of
the target. Hospitals attempt to meet the target on a daily basis, and aim to achieve
the highest proportion possible. This suggests that certain behaviours, such as relaxing
or improving performance in later parts of the reporting period, are unlikely. Consistent
with this, we do not find any systematic evidence of differences in our results by time
period or at different points of the reporting period.

10For example, see http://www.mirror.co.uk/news/uk-news/ae-crisis-exposed-only-
three-9801509.
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if they met the target level early (National Audit Office, 2004). In recent

years, significant financial penalties have been imposed for missing the tar-

get. In 2011/12, hospitals were fined $300 for every patient who failed to be

treated within 4 hours if the hospital missed the overall 95% target during

that week.11 This compares to an average payment of $140 per patient in

the same year. In 2015, a report commissioned by a number of hospitals

indicated that public hospitals paid $325 million in fines due to missed per-

formance targets (including the 4 hour target), with total penalties equal to

around a third of the average deficit of public hospitals in that year.12

Hospital staff therefore face pressure from hospital management to meet

the target. As a result, the organisation of EDs has changed significantly

since the target was introduced.13 Changes include the use of new IT sys-

tems, which track patient wait times in real time. The exact systems vary

by hospital, but will indicate when patients reach particular waiting thresh-

olds (e.g. 3 hours) and alert physicians (for example through changing the

colour of the computer screen).14 Most departments also now employ spe-

cific members of staff to monitor the progress of all patients against the

clock, and to alert physicians that an admission decision is required soon.

11This penalty was decreased to $170 in 2015.
12https://www.theguardian.com/society/2016/mar/29/nhs-bosses-slam-600m-

hospital-fines-over-patient-targets
13Interviews with senior member of the Emergency Care Improvement Programme

(ECIP), a clinically led programme intended to improve the performance of EDs, clearly
describe significant changes to the technology used in EDs since the target was introduced.
One manager in the programme claimed that ”This [the target] is the most monitored part
of the entire healthcare system with software specifically designed for it”.

14One medical student in an ED describes the IT system in the following
way: ”Displayed prominently on an electronic whiteboard is a list of all the pa-
tients currently in A&E and waiting to be seen, and the second a patient ticks
past a 3 hour wait, their name lights up like a Christmas tree in bright red”.
See: https://imamedicalstudentgetmeoutofhere.blogspot.co.uk/2008/03/there-is-338-in-
bay-5.html
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4.2 Data

4.2.1 Hospital Episodes Statistics

Our primary source of data are the Hospital Episode Statistics (HES).

These contain the administrative records of all visits to public hospitals

between April 2011 and March 2013, and include information on both ED

visits and inpatient admissions.15

The ED data record treatment at the visit level, and include information

on the precise time of arrival, initial treatment and the admission decision.

We define ED ‘wait times’ as total time spent in the ED, consistent with

the definition of the policy. This includes time being examined and treated.

We calculate ED wait times as the time elapsed between arrival and the

admission decision.

The data also include a hospital identifier, whether the patient is admit-

ted or discharged, details of basic diagnoses, the number and types of ED

investigations and treatments, whether the patient arrived by ambulance,

and some basic patient characteristics such as age, sex and local area of

residence.

Patients are identified by a psuedo-anonymized identifier that allows

patients to be followed over time and across hospitals, and enable linkage

between ED and inpatient records. Inpatient records contain detailed infor-

mation on treatment undergone in the hospital. The data contain the dates

of admission and discharge, and information on up to twenty diagnoses and

procedures undertaken. Treatment is recorded at the episode level, defined

as a period of treatment under the care of a single senior doctor.16 We

15Data on EDs is available prior to 2011, covering 2008 and 2010, although data from
the earlier period is less complete than in the years we study.

16Senior doctors in England are known as ‘consultants’, and are equivalent to attending
physicians in the US.
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combine information across all episodes within the same admission to create

visit-level variables for total length of stay (in days) and number of inpa-

tient procedures. Each episode also contains a Healthcare Resource Group

(HRG) code, similar to Diagnosis Related Groups (DRGs) in the US. English

hospitals are compensated by the government through a system of national

tariffs for each HRG.17 We calculate ‘costs’ for each episode by matching

tariffs to the appropriate HRG, which gives us a measure of the cost to the

government, and revenue received by the hospital, associated with each visit.

We then sum all treatment costs over a 30 day period to estimate the cost

associated with each ED visit and any follow-up treatment.

Mortality outcomes are recorded in administrative records made avail-

able by the UK Office for National Statistics (ONS). These records are linked

to HES through anonymized identifiers based on patient National Insurance

(Social Security) numbers. The data include the date of death for all indi-

viduals who died in the UK, or UK citizens who died abroad, between April

2010 and March 2014. We create indicators of whether a patient dies within

30, 90 and 365 days of an ED visit. An indicator of in-hospital mortality is

also calculated using HES.

Sample construction

Our analysis focuses on a sample of emergency patients treated in ‘major’

emergency departments.18 We exclude patients treated at specialist clinics

that treat only particular diagnoses (e.g. dental) and minor injury (‘walk

17National tariffs are calculated for each HRG on the basis of annual cost reports
submitted by hospitals to the UK Department of Health. These tariffs are meant to reflect
the average cost of providing the procedure. Payments are then adjusted for unavoidable
regional differences in providing care, and unusually long hospital stays.

18Major emergency departments are defined as consultant-led providers of 24-hour
services, based in specifically built facilities to treat emergency patients that contain full
resuscitation facilities.
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in’) centres. Patients treated by these units typically have simple diagnoses

and short wait times, and are therefore unlikely to be affected by the target.

This excludes 18% of emergency visits.

We keep all patients with full information relating to the timing of treat-

ment and their exit route from the ED, in addition to their age, gender and

whether they arrived by ambulance. Dropping patients with some missing

information reduces the number of visits in the sample by 14.5%.19 This

yields an analysis sample of 14.7 million patients, who made 24.7 million

visits to 184 EDs between April 2011 and March 2013.

Summary statistics

Table 4.1 reports summary statistics. The first two columns present the

mean and standard deviation for a range of patient characteristics, treat-

ments and outcomes for all ED patients in the sample. Mean ED patient

age was 39 years, and 51% of patients were male. 29% of patients arrived by

ambulance. 5.8 million visits, or 24% of all ED episodes, resulted in an in-

patient admission at the same hospital. 58% of visits did not require further

hospital treatment and led to a patient being discharged. The remaining

visits resulted in a transfer to an outpatient clinic or another hospital for

further treatment. Mean 30-day treatment costs were $1,676, of which 89%

was accounted for by subsequent inpatient treatment. In the short term,

mortality among ED patients is relatively rare. 2% of patients died within

30 days of visiting the ED. This increases to 3% over a 90 day period, and

5% during the following year.

Table 4.1 also shows summary statistics separately for visits that result

in an inpatient admission. As expected, these case are typically more severe,

19Results are unaffected by the inclusion of patients with full information relating to
treatment times and decisions, but who are missing demographic information.



4.2. DATA 127

Table 4.1: Summary statistics

All patients Admitted inpatients

Mean Std. dev. Mean Std. dev.

Patient characteristics
Age 38.99 26.22 54.64 27.84
Male 0.51 0.50 0.48 0.50
Ambulance arrival 0.29 0.45 0.60 0.49

Treatment decisions
Inpatient admission 0.24 0.42 1.00 0.00
ED discharge 0.58 0.49 0.00 0.00
ED referral 0.19 0.39 0.00 0.00
Wait time (mins) 154.56 100.20 222.50 120.46
ED treatments 1.81 1.38 2.22 1.68
ED investigations 1.54 2.03 3.18 2.50
Inpatient stay (days) 1.28 5.63 5.41 10.58
Inpatient procedures 0.16 0.64 0.69 1.18

Costs
30-day ED cost 172.35 117.21 203.98 114.98
30-day inpatient cost 1, 503.58 5, 321.99 4, 558.00 8, 524.53
30-day total cost 1, 675.93 5, 358.37 4, 761.98 8, 559.73

Mortality outcomes
30-day mortality 0.02 0.13 0.05 0.23
60-day mortality 0.03 0.16 0.09 0.29
365-day mortality 0.05 0.22 0.16 0.37

Notes: (1) Costs reported in 2018 USD and refer to payments from the government to
hospitals based on the prospective payment system; (2) All inpatient variables (e.g.
length of stay, costs) take on the value zero for patients that are not admitted.
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with an older average age (55 years) and twice the likelihood of arriving in

an ambulance (60%). Mortality rates (5% over 30 days, 16% over a year) are

substantially higher than in the main sample. ED treatment is more intense

for this sample, with a higher mean number of treatments and investigations

than in the main sample. Their treatment is also more expensive, with an

average total cost over a 30-day period of $4,762.

Inpatients also experienced longer mean wait times in the ED than those

who are not admitted. Mean wait times were 223 minutes for patients who

were eventually admitted as inpatients, compared to a mean of 155 minutes

for all ED patients. This demonstrates that the level of patient complexity,

and the intensity of treatment for these patients, is likely to vary by wait

time. This variation is important to account for when analysing the impact

of the target.

