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ABSTRACT (250/250 words) 

Cognitive reserve (CR) explains inter-individual differences in the ability to maintain 

cognitive function in the presence of neuropathology. We developed a neuroimaging 

approach including a measure of brain atrophy and cognition to capture this construct. In a 

group of 511 Alzheimer’s disease (AD) biomarker-positive subjects in different stages across 

the disease spectrum, we performed 3T magnetic resonance imaging and predicted gray 

matter (GM) volume in each voxel based on cognitive performance (i.e. a global cognitive 

composite score), adjusted for age, sex, disease stage, premorbid brain size (i.e. intracranial 

volume) and scanner type. We used standardized individual differences between predicted 

and observed GM volume (i.e. W-scores) as an operational measure of CR. To validate this 

method, we showed that education correlated with mean W-scores in whole-brain (r=-.090, 

p<.05) and temporoparietal (r=-.122, p<.01) masks, indicating that higher education was 

associated with more CR (i.e. greater atrophy than predicted from cognitive performance). In 

a voxel-wise analysis, this effect was most prominent in the right inferior and middle temporal 

and right superior lateral occipital cortex (p<.05, corrected for multiple comparisons). 

Furthermore, survival analyses among subjects in the pre-dementia stage revealed that the W-

scores predicted conversion to more advanced disease stages (whole-brain: hazard ratio 

[HR]=.464, p<.05; temporoparietal: HR=.397, p<.001). Our neuroimaging approach captures 

CR with high anatomical detail and at an individual level. This standardized method is 

applicable to various brain diseases or CR proxies and can flexibly incorporate different 

neuroimaging modalities and cognitive parameters, making it a promising tool for scientific 

and clinical purposes. 
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INTRODUCTION 

While neurodegeneration is generally accompanied by cognitive impairment, considerable 

differences between individuals exist in the degree to which brain pathology is clinically 

expressed. This heterogeneity was first described in post-mortem studies, showing that in 

some individuals with advanced Alzheimer’s disease (AD) pathology, typical cognitive 

symptoms had never emerged during life (Ince, 2001; Katzman et al., 1988). To explain this 

phenomenon, both in the context of neurodegeneration and normal cognitive aging, the 

concept of cognitive reserve (CR) was introduced (Stern, 2002; see Figure 1). CR reflects the 

degree to which a person can maintain normal cognitive function despite neuropathological 

changes (Mitchell, et al., 2012). Possible mechanisms underlying CR include neural reserve, 

neural compensation, and generic “CR networks” (Steffener and Stern, 2012). Among others, 

CR has been positively associated with education, occupation, IQ, premorbid brain size and 

cognitive and physical activity (Arenaza-Urquijo et al., 2015; Bennett, et al., 2003; Groot et 

al., 2016; Rentz, et al., 2007; Scarmeas, et al., 2003; Scarmeas, et al., 2009; Stern, 2002; 

Valenzuela and Sachdev, 2006; Wilson, et al., 2010; Wilson, et al., 2013).  

  

The advent of neuroimaging techniques has provided in vivo support for the CR hypothesis by 

showing that individuals with presumably greater CR (e.g. higher educational or occupational 

levels) can tolerate more severe pathological burden at similar levels of cognitive function 

(see Figure 2). In the field of AD, this effect has been shown in terms of greater amyloid beta 

(Aβ) accumulation (Kemppainen et al., 2008), increased tau deposition (Rentz et al., 2016), 

more gray matter (GM) atrophy (Liu et al., 2012; Querbes et al., 2009), increased white 

matter hyperintensities (Boots et al., 2016; Teipel et al., 2009), reduced cerebral perfusion 

(Liao et al., 2005; Stern et al., 1992) and decreased glucose metabolism (Ewers et al., 2013; 

Ossenkoppele et al., 2014). The beneficial effect of CR also applies to brain diseases other 

than AD, such as frontotemporal dementia (Borroni et al., 2009), Parkinson disease (Hindle et 

al., 2015), Huntington’s disease (Bonner-Jackson et al., 2013), traumatic brain injury (Kesler 

et al., 2003), vascular pathology (Dufouil et al., 2003; Elkins et al., 2006) and multiple 

sclerosis (Sumowski et al., 2009). 
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CR is a relative concept that cannot be measured directly (Jones, et al., 2011): it reflects a 

person’s cognitive performance relative to pathology, in comparison to other individuals with 

similar pathology. Therefore, researchers often estimate CR based on measurable variables 

known to be related to the concept. Education, for example, is often used in studies as a 

surrogate marker (or “proxy”) of CR. Despite its practical appeal, this approach introduces 

several conceptual problems, such as that it undermines the distinction between CR itself and 

the factors that contribute to it. To overcome these proxy-related issues, we present a novel 

neuroimaging approach to capture CR by directly quantifying individual differences in the 

relationship between pathology (i.e. brain atrophy, as measured with GM volume) and 

cognitive performance (i.e. a global cognitive composite score). Based on the premise that 

