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Background & Aims:a1-Antitrypsin deficiency (A1ATD) is an
autosomal recessive disorder caused by mutations in the SER-
PINA1 gene. Individuals with the Z variant (Gly342Lys) retain
polymerised protein in the endoplasmic reticulum (ER) of their
hepatocytes, predisposing them to liver disease. The concomi-
tant lack of circulating A1AT also causes lung emphysema.
Greater insight into the mechanisms that link protein misfold-
ing to liver injury will facilitate the design of novel therapies.
Methods: Human-induced pluripotent stem cell (hiPSC)-
derived hepatocytes provide a novel approach to interrogate
the molecular mechanisms of A1ATD because of their
patient-specific genetic architecture and reflection of human
physiology. To that end, we utilised patient-specific hiPSC
hepatocyte-like cells (ZZ-HLCs) derived from an A1ATD (ZZ)

patient, which faithfully recapitulated key aspects of the disease

at the molecular and cellular level. Subsequent functional and
‘‘omics” comparisons of these cells with their genetically cor-
rected isogenic-line (RR-HLCs) and primary hepatocytes/human
tissue enabled identification of new molecular markers and dis-
ease signatures.
Results: Our studies showed that abnormal A1AT polymer pro-
cessing (immobilised ER components, reduced luminal protein
mobility and disrupted ER cisternae) occurred heterogeneously
within hepatocyte populations and was associated with dis-
rupted mitochondrial structure, presence of the oncogenic pro-
tein AKR1B10 and two upregulated molecular clusters centred
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on members of inflammatory (IL-18 and Caspase-4) and
unfolded protein response (Calnexin and Calreticulin) path-
ways. These results were validated in a second patient-specific
hiPSC line.
Conclusions: Our data identified novel pathways that poten-
tially link the expression of Z A1AT polymers to liver disease.
These findings could help pave the way towards identification
of new therapeutic targets for the treatment of A1ATD.
Lay summary: This study compared the gene expression and
protein profiles of healthy liver cells and those affected by the
inherited disease a1-antitrypsin deficiency. This approach iden-
tified specific factors primarily present in diseased samples
which could provide new targets for drug development. This
study also demonstrates the interest of using hepatic cells gen-
erated from human-induced pluripotent stem cells to model
liver disease in vitro for uncovering new mechanisms with clin-
ical relevance.
� 2018 The Authors. Published by Elsevier B.V. on behalf of
European Association for the Study of the Liver. This is an open
access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

Introduction
a1-Antitrypsin (A1AT) is a 52 kDa protein encoded by the SER-
PINA1 gene synthesised primarily by hepatocytes.1 Secreted into
the blood stream, it acts to control the function of neutrophil
elastase, particularly in the lung.2 A1AT also exerts anti-
apoptotic and anti-inflammatory properties during inflamma-
tion and hepatic injury. Most people carry the wild-type M
allele, while the rarer Z variant (found in 1–3% of the popula-
tion), is associated with the most common and severe form of
clinically significant A1AT deficiency (A1ATD).3 The Z allele is
caused by a Glu342Lys mutation in exon 5 of the SERPINA1 gene,
leading to conformational instability within the protein.4

Approximately 70% of synthesised Z A1AT is degraded by
intracellular quality control mechanisms, 15% is secreted whilst
the remaining 15% accumulates in hepatocytes as ordered
018 vol. 69 j 851–860
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polymers. These polymers are associated with neonatal hepati-
tis, cirrhosis and hepatocellular carcinoma. Furthermore, the
significant reduction in circulating plasma A1AT levels leads
to uncontrolled proteolytic activity within the lung and devel-
opment of early onset panlobular emphysema.5

Despite the recognition of A1ATD over 50 years ago,6 the
detailed molecular mechanisms linking A1AT polymer accumu-
lation to the development of liver disease remain poorly under-
stood. This has been hampered by the availability of primary
human hepatocytes expressing wild-type and mutant forms of
A1AT capable of surviving in culture long-term. Although the
use of animal models and artificial A1AT-expressing cell sys-
tems have contributed significantly to improved understanding
of the disease processes,7–9 multiple gene copies, interference of
endogenous animal antiproteases, lack of pathological features
post-polymer accumulation, and the absence of endogenous
promoters to activate gene expression represent challenges for
translating new findings in these model systems to man.