Figure 4.1 shows the distribution of ED wait times. There is a noticeable

discontinuity in the proportion of patients who exit the ED in the period

immeditely prior to 4 hours. This spike is unlikely to naturally occur, and

is instead induced by the target. We cannot illustrate the absence of this

spike prior to the wait times target, since we do not have systematic data

available from that period. But it is worth noting, as we do in Figure B.4,

that such a spike is not present in data on ED wait times from a major U.S.

hospital.20

One possibility is that this spike in wait times simply reflects recoding

and is not a real change in patient wait times. Two features suggest that this

is not the case. First of all, a sizeable share of hospitals pay large penalties

and are publicly criticized as a result. Indeed, a substantial number of

20Of course, different ED objectives and technologies across countries means that the
U.S. data does not provide a natural comparison group, but the lack of any spike confirms
our conclusion that the large spike here is particular to the wait time policy.
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Figure 4.1: Distribution of wait times
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minutes is the four-hour threshold specified in the policy.

hospitals only just miss the target, with 23% of hospitals missing the target

by less than two percentage points in 2011/12. If recoding explained the

spike then those hospitals should do more recoding to avoid the penalty

altogether. Second, we show below that there are comparable spikes in a

number of real outcomes, such as hospital admissions, costs, and mortality,

which are inconsistent with this simply being a coding response.

4.3 Empirical methodology

We now set out our empirical methodology. We begin with an outline of

our approach and then describe our analysis of wait times followed by our
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analysis of treatment decisions and health outcomes.

4.3.1 Overview

A key challenge when analysing the four-hour target is that without

pre-policy data or a control sample, quasi-experimental methods cannot be

used to construct the counterfactual outcome. To address this issue we use

and extend bunching estimators that were developed in the tax literature

(Saez 2010, Chetty et al. 2013). We argue that these methods can be used

in our setting to estimate the counterfactual outcomes that would occur if

the target were removed but other aspects of hospital production were held

constant. This allows us to quantify the short-run impact of the policy.

We first apply a bunching estimator to the distribution of wait time out-

comes. This involves interpolating how the wait time distribution would

look in the absence of the target. As is typical in other bunching settings,

we make a ‘local effects’ assumption; namely, that the target only affects

the wait time distribution within a certain segment of the distribution. We

argue that this assumption holds if hospitals do not substitute resources

between patients located in different segments of the wait time distribution,

and present empirical evidence that supports this assumption. The esti-

mated counterfactual distribution from the bunching estimator allows us to

quantify the impact of the target on wait times.

We then turn to an analysis of treatment decisions and health outcomes.

Plotting these outcomes conditional on the wait time shows that they also

exhibit ‘bunching’ at the four-hour discontinuity point. Figure 4.2 gives

an example for the likelihood of inpatient admission. The plot shows that

admission odds are generally increasing with wait times, and there is a clear

spike in admission odds at 240 minutes. Our analysis decomposes this spike
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Figure 4.2: Inpatient admission probability conditional on wait time
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into two channels.

The first channel is the ‘composition effect’. As Figure 4.1 suggests,

the target causes a substantial number of patients to be moved from later

to earlier in the distribution of wait times (a group we refer to as ‘post-

threshold movers’). Since admission probabilities are increasing with wait

time, this movement of patients would increase the observed pre-threshold

admission probability even if the target led to no additional admissions. This

effect arises purely because the target changes the composition of patients

observed at each wait time.

There is also potential for a ‘distortion effect’ if the target has a direct

effect on treatment decisions and health outcomes. The distortion effect
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implies identical patients receive different treatment depending on whether

or not the target is in place. In the case of admissions, for example, it would

imply that part of the spike in observed outcomes is because the target

causes additional admissions, in addition to the composition effect shifting

some admissions from after to before the target.

To decompose these two effects we construct a ‘composition-adjusted

counterfactual’ (CAC). This is the outcome that would occur in the pres-

ence of composition effects but the absence of distortion effects. Since the

observed data contains both effects, the difference between the observed

data and the CAC identifies the distortion effect. Estimates of the distor-

tion effects and tests of whether these are significantly different from zero

are the central results of this chapter.

We construct estimates of the CAC by first showing it can be written

as a weighted average of counterfactual outcomes for patients situated in

different parts of the wait time distribution. We then argue that the re-

quired counterfactual outcomes can be constructed by applying bunching

techniques to the expected outcomes conditional on the wait time.21 This re-

lies on a ‘no-selection’ assumption about the distribution of post-threshold

movers: that those patients moved forward in time are representative of all

post-threshold patients.

To evaluate the validity of the no-selection assumption, we devise a test

based on observable patient characteristics such as age. These variables,

conditional on the wait time, also exhibit bunching at the four-hour point

but in these cases the spike can only be explained by a composition effect

since there is no distortion effect by definition. If the no-selection assumption

21This is in contrast to a typical bunching application that would work with the dis-
tribution of a variable that is subject to a discontinuity in incentives. Here we work with
outcomes conditional on a variable that is subject to a discontinuity in incentives.
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is valid then for these variables the observed data and the CAC should be

equal. Tests of this hypothesis therefore act as a placebo test, where rejection

of the null hypothesis would suggest that the no-selection assumption has

been violated. We pass these placebo tests for a range of demographic

variables.

We proceed by outlining each of these steps and assumptions more for-

mally.

4.3.2 Wait times

Let w be the wait time in minutes, where w∗ = 240 (the target thresh-

old). Denote the density function of w in the targeted regime as ft(w)

where t = {0, 1} signifies whether the function relates to the targeted or

non-targeted regime. We observe data on f1(w) and use a bunching estima-

tor to obtain f0(w).

To implement the bunching estimator we aggregate the data to 10-minute

wait time bins and then interpolate parts of the distribution using a polyno-

mial regression. Following Kleven (2016) we define f̂0(w) ≡
∑p

i=0 β̂iw
i and

obtain the estimates β̂i from the following regression

cj =

p∑
i=0

βi(wj)
i +

w+∑
i=w−

γi1[wj = i] + uj , (4.1)

where cj is the number of individuals in wait time bin j, wj is the maximum

wait time in bin j (e.g. wj = 10 for the 1-10 minute wait time bin, wj = 20

for the 11-20 minute wait time bin, etc), p is the order of the polynomial,

and [w−, w+] is an ‘exclusion window’ that contains w∗ and is the period

during which we assume that the target may have had local effects on the

wait time.
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Equation (4.1) makes the following assumption in relation to the exclu-

sion window.

Assumption 1 (Local wait time effects). Wait times of patients outside of

an ‘exclusion window’, defined locally around the threshold w∗, are unaffected

by the target:

f0(w) = f1(w) ∀w /∈ [w−, w+]. (4.2)

As we explain shortly, this assumption will hold if hospitals do not re-

spond to the target by substituting resources between patients that are inside

and outside of the exclusion window.22

To establish the bounds of the exclusion window, we follow Kleven and

Waseem (2013) and set w− visually by examining when the distribution

changes sharply and determine w+ using an iterative procedure that equates

the excess mass in the period [w−, w∗] with the missing mass in the period

(w∗, w+].23 In the baseline analysis we use a polynomial of order 10 and set

w− = 180. After applying the iterative procedure this produces an upper

cut-off of w+ = 400.

The observed data and our estimated counterfactual distribution are

shown in Figure 4.3, which indicates that the target moves a number of

patients from the post-threshold period to the pre-threshold period (‘post-

threshold movers’). We later use these distributions to estimate the impact

of the target on wait times.

22A comparable assumption is required when using bunching techniques to study tax-
able income responses. In that setting the local effects assumption is often innocuous
because the income distribution is the result of optimization decisions of many unrelated
individuals, with those situated far from the tax scheme discontinuity having no incentive
to adjust their behaviour. In our setting, the distribution of patient wait times is not de-
termined by patients’ decisions but by the decisions of doctors and nurses, and this raises
the concern that there may be an incentive to substitute wait times between patients
across different parts of the wait time distribution.

23This implicitly assumes that the target does not affect patient demand for ED care
in the short-term.
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Figure 4.3: Estimated counterfactual wait time distribution
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Testing for substitution effects

If hospitals respond to the target by substituting time or resources be-

tween patients inside the exclusion window and those outside the window

then Assumption 1 will not hold. A particular concern is that the target may

induce doctors to substitute time or resources from patients typically dis-

charged early in the wait time distribution (often high severity patients with

unambiguous symptoms, e.g. knife attack victims) to patients that might be

at risk of breaching the four-hour target (often high severity patients with

uncertain diagnoses, e.g. headaches). By making this type of substitution,

doctors would extend some shorter wait times in order to treat a greater
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proportion of patients within four-hours and thus perform better relative to

the target. The wait time distributions, with and without the target, would

then differ outside of the exclusion window and violate Assumption 1.

We test for two types of substitution effects. The first is ‘planned substi-

tution’, where the target causes a permanent change in the priority given to

certain types of patients. The second is ‘temporary substitution’, where the

target causes short-term deviations from planned priorities when the ED is

momentarily overrun with patients.

To test for planned substitution effects we exploit variation in expected

volumes of ED arrivals. This variation changes how tightly the target binds

since when there are higher volumes of arrivals the target is more challenging

to meet in relative terms. With planned substitution effects we anticipate

that hospitals would change patient prioritisation across periods that are

expected to be more or less busy. While the volume of arrivals may be

correlated with other factors, such as the number of doctors scheduled to be

on shift, this would not necessarily impact the patient prioritisation that we

compare in this test.24

Figure 4.4 plots average wait times for each percentile of predicted mor-

tality (as a measure of severity) for patients that arrive during ‘busy’ and

‘non-busy’ periods. We define busy periods by first predicting the number of

patients present in the ED during each hour in our data, using a regression

with hospital-specific week-of-year, day-of-week, and hour-of-day fixed ef-

fects. We then divide periods into the top-third of predicted volumes (busy)

and bottom-third of predicted volumes (non-busy).