individuals with higher CR can tolerate more pathological burden at a similar level of 

cognitive function, we regard negative differences (i.e. less GM volume than predicted by 

cognition) as high CR, and positive differences (i.e. more GM volume than predicted by 

cognition) as low CR. We tested our method in a large group of biomarker-positive subjects 

in differences disease stages of AD. To validate our operationalization of CR, we 

hypothesized that it would correlate with education (i.e. a well-established CR proxy), and 

that this effect would be most prominent in AD specific temporoparietal brain regions (Frisoni 

et al., 2007; Karas et al., 2004; Ossenkoppele et al., 2015; Ridgway et al., 2012). Furthermore, 

we assessed whether our neuroimaging measure of CR could predict conversion of pre-

dementia subjects to more advanced disease stages (i.e. mild cognitive impairment [MCI] or 

dementia). 
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MATERIALS AND METHODS 

Participants 

We selected a total of 511 AD biomarker-positive subjects in pre-dementia and dementia 

stages from the VU University Medical Center (VUMC) Amsterdam Dementia Cohort (van 

der Flier et al., 2014, see Supplementary Figure 1 for a flow diagram of the selection 

procedure). All underwent standard dementia screening between March 2008 and February 

2015, including medical history and physical examination, a structured caregiver interview, 

lumbar puncture and/or positron emission tomography (PET) imaging, brain 3T magnetic 

resonance imaging (MRI) and neuropsychological testing. All subjects had positive AD 

biomarkers in cerebrospinal fluid (CSF) (Aβ42 < 640 ng/mL  [Zwan et al., 2014] or tau/Aβ42 > 

0.52 [Duits et al., 2014]) (n=493) or PET (i.e. [11C]Pittsburgh compound-B or 

[18F]flutemetamol) (Ossenkoppele et al., 2013) (n=18). Clinical diagnosis was established by 

consensus in a multidisciplinary team. Our group of subjects with AD dementia fulfilled 

National Institute on Aging – Alzheimer’s Association criteria for probable AD (McKhann et 

al., 2011). In the pre-dementia group, 108 subjects had MCI due to AD (Albert et al., 2011). 

Among these subjects, 75% (81/108) had single-domain MCI and 25% multiple domain MCI. 

Most MCI subjects had an amnestic clinical presentation (73%, 59/81) [Petersen et al., 1999]. 

The remaining 56 individuals without dementia presented with cognitive complaints but 

tested within normal limits at neuropsychological examination, and were classified as having 

subjective cognitive decline (SCD) (Jessen et al., 2014; Sperling et al., 2011). Throughout this 

article, the SCD and MCI subjects are treated as one group (i.e. subjects without dementia). 

Exclusion criteria were: 1) severe dementia as indicated by a Mini-Mental State Exam 

(MMSE) score ≤ 10; 2) meeting core clinical criteria for another dementia or AD clinical 

variants such as posterior cortical atrophy or logopenic variant primary progressive aphasia 

(since these atypical AD presentations are associated with distinct atrophy patterns and 

cognitive profiles); 3) history of a neurological disorder; 4) presence of clinically significant 

cerebrovascular disease; 5) presence of a major psychiatric disorder; 6) a reported history of 

severe substance abuse; 7) substantial scanning or movement artefacts on MRI or 8) an 

interval >6 months between MRI and neuropsychological testing. The Ethics Committee of 
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the VUMC approved the study and all subjects provided informed consent for their data to be 

used for research purposes. 

  

Measures of cognition and education 

We measured cognitive performance using a global cognitive composite score that combined 

15 neuropsychological test scores across different cognitive domains. The memory domain 

included the total immediate and delayed recall of the Rey Auditory Verbal Learning Test 

(Rey, 1964) and total recall on condition A of the Visual Association Test (Lindeboom et al., 

2002). In the domain of executive functioning, we used Trail Making Test part B (Reitan, 

1955), color-word task of the Stroop test (Stroop, 1935), Digits Backwards (Wechsler, 1997) 

and Letter Fluency (Hughes, 1970). The attention domain consisted of Digits Forward 

(Wechsler, 1997), TMT part A, and the Stroop word and color tasks. To measure language, 

we used the Category Fluency Test (Benton, 1968) and a short version of the Boston Naming 

Test (Lansing et al., 1999). Finally, the visuospatial domain was assessed using Dot Counting 

and Number Location of the Visual Object and Space Perception battery (Warrington and 

James, 1991). Since we had missing data for ~11 percent of our data (ranging from 2-29 

percent per test), we used multiple imputation in SPSS 20.0 for Windows (SPSS, Chicago, IL, 

USA) to obtain a complete dataset. We calculated Z-scores for each test score based on a 

cognitively healthy reference group (N=533) and the average across all Z-scores represents a 

global cognitive composite score (note: we also created separate composite scores for 

memory, attention, executive function, visuospatial function and language; W-scores and 

other results based on these data are described in Supplementary Table 1). Education was 

assessed using the Verhage system (Verhage, 1964), a standardized 7-item scale based on the 