The advent of human-induced pluripotent stem cells
(hiPSCs)10 has provided an exciting platform to address these
obstacles. Indeed, PiZZ hiPSCs (ZZ-hiPSCs) derived from patients
with A1ATD were shown to differentiate into hepatocyte-like
cells (ZZ-HLCs) that recapitulate the modified post-
translational processing and secretion kinetics of mutant
A1AT.11,12 Furthermore, patient-specific HLCs were genetically
corrected to erase the disease signature (RR-HLCs)13 and so gen-
erated a perfect control cell line with which to perform mecha-
nistic studies.

Using these tools, we first established the suitability of HLCs
to study the mechanisms of A1ATD by benchmarking their gene
expression, protein synthesis and metabolic activity against pri-
mary hepatocytes. Then, by comparing the transcriptome and
endoplasmic reticulum (ER)-enriched proteome of ZZ- and RR-
HLCs, we validated the platform’s efficiency for identifying

The cells exhibited viabilities between 88–93% after isolation,
fulfilled the manufacturer’s requirements of Phase I and
II-dependent enzyme activities and were cultured for 48 h in
hepatocyte medium prior to harvesting. Fresh human primary
hepatocytes were kindly provided by Dr. Roque Bort with
approval of the hospital’s ethics committee (Instituto de
Investigación Sanitaria La Fe, Valencia, Spain). Upon isolation,
hepatocytes were snap frozen and the resulting cell pellets were
directly lysed for RNA extraction.

RNA-seq
Library preparation of RNA samples was performed with the
Illumina TruSeq RNA Sample Preparation V2 assay. Samples
were multiplexed on two lanes with 40 bp (HLCs) or 75 bp
(PiZZ/PiMM) read lengths, single strand and single-end (HLCs)
or paired-end (PiZZ/PiMM) reads and generated �16.5 million
reads per sample on the Illumina HiSeq 2000. Bioinformatic
analysis were carried out following standard procedures11 and
of raw data are available on arrayexpress accession number
E-MTAB-6781.

Results
hiPSC-derived hepatocyte-like cells are suitable for
modelling human disease
We have previously generated disease specific hiPSCs (ZZ-
hiPSCs)11 and created an isogenic wild-type line (RR-hiPSC)
using genome editing.13 Once differentiated, ZZ-derived
hepatocyte-like cells (ZZ-HLC) displayed intracellular polymer
retention whilst corrected cells (RR-HLC) secreted normal levels
of A1AT. Thus, RR-HLC represent the ideal control for molecular
studies, since phenotypic differences observed between both
cell types should exclusively be attributable to the misfolding
of mutant A1AT in HLC-ZZs and not to variability between
hiPSCs lines of different genetic backgrounds.15 To further vali-
date this hypothesis, we compared the hepatic function of ZZ-
HLCs and RR-HLCs using primary hepatocytes freshly isolated,
cryopreserved or freshly plated as a positive control. Of note,
we applied an optimised protocol14 allowing HLCs to differenti-
ate for an extended period of time, increasing their functional
repertoire (Fig. S1A-C). As expected, HLCs expressed a diversity
of hepatic markers including A1AT, ALB and HNF4a at levels
equivalent to primary hepatocytes (Fig. 1A-C). They also dis-
played CYP3A4 expression and activity although at significantly
lower levels than primary cells (Fig. 1A, Fig. S1B). Conversely,
HLCs showed expression of foetal markers CYP3A7 and AFP at
higher levels (Fig. 1A) thereby confirming their foetal identity.16

More importantly, ZZ-HLCs and RR-HLCs expressed comparable
levels of hepatic markers (Fig. 1A). These observations were
confirmed by immunostaining and DELFIA�, showing these
markers to be expressed at equivalent levels in both cell types
with the exception of A1AT, which was synthesised in lower
concentrations into ZZ-HLCs culture media (Fig. 1B-C). To con-
firm this observation, A1AT trafficking in ZZ-HLCs was assessed
by growing HLCs in the presence of radioactively labelled [35S]
Cys/Met and by subsequently tracking its transition from the
intracellular to the extracellular space over the course of 4 h.
The band intensities of these pulse-chase experiments revealed
a slower rate of glycoprotein maturation (e.g. sialic acid residue

Research Article Molecular and Cell Biology
novel biomarkers and pathways involved in mediating the dis-
ease processes that may be of immediate clinical relevance.