The plot shows that higher severity patients typically have longer wait

24One potential concern could be that any increase in scheduled doctors may offset any
increase in expected arrivals. If we repeat the same test but use shocks to ED arrivals
then we find similar results.
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Figure 4.4: Mean wait times by patient severity and expected volumes of
ED arrivals
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each hour in our data, using a regression with hospital-specific week-of-year,
day-of-week, and hour-of-day fixed effects, and then dividing periods into the top-third
of predicted volumes (busy) and bottom-third of predicted volumes (non-busy).

times, and that busier periods have longer wait times for patients of all

severity. Most importantly for our purposes, the relative wait times of high

and low severity patients are very similar in both types of period. This

suggests that as the target binds more or less tightly, hospitals maintain the

same prioritisation of patients and there are no planned substitution effects.

To test for temporary substitution effects, we examine whether there is

any evidence that hospitals substitute resources away from patients that we

would expect to exit in the early part of the distribution in order to ensure
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that patients approaching the target do not wait over 4 hours. Intuitively, we

compare the wait times of newly arrived patients on the basis of how many

patients in the ED have waited almost four hours. If there are temporary

substitution effects between these individuals, we would anticipate large

effects of the presence of existing patients near the four-hour threshold on

the wait times of new patients.

We examine two groups of newly arriving patients. We first focus on

‘early exit’ patients (those predicted to have wait times below 180 minutes,

such that they exit prior to the exclusion window) and regress their wait

times on the volume of existing patients wait ahead of them at each 10-

minute interval of the queue. We then compare these results to an equivalent

analysis of ‘late exit’ patients (those predicted to have wait times above 180

minutes). The late exit group act as a control group in the sense that

Assumption 1 allows for temporary substitution effects to occur for this

group (inside the exclusion window) but not for the early exit group (outside

the exclusion window). We predict early or late exit using a regression of

wait times on age, gender, diagnosis fixed effects and an ambulance indicator.

To implement the test we aggregate the data to the hospital-period level,

where periods are defined at 10-minute intervals, and estimate the following

equation

wg
ht =

∑
k

βkqh,t−k + µhw + δhd + γhp + eht (4.3)

where wg
ht is the mean wait time for newly arriving patients of type g (early

or late exit) at hospital h in period t (e.g. between 12:01 and 12:10), qh,t−k

is the number of existing patients waiting ahead in the queue at horizon

t − k (e.g. the number of patients that have been waiting 1-10 minutes,

11-20 minutes, and so on), and µhw, δhd and γhp are hospital-specific week-
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of-year, day-of-week, and period-of-day fixed effects.

Figure 4.5 presents the estimated βk coefficients from Equation (4.3).

We normalise coefficients so they can be interpreted as the impact of a one

standard deviation increase in the queue length at each horizon on newly

arriving patients’ wait times. Looking first at the early exit group, the plot

shows that longer queues increase wait times and the impacts decline with

the time horizon. There is no evidence of disproportionate impacts around

the four-hour threshold. Looking now at the late exit group, there is again

evidence of longer queues increasing wait times but for this group there is

clear evidence of a discontinuity at the four-hour threshold. This indicates

that, for the late exit group, doctors actively substitute resources away from

newly arriving patients towards those patients that are at risk of breaching

the target. These results suggest that there are temporary substitution

responses for patients predicted to be within the exclusion window (late

exits) but not for those predicted to be in the earlier part of the distribution

(early exits).

Taken together, Figures 4.4 and 4.5 suggest that there are no planned

substitution responses, and temporary substitution responses do not occur

outside of the exclusion window. This is consistent with Assumption 1.

Interpreting the counterfactual

The counterfactual that the bunching estimator delivers in our context

is the short-run outcome that would occur if the four-hour discontinuity in

incentives were removed. The counterfactual holds constant other aspects

of hospital production, such as patient prioritisation, capital and labour in-

puts, and government funding. As a benchmark, the counterfactual focuses

attention on the role of incentives in determining outcomes rather than the
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Figure 4.5: Impact of queues on wait times for arriving patients by early-
and late-exit groups
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times; (3) Early or late exit is defined using a regression of wait times on age, gender,
diagnosis fixed effects and an ambulance indicator, from which we predict wait times and
group individuals into early (below 180 minutes) and late (above 180 minutes) exit
groups.

specifics of the production function in our setting. We see it as a logical

benchmark for understanding how wait time incentives affect outcomes.

Our counterfactual differs from the pre-policy or long-run outcomes. To

give an example of the difference, we know from anecdotal evidence that the

pre-policy outcome had different production inputs (particularly the volume

of staff) and different production technology (e.g. IT systems). The full

policy impact relative to the pre-policy situation would include the impact

of these changes as well as the discontinuity in incentives introduced by the
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target.

We refer to our results as the ‘impact of the target’ for brevity but with

the above understanding in mind. This interpretation applies to the results

for wait times and other outcomes.

4.3.3 Treatment decisions and mortality outcomes

We now extend the analysis to consider outcomes other than the wait

time, such as treatment decisions (e.g. inpatient admission) and mortality

outcomes. We first introduce some notation to define the different channels

through which the target can affect outcomes and then show how we identify

and estimate the ‘distortion effects’ of the target.

Composition and distortion effects

Letting yt be an outcome (treatment decision or mortality outcome)

and wt be the wait time in regime t ∈ {0, 1}, we define two conditional

expectation functions. The first is E[yt | wt], which is the expected outcome

conditional on the wait time. This allows us to express average outcomes

(either in the targeted or non-targeted regime) for groups of patients located

in different parts of the wait time distribution (either in the targeted or

non-targeted regime). For example, the observed data can be written as

E[y1 | w1]. It is also possible to think about E[y0 | w0], outcomes in the

absence of the target, and combinations such as E[y0 | w1] which are the

outcomes in the non-targeted regime for patients at certain points of the

wait time distribution in the targeted regime.

We also define E[yt | w1, w0], which is the expected outcome for patients

with wait time w1 in the targeted regime and wait time w0 in the non-

targeted regime. This notation allows us to denote outcomes for groups



142 CHAPTER 4. SAVING LIVES BY TYING HANDS

of individuals that have had a change in wait time due to the target. For

example, E[yt | w− < w1 ≤ w∗, w∗ < w0 < w+] is the expected outcome

for post-threshold movers. Since we will repeatedly refer to this and other

related groups, we abbreviate these conditioning inequalities in the following

way: E[yt | w−1 , w
+
0 ].

Using this notation we can decompose the observed outcomes in the pre-

threshold period. Note that, from the wait time analysis, we know that the

target causes a number of patients to shift from the post-threshold to the pre-

threshold period (‘post-threshold movers’). So with the target, outcomes in

the pre-threshold period are a weighted-average of pre-threshold non-movers

and post-threshold movers. Abbreviating the pre-threshold period as w−1 ,

outcomes can be written as

E[y1 | w−1 ] = ρE[y1 | w−1 , w
−
0 ] + (1− ρ)E[y1 | w−1 , w

+
0 ], (4.4)

where ρ ≡
[
F0(w∗)− F0(w−)

]
/
[
F1(w∗)− F1(w−)

]
and Ft is the cdf of wait

times. The parameter ρ is defined by the observed and counterfactual wait

time distributions, where ρ is the proportion of pre-threshold non-movers

and 1− ρ is the proportion of post-threshold movers.

The composition and distortion effects are then defined as follows.

Definition 1 (Composition effect). The composition effect is the change

in expected outcomes conditional on the wait time that occurs in the pre-

threshold period because the target shifts some patients into this period from



4.3. EMPIRICAL METHODOLOGY 143

the post-threshold period:

∆C ≡ ρ
(
E[y0 | w−1 , w

−
0 ]− E[y0 | w−1 , w

−
0 ]
)

+ (1− ρ)
(
E[y0 | w−1 , w

+
0 ]− E[y0 | w−1 , w

−
0 ]
)

(4.5)

= (1− ρ)
(
E[y0 | w−1 , w

+
0 ]− E[y0 | w−1 , w

−
0 ]
)
. (4.6)

Definition 2 (Distortion effect). The distortion effect is the change in ex-

pected outcomes conditional on the wait time that occurs in the pre-threshold

period because the target has a direct effect on the outcomes in each regime:

∆D ≡ρ
(
E[y1 | w−1 , w

−
0 ]− E[y0 | w−1 , w

−
0 ]
)

+ (1− ρ)
(
E[y1 | w−1 , w

+
0 ]− E[y0 | w−1 , w

+
0 ]
)
. (4.7)

With these definitions the observed outcomes in the pre-threshold period

can be written as

E[y1 | w−1 ]︸ ︷︷ ︸
Targeted regime (observed)

= E[y0 | w−0 ]︸ ︷︷ ︸
Non-targeted regime

+ ∆C︸︷︷︸
Composition effect

+ ∆D︸︷︷︸
Distortion effect

(4.8)

which can be verified by substituting in Equations (4.4), (4.6) and (4.7) and

rewriting the non-targeted regime outcome as E[y0 | w−1 , w
−
0 ].

Identification of the distortion effect

To identify the distortion effect we make use of the following definition.

Definition 3 (Composition-adjusted counterfactual). The composition-adjusted

counterfactual (CAC) is the outcomes from the non-targeted regime in the

pre-threshold period that would occur in the presence of the composition ef-
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fect only:

E[y0 | w−1 ] ≡ E[y0 | w−0 ] + ∆C (4.9)

= ρE[y0 | w−1 , w
−
0 ] + (1− ρ)E[y0 | w−1 , w

+
0 ]. (4.10)

where the second line follows from the definition of ∆C .