Dutch educational system, in which higher scores represent more advanced levels of 

education (e.g. 1=primary school not completed, 7=academic degree). Some educational 

levels of the Verhage classification were represented by only few subjects, so we further 

categorized education into low (1 to 3; n=52), intermediate (4 and 5; n=244) and high (6 

and 7; n=215) for statistical analysis. 
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MRI acquisition and processing 

3D heavily T1-weighted scans were acquired on three different 3T scanners (Signa HDxt 

3.0T, GE Healthcare, Milwaukee, WI, USA, n=417; Vantage Titan 3T, Toshiba Medical 

Systems, Otawara, Japan, n=71; Ingenuity TF PET/MR, Philips Medical Systems, Best, 

Netherlands, n=23). Acquisition parameters were as follows: Signa HDxt 3.0T: repetition 

time 7.8 ms, echo time 3.0 ms, flip angle 12°; field of view 240 mm; slice thickness 1 mm; 

voxel size .94 × .94 × 1 mm; Vantage Titan 3T: repetition time 9.5 ms, echo time 3.2 ms, flip 

angle 7°; field of view 256 mm; slice thickness 1 mm; voxel size 1 × 1 × 1 mm; Ingenuity TF 

PET/MR: repetition time 7.0 ms, echo time 3.0 ms, flip angle 12°; field of view 250 mm; slice 

thickness 1 mm; voxel size .87 × .87 × 1 mm. To account for differences in scanner type, all 

imaging statistical models included scanner type as a nuisance variable. 

  

T1-images were segmented into GM, white matter and CSF using the ‘Segment’ toolbox 

incorporated in Statistical Parametric Mapping  (SPM) software version 12 (Wellcome Trust 

Centre for Neuroimaging, Institute of Neurology at University College London). We created a 

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) 

study-specific template by aligning the GM images non-linearly to a common space. We then 

normalized native gray and white matter images to the DARTEL template using individual 

flow fields, and applied modulation to preserve the total amount of signal. Images were 

smoothed using an 8mm full width at half maximum (FWHM) isotropic Gaussian kernel. We 

performed visual inspections of our images after each step of the processing pipeline to ensure 

data quality. 

  

W-score neuroimaging approach 

Our neuroimaging approach to capture CR takes the association between GM volume 

(reflecting atrophy) and cognition as a starting point, and computes the difference between an 

individual’s observed GM volume and the GM volume that would be expected based on his 

cognitive performance. First, we performed a FMRIB Software Library (FSL) voxel-wise 

regression in our total sample, with GM volume (i.e. smoothed-modulated-warped GM 
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probability) as a dependent variable, the global cognitive composite score as an independent 

variable, and age, sex, disease stage (i.e. with or without dementia), premorbid brain size (i.e. 

intracranial volume [ICV]) and scanner type as nuisance variables (Figure 3A-B). The 

resulting beta values for each predictor in the model (see Supplementary Figure 2 for a T-map 

of the global cognitive composite score) were used to determine the expected GM volume at 

each voxel for each individual. Using an in-house developed automated script 

(https://github.com/amwink/bias/raw/master/scripts/bash/compute_w.sh), we then calculated 

W-scores (Jack et al., 1997; La Joie et al., 2012; Ossenkoppele et al., 2015b), which we 

consider an operational measure of CR. This calculation was based on the formula: W-score 

(CR) = (observed – predicted) / SD. Thus, ‘observed’ is the actual GM volume for a given 

subject at a given voxel, ‘predicted’ is the GM volume for that voxel as predicted based on the 

beta values from the regression, and SD is the standard deviation of all residuals (i.e. observed 

– predicted) in the total sample for that voxel (Figure 3C-D). In summary, W-scores (mean=0, 

SD=1, similar to z-scores) represent the degree to which the observed GM volume in each 

voxel is higher (positive W-score) or lower (negative W-score) than expected, based on an 

individuals’ global cognitive composite score (adjusted for age, sex, disease stage, ICV and 

scanner type). Negative W-scores indicate high(er) CR (i.e. a relatively high degree of 

atrophy is being tolerated at a particular level of cognitive function), while positive W-scores 

reflect low(er) CR.  

  

Statistical analyses 

Participants 

Differences in W-scores and demographic and clinical characteristics between subjects in 

different disease stages (i.e. dementia, n=347; without dementia, n=164) were assessed using 

independent samples t-tests, Mann-Whitney U tests for ordinal data and χ2 tests for 

dichotomous data.  
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Relationship between GM volume and cognition 

The W-score approach is based on the assumption that GM volume and cognition are 

positively related. To replicate this in the current sample, we performed linear regression 

models in SPSS, with the global cognitive composite score as the independent variable, GM 

volume in either a whole-brain or temporoparietal mask (Ossenkoppele et al., 2015) as the 

dependent variable, and age, sex, disease stage, ICV and scanner type as covariates. The 

whole-brain mask included all GM voxels in our DARTEL template and the temporoparietal 

mask was based on previously identified common atrophy patterns across several AD clinical 

variants with mild-to-moderate dementia (Ossenkoppele et al., 2015; see Supplementary 

Figure 3). 