Materials and methods
hiPSC culture and hepatic differentiation
All hiPSC lines used in this study have were derived as previ-
ously described11 under Addenbrooke’s Hospital Ethics refer-
ence number 08/H0311/201; R&D No. A091485. These cells
were maintained at 37 �C in humidified incubators supple-
mented with 5% v/v carbon dioxide and were differentiated
using our established hepatic differentiation protocol with
minor modifications:14 Cells were differentiated at 5% oxygen
and two splitting steps allowed for scale-up and prolonged mat-
uration of differentiating cells (Fig. S1A). During the splitting
steps on day 8 and day 25, cells were washed with PBS and dis-
sociated with TrypLETM (Life Technologies, 12563–029) for 20–
45 min at 37 �C. Harvested cells were centrifuged at 100 � g
for 3 min. Cells were resuspended in RPMI (day 8 split) or
HepatoZYME-SFM (day 25) (Thermo Fisher, 17705–021). Cells
were counted and resuspended in RPMI and Activin (day 8 split)
or HepatoZYME-SFM (Thermo Fisher, 17705–021), OSM and
HGF (day 25 split), supplemented in each case with ROCK inhi-
bitor (1 lL/ml) to a concentration of 210,500 cells/cm2.

Primary hepatocyte procurement
Commercially plated human primary hepatocytes from two
donors were purchased from Biopredic International (France).
852 Journal of Hepatology 2
incorporation) and trafficking of A1AT to the extracellular space
in ZZ-HLCs (Fig. 1D). Whilst wild-type A1AT was almost fully
secreted after 4 h in RR-HLCs, mutant A1AT in ZZ-HLCs was
018 vol. 69 j 851–860



mostly degraded or retained intracellularly during the same
time period.17 Taken together, these results demonstrate that
ZZ-HLCs and RR-HLCs have reproducible biological characteris-
tics in vitro, except for the processing of A1AT, and therefore
provide a suitable control-study pair for in-depth characterisa-
tion of the disease pathophysiology of A1ATD.