With this definition it is straightforward to show that the distortion

effect is identified as the difference between the observed data and the CAC:

∆D = E[y1 | w−1 ] − E[y0 | w−1 ]. Moreover, Equation (4.10) shows the CAC

can be constructed as a weighted average of the counterfactual outcomes for

two groups, the pre-threshold non-movers and the post-threshold movers,

where the weights can be constructed from the observed and counterfactual

wait time distributions.

Estimating counterfactual outcomes

We now revisit the bunching estimator and show it can be used to obtain

the counterfactual outcomes in Equation (4.10). We require two assumptions

for this purpose.

Assumption 2 (Local outcome effects). Outcomes outside of an ‘exclusion

window’, defined locally around the threshold w∗, are unaffected by the target:

E[y1 | wt] = E[y0 | wt] ∀w /∈ [w−, w∗ + ε]. (4.11)

Assumption 2 rules out distortion effects outside of the pre-threshold

period. It is the parallel of Assumption 1 for the conditional expectation

function. In this case the exclusion window ends at w∗ + ε, where ε is a

small ‘overhang period’ that extends past the four-hour threshold.
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The overhang period allows for the empirical fact that the bunching in

outcomes extends slightly past the threshold (see Figure 4.2). We interpret

the overhang as being a case of distortion effects for patients that are nar-

rowly discharged or admitted after the threshold. For example, it may be

that doctors admit additional patients in attempts to meet the target but

not all of the excess admits occur prior to the threshold as some patients

may be delayed for unexpected reasons. We determine the size of the over-

hang period visually, setting ε = 20 in the baseline analysis, and note that

our findings are robust to more conservative (larger) overhang periods.25

Assumption 3 (No-selection). Non-targeted regime outcomes conditional

on the wait time are comparable for post-threshold movers and post-threshold

non-movers:

E[y0 | w−1 , w
+
0 ] = E[y0 | w+

1 , w
+
0 ] (4.12)

Assumption 3 rules out composition effects in the post-threshold period.

It states that after conditioning on the wait time, there is no selection when

the post-threshold movers are assigned. This assumption is consistent with

doctors randomly selecting which patients get a shorter wait time in response

to the target. While this is strong assumption we believe it is plausible. For

example, doctors routinely work with incomplete information and this will

be exacerbated when they are forced to make earlier admission or discharge

decisions (e.g. they may not yet have conducted all tests, or received all

test results) and, as a result, may not be able to systematically select which

patients to move forward. Importantly, we are also able to evaluate this

assumption empirically using placebo tests and discuss this further below.

25Our estimates of the distortion effect, which relate to the pre-threshold period, do not
capture distortions in the overhang period. These omitted effects are small: the number
of patients in the overhang period is 1.3% of the number of patients in the pre-threshold
period.
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Figure 4.6: Estimated counterfactual admission probability conditional on
wait times
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival
in the ED to leaving the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes
is the four-hour threshold specified in the policy; (4) The estimated counterfactual is
obtained from a polynomial regression that omits the exclusion window shown in grey.

Together Assumptions 2 and 3 imply that there are no composition or

distortion effects outside of the exclusion window [w−, w∗ + ε]. We can

therefore apply the bunching estimator in the same way as before but to the

conditional expectation function E[y1 | w1]. The estimated counterfactual

delivered by the bunching estimator is then E[y0 | w0]. This directly gives

us E[y0 | w−1 , w
−
0 ] and, given Assumption 3, also provides us with E[y0 |

w−1 , w
+
0 ], which are the two terms required to construct Equation (4.10).

Figure 4.6 presents an example showing the observed data and our es-

timated counterfactual for the likelihood of inpatient admission, where the

exclusion window is highlighted in grey and we have set ε = 20.
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Testing for distortion effects

Recalling the definition ∆D = E[y1 | w−1 ] − E[y0 | w−1 ], and noting

that this can now be constructed from the observed data and Equation

(4.10), the test for distortion effects is simply a hypothesis test that ∆D =

0. Estimates of this difference and tests of this null hypothesis form the

central results of this chapter. We compute statistical significance for the

test using non-parametric bootstrapped standard errors clustered at the

hospital organisation level.26

Figure 4.7 provides a visual example of how we construct the CAC and

the test of distortion effects for the probability of inpatient admission. The

pre- and post-threshold periods are shown in different shades of grey. In

each of these periods the horizontal thin dashed line gives the conditional

expectation in Equation (4.10). The CAC, which is a weighted average of

these two conditional expectations, is shown in the horizontal thick dashed

line in the pre-threshold period.27 In comparison, the horizontal thick solid

line in the pre-threshold period is the mean observed outcome in the pre-

threshold period. Finally, the difference between the thick solid and dashed

line is the distortion effect, ∆D, which shows that the observed admission

probability in the pre-threshold period is too high to be explained by the

composition effect alone. In this case we can reject the null hypothesis that

∆D = 0.

26Throughout the analysis we cluster results at the trust (organisation) level. NHS
trusts include groups of one or more hospitals in close geographical proximitiy that share
common management. We do not use hospital site codes due to some organisations en-
tering data only at the trust level. All results are robust to clustering at the site level.

27The weights are obtained from the wait time distributions shown in Figure 4.3.
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Figure 4.7: Constructing the composition-adjusted counterfactual for admission probability

E[y0 | w* < w0 < w+]

E[y0 | w- < w0 < w*]

CAC: E[y0 | w- < w1 < w*]
Obs.: E[y1 | w- < w1 < w*]
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving the ED; (2) Wait times over 600
minutes not shown; (3) 240 minutes is the four-hour threshold specified in the policy; (4) The horizontal thin dashed lines in the light grey (dark
grey) region give the counterfactual outcome in the pre-threshold (post-threshold) period, E[y0 | w0]; (5) The horizontal thick dashed line in the
pre-threshold period is the composition-adjusted counterfactual, E[y0 | w−1 ]; (6) The horizontal thick solid line in the pre-threshold period is the
observed observed admission probability, E[y1 | w−1 ]; (7) The distortion effect is the gap between the thick solid and dashed line,
∆D = E[y1 | w−1 ]− E[y0 | w−1 ].
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Testing the no-selection assumption

In Assumption 3 we rule out the possibility of non-random selection

of post-threshold movers. By adapting our test for distortion effects, it

is straightforward to generate placebo tests of this assumption based on

observable patient characteristics. The key insight that motivates this is

that observed demographics, such as age or gender, are by definition subject

to composition effects but not distortion effects. Testing the hypothesis that

∆D = 0 for any demographic variable is therefore equivalent to testing the

no-selection assumption.

This ‘demographic test’ acts as a placebo test, since we are testing for

effects in situations where it is known that none should exist. To the extent

that these tests indicate that the no-selection assumption does not hold, our

estimated distortion effects will be a combination of distortion and compo-

sition effects.

Figure 4.8 provides a visual example of the demographic test using age,

which follows the same format as Figure 4.7. There is again bunching at the

four-hour threshold but in this case it cannot be explained by any distortion

effects because patient age is unaffected by hospital treatment decisions.

Comparing the observed data and the CAC shows that these now lie very

close to one another and indeed a hypothesis test cannot reject the null hy-

pothesis that ∆D = 0. This is consistent with the no-selection assumption:

the mean age of post-threshold movers is comparable to the mean age of all

post-threshold patients.
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Figure 4.8: Demographic test of the no-selection assumption using age

E[y0 | w* < w0 < w+]

E[y0 | w- < w0 < w*]
CAC: E[y0 | w- < w1 < w*]
Obs.: E[y1 | w- < w1 < w*]
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving the ED; (2) Wait times over 600
minutes not shown; (3) 240 minutes is the four-hour threshold specified in the policy; (4) The horizontal thin dashed lines in the light grey (dark
grey) region give the counterfactual outcome in the pre-threshold (post-threshold) period, E[y0 | w−0 ]; (5) The horizontal thick dashed line in the
pre-threshold period is the composition-adjusted counterfactual, E[y0 | w−1 ]; (6) The horizontal thick solid line in the pre-threshold period is the
observed observed admission probability, E[y1 | w−1 ]; (7) The distortion effect is the gap between the thick solid and dashed line,
∆D = E[y1 | w−1 ]− E[y0 | w−1 ].
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4.4 Results

We begin this section by first presenting the wait time results. We then

present results from the placebo tests of the no-selection assumption, and

finally turn to the results concerning treatment decisions and mortality out-

comes. We explore the mechanisms behind the mortality outcomes in Sec-

tion 4.5.

4.4.1 Wait times

Figure 4.3 shows the observed wait time distribution and our estimated

counterfactual distribution. The shaded panel is the exclusion window where

we estimate the effects of the policy, covering the period between 180 and

400 minutes. The solid line is the observed distribution of patients that

exit at each interval and the dashed line is the estimated counterfactual

distribution. The effect of the target on exit times is clear: a large proportion

of patients from the post-threshold period (240 to 400 minutes) are moved

to the pre-target period (180 to 240 minutes); these are the patients we

refer to as post-thresholder movers. By comparing the observed wait time

distribution with our counterfacutal we can compute the impact of the target

on average wait times.

