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Abstract. We investigate what supervised classification models using clinical and 
wearables data are best suited to address two important questions about the 

management of Parkinson’s Disease (PD) patients: 1) does a PD patient require 

pharmacotherapy or not, and 2) whether therapies are having an effect. Currently, 
patient management is suboptimal due to using subjective patient reported episodes 

to answer these questions. Methodology: Clinical and real environment sensor data 

(memory, tapping, walking) was provided by the mPower study (6805 participants). 
From the data, we derived relevant clinical scenarios: S1) before vs. after initiating 

pharmacotherapy, and S2) before vs. after taking medication. For each scenario we 

designed and tested 6 methods of supervised classification. Precision, Accuracy and 
Area Under the Curve (AUC) were computed using 10-fold cross-validation. 

Results: The best classification models were: S1) Decision Trees on Tapping 

activity data (AUC 0.95, 95% CI 0.05); and S2) K-Nearest Neighbours on Gait data 
(mean AUC 0.70, 95% CI 0.07, 46% participants with AUC > 0.70). Conclusions: 

Automatic patient classification based on sensor activity data can objectively inform 

PD medication management, with significant potential for improving patient care. 

Keywords. Parkinson’s Disease, Pharmacotherapy, Supervised Classification, 

Machine Learning. 

1. Introduction 

PD is a common neurological condition with an estimated prevalence of 160 per 100,000 

and incidence of 15–20 per 100,000/year in the UK, with many of those affected having 

high dependency on carers [1]. Whilst patient management uses pharmacotherapy and 

physiotherapy, diagnosis rates and treatment adherence [2,3] are sub-optimal, partially 

due to using subjective patient reported episodes which overestimate performance [4]. 

Remote monitoring of PD patients by wearable devices could provide objective 

performance measures which can be integrated with clinicians and patients support tools 

[5]. However, while many studies have investigated using wearables and machine 

learning for PD, most have a low number of participants (mean 33.5; 95% CI 14), the 

studies were conducted in artificial environments which limit their validity and have 

mostly focused on measures derived from walking and talking. 

In this study we seek to answer two relevant clinical questions about the 

management of PD patients in order to provide objective guidance, specifically: identify 

the need for introduction of medication therapy and whether medications are having an 

effect. To this end we harness the richness of the mPower dataset that provides real world 
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measurements from a large cohort of patients, thus overcoming many of the limitations 

of previous studies [6]. 

2. Data and Methods 

Data was obtained from the mPower study from both Parkinsonian and non-Parkinsonian 

participants: clinical history (6805 patients) and activity data (35410 walking, 78887 

tapping and 8569 memory records). Each participant could contribute several times to 

each activity. The complete description of the dataset and acquisition protocol can be 

found in [6]. 

We define two clinical scenarios in the management of PD patients based on 

mPower dataset’s patient clinical history and wearables data as follows: 

Scenario 1 (S1) discriminates between patients whose treatment require 

pharmacotherapy and those who do not yet require medication. Participant class was 

obtained from the Medication Time Point attribute (medTimePoint) with value ’I do not 

take Parkinson’s Medication’, which provides the most up to date status. 

Scenario 2 (S2) discriminates between patients under pharmacotherapy before and 

after they have taken their medication. Following Neto [7], episodes can be 

unambiguously classified using the data labels ’Immediately Before Parkinson’s 

Medication’ and ’Immediately After Parkinson’s Medication (At your best)’. 

2.1.  Data Pre-processing 

Cases were excluded if they had confounding factors such as illnesses that would impact 

the patient’s performance for a specific task [8]. Simple imputation methods based on 

average functions were applied for demographic data, while activity records containing 

missing attributes were removed. Outlier attributes were also subjected to the same 

scrutiny as missing values. Following Neto [7] for S2, multiple datasets were constructed, 

one per eligible patient per activity. Patients were included if they submitted at least 30 

records with the medTimePoint value of ’Immediately Before Parkinson’s Medication’ 

and at least 30 records with the medTimePoint value of ’Immediately After Parkinson’s 

Medication (at your best)’ per activity. 

2.2. Classifier Design and Model Selection 

The overall methodology is depicted in figure 1. For the activity datasets time-series data, 

we calculated statistical parameters as features using tools made available from the 

mPower team. For the Tapping activity, the total number of taps and descriptors of the 

tapping interval, including: mean, mode, median, interquartile range, skew, kurtosis and 

coefficient of variation. For the Memory activity, only the time taken to complete the 

task was used. For the Walking activity, we computed statistical descriptors of the 

Euclidean distance describing the movement of the device in space. Also, the Auto-

Correlation Function, Zero Cross Rate, Taegar-Kaiser Energy Operator and Detrended 

Fluctuation Analysis were calculated [9]. 
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Figure 1. General Machine Learning pipeline used in this study. 