ZZ-HLCs abnormally process A1AT polymer in a
heterogenous, ER-dependent manner
To investigate the impact of A1AT protein accumulation on
cellular trafficking, we studied the hepatic ER – the site at which
mutant A1AT proteins aggregate – at a single cell level. ZZ- and
RR-HLCs were transfected with the ER marker, green fluores-
cence protein (GFP)-KDEL, that has been shown to co-localise
with A1AT polymers.9 Transfections of HLCs with the GFP-
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KDEL construct yielded a population of RR-HLCs which all con-
tained normal, reticular ER morphologies (Fig. 2A). In contrast,
ZZ-HLCs frequently displayed large ER inclusions. We classified
these as inclusions of small, medium or large size and quantified
the percentage of cells containing each sub-type (Fig. 2B). Over-
all, 40% of ZZ-HLCs showed inclusions, whilst the remaining 60%
of cells exhibited a normal ER. We next analysed the effect of
intracellular inclusions on ER architecture using ‘‘fluorescence
loss in photobleaching” (FLIP) and ‘‘fluorescence recovery after
photobleaching” (FRAP) to track live, GFP-KDEL transfected
ZZ-HLCs and RR-HLCs.18 This allowed an evaluation of the cell’s
ER connectivity (FLIP) and luminal protein mobility (FRAP) by
monitoring the diffusion rates of inert fluorescent probes
Journal of Hepatology 2
throughout different ER morphologies. Repeated photobleach-
ing of a pre-defined fluorescent region resulted in complete
depletion of fluorescence in inclusion-free ZZ- and RR-HLCs,
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Fig. 2. ZZ-HLCs display heterogenous abnormal ER morphology. (A) ER
marker GFP-KDEL shows the different types of abnormal ER morphologies
observed in ZZ-HLCs vs. RR-HLCs. (B) Quantification of each ER morphology.
ER, endoplasmic reticulum; GFP, green fluorescent protein; HLCs, hepatocyte-
like cells.
018 vol. 69 j 851–860 853
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while neighbouring cells were unaffected (Fig. 3A). Of particular
note was the small, consistent recovery of fluorescence in
between the bleaching events, suggesting rapid diffusion of
unbleached KDEL-fluorophores back to the area of interest.
These observations reinforced our previous results obtained
on transformed cell lines19 by showing that in wild-type HLCs,
ER proteins can sample distant compartments of the ER by dif-
fusion when enclosed by connected, tubular ER luminae. In con-
trast, in inclusion-bearing ZZ-HLCs, FLIP within large inclusions
resulted in the localised loss of KDEL-GFP fluorescence with no
recovery of fluorescence after bleaching events. Furthermore,
neighbouring inclusions were not affected, indicating walled-
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Graph shows normalised FLIP plot with pre-bleach intensities set to 100%. n = 3.
in photobleaching; GFP, green fluorescent protein; HLCs, hepatocyte-like cells.
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off ER cisternae with no or restricted ability for protein diffusion
or interactions between them. These observations were further
confirmed using another fluorescent protein chimera, the cyto-
plasmic domain of an ER signal anchor membrane protein
(CytERM).20 FLIP performed on ZZ-HLCs with large inclusions
transfected with fluorescent CytERM resulted in complete loss
of fluorescence of the inclusion’s ER membrane, whilst neigh-
bouring inclusions were unaffected (Fig. 3B). Finally, fragmenta-
tion and isolation of ER inclusions were confirmed using Z-stack
images captured across ZZ-HLCs transfected with the fluores-
cent ER membrane protein (Fig. 3C). The mobility of ER proteins
was then quantified using FRAP assays.18 The pre-bleach
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fluorescence level of a selected region of interest inside the
cytoplasm was normalised to 100% and a single bleaching event
was performed within the region of interest. Diffusion rates of
unbleached KDEL-GFP molecules from adjacent areas into the
bleached region were determined by monitoring the restoration
of fluorescent levels into the region of interest. We observed
that the patterns of fluorescent recovery were similar within
regions of reticular ER in RR- and ZZ-HLCs (Fig. 4A). Mapping
the percentage of fluorescent rescue to the area of bleaching
showed almost immediate recovery at approximately 60%,
which was further restored to nearly 90% in RR-HLCs. In
contrast, inclusion-bearing ZZ-HLCs showed recovery of only
30–40% of the original KDEL-GFP fluorescence. Regression anal-
ysis to reveal the rates of recovery, i.e. the slope of the respective
fluorescent recovery curves, confirmed faster diffusion rates of
proteins in areas of connected reticular ER compared to the
rates seen in areas with disrupted ER morphologies (RR-HLC:
2.92 ± 0.75, ZZ-HLC no inclusions: 3.99 ± 1.03, ZZ-HLC with
inclusions 1.23 ± 0.22). There appeared to be no or very little
recovery of fluorescence in bleaching of larger inclusions,
suggesting a size-dependent isolation of inclusions (Fig. 4B).
To quantify the percentage of total fluorescent molecules that
contribute to the fluorescent recovery of the photobleached area
during the assayed time frame, we assessed the mobile fractions
associated with individual ER morphologies. These showed that
protein viscosities of reticular ER morphologies were signifi-
cantly lower than that of fractionated ER sites (p ≤0.0001)

(Fig. 4C). In summary, these data showed that polymer accumu-
lation in A1ATD reduced ER protein diffusion rates suggestive of
immobilised ER components, reduced protein mobilities and/or
disrupted ER cisternae in inclusion-bearing ZZ-HLCs.21