The results indicate that the target is successful in achieving its primary

aim of reducing wait times. We estimate that the target reduces mean wait

times by 7 minutes. This is equivalent to 4% of the estimated counterfactual

mean. For patients affected by the target (i.e. in the exclusion window), we

estimate that the target reduces wait times by 19 minutes, or 8% of their

estimated counterfactual mean.
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4.4.2 Demographic tests

Table 4.2 presents the results of the demographic tests. Column (1)

presents estimates of the distortion effect and column (2) presents estimates

of the distortion effect as a proportion of the counterfactual mean. Panel

A presents results using individual demographic variables, where we test

using age, a male indicator, and an indicator for whether the patient arrived

via ambulance. We cannot reject the hypothesis of no distortions for age

and ambulance-arrival, which supports the plausibility of the no-selection

assumption. In contrast, we reject the hypothesis of no distortions for the

male indicator. This result indicates that post-threshold movers are more

likely to be female than the post-threshold non-movers. However, the extent

of this selection effect is small: the difference between the observed and

composition-adjusted counterfactual proportion of females in the pre-target

period is 0.5 percentage points (1.1% of the baseline).

Panel B in Table 4.2 presents results for variables that are linear com-

binations of the three individual demographic variables. We use predicted

admission and predicted mortality, where the predictions are obtained from

linear regressions of the outcome on a fully interacted set of male, age-

category, and ambulance indicators. The R2 statistic from these predicted

regressions is 0.21 and 0.06. The demographic tests for these predicted vari-

ables cannot reject the hypothesis of no distortion. The implication of these

tests is that even though the gender test rejects the hypothesis, the con-

tribution of gender to salient medical outcomes, as measured by predicted

admission and mortality, is low.

Together these results indicate that, with only gender as a minor excep-

tion, the demographic tests support the no selection assumption. In practice

this means that patients observed with wait times in excess of 240 minutes
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Table 4.2: Demographic tests of the no-selection assumption

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

Panel A: Individual characteristics
Age 0.417 0.009 46.468

(0.284) (0.006)
Male −0.005∗∗∗ −0.011∗∗∗ 0.487

(0.001) (0.003)
Ambulance −0.002 −0.005 0.440

(0.004) (0.010)

Panel B: Predicted characteristics
Predicted admission 0.002 0.006 0.323

(0.002) (0.007)
Predicted mortality 0.000 0.015 0.019

(0.000) (0.015)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−1 ]; (2)
Predicted admissions and mortality use regressions with fully interacted variables from
Panel A; (3) Bootstrapped standard errors clustered at the hospital trust level (199
repetitions).

(post-threshold non-movers) are comparable to those patients that would

have had wait times in excess of 240 minutes in the absence of the tar-

get (post-threshold movers), and we can therefore use these post-threshold

non-movers as the counterfactual for the post-threshold movers.

4.4.3 Treatments and mortality outcomes

Table 4.3 presents results of the distortion test for a range of treatment

decisions and costs. Each row shows results for a separate outcome. Col-

umn (1) presents estimates of the distortion effect and column (2) presents

estimates of the distortion effect as a proportion of the counterfactual mean.

Panel A presents estimates for treatment decisions in the ED. We find

that, controlling for compositional changes, there is an increase in the odds
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Table 4.3: Estimated distortion effects of the target on treatment decisions
and costs

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

Panel A: ED treatment decisions
Pr(admission) 0.046∗∗∗ 0.122∗∗∗ 0.379

(0.008) (0.022)
Pr(discharge) −0.033∗∗∗ −0.070∗∗∗ 0.472

(0.007) (0.014)
Pr(referral) −0.013∗∗∗ −0.089∗∗∗ 0.150

(0.003) (0.020)
ED investigations 0.108∗∗ 0.046∗∗ 2.369

(0.048) (0.021)
ED treatments −0.033 −0.016 2.070

(0.028) (0.014)

Panel B: Inpatient treatment decisions
Length of stay (days) 0.035 0.015 2.302

(0.048) (0.021)
Inpatient procedures 0.000 0.001 0.290

(0.006) (0.020)

Panel C: Hospital costs
30-day ED cost 3.040∗∗∗ 0.016∗∗∗ 192.950

(0.911) (0.005)
30-day inpatient cost 125.793∗∗∗ 0.052∗∗∗ 2, 414.087

(33.992) (0.015)
30-day total cost 128.833∗∗∗ 0.049∗∗∗ 2, 607.037

(34.389) (0.014)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−1 ]; (2)
Predicted admissions and mortality use regressions with fully interacted variables from
Panel A; (3) All inpatient variables (e.g. length of stay, costs) take on the value zero for
patients that are not admitted; (4) Bootstrapped standard errors clustered at the
hospital trust level (199 repetitions).
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of admission of 4.6%. This is 12.2% of the baseline composition-adjusted

counterfactual value, which is sizeable. The results for discharges and re-

ferrals out of the ED to specialist clinics or hospitals offset these admission

effects, with roughly three-quarters of the effect coming from decreased dis-

charges, and one-quarter from decreased referrals, although as a percentage

of the baseline these responses are of comparable magnitude.

We also show target affects on the number of investigations performed in

the ED, such as x-rays, blood tests and CT scans. We find that investigations

rose by 0.1 per patient, or 4.6% of the baseline. We do not, however, find

any effect on the number of treatments performed in the ED. This suggests

that doctors perform more tests in order to speed up the admission decision

for individuals (i.e. they perform an extra test instead of monitoring the

patient for a longer period of time) but has little effect on the treatments

that they provide in the ED.

Panel B examines inpatient treatment decisions. For inpatient treat-

ments, in order to avoid selection, we include all ED patients, even those

who did not end up being admitted. As a result, the coefficient represents

the incremental amount of treatment due to the four-hour target. We find

no evidence of any statistically significant increases in length of stay or the

number of procedures. This suggests that the extra admissions do not re-

ceive substantial amounts of care in the hospital. That is, these admissions

appear to be largely placeholders in order to avoid the four-hour target.

Nevertheless, the additional admits are costly. Panel C of Table 2 ex-

amines the impact of the four-hour target on 30-day patient costs. There is

a small rise in ED costs of $3, or 2% of ED costs. But there is a significant

increase in inpatient costs of $126, which is 5% of inpatient costs. That is,

even though most patients appear to be only housed in inpatient depart-
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Table 4.4: Estimated distortion effects of the target on mortality

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

30-day mortality −0.004∗∗∗ −0.138∗∗∗ 0.029
(0.001) (0.019)

90-day mortality −0.004∗∗∗ −0.079∗∗∗ 0.048
(0.001) (0.019)

1-year mortality −0.003∗ −0.031∗ 0.090
(0.002) (0.017)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−1 ]; (2)
Bootstrapped standard errors clustered at the hospital trust level (199 repetitions).

ments as a way of avoiding the four-hour target, these admissions generate

transfers from the government to hospitals. Total costs rise by roughly 5%

relative to the baseline.

Table 4.4 then extends our analysis to look at patient mortality out-

comes. We consider mortality at a variety of time frames, ranging from 30

days after entering the ED to 1 year later. We find significant short term

declines in mortality. Mortality over 30 days declines by 0.4 percent, or 14%

of baseline. This effect fades slightly over time and falls as a share of the

baseline, so that at one year it is only 3.1% of baseline. This pattern sug-

gests that the health benefits of the four-hour policy are seen in the short

term.

This is a sizeable mortality decline given the modest increase in costs

documented in Table 4.3. We find that total costs over 30 days from ad-

mission to the ER rise by 5%, while mortality falls by 3.1% over a year.

Calculating the cost per year of life saved by the policy requires assump-

tions on how long-lasting is the impact on mortality and on any subsequent

costs past 30 days. Assuming no subsequent costs, but also assuming that
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the mortality impact only lasts one year, this implies a cost per year of

life saved of $43,000.28 This is low relative to standard valuations of a life-

year in the U.S., where typical benchmarks are around $100,000 (Cutler,

2003), and at the upper end of valuations in the U.K., where the national

benchmarks are set at $28,000 to $42,000 (McCabe et al., 2008).

In summary, then, our analysis of the four-hour target shows that it led

to shorter wait times, more admission, only marginal additional costs (due

to little use of inpatient care for those admitted), and significant reductions

in mortality. That is, it appears that constraining hospitals did save lives.

4.5 Using Patient Heterogeneity to Identify Mech-

anisms

Our results so far show a number of effects of the wait time target on

patient treatment – on wait times, admission probabilities, and treatment

costs more generally. We also show a significant effect on patient mortality.

Ideally we would like to uncover the mechanism through which the four-hour

target impacts patient mortality. This is difficult since we essentially have

one instrument (the target) and multiple changes in patient treatment.

To address this issue we turn to considering heterogeneous impacts across

types of patients. That is, we examine whether there are groups of patients

where there are differential effects of the four-hour target. If those groups

have effects that are focused along one channel (e.g. wait times) but not

another (e.g. admits), then we can use this to separate the effect of the two

channels on outcomes.

28This reflects the cost to the government of the policy due to the increase in HRG
transfers to hospitals. The actual cost in terms of resource-use will be even lower if the
marginal admissions due to the policy use fewer resources than the average HRG cost.
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In particular, we consider two natural sources of heterogeneity. The

first is differences across diagnosis. In particular, we divide patients into

36 diagnosis groups.29 It seems likely that the largest wait time impacts

of the target will show up for those who have the most severe diagnoses,

since they are the most likely to hit the wait time target. Indeed, Figure

4.9 graphs the proportion of patients hitting the wait time target (in the

counterfactual wait time distribution) against the severity of the diagnosis.

Severity is measured by mean predicted 30-day mortality for patients within

each diagnosis. In fact, we see that the odds of hitting 240 minutes are much

higher for the most severe diagnoses.

We therefore separately compute the wait time reduction effects, and dis-

tortion effects for admissions and 30-day mortality for each diagnosis group.

We then assess how the heterogeneity across diagnosis groups translates to

each of these outcomes.