 

We investigated six learning algorithms: Decision Trees (DT), Adaptive Boosting DT 

(AB), Bootstrap Aggregated DT (BA), Support Vector Machines (SVM), K-Nearest 

Neighbours (KNN) and Logistic Regression (LR) [10]. For performance assessment and 

model selection, 10-fold stratified cross-validation (CV) was used, computing AUC, Ac-

curacy, Precision, together with 95% Confidence Intervals (CI). Synthetic Minority 

Over-Sampling Technique (SMOTE) was applied to the training set to address 

imbalanced classes [11]. For models that provide ranking of features, feature selection 

was performed using Recursive Feature Elimination, otherwise Sequential Feature 

Selection was em-ployed. In both cases, the selection criteria was maximum AUC. 

SVM’s Radial Basis Function kernel parameter selection was performed by exhaustive 

grid search. For KNN, we used the 5 closest neighbours under Euclidean distance. For 

DT, AB and BA, the Classification and Regression Tree (CART) algorithm was used. 

The entire pipeline was implemented using the Scikit-learn library [12]. 

3. Results and Discussion 

Table 1 outlines the data available for each scenario after pre-processing. The biggest 

class imbalances were between PD (n = 5581) and non-PD (n = 1087) participants and 

between Male (n = 5242) and Female (1426) participants. The top 3 comorbidities were: 

Depression (n = 1393), Anxiety (n = 1309) and High Blood Pressure (n = 818). 

 

Table 1. Nb of participants and activity records per scenario and type of sensor data after data pre-processing 

as described in the text. Target class imbalances were very significant for S1 for Memory and Balance activity. 

Scenario No Participants No Records (Total) Mean Age (SD) Class Ratio Male:Female 

S1 Tapping 1048 42218 (78887) 58.58 (14.87) 1.11:1 1.94:1 

S1 Memory 123 2539 (8569) 66.18 (7.52) 96:1 2.74:1 

S1 Balance 639 23519 (35410) 64.59 (7.74) 17:1 1.52:1 

S1 Gait 663 23921 (35410) 64.60 (7.78) 1.83:1 1.47:1 

S2 Tapping 69 10684 (78887) 65.00 (7.40) 1.06:1 1.4:1 

S2 Memory 6 471 (8569) 70.33 (6.68) 1.22:1 2:1 

S2 Balance 31 4804 (35410) 66.84 (6.55) 1.03:1 1.2:1 

S2 Gait 39 3885 (35410) 66.70 (5.93) 1.10:1 0.95:1 
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Table 2 shows the results for S1. For Tapping activity, the feature selected for all 

models was the Detrended Fluctuation Analysis on Tapping Interval, achieving an AUC 

of 0.95 (95% CI 0.05) using AB, BA and DT. For the Memory activity, the features 

selected were: Game Time, Surgery, Diagnosis Year and Overall Game Score. KNN, LR 

and SVN achieved statistically similar performance, peaking at AUC 0.97 (95% CI 0.02) 

for KNN models. For the Balance activity the type of Healthcare Provider, The Zero 

Cross Rate of the Euclidean Distance and Healthcare History (Atrial Fibrillation) were 

the top 3 features. KNN achieved AUC of 0.81 (95% CI 0.06). For Gait data, overall 

performance was poor with no model achieving AUC greater than 0.50. We computed 

Precision and Accuracy (results not shown), and they did not show any unexpected 

deviation from the observed AUC performance. DT models on Tapping activity data 

would be the model of choice, since they offer statistically similar performance to KNN 

on Memory data, but with only one parameter, allowing them to generalise better (lower 

variance) [10, Chapter 7]. 

 

Table 2. Performance for Scenario S1 in terms of AUC (95% CI) for all datasets-models pairs. The best 

performing model is KNN on Memory activity data. Overall the performance is either good or excellent with 

the notable exception of the Gait activity dataset for 

Dataset/Method AB BA DT KNN LR SVM 

Tapping 0.95 (0.05) 0.95 (0.05) 0.95 (0.05) 0.61 (0.05) 0.61 (0.08) 0.56 (0.03) 

Memory 0.91 (0.09) 0.90 (0.01) 0.90 (0.10) 0.97 (0.02) 0.94 (0.06) 0.95 (0.04) 

Balance 0.72 (0.09) 0.54 (0.01) 0.54 (0.11) 0.81 (0.06) 0.74 (0.09) 0.75 (0.09) 

Gait 0.41 (0.05) 0.31 (0.06) 0.35 (0.05) 0.50 (0.01) 0.50 (0.01) 0.48 (0.01) 

 

Table 3 presents the results for S2. For the Tapping activity, the top 3 features were 

the Minimum Interval, Mean Interval and the Interval Kurtosis. Overall performance 

(mean AUC of all participants) peaked at 0.69 (95% CI 0.09) using KNN and 40% of 

participants achieved an AUC of more than 0.7. For the Memory activity, the top 3 

features were: Game Time, Score and the Number of Failures. BA achieved a mean AUC 

of 0.57 (95% CI 0.13), with no participants achieving an AUC of 0.70 or more. From the 

Balance data, the top features were Post Power, Standard Deviation and Kurtosis of the 

Euclidean Distance. An AUC of 0.59 (95% CI 0.09) was produced using KNN with no 

participants achieving an AUC of at least 0.70. For Gait data, top features included: The 

X and Z axes Coefficients of Variation and Z axis Fundamental Frequency. KNN 

achieved a mean AUC of 0.70 (95% CI 0.01) and 46% of participants reached an AUC 

of at least 0.70. 