Transcriptome and proteome analyses suggest ZZ-HLCs
acquire mitochondrial abnormalities and are poised for
malignancy
Given the abnormalities in protein mobility observed in the ER,
we hypothesised that polymer accumulation in ER inclusions
could be associated with specific proteins inhibiting A1AT
polymer degradation and eliciting stress responses.22–24 To
investigate this hypothesis, we performed proteomic analyses
on ER fractions isolated from ZZ- and RR-HLCs (Fig. 5A). Three
independent batches of ZZ- and RR-HLCs were fractionated into
their subcellular ER fractions and analysed by label-free mass
spectrometry. We identified 2,683 unique proteins in the ZZ-
and RR-HLC ER proteomes, which were enriched most signifi-
cantly for the ER (adjusted p value: 7.1–91) and mitochondria
(adjusted p value: 1.6–172). Among these proteins, 14 were
exclusively identified in all three batches of ZZ-HLCs whilst
three proteins were present only in the RR-HLCs (Fig. 5B). By
gene ontology (GO) enrichment analysis, these 17 proteins with
strict distribution patterns displayed a diversity of functions
involved in intracellular trafficking, extracellular matrix organ-
isation and enzymatic activity. Five of these proteins (29%) were
attributed to mitochondrial localisation and oxidoreductase
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activity: GLUD2, GFER, OXCT1, EARS2 and ADCK3 (COQ8A). In
order to further understand the implications of A1AT protein
accumulation on a whole-cell scale, genome-wide RNA
sequencing (RNA-seq) was performed on ZZ-HLCs and RR-
HLCs. Statistical analysis revealed 1,675 genes with significantly
different expression (false-discovery rate (FDR) <5%), the major-
ity of which were protein-coding genes (93.4%) (Fig. 5C). Of the
1,675 differentially expressed genes, 959 were upregulated in
ZZ-HLCs (958 of them with a fold change >1.5), while 716 genes
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were downregulated in ZZ-HLCs (715 of them with a fold
change <�1.5). A total of 319 genes with differential transcript
expression were also detected in the mass spectrometry dataset
(Fig. 5D). We then combined both proteomic and transcriptomic
data sets by considering differential abundances of proteins and
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CYP1A1). Of note, the low correlation of data points seen under
these conditions may be explained by the comparison of whole-
cell transcriptomes with subcellular ER-specific proteomes. We
next focused on examining the absolute gene expression of the
assayed genes and considering ZZ-HLCs as the reference. We
found that 20 of the 21 most highly-expressed and differentially
upregulated genes in ZZ-HLCs were of mitochondrial origin
(Fig. 5F). The majority of their functional repertoire was relevant
to oxidoreductase activity and mitochondrial ATP synthesis in
the electron transport chain and included NADH dehydroge-
nases, ATP synthases, cytochromes b and c. The only non-
mitochondrial gene in the very highly-expressed, upregulated
gene cluster was fibrinogen gamma chain (FGG), upregulation
of which has previously been associated with hepatic inflamma-
tion25 and hepatocellular carcinoma.26 Other molecules with
reported oncogenic associations were also found in the highly-
expressed, upregulated cluster and included H19,27 SPARC28

and SERPINE1.29 Furthermore, GO over-representation analyses
on all highly-expressed, upregulated genes revealed that the
five most enriched and significant GO terms were tied to extra-
cellular matrix genes associated with fibrosis and cirrhosis
(p values <0.0001), a hallmark of liver disease in A1ATD
(Fig. 5G). This included collagen-related genes (e.g. COL1A1,
COL1A2, COL3A1, COL4A1 and COL5A1) and genes whose prod-
ucts are involved in the assembly and remodelling of the extra-
cellular matrix such as ADAM metallopeptidases (e.g. ADAM19),
fibrillin (e.g. FBN1), fibronectin (e.g. FN1), laminins (e.g. LAMB1),
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Fig. 6. Clinical relevance of novel disease signatures. (A) Immunostaining
arrow) of PAS-positive a1-antitrypsin globules (counter stained with polymer s
identified by RNA-seq of ZZ vs. RR-HLCs were compared to the top 1,675 gene
tissue sample. 80 genes were shared between the two gene lists. (C) AKR1B1
matching those of the original hIPSC donor. Staining with the 2C1 antibody
(secondary antibody alone). Scale bar: 20 lm. (D) Electron microscopy com
morphology yielding heterogeneous electron densities are indicated (red ar
hepatocyte-like cells.
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thrombospondin (e.g. THBS1) and matrix-associated proteins
encoded by SPARC and WNT5A. Taken together, these analyses
uncovered highly relevant proteins involved in the response to
SERPINA1 mutations.