The results of this exercise are shown in Figure 4.10. Panel A shows

that higher severity diagnoses have larger wait time effects. This is sensible

since they are most likely to wait the longest without the four-hour policy.

But Panel B shows that the effects of the target on hospital admissions is

no higher for more severe diagnoses. That is, the more severe diagnoses

are getting treated sooner, but are no more likely than others to have that

treatment resolve in an extra hospital admission.

Panel C shows the differential treatment effect on mortality by diagnosis

category, where black circles correspond to actual mortality outcomes and

red triangles correspond to predicted mortality outcomes. The y-axis shows

the absolute value of mortality reduction, so that a larger value means a

29The data assign patients to 40 diagnosis categories, including a ‘missing’ category. We
exclude four diagnoses (nerve injuries, electric shock, near drowning and visceral injury)
as small samples do not allow us to separately estimate the impact of the target for these
groups.
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Figure 4.9: Proportion wait beyond the threshold vs. predicted mortality
by diagnosis groups
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Notes: (1) Each data point corresponds to a diagnosis group average; (2) Proportion
waiting beyond the threshold defined using the counterfactual distribution of wait times;
(3) Predicted mortality defined using a regression of 30-day in-hospital mortality on a
fully interacted set of age, gender, ambulance arrival fixed effects and diagnosis fixed
effects.

larger mortality reduction. Looking at the black circles, there is a clear

upward slope showing that the mortality effect of the four-hour target is

strongest for the most severe diagnoses. To ensure that selection is not driv-

ing our result, the graph also repeats this exercise for predicted mortality.

If our assumption of no-selection (Assumption 3) holds, these effects should

not be statistically different from zero. The red triangles shows that this is

indeed the case, with all estimates clustered around zero and no systematic

relationship between the effects of the target on predicted mortality and the

severity of the diagnosis.
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Figure 4.10: Estimated effects of the target vs. predicted mortality by
diagnosis groups
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Notes: (1) Each data point corresponds to a diagnosis group average; (2) Predicted
mortality defined using a regression of 30-day in-hospital mortality on a fully interacted
set of age, gender, ambulance arrival fixed effects and diagnosis fixed effects.
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Given that there is an effect on wait times, but not admissions, this

suggests that it is wait time reductions and not increased admissions that

are driving the results. Of course, this set of corresponding facts do not prove

this causal mechanism because there may be other factors that cause the

effects to differ by diagnosis. So to further test this conclusion we consider

a second source of heterogeneity.

We next turn to heterogeneity by the degree of inpatient crowding. In

times where the inpatient department is more crowded, EDs may be less

able to address their wait time targets by admitting patients because the

inpatient wards have less spare capacity for these patients to be sent. But it

is unclear that inpatient crowding would much affect the marginal wait time

impacts of the target. Inpatient crowding therefore provides an opposite

test of the diagnosis heterogeneity: an opportunity to observe heterogeneity

that drives admission probabilities but not wait times.

To assess this, we divide the data into 50 quantiles depending on how

busy the hospital inpatient department is on the day of admission. For

each hospital-day, we calculate the daily number of inpatients treated by

the hospital, and use this to assign each hospital-day to one of 50 groups

in the hospital-specific distribution of inpatient crowding. Patients are then

assigned to each of these groups depending on their day of arrival.30 To ad-

dress differences in casemix during busy and quiet periods, we also split pa-

tients into two severity groups. ‘Major’ diagnoses are defined as those with a

30-day mortality rate above the overall 30-day mortality rate (1.6%). Inter-

acting the 50 inpatient crowding groups with severity yields 100 groups. For

95 of these groups we have sufficient sample size to independently compute

the effects of the target, and therefore across which to examine heterogeneity

30We calculate the inpatient census at the daily level as the data do not contain infor-
mation on time of arrival at, or discharge from, the inpatient department.



162 CHAPTER 4. SAVING LIVES BY TYING HANDS

in effects.

Figure 4.11 presents the results of this second heterogeneity test. The

figure shows the results for these observations, ranked from least crowded to

most crowded. Panel A shows that inpatient crowding has a weak, positive

relationship with wait times. Panel B shows a strong, negative relationship

between crowded inpatient departments and smaller increases in admission.

So this source of heterogeneity gives the opposite results of what we saw

for severity: a small effect on wait times and a large effect on admissions.

Therefore, if our earlier supposition is correct that it is wait times and not

admissions that drives our mortality effects, we should see little differential

impact on mortality across these groups.

In fact, that is exactly what we see in Panel C in the black circles: there is

no significant relationship between the degree of inpatient crowding and the

estimated mortality effect. As in Figure 4.10c, we repeat this analysis with

estimated reductions in predicted mortality (which should be unaffected by

the target once we adjust for the composition of patients) to show that these

results are not driven by selection. The red triangles show that the predicted

mortality effects are again all close to zero, with no significant relationship

between predicted mortality reductions and inpatient crowding.

We formalize these graphical results in Table 4.5. The unit of analysis

in this table is either diagnosis groups (columns 1-3) or inpatient crowding

by severity (columns 4-6). The dependent variable is the distortion effect on

mortality in absolute value for each group. The independent variables are

the estimated wait time reduction and the distortion effect for admission

probability. Essentially, these regressions report associations between the

estimated impact on mortality and the estimated impact on wait times and

admissions, using a grouping estimator with groups defined by severity or
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Figure 4.11: Estimated effects of the target vs. inpatient crowding by
crowding-severity groups

(a) Wait times reductions
0

5
10

15
W

ai
tin

g 
tim

es
 re

du
ct

io
n 

(m
in

s)

0 10 20 30 40 50
Inpatient crowding (50=most crowded)

(b) Admissions increases

0
5

10
15

In
cr

ea
se

 in
 a

dm
is

si
on

s 
(p

pt
s)

0 10 20 30 40 50
Inpatient crowding (50=most crowded)

(c) Mortality reductions

-2
-1

0
1

2
M

or
ta

lit
y 

re
du

ct
io

n 
(p

pt
s)

0 10 20 30 40 50
Inpatient crowding (50=most crowded)

Predicted mortality Observed mortality

Notes: (1) Each data point corresponds to a crowding-severity group average; (2)
Predicted mortality defined using a regression of 30-day in-hospital mortality on a fully
interacted set of age, gender, ambulance arrival fixed effects and diagnosis fixed effects.
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inpatient crowding. A positive coefficient in these regressions can be inter-

preted as that margin being associated with a larger policy effect on 30-day

mortality.

Column 1 shows that across the 36 diagnosis groups, those groups with

larger wait time effects have larger mortality effects. The estimated coeffi-

cient suggests that each additional minute of wait time reduction increases

the mortality reduction by 0.001 percentage points. Earlier, we estimated

that wait times fell by 19 minutes on average. This suggests a mortality

reduction of 2.2 percentage points. This is of a similar magnitude to our

reduced form estimate in Table 4.4 of 3-4 percentage points. Column 2,

however, shows that there is no impact of the increase in admissions on

mortality. And column 3 shows it is still the case that groups with larger

wait time effects, but not larger admit effects, have larger mortality effects

when we consider both variables together.

Columns 4-6 repeat this exercise using the estimates by inpatient crowd-

ing and patient severity. Once again, we have a highly significantly rela-

tionship between the wait time reduction and mortality reduction, with a

coefficient that is similar to column 1. In this case, in column 5, we do

see a significant effect of the admissions effect on mortality, albeit with a

wrong signed coefficient suggesting that a larger admissions effect leads to a

smaller mortality effect. But when both are included in column 6 only the

wait time effect persists.

These results are not surprising given the graphical evidence shown

above. The bottom line is that heterogeneity associated with wait time

variation appears associated with mortality variation, while heterogeneity

associated with admissions variation does not. This does not prove that the

wait time reductions are driving our mortality reductions, but it is highly
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Table 4.5: OLS regressions of the estimated 30-day mortality reductions on other effects of the target

Diagnosis groups Crowding-severity groups

(1) (2) (3) (4) (5) (6)

Wait time 0.118∗∗∗ 0.115∗∗∗ 0.083∗∗∗ 0.066∗∗∗

(0.034) (0.034) (0.018) (0.022)
Admission probability −0.059 −0.029 −0.088∗∗∗ −0.037

(0.065) (0.058) (0.024) (0.028)

N 36 36 36 95 95 95

Notes: (1) Dependent variable is the absolute value of the target impact on 30-day mortality measured as % of the CAC mean over the
pre-threshold period; (2) Independent variables are the absolute value of the target impact on the respective variable, measured as a % of the CAC
mean over the pre-threshold period.
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suggestive.

4.6 Conclusion

The Emergency Department is a central node of health care delivery in

developed countries around the world. It is the entry point into the hospital

for a large share of patients and decisions made rapidly by ED staff have

fundamental impacts on the entire course of care. Despite the complicated

nature of these decisions, there remains dissatisfaction in most health care

systems with the level of crowding in EDs and the speed with which cases

are resolved. This has led in recent years to both open competition on ED

wait times and to regulatory interventions to reduce those times.

We study one type of regulatory intervention, the four-hour wait target

policy enacted in England. We find that this target had an enormous effect

on wait times, as illustrated vividly by the spike in the wait times distribu-

tion at the four-hour mark. We use well-established bunching methodologies

to estimate that this represents a significant reduction of almost 20 minutes,

or 8%, in the average wait time of impacted ED patients.