 

Table 3. Performance for Scenario S2 in terms of mean AUC (95% CI) all participants per datasets/models. In 

general the performance is poor, except for the KNN model on Gait activity data. 

Dataset/Method AB BA DT KNN LR SVM 

Tapping 0.56 (0.02) 0.56 (0.10) 0.55 (0.10) 0.69 (0.09) 0.66 (0.09) 0.66 (0.09) 

Memory 0.52 (0.13) 0.56 (0.12) 0.57 (0.13) 0.56 (0.11) 0.54 (0.12) 0.56 (0.26) 

Balance 0.51 (0.10) 0.50 (0.10) 0.50 (0.09) 0.59 (0.09) 0.55 (0.08) 0.53 (0.08) 

Gait 0.50 (0.11) 0.51 (0.11) 0.49 (0.11) 0.70 (0.10) 0.67 (0.11) 0.67 (0.10) 
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4. Conclusions 

To determine if a patient requires medication therapy (S1), the Detrended Fluctuation 

Analysis on Tapping Interval with Tree-based models offers excellent performance. For 

determining if a PD patient has taken medication (S2), model using KNN on Gait data 

(X and Z axes Coefficients of Variation, Z axis Fundamental Frequency) provides good 

classification. These results warrant further research to improve model performance in 

scenario S2. This study demonstrates that automatic patient classification based on 

sensor activity data in real settings can objectively inform PD medication management, 

with significant potential for improving patient care. 

Acknowledgements 

These data were contributed by users of the Parkinson mPower mobile application as 

part of the mPower study developed by Sage Bionetworks and described in Synapse 

[doi:10.7303/syn4993293]. This work was partially funded by EIT Grant Code 541465 

Project Vital@Home. 

References 

[1] National Institute for Health and Care Excellence, Parkinson’s disease in adults (NICE Guideline NG71), 
URL: https://www.nice.org.uk/guidance/ng71 (accessed 2018-02-09), 2017. 

[2] Katherine A. Grosset, Ian Bone, and Donald G. Grosset, Suboptimal medication adherence in parkin-

son’s disease, Movement Disorders 20:11 (2005), 1502–1507. 
[3] A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, Accuracy of clinical diagnosis of idiopathic 

parkinson’s disease: a clinico-pathological study of 100 cases, Journal of Neurology, Neurosurgery & 
Psychiatry 55:3 (1992), 181–184. 

[4] L. M. Shulman, I. Pretzer-Aboff, K. E. Anderson, R. Stevenson, C. G. Vaughan, A. L. Gruber-Baldini, 

S. G. Reich, and W. J. Weiner, Subjective report versus objective measurement of activities of daily 

living in parkinson’s disease, Movement Disorders 21:6 (2006), 794–799.  
[5] S. Hamine, E. Gerth-Guyette, D. Faulx, B. B. Green, and A. S. Ginsburg, Impact of mHealth chronic 

disease management on treatment adherence and patient outcomes: A systematic review, Journal of 
Medical Internet Research 17:2 (2015), e52. 

[6] B. M. Bot, C. Suver, E. C. Neto, M. Kellen, A. Klein, C. Bare, M. Doerr, A. Pratap, J. Wilbanks, E. R. 

Dorsey, S. H. Friend, and A. D. Trister. The mPower study, parkinson disease mobile data collected using 

ResearchKit. Scientific Data 3 (2016), 160011. 
[7] E. C. Neto, B. M. Bot, T. Perumal, L. Omberg, J. Guinney, M. Kellen, A. Klein, S. H. Friend, and A. D. 

Trister, Personalized hypothesis tests for detecting medication response in parkinson’s disease patients 

using iphone sensor data, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 21 
(2016), 273–284. 

[8] A. Skelly, J. Dettori, and E. Brodt, Assessing bias: the importance of considering confounding. Evidence-
Based Spine-Care Journal 3:1 (2012), 9–12. 

[9] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Mosaic organi-

zation of DNA nucleotides, Physical Review E 49:2 (1994), 1685–1689. 
[10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer New York, 2009. 

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: synthetic minority over-

sampling technique, Journal of Artificial Intelligence Research 16 (2002), 321–357. 
[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, 

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-

nay, Scikit-learn: Machine learning in Python Journal of Machine Learning Research 12 (2011), 2825–
2830. 

 

 

V. Nguyen et al. / Insights into Pharmacotherapy Management for Parkinson’s Disease Patients160