Validation of discoveries from the hiPSC-derived hepatocyte
platform
We concluded that overall, several new areas of A1AT-deficient
biology in HLCs were identified and warranted follow-up. The
most significant of which were: i) A1AT polymers accumulated
in a heterogenous manner within ZZ-HLC hepatocyte popula-
tions, ii) specific proteins associated with predisposition to
malignancy were found to be highly upregulated in ZZ-HLCs,
iii) mitochondrial biology in ZZ-HLCs was abnormally affected,
and iv) ZZ-HLCs displayed activation of important inflammatory
and unfolded protein response pathways. To validate the rele-
vance of these findings, we next assessed the accumulation of
A1AT polymers in liver tissue from individuals with PiZZ
A1ATD30 (Fig. 6A). While the majority of hepatocytes exhibited
no polymer accumulation, those displaying characteristic A1AT
inclusions were mainly located at the periphery of hepatic
lobules, thereby validating the cell-to-cell heterogeneity of
polymer formation observed in ZZ-HLCs (Fig. 2A). We next com-
pared genes differentially expressed in HLCs (ZZ-HLCs vs. RR-
HLCs) and primary hepatocytes (PiZZ vs. PiMM) and found 80
upregulated genes common to both datasets (Fig. 6B). One of
these 80 genes (AKR1B10) had a related enzyme product
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(AKR1B1) present exclusively in the ER-enriched proteome
dataset of ZZ-HLCs (Fig. 5B) and a log2-fold change of 3.6 and
3.8 in differential gene expression between ZZ/RR-HLCs and
PiZZ/PiMM hepatocytes respectively. The clinical significance
of this molecule was assessed by immunostaining paraffin-
embedded liver sections from three patients with PiZZ whose
clinical backgrounds (age, sex and severity of disease) matched
those of the original hiPSC line donor. Samples stained posi-
tively for AKR1B10 in clusters of cells that were also positive
for polymers of A1AT (Fig. 6C). Having demonstrated the poten-
tial clinical relevance of the data generated from our in vitro
model for biomarker discovery, we next sought to explore phys-
iological pathways that may underpin A1AT pathogenesis by
focusing on GO terms associated with unfolded protein binding.
Utilising STRING v9.1, we surveyed known and predicted
protein-protein interactions encoded by those genes upregu-
lated with the highest confidence view (score = 0.900) in ZZ-
HLCs. We found evidence of gene network clusters indicating
inflammatory (e.g. IL18) and cellular stress responses, (e.g. cal-
nexin (CANX), calreticulin (CALR), BiP/GRP78 (HSPA5), ERdj5
(DNAJC10), ERdj6 (DNAJC3), DNAJB11, GRP94 (HSP90B1) and
GRP170 (HYOU1) (Fig. S2). The differential gene expression pro-
file of ZZ-HLCs not only appeared to mirror components of the
A1AT-deficient pathology that have previously been identified
(e.g. CANX and CALR), but also uncovered new genetic networks.
Of particular interest were those genes linking misfolding-

induced inflammatory responses to mitochondrial abnormali-
ties, since our electron microscopy studies demonstrated

ZZ-HLC populations contained markedly abnormal mitochon-
drial phenotypes (Fig. 6D), as also previously described in
human tissue and HLCs.31 We sought to validate the importance
of these genes by examining differential gene expression at the
nexus of inflammatory (IL-18 and CASP4) and unfolded protein
(CANX and CALR) clusters in a second hiPSC cell model of
A1ATD derived from a different patient in a different labora-
tory.32 All four genes were also found to be upregulated in PiZZ
vs. PiMM cells, suggesting their importance for future investiga-
tions (Fig. S3). Taken together, these data demonstrated that the
biomarkers and putative new mechanisms identified by our
approach could be clinically relevant for a broad number of

A1AT-deficient patients.
Discussion
Despite the classification of A1ATD as a monogenetic disease,
the underlying molecular mechanisms causing liver pathology
are poorly understood. hiPSCs offer an appealing model to inter-
rogate such questions, but have until now been hampered by
concerns over whether in vitro signatures reflect the human dis-

ease. To address this, our study characterised the molecular and
cellular signatures of ZZ-HLCs in comparison to human tissue.

We first determined that, as in patients, only a subset (�40%)
of ZZ-HLCs contained A1AT polymers and that these polymers
are contained within the ER but physically isolated from the rest
of the ER lumen. Of note, Tafaleng et al. previously utilised ZZ-
HLCs and ZZ liver samples to establish the presence of globular

inclusions and dilated ER.12 Our studies elaborate on these

observations by using ZZ/RR-HLCs to provide real-time proof
of physical ER fractionation and absent functional connection
between abnormal ER structures. Importantly, our analyses of
liver samples from patients with A1ATD also suggest that the
disease could be regionalised as these globular inclusions were
858 Journal of Hepatology 2
mainly located in the lobule periphery. Thus, disease progres-
sion mechanisms could be associated with liver zonation. To
further shed light on the molecular mechanisms governing this
specific type of intracellular A1AT retention, we then compared
genome-wide RNA-seq and ER-specific proteomic datasets of
ZZ-HLCs vs. RR-HLCs. The foremost dysregulated pathways, both
on a transcriptomic and proteomic level, were associated with
known pathways of the misfolded protein response. In addition,
our analyses also revealed novel molecular proteins and path-
ways important in chaperone function, inflammation, mito-
chondrial dysfunction and malignancy, which we validated in
human tissue.