We then turn to assessing how this change in wait times impacted patient

care and outcomes. We do so by introducing an econometric framework that

allows us to separate the compositional impacts of individuals shifting from

after to before the four-hour target from the distortionary effect of the four-

hour target on medical decisions. We find this target led to a significant rise

in hospital admissions. These admissions do not appear to involve much

new treatment, suggesting that they may just be ‘placeholders’ to meet the

target. But there is nonetheless a significant rise in inpatient spending of

about 5% of baseline.

At the same time, we find striking evidence that the target is associated
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with lower patient mortality. There is a 0.4 percentage point reduction

in patient mortality that emerges within the first 30 days, amounting to

a large 14% reduction in mortality in that interval. This reduction fades

slightly over time, so that after one year it amounts to a 3.1% mortality

reduction. While modest, this effect is large relative to the extra spending,

suggesting a cost of extending life by one year of $43,000. Finally, we exploit

heterogeneity across patient types to show that this effect arises through

reduced wait times, not through increased inpatient admissions.

The implications of our finding is that, unconstrained, EDs in England

are not making optimal decisions on patient wait times. By reducing wait

times, the four-hour target induced cost-effective mortality reductions. This

is of likely a lower bound on the welfare gains due to the target, as it does not

value the other benefits to consumers from waiting shorter times, although

there may be welfare costs from the extra admissions (as discussed at length

in Chapter 2).

Of course, this result only applies to the specific target studied here, and

does not necessarily imply that other limits would have equal effects. It is

also unclear how this result applies to other nations with different means of

rewarding or incentivizing EDs. More work is clearly needed to understand

the proper set of rules and incentives for delivering cost-effective ED care.
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Chapter 5

Concluding remarks

As nations aim to improve their health care systems, by increasing qual-

ity of care while simultaneously managing costs, setting appropriate incen-

tives for health care providers is critical. As the preceding chapters have

illustrated, achieving this aim requires a deep understanding of hospital

production. Economic research has a key role to play in developing this

knowledge, and this thesis has made three new empirical contributions.

Two major themes stand out from the thesis. The first is that time

itself is often an important part of the production process in hospitals. This

stands in stark contrast to a production function in traditional settings such

as manufacturing. In Chapter 2, for example, I show the importance of

recognising the trade-off between hospital crowding and the time patients

wait for hospital appointments. Even though the waiting time does not

impact health outcomes in this setting, it plays an important role in the

welfare analysis and I show that patients’ preferences for waiting times are

being undervalued by current economic policies.

The role of time is also central to Chapters 3 and 4. In these cases,

spending more or less time physically in the hospital can positively or nega-

169
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tively impact patient health outcomes. Chapter 3 shows that longer stays in

inpatient departments reduce the risk of needing further treatment. In sharp

contrast, Chapter 4 shows that policies that limit the time spent by patients

in the ED actually saves lives. The delicate balance then of how patients

transition through the hospital can have a major impact on quality of care.

While these aspects of health care are regulated, it is often informed largely

by medical considerations, and incorporating economic considerations looks

to be an interesting area for future research.

Following on from this, the second theme from the thesis is how to in-

tegrate economic analysis into a medical setting. A traditional cost-benefit

analysis in such settings revolves around the monetary cost of an interven-

tion and the quality-of-life benefits it delivers, the latter often monetized

according to certain benchmarks. While useful as a starting point, this

process can neglect aspects of welfare, such as preferences over the service

received, or important interactions with adjacent areas of health care provi-

sion. For example, the thesis illustrates cases where several policies interact

to regulate an underlying trade-off (Chapter 2), and where policies have un-

intended consequences that can be either negative (Chapter 3) or positive

(Chapter 4).

The study in Chapter 2 is especially interesting, since readmissions and

waiting are unlikely to affect long term health outcomes, yet these prefer-

ences are the basis upon which efficient policies should be set. Chapters 3

and 4 also illustrate the interaction between economics and medicine, where

I use economic techniques to evaluate medical relationships that are central

to questions of economic policy. Further integration between these fields of

research appears critical to the success of economic policies in health care.

As I pursue my research agenda in the future, I expect these themes to
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play a central role and I look forward to developing them further.
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Appendix A

Identification of average

crowding effects

This appendix derives Equation (5) in Section 4.2.1. The derivation

follows Angrist & Krueger (1999). By definition the population regression

coefficient for a regressor Q (emergency admissions) in a regression of Y

(patient health outcomes) on a constant, a discrete covariate D (diagnosis-

age-emergency combinations) and the variable Q can be written

βOLS =
E
[
(Q− E[Q|D])E[Y |D,Q]

]
E
[
(Q− E[Q|D])2

] . (A.1)

Labelling values of Q by p = 0, ..., P , the values of D by d, and abbreviating

E[Y |D = d,Q = p] as E[Y |d, p], it is possible to write

E[Y |d, p] = E[Y |d, 0] +

p∑
r=1

{
E[Y |d, r]− E[Y |d, r − 1]

}
(A.2)

= E[Y |d, 0] +

p∑
r=1

∆βdr (A.3)
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where ∆βdr ≡ E[Y |d, r] − E[Y |d, r − 1]. Substituting Equation (A.3) into

(A.1) gives

βOLS =
E
[
(Q− E[Q|D])

∑P
r=1 βdr

]
E
[
(Q− E[Q|D])2

] (A.4)

=
E
{
E
[
(Q− E[Q|D])

∑P
r=1 βdr | D

]}
E
{
E
[
(Q− E[Q|D])2 | D

]} (A.5)

where E[Y |d, 0] cancels from the first line because it is uncorrelated with Q

and the second line follows by iterating expectations over D in the numerator

and the denominator. Writing out the expectations first with respect to Q

and then D gives

βOLS =
E
{∑

p(Q− E[Q|D]) Pr(Q = p|D)
∑p

r=1 βdr
}

E
{∑

p(Q− E[Q|D])2 Pr(Q = p|D)
} (A.6)

=

∑
d

∑
p(Q− E[Q|D = d]) Pr(Q = p|D = d) Pr(D = d)

∑p
r=1 βdr∑

d

∑
p(Q− E[Q|D = d])2 Pr(Q = p|D = d) Pr(D = d)

.

(A.7)

Replacing each term in the final equation with its sample counterpart and

rearranging gives Equation (5) in Section 4.2.1.
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Figure B.1: Hospital-level tests of first-order serial correlation
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Notes: (1) Figure shows the density of estimated AR(1) coefficients from regressions of
emergency shocks on their lag for each hospital separately; (2) Emergency shocks are
defined as residuals from a regression of daily emergency admissions on hospital-specific
year, weekly seasonal, and day-of-the-week fixed effects.
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Figure B.2: Distribution of estimated hospital-level effects of emergency
admissions on length of stay by patient type
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Notes: (1) Reported coefficients are parameter estimates on the daily emergency
admissions variable in the baseline specification estimated separately for each hospital.
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Figure B.3: Non-parametric estimates of the effect of elective admissions on
elective waiting times
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Notes: (1) Kernel regression estimates of residualised elective waiting times at general acute
hospitals on residualised elective admissions at general acute hospitals; (2) Residuals computed
from a regression of the dependent variable on regional fixed effects and elective admissions at
non-general acute hospitals.
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Figure B.4: Distribution of wait times at a large hospital in California
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Notes: (1) The English data displays a sharp discontinuity in the wait time distribution
at four hours (see Figure 4.1). Here we present the wait time distribution from a large
hospital in California to illustrate that the discontinuty in the English data is unlikely to
naturally occur, and is instead induced by the target; (2) We thank David Chan for
providing the data for this chart.



180 APPENDIX B. ADDITIONAL CHARTS AND TABLES

Table B.1: Summary statistics for the panel dataset

Mean Std dev Min Max N

Elective admissions 7.1 7.9 0.0 86.0 338, 746
Emergency admissions 4.6 2.8 0.0 43.0 338, 746
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Table B.2: Summary statistics for the inpatient dataset

All patients

Patient characteristics
Age 52.9
Male, % 48.4
White, % 85.4
Emergency, % 39.4
Diagnosis count 3.4
Charleson co-morbitidity index 1.7
ED admissions within past 12 months 0.8
Waiting time, days 84.8

Inpatient outcomes
Daycase operation, % 22.7
Delayed operation, % 35.2
Number of operations 1.1
Length of stay, days 4.2
Transfers out, % 2.9
Home discharge, % 93.7
7-day unplanned readmission, % 2.8
30-day in-hospital death, % 1.1

N 3, 940, 878

Notes: (1) An operation is classified as a daycase if length of stay is zero in over 50% of
cases; (2) An operation is classified as delayed if the patient did not receive their
primary operation on the day of admission.
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Table B.3: Summary statistics for the ED dataset

All patients

Patient characteristics
Age 39.7
Male, % 50.3
Ambulance pickup, % 29.4
Injury at or near home, % 54.0

ED outcomes
Time in the ED, mins 149.9
Attended nearest hospital with T&O dept., % 83.8
Distance to nearest hospital with T&O dept., km 6.3
Inpatient admission, % 24.1

N 22, 519, 392

Notes: (1) T&O departments are defined as those contained in the panel dataset (i.e.
general acute hospitals with an active ED).
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Table B.4: Estimated effects of emergency status on length of stay

(1) (2) (3) (4)

Emergency 0.938∗∗∗ 0.559∗∗∗ 0.482∗∗∗ 0.463∗∗∗

(0.02) (0.014) (0.014) (0.013)

Age category X X X
Age category X X
Gender X X
Ethnicity X X
Co-morbidity index X X
Past ED admissions X X
Hospital fixed effects X
Year fixed effects X