  

Relationship between W-scores and education 

To examine the validity of our neuroimaging measure of CR, we correlated the W-scores (see 

previous section ‘W-score neuroimaging approach’) with education (an established proxy of 

CR). First, we performed two-tailed Spearman’s rank order tests in SPSS with mean W-scores 

(in both the whole-brain and temporoparietal mask) and education (i.e. divided into low, 

intermediate and high) as variables. Second, we compared mean W-scores for subjects in the 

three education groups with an ANOVA and post hoc Bonferroni tests. Finally, we performed 

a non-parametric voxel-wise regression analysis using the Randomise toolbox in FSL 

(Winkler et al., 2014), with W-scores in each voxel as a dependent variable and education as 

an independent variable. Results were corrected for multiple comparisons using ‘threshold-

free cluster enhancement’ (tfce) at p<0.05 (Smith and Nichols, 2009). 

  

Predictive value of the W-scores 

Finally, we tested whether W-scores can be used to predict conversion to more advanced 

disease stages. We performed Cox proportional hazards analyses in pre-dementia subjects 

who had a follow-up diagnosis available with a minimum interval of 6 months  (n=116, mean 

follow-up time [months)]: 27, SD: 14). For subjects with MCI, conversion was 

operationalized as a follow-up diagnosis of AD dementia, while in the SCD group a change of 
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diagnosis to MCI or AD dementia during the follow-up period was considered conversion. 

We used mean W-scores in the whole-brain and temporoparietal masks as predictors in 

separate analyses. For both masks, we performed an uncorrected model (i.e. mean W-score as 

a single predictor) and a model in which age, sex and medial temporal lobe atrophy (MTA) 

score (Scheltens, et al., 1992) were added. While age and sex were already accounted for in 

the calculation of the W-scores, we wanted to ensure that age and sex had no confounding 

effects on the relationship between W-scores and disease progression. MTA score was 

included because greater GM atrophy is known to result in faster progression, and we aimed 

to assess the predictive ability of the W-scores independent of this effect. Finally, we replaced 

the W-scores with education (using dummy variables) in the same Cox proportional hazards 

models, to compare our neuroimaging method with the use of a proxy as a measure of CR in 

terms of their predictive value. 

  

Stratification for scanner type 

Since we used three different 3T MRI scanners to measure GM volume (i.e. Signa HDxt, 

n=417; Vantage Titan, n=71; Ingenuity TF, n=23), we repeated the calculation of the W-

scores (and subsequent statistical analyses) separately for each scanner subgroup. Note that in 

our original method to obtain W-scores, we adjusted for the potential bias of scanner type by 

including it as a nuisance variable in our analyses. In these additional analyses, we instead 

performed three separate voxelwise regressions (i.e. one for each scanner subgroup) in which 

GM volume was predicted based on age, sex, disease stage and premorbid brain size. We 

correlated the W-scores that resulted from these regressions to the original W-scores, and 

used these new values in repeated Spearman’s rank order correlations with education and Cox 

proportional hazards analyses to predict progression. The purpose of these analyses was to 

ensure that the use of different scanner types did not influence our results, We report findings 

for mean W-scores in the whole-brain mask in the result section, while more elaborate results 

(i.e. from the temporoparietal mask) are included in Supplementary Table 2 and 3.  
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RESULTS 

Participants 

Demographic and clinical characteristics are presented in Table 1. Subjects were relatively 

young at time of diagnosis (mean age: 66.5±7.3) and had a median Verhage education score 

of 5, which is indicative of ~10/11 years of schooling (Hochstenbach et al., 

2003). Education was lower in subjects with dementia (median education: 5, range 1-7) than 

in subjects without dementia (median education: 6, range 1-6). As expected, subjects with 

dementia had lower global cognitive composite scores (mean score: -2.41 ± 1.12) than 

subjects without dementia (mean score: -.61 ± .60). Since we corrected for disease stage in the 

calculation of W-scores, both groups showed similar mean W-scores in the whole-brain (with 

dementia: .00 ± .50; without dementia: .00 ± .52) and temporoparietal (with dementia: .00 ± 

.61; without dementia: .00 ± .63) mask. 

  

Relationship between GM volume and cognition 

Linear regression models showed a positive relationship between the global cognitive 

composite score and GM volume in the whole-brain (β=.322, p<.001) and temporoparietal 

(β=.379, p<.001) mask. This confirms the basic assumption of the W-score approach that 

more severe cognitive impairment was associated with greater atrophy (see Supplementary 

Figure 2 for a t-map of the voxel-wise relationship between GM volume and cognition). 