Despite the persistent molecular and functional similarities
of HLCs with foetal hepatocytes,16 this work has shown the ade-
quacy of ZZ-HLCs to replicate the molecular pathways of PiZZ
hepatocytes. Their developmental immaturity offers the oppor-
tunity to study the emergence, early onset and progression of
A1ATD, even at stages in which the disease is still asymptomatic
in most patients.33 A good example of this is the photobleaching
assays (Figs. 3, 4), which clearly demonstrated that ZZ-HLCs
have significant loss of protein mobility, ER luminal communi-
cation and in some cases complete disruption of ER cisternae
into isolated units. Whilst it has previously been demonstrated
that even small deviations in protein diffusion rates can lead to
biologically relevant changes,34 our observations offer a novel
insight into the subcellular anatomy of how this occurs in
A1ATD. Such understanding is likely to be of clinical significance
since cells harbouring fragmented ER inclusions have been
shown to be more prone to apoptotic cell death and rely on
replacement by globule-devoid hepatocytes with enhanced cell
division rates.35,36 However, whether A1AT polymer sequestra-
tion into globules is a protective cellular response or signals a
state of injury in this setting (or even both)36,37 is currently
not known. Further in vitro studies, combined with human his-
tological specimens and clinical data may allow us to decon-
struct this problem by examining whether there is a link
between the severity and number of ER inclusions, and an asso-
ciation between the severity and progression of liver disease. In
a similarly important and clinically relevant manner, early iden-
tification of A1AT-deficient patients who are likely to progress
to cancerous states represents an unmet but urgently required
clinical challenge. Whilst AKR1B10 has been associated with
hepatocellular carcinoma,38,39 its co-localisation within cells
containing polymers (Fig. 6C) suggests an association of this
protein with A1ATD. The presence of AKR1B10 may therefore
be a direct consequence of polymerised protein accumulation,
characterising a subset of hepatocytes primed towards malig-
nancy, making AKR1B10 a potential tissue biomarker for hepa-
tocellular carcinoma risk stratification. Other proteins with
known liver/cancer associations such as cysteine cathepsin fam-
ily member CTSO40,41 were also identified in our ZZ-HLC cells
and may similarly provide prognostic and mechanistic insights
into why individuals with A1ATD are at increased risk of
tumourigenicity.42

Understanding molecular pathways linking the polymerisa-
tion of Z A1AT to hepatic disease is central to the design of
future therapeutics. Our genome and proteome analyses
(Fig. 5) identified differentially regulated genes known to have
an association with A1ATD (e.g. proteins of the ER-associated
degradation machinery) as well as novel factors required to
recognise and bind mutant glycoproteins, retro-translocate
them from the ER lumen to the cytosol and tag them for
018 vol. 69 j 851–860
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proteasomal degradation. With the reassurance provided by this
biological baseline, we also identified molecules that could offer
insights into the pathophysiology of disease using transcrip-
tomics and proteomics. The twenty highest-expressed, differen-
tially upregulated genes in ZZ-HLCs were all of mitochondrial
origin and associated with tasks of meeting higher energy
demands. This manifested as physical disruption of the mito-
chondria (Fig. 6D) which although described previously,43 is
not yet comprehensively characterised with respect to its key
molecular participants.31 Our data provide new insight into
the link between ER misfolding and mitochondrial disruption.
Of particular interest, ER-stress response proteins ARMET
(MANF),44 OASIS (CREB3L1),45 quality control chaperone
proteins (HSP90,46 Calreticulin,47 Calnexin48) and pro-
inflammatory chemokines, cytokines and receptors (‘‘inflamma-
some”) known to mediate cytotoxic stress and inflammation
(IL-1, IL-18, Caspase-4, TNF),49,50 were upregulated in ZZ-HLCs.
Interestingly, of the five most highly upregulated genes in ZZ-
HLCs reported by Wilson et al., CASP4 and CFH also appeared
in our list of 1,675 significant genes differentially regulated
between ZZ-HLCs and RR-HLCs (FDR < 5%).32 We therefore pro-
pose these targets, known also to mediate inter-organelle com-
munication, as potentially being pivotal to disease and worthy
of further research. Finally, this work also indicates that a more
direct drug screening approach to target these novel pathways
in A1ATD is merited.
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