N 3,940,878 3,940,878 3,940,878 3,940,878

Notes: (1) Dependent variable is log(length of stay+1); (2) Diagnosis, age category,
gender, ethnicity are specified as fixed effects, with fully interacted diagnosis and age
categories; (3) Co-morbidities and past ED admissions enter the specific as linear terms;
(4) Standard errors clustered at the hospital-level; (5) ∗∗∗/∗∗/∗ indicates statistical
significance at the 1/5/10% level.
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Table B.5: Top 10 causes of unplanned readmission

Diagnosis Length of stay N

Mechanical complication of internal joint
prosthesis

12.9 4, 538

Infection following a procedure 11.2 4, 027
Infection and inflammation due to internal
joint prosthesis

21.6 1, 955

Haemorrhage and haematoma complicating a
procedure

5.3 1, 885

Other complications of internal devices 4.3 1, 759
Cellulitis of axilla, hip or shoulder 5.2 1, 442
Follow-up care involving removal of device 3.1 1, 056
Disruption of operation wound 8.1 1, 039
Infection and inflammation due to internal
device

14.5 872

Other complications of procedures 1.5 871

All readmissions 7.3 77, 392

Notes: (1) Diagnosis descriptions from ICD-10 codes; (2) Excludes diagnosis codes that
are the same as the index admission.
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Table B.6: Regression estimates of emergency shocks on admissions at other
hospital departments

(1) (2)

General surgery 0.614 (0.885) −0.226 (1.324)
General medicine 0.222 (0.265) −0.065 (0.550)
Cardiology −0.963 (2.358)
Urology 1.351 (2.555)
Gastroenterology −1.701 (1.927)
Paediatrics 0.731 (1.112)
Obstetrics 3.733∗ (2.009)
Gynaecology −1.498 (2.068)

N 317,958 141,640

Notes: (1) Standard errors clustered at the hospital-level; (2) ∗∗∗/∗∗/∗ indicates
statistical significance at the 1/5/10% level.
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Table B.7: Estimated effects of emergency admissions on inpatient care and
health outcomes using different horizon outcomes

Dependent variable Coeff Std error N

Panel A: Admission cohorts
7-day unplanned readmission 0.011∗∗∗ (0.003) 3, 940, 878
15-day unplanned readmission 0.016∗∗∗ (0.004) 3, 940, 878
30-day unplanned readmission 0.015∗∗∗ (0.005) 3, 940, 878
7-day in-hospital mortality 0.003 (0.002) 3, 940, 878
15-day in-hospital mortality 0.002 (0.002) 3, 940, 878
30-day in-hospital mortality 0.003 (0.002) 3, 940, 878

Panel B: Discharge cohorts
7-day unplanned readmission 0.047∗∗∗ (0.007) 3, 940, 878
15-day unplanned readmission 0.047∗∗∗ (0.006) 3, 940, 878
30-day unplanned readmission 0.040∗∗∗ (0.006) 3, 940, 878
7-day in-hospital mortality −0.002 (0.002) 3, 940, 878
15-day in-hospital mortality −0.001 (0.002) 3, 940, 878
30-day in-hospital mortality −0.001 (0.002) 3, 940, 878

Notes: (1) Reported coefficients are parameter estimates on the daily emergency
admissions variable; (2) All specifications include a fully interacted set of diagnosis, age
category, and emergency status fixed effects, and hospital-specific year, weekly-seasonal,
and day-of-week fixed effects; (3) Standard errors clustered at the hospital-level (149
clusters); (4) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.
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Table B.8: Estimated effects of emergency admissions by inpatient care and
health outcomes with different sets of control variables

Dependent variable (1) (2) (3) (4)

Panel A: Admission cohorts
Daycase operation 0.019∗ 0.018∗ −0.004 −0.004
Delayed operation 0.218∗∗∗ 0.185∗∗∗ 0.203∗∗∗ 0.204∗∗∗

Number of procedures −0.002∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

7-day unplanned readmission 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗ 0.012∗∗

30-day in-hospital mortality 0.005∗ 0.003 0.004 0.005

Panel B: Discharge cohorts
Length of stay −0.009∗∗∗ −0.009∗∗∗ −0.008∗∗∗ −0.008∗∗∗

Transfers to other hospitals −0.003 0.001 0.001 0.002
Discharges to home 0.001 0.009 0.005 0.065∗∗∗

7-day unplanned readmission 0.065∗∗∗ 0.047∗∗∗ 0.031∗∗∗ 0.032∗∗∗

30-day in-hospital mortality −0.009∗∗∗ −0.001 −0.002 0.000

Diagnosis-age-emergency FEs X X X
Gender X X
Ethnicity X X
Local area deprivation X X
Diagnosis count X
Co-morbidities X
Past ED admits X

Notes: (1) Reported coefficients are parameter estimates on the daily emergency
admissions variable; (2) All specifications include a fully interacted set of diagnosis, age
category, and emergency status fixed effects, and hospital-specific year, weekly-seasonal,
and day-of-week fixed effects; (3) N = 3,940,878 in all specifications; (4) Standard errors
clustered at the hospital-level (149 clusters); (5) ∗∗∗/∗∗/∗ indicates statistical significance
at the 1/5/10% level.
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Table B.9: Estimated effects of emergency admissions on inflows of emergency patients

Dependent variable Coeff Std error N

Panel A: Admission cohorts
Attended nearest hospital with T&O department 0.516 (0.339) 22, 519, 392
Time spent in the ED 0.104∗∗∗ (0.025) 22, 519, 392
Inpatient admission −0.001 (0.005) 22, 519, 392

Panel B: Admission cohorts–predicted T&O patients
Attended nearest hospital with T&O department 0.492 (0.345) 16, 397, 024
Time spent in the ED 0.105∗∗∗ (0.025) 16, 397, 024
Inpatient admission −0.001 (0.005) 16, 397, 024

Panel C: Admission cohorts–predicted T&O patients, home-ambulance pickups
Attended nearest hospital with T&O department 0.899∗∗ (0.355) 2, 531, 304
Time spent in the ED 0.172∗∗∗ (0.044) 2, 531, 304
Inpatient admission 0.012 (0.014) 2, 531, 304

Notes: (1) Reported coefficients are parameter estimates on the daily emergency admissions variable (time spent in ED, inpatient admission) or
the daily emergency admissions at the nearest hospital (attended nearest ED) on the day prior to the inflows of emergency patients; (2) All
specifications include a fully interacted set of diagnosis, age category, and ambulance arrival fixed effects, and hospital-specific year,
weekly-seasonal, and day-of-week fixed effects; (3) The nearest ED is defined according to straight-line distances from the patient’s home to the set
of general acute hospitals in the panel dataset; (4) N = 22,519,392 / 16,397,024 / 2,531,304 in panels A / B / C; (5) Standard errors clustered at
the hospital-level (149 clusters); (6) ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level.
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Table B.10: Estimated effects of emergency admissions on the characteristics of admitted elective patients

Age Male White Diagnosis count Past ED admits Co-morbidities Waiting time

Emergency
admits, t

−0.007 0.009 −0.002 −0.003∗∗∗ 0.000 −0.002∗∗ 0.028

(0.006) (0.015) (0.01) (0.001) (0.000) (0.001) (0.031)
Emergency
admits, t-1

0.003 0.005 0.015 −0.001 0.000 0.001 0.058∗∗

(0.006) (0.014) (0.011) (0.001) (0.000) (0.001) (0.024)
Emergency
admits, t-2

−0.003 −0.005 0.006 −0.002∗∗∗ 0.000 0.000 −0.046

(0.006) (0.013) (0.011) (0.001) (0.000) (0.001) (0.029)

N 2,369,066 2,369,066 2,369,066 2,369,066 2,369,066 2,369,066 2,369,066

Notes: (1) Reported coefficients are parameter estimates on the daily emergency admissions variable; (2) All specifications include hospital-specific
year, weekly-seasonal, and day-of-week fixed effects; (3) Standard errors clustered at the hospital-level (149 clusters); (4) ∗∗∗/∗∗/∗ indicates
statistical significance at the 1/5/10% level.
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Table B.11: Estimated effects of emergency admissions on inpatient care
and health outcomes for emergency patients by expected mortality risk

Low risk High risk

Dependent variable Coeff Std err Coeff Std err

Panel A: Admission cohorts
Daycase operation 0.000 (0.008) −0.004 (0.007)
Delayed operation 0.394∗∗∗ (0.023) 0.306∗∗∗ (0.027)
Number of procedures −0.002∗∗∗ (0.000) −0.001∗∗ (0.001)
7-day unplanned readmission 0.033∗∗∗ (0.008) −0.008 (0.014)
30-day in-hospital mortality −0.001 (0.001) 0.018 (0.016)

Panel B: Discharge cohorts
Length of stay −0.026∗∗∗ (0.001) −0.008∗∗∗ (0.001)
Transfers to other hospitals −0.002 (0.006) 0.024 (0.026)
Discharges to home 0.011 (0.010) 0.001 (0.031)
7-day unplanned readmission 0.108∗∗∗ (0.011) 0.075∗∗∗ (0.029)
30-day in-hospital mortality 0.000 (0.001) −0.014 (0.016)

Notes: (1) Reported coefficients are parameter estimates on the daily emergency
admissions variable; (2) All specifications include a fully interacted set of diagnosis, age
category, and emergency status fixed effects, and hospital-specific year, weekly-seasonal,
and day-of-week fixed effects; (3) N = 1,061,432 and 478,695 for elective and emergency
patients; (4) Standard errors clustered at the hospital-level (149 clusters); (5) ∗∗∗/∗∗/∗

indicates statistical significance at the 1/5/10% level.
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