  

Relationship between W-scores and education 

Education correlated with mean W-scores in the whole-brain (r=-.090, p<.05) and 

temporoparietal (r=-.122, p<.01) mask, indicating that individuals with higher education had 

more CR (i.e. greater atrophy relative to the global cognitive composite score) than lower 

educated subjects. Moreover, the ANOVA confirmed that in both masks, low educated 

individuals had less CR (whole-brain mean W-score: .16 ± .46; temporoparietal mean W-

score: .19 ± .54) compared to those with high education (whole-brain mean W-score: -.03 ± 

.52, p<.05; temporoparietal mean W-score: -.06 ± .65, p<.05), while mean W-scores for 

subjects with low and intermediate education (whole-brain mean W-score: -.01 ± .50; 
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temporoparietal mean W-score: .01 ± .59) only showed a trend-significant difference in the 

whole-brain mask (p=.08; temporoparietal mask: p=.16). There were no differences between 

the intermediate and high education group (see Figure 4). The voxel-wise regression analysis 

in the total sample revealed associations between higher education and negative W-scores (i.e. 

higher CR) in the right inferior and middle temporal and right superior lateral occipital 

cortex (p<.05, tfce-corrected, see Figure 5). For an overview of the correlations between 

education and W-scores based on separate cognitive domains, see Supplementary Table 1. 

  

Predictive value of the W-scores 

In a subgroup of 116 subjects, 55 cases converted to more advanced stages of AD (i.e. from 

MCI to AD dementia: n=43; from SCD to MCI: n=11; from SCD to AD dementia: n=1). In 

the uncorrected models, mean W-scores in both masks were significant predictors of 

conversion (whole-brain: hazard ratio [HR]=.552, p<.05; temporoparietal: HR=.530, p<.01). 

More specifically, lower W-scores (i.e. higher CR) were associated with higher hazard rates 

for conversion. These effects survived when age, sex and MTA score were included as 

confounding variables (whole-brain: HR=.464, p<.05; temporoparietal: HR=.397, p<.001). In 

contrast, educational level was not associated with clinical progression in both the uncorrected 

(HRintermediate_education=1.831, p=.23, HRhigh_education=1.247, p=.65) and corrected model 

(HRintermediate_education=1.716, p=.30, HRhigh_education=1.362, p=.54). 

 

Stratification for scanner type  

Mean whole-brain W-scores separately calculated for each scanner subgroup were highly 

correlated with the original W-scores, both when combined into a single variable (N=511, 

r=.988, p<.001) and as separate variables (Signa HDxt: r=.998, p<.001; Vantage Titan: 

r=.972, p<.001, Ingenuity TF: r=.808, p<.001). Spearman’s rank order correlations 

consistently showed negative correlations between education and the new W-scores (total 

group: r=-.092, p<.05), although these effects did not reach significance in the subgroups 

(Signa HDxt: r=-.074, p=.13; Vantage Titan: r=-.168, p=.16; Ingenuity TF: r=-.201, p=.36). 

The Cox proportional hazards models revealed similar predictive effects in the total group 
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(uncorrected: HR=.548, p<.05; corrected: HR=.471, p<.05) and the Signa HDxt subgroup 

(uncorrected: HR=.551, p<.05; corrected: HR=.465, p<.05). Since 113 of the original 116 pre-

dementia subjects (97%) had a Signa HDxt scan, this latter analysis was not repeated in the 

other two scanner subgroups. All stratified analyses were also performed for mean W-scores 

in the temporoparietal mask, revealing similar results (see Supplementary Table 2 and 3).  
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DISCUSSION 

In the current study we present a novel neuroimaging approach to capture CR. We used 

structural MRI and a global cognitive composite score as a model to demonstrate the validity 

of our approach in a group of subjects with AD pathology. The method starts by estimating 

the expected GM volume based on cognitive performance (adjusted for variables such as age, 

sex and disease stage) in the whole group, and uses standardized individual differences 

between the observed and expected GM volume (expressed as W-scores) as a measure of CR. 

GM volume that is lower than expected indicates greater CR as, compared to other subjects, 

more atrophy is tolerated at a similar level of cognitive function. Our method correlated with 

education (all p<.05), especially in temporoparietal and lateral occipital areas, which is in line 

with previous studies (e.g. Arenaza-Urquijo et al., 2013; Ewers et al., 2013; Liu et al., 2012; 

Querbes et al., 2009; Teipel et al., 2009). This association indicates a certain overlap and 

similar directionality between both measures, but also unshared variability. These findings 

suggest that our neuroimaging approach does capture CR, but in a conceptually different (and 

arguably more accurate) way compared to the use of proxies. This is further supported by the 

finding that the neuroimaging measure of CR was associated with conversion to more 

advanced disease stages of AD in pre-dementia subjects, while education was not. 

  

Advantages of our neuroimaging measure of CR 

Our neuroimaging method has several potential advantages over current approaches to 

estimate CR. First, it is based on parameters that constitute the core of the concept (i.e. 

pathology and cognition), which should yield a more ‘pure’ measure of CR. Unlike methods 

based on CR proxies, our approach treats CR as an independent concept that is influenced by, 

but does not equate, factors such as education, IQ, premorbid brain size, and cognitive and 

physical activity. Measuring CR without the use of proxies also allows better differentiation 

between CR and parallel concepts, such as brain maintenance. Brain maintenance has been 

defined as the ability to prevent the occurrence of neuropathology (Almeida, et al., 2015; 

Landau, et al., 2012; Nyberg et al., 2012; Valenzuela, et al., 2008), and is directly related to 

various proxies of CR. Education, for example, has a great impact on an individual’s 
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(cardiovascular) health and risk to develop neuropathology through factors such as lifestyle, 

income and access to healthcare (Kaplan and Keil, 1993). Therefore, education is not only 

related to the ability to cope with pathology (i.e. CR), but also to the degree to which 

pathology will occur (i.e. brain maintenance). Our neuroimaging approach accounts for the 

extent to which pathology is present, and thus measures the unique effect of CR, independent 

of brain maintenance. 

  

Second, compared to existing methods, our neuroimaging approach provides a more precise 

and detailed measure of CR. Since the W-scores were created on a voxel level, it allowed 

studying the regional manifestation of CR in AD. In addition, our method enables 

computation of voxel-wise CR values on an individual level (in comparison to a reference 

group), which is in contrast with previous neuroimaging approaches studying CR at a group-

level. This individual and tailor-made approach has great potential for both scientific 

application (e.g. a better understanding of individual differences in CR) and clinical 

application (e.g. more accurate diagnosis or prognosis for individual patients). 

  

Third, proxies such as education and IQ yield static estimations of CR (i.e. these proxies will 

not change as the disease progresses), while our values reflect the current status of CR, which 

is likely to change within a person over time. This is a critical feature, considering that the 

ability to maintain cognitive function gradually becomes depleted as severity of 

neuropathology increases (Stern, 2012). The value of measuring ‘current CR’ is also 

supported by the survival analysis, showing that our W-scores were predictive for conversion 

to more advanced disease stages in subjects without dementia. Importantly, when we used 

education as a substitute measure of ‘static’ CR, we did not find an association with disease 

progression. The finding that subjects with the lowest W-score (i.e. highest CR) showed a 

higher risk for conversion is in line with the CR model, which dictates that individuals with 

higher CR can delay the onset of cognitive impairment, but once cognitive deterioration has 

started, they subsequently decline in a faster rate (Stern, et al., 1995; Stern, 2012; Wilson, et 

al., 2010). Previous studies have reported inverse relationships between current CR and 
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conversion to more advanced disease stages (Reed et al., 2010; Zahodne et al., 2015). This 

difference could be related to the fact that the follow-up time in our study was relatively short 

(mean of ~2 years) and our subsample predominantly consisted of MCI subjects. Our 

converters were thus in more advanced stages of AD at baseline (i.e. mostly in a prodromal 

stage, around 2 years before dementia onset) compared to the group of largely cognitively 

normal, preclinical converters in these previous studies. While in preclinical stages, high CR 

may be mainly related to the ability to delay the onset of cognitive symptoms (i.e. resulting in 

less “overall” decline), high CR in prodromal subjects is most likely associated with the faster 

rate of decline that occurs after onset of cognitive symptoms. 

  

Finally, our method is flexible and can incorporate a wide variety of variables measuring 

neuropathology (e.g. PET or functional MRI) and cognition (e.g. specific domains such as 

memory, executive functioning or behaviour). In addition, since CR plausibly is a generic, 

non-task specific phenomenon reflecting the ability to cope with many different types of 

pathology and associated cognitive problems (Stern et al., 2008), our method can be applied 

to any patient group of interest (e.g. non-AD dementias, Parkinson’s disease, multiple 

sclerosis) and in relation to different proxies (e.g. physical activity, IQ). Importantly, our W-

scores are standardized values, allowing direct comparisons between CR estimates derived 

from different parameters. 

  

Limitations 

We acknowledge that CR is operationalized in a rather simplified manner in this study, as not 

all residual variation between individuals in neuropathology (after subtracting the effect of 

cognitive function and other predictors) can be attributed to CR. This is illustrated by a large-

scale study that investigated the effect of brain volumetrics on cognitive function (adjusted for 

age, sex, education and ethnicity), showing that only 33% of the variance in cognition could 

be explained by the model (Gupta et al., 2015). It is unlikely that all remaining variance could 

be attributed to CR, as multiple neurobiological factors might affect cognitive function 

independently of these measures of brain volume (e.g. white matter microstructure, vascular 
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injury, neurotransmitter function, network connectivity) (Hedden and Growdon, 2015). In the 

context of the current study, this indicates that differences in GM volume between two 

subjects with similar global cognitive composite scores may not be fully explained by CR 

alone, but also by the presence and degree of alternative pathogenic processes. For example, 

subjects with significant vascular burden or strategic lesions may tolerate less additional GM 

atrophy and thus show earlier cognitive decline relative to others despite similar levels of CR. 

Moreover, other sources of error variance in our model unrelated to CR are introduced by the 

inherent noise of brain imaging and neuropsychological measurements. 

  

The aim of the present study, however, was not to present a method that captures CR in its 

full complexity, but rather to introduce an operational measure of CR that improves the 

empirical study of this phenomenon. Our method resembles that of the ‘residual memory 

variance’ approach, in which a latent variable model was used to define CR as variance in 

episodic memory that was not explained by brain variables (i.e. total brain matter, 

hippocampus volume and white matter hyperintensities) or demographics (Reed et al., 2010).  

Recently, other methods based on the same principle were reported, such as the ‘residual 

cognition’ measure that was used to identify (epi)genetic underpinnings of CR (White, et al., 

2017), the ‘biological versus chronological age’ model to study brain maintenance (Habeck et 

al., 2016; Steffener et al., 2016) and the calculation of hippocampal volume residuals to 

quantify resilience to AD pathology (Hohman et al., 2016). Compared to the residual memory 

variance method to study CR (Reed et al., 2010), we took an opposite approach. Instead of 

using measures of pathology as a predictor for cognition, we used a measure of pathology (i.e. 

GM volume) as the outcome variable, predicted by cognition, age and other covariates. An 

advantage of this approach is that it yields multiple residual values (i.e. W-scores on a voxel 

level) for each subject, while the residual memory variance approach results in a single CR 

score per individual (i.e. an age or cognitive residual). The calculation of W-scores in each 

voxel of the brain therefore provides more spatial detail, and allows the visualization of 

within-subject variability in the manifestation of CR across the brain. Also, it enables the 

selection of specific regions of interest (e.g. areas in which CR has the most prominent effect) 
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to study CR with greater anatomical specificity. An advantage of the residual memory 

approach, compared to our method, is that it includes measures of white matter pathology in 

addition to GM pathology. As will be discussed in the following paragraphs, we intend to 

follow this example and expand our model by including multiple imaging modalities.  

 

Future directions 

The present study represents the first step into validating a neuroimaging measure of CR, by 

showing that it correlates with a well-established proxy (i.e. education). In addition, the 

potential usefulness of the W-score method was demonstrated by its predictive value for 

disease progression in subjects without dementia. In future studies, we intend to expand our 

understanding of contributing factors to CR by correlating our neuroimaging measure to other 

proxies (e.g. cognitive/physical activity, premorbid IQ). In addition, we plan to utilize 

longitudinal data to further examine the predictive effect of our CR measure on cognitive 

decline across different cognitive domains (e.g. memory, executive function, attention). 

Finally, quantification of CR based on this neuroimaging approach could serve as a starting 

point from which underlying mechanisms can be studied. For example, functional 

neuroimaging techniques (e.g. functional MRI) could be used to determine whether the ability 

to maintain cognition in the presence of pathology is associated with functional compensation 

in relatively preserved regions of the brain or more effective pre-existing networks. Studies 

using other measures of CR have provided evidence for the existence of such functional 

mechanisms (Franzmeier, et al., 2017; Marques, et al., 2016).  

 

We also intend to refine this neuroimaging method by including multiple measures of 

pathology (e.g. cortical thickness, white matter lesions, amyloid and/or tau burden) in our 

model, to optimize the estimation of the unique contribution of CR in the relationship between 

pathology and cognition. Eventually, we aim to validate a more comprehensive version of our 

method using a large and independent sample as a reference group, to create a standard 

formula that can be used to instantly calculate CR on an individual level. Apart from an 

improved measurement of CR for research purposes, this could also have implications in a 
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clinical setting. Our method has the potential of becoming a useful tool to estimate CR in a 

standardized and feasible manner for any given patient, which could improve clinical 

prognosis and allows tracking of intra-individual changes in CR over time (e.g. to examine 

effects of interventions targeted at increasing CR). 
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CONCLUSION 

We presented a novel neuroimaging approach to capture CR in a more direct and specific 

manner. The method can easily be applied (we provide an automated script), flexibly 

incorporates different measures of neuropathology and cognition, and can be used to study 

various patient groups and CR proxies. Our method results in a standardized outcome 

measure (voxel-wise W-scores) that can be used to visualize and quantify CR with high 

neuroanatomical detail, and uniquely yields estimations of CR at an individual level. 
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APPENDIX 

Table 1. Demographic and clinical characteristics in the total sample and according to disease 

stage. 

 

Figure 1. Schematic representation of an individual with high cognitive reserve (A) and an 

individual with low cognitive reserve (B). Compared to individual B, individual A has a 

higher premorbid level of cognitive functioning, and is able to maintain this premorbid level 

at more advanced levels of neuropathology. When both subjects first present with significant 

cognitive impairment (“score at incident AD visit”) individual A will have more underlying 

pathology than individual B. Reprinted from The Lancet Neurology, 11(11), by Y. Stern, 

“Cognitive reserve in ageing and Alzheimer’s disease” (2012), 1006-1012, with permission 

from Elsevier. 

 

Figure 2. An example of two subjects in this study, who showed similar cognitive 

performance (global cognitive composite score=-2.65) despite striking differences in the 

amount of atrophy. Subject A shows substantially greater AD-related atrophy in the 

temporoparietal cortex and medial temporal lobes compared to subject B. Using the 

neuroimaging method we present in this paper, this resulted in lower W-scores for subject A, 

which indicates greater CR  (i.e. comparable cognitive function under worse conditions of the 

brain). Importantly, subject A is highly educated (i.e. university degree), while subject B has a 

low education (i.e. a primary school diploma).  

 

Figure 3. Schematic representation of our neuroimaging approach. a. For 511 subjects, a 

measure of pathology (i.e. brain atrophy) was collected. b. This measure was then used as a 

dependent variable in a voxel-wise regression, with cognition (i.e. global cognitive composite 

score), age, sex, disease stage, intracranial volume and scanner type as independent variables. 

c. Based on this regression, standardized differences between subjects’ observed and 

predicted GM volume (residuals) were obtained in each voxel. d. W-scores were calculated by 
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dividing these residuals by their standard deviation, resulting in W-score maps for each 

subject.  

 

Figure 4. Left: mean W-scores in the whole-brain and temporoparietal mask for the total 

sample, across three levels of education (i.e. low [Verhage 1 to 3, n=52]; intermediate 

[Verhage 4 and 5, n=244]; high [Verhage 6 and 7, n=215]). Right: W-scores in each GM 

voxel averaged across subjects with low (top), intermediate (middle) and high (bottom) 

educational levels. Low CR is reflected by positive W-scores, and high CR by negative W-

scores. 

 

Figure 5. Brain regions showing a negative relationship between W-scores and education 

(mean t-statistic=4.35, p<.05, tfce-corrected; displayed in neurological convention). This 

indicates that highly educated subjects could tolerate more atrophy (i.e. lower GM volume) 

while maintaining cognitive function, compared to subjects with lower education. W-scores 

were generated based on a voxel-wise linear regression with global cognitive composite score 

as a predictor for GM volume, adjusted for age, sex, disease stage, ICV and scanner type.  

 

Supplementary Table 1. Association between education (i.e. low, intermediate, high) and 

mean W-scores in different cognitive domains and brain regions. Each cognitive domain was 

measured with a composite score, based on 2-4 neuropsychological test scores. These five 

cognitive composite scores were used to calculate domain-specific W-scores, which were 

subsequently correlated with education using Spearman’s rank order tests. Results show 

significant correlations with education for attention and executive function in a whole-brain 

and temporoparietal mask, and a trend-significant correlation for language in the 

temporoparietal mask. 

 

Supplementary Table 2. Association between education (i.e. low, intermediate, high) and 

mean W-scores calculated in stratified samples based on scanner type. W-scores were 

calculated separately in the Signa HDXt (n=417), Vantage Titan (n=71) and Ingenuity TF 
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(n=23) subgroups. We subsequently correlated these W-scores to education using Spearman’s 

rank order tests, both in the total sample (N=511) and separately in each scanner type 

subgroup. Results show consistent negative associations with education, that reach 

significance in the total group and the Vantage Titan subgroup (temporopariatal mask only).  

  

Supplementary Table 3. Predictive values of W-scores calculated in stratified samples based 

on scanner type. W-scores were calculated separately in the Signa HDXt (n=417), Vantage 

Titan (n=71) and Ingenuity TF (n=23) subgroups. These W-scores were used as variables in 

uncorrected and correct (adjusted for age, sex and MTA score) Cox proportional hazards 

models, to predict conversion to more advanced disease stages (MCI or dementia) in pre-

dementia subjects. These analyses were performed in the original sample (N=116) and the 

Signa HDXt subgroup (n=113). Results consistently show significant predictive effects for 

W-scores in the whole-brain and temporoparietal mask. 

 

Supplementary Figure 1. Flow chart of the selection procedure of subjects from the 

Amsterdam Dementia Cohort.  

 

Supplementary Figure 2. Unthresholded t-map of the relationship between the global 

cognitive composite score and GM volume in each voxel. The t-map was generated from a 

voxel-wise linear regression with the global cognitive composite score as a predictor for GM 

volume, adjusted for age, sex, disease stage, ICV and scanner type.  

 

Supplementary Figure 3. The temporoparietal mask that was used to calculate AD specific 

mean W-scores. The mask was created based on previously identified common atrophy 

patterns across several AD clinical variants with mild-to-moderate dementia. From Human 

Brain Mapping, 36, by R. Ossenkoppele, “Atrophy patterns in early clinical stages across 

distinct phenotypes of Alzheimer’s disease” (2015), 4421-4437. 


