
Supplemental Text 

Text S1. Definitions of network metrics 

Network strength. For a network (graph) G with N nodes and K edges, we calculated 

the strength of G as:  
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where S(i) is the sum of the edge weights wij linking to node i. The strength of a 

network is the average of the strength across all of the nodes in the network.  

Small-world properties. Small-world network parameters (clustering coefficient, Cp 

and shortest path length, Lp) were originally proposed by Watts and Strogatz (1998). 

In this study, we investigated the small-world properties of the weighted brain 

networks.  

The clustering coefficient of a node i, C(i), which was defined as the likelihood of 

whether the neighborhoods were connected with each other or not, was computed 

as follows (Onnela et al., 2005): 
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where ki is the degree of node i and w  is the weight of edge, which is scaled by the 

largest weight of the network. The clustering coefficient is zero if the nodes are 

isolated or have just one connection, i.e., ki = 0 or ki = 1. The clustering coefficient, Cp, 

of a network is the average of the clustering coefficient over all nodes and indicates 

the extent of the local interconnectivity or cliquishness in a network (Watts and 

Strogatz, 1998). 



The path length between any pair of nodes (e.g., node i and node j) is defined as 

the sum of the edge lengths along this path. For weighted networks, the length of each 

edge was assigned by computing the reciprocal of the edge weight, 1/wij. The shortest 

path length, Lij, is defined as the length of the path for node i and node j with the 

shortest length. The shortest path length of a network was computed as follows: 
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where N is the number of nodes in the network. The Lp of a network quantifies the 

ability for information to propagate in parallel.  

To examine the small-world properties, the clustering coefficient, Cp, and the 

shortest path length, Lp, of the brain networks were compared with those of random 

networks. In this study, we generated 100 matched random networks, which had the 

same number of nodes, edges, and degree distribution as the real networks (Maslov 

and Sneppen, 2002). Of note, we retained the weight of each edge during the 

randomization procedure such that the weight distribution of the network was 

preserved. Furthermore, we computed the normalized Lp, 
/real rand

p pL L 
, and the 

normalized Cp, 
/real rand
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, where 

rand

pL
 and 

rand

pC
 are the mean Lp and the 

mean Cp of 100 matched random networks, respectively. Importantly, two parameters 

correct the differences in the edge number and degree distribution of the networks 

across individuals. A real network would be considered small-world if 1   and 

1   (Watts and Strogatz, 1998). Thus, a small-world network not only has a higher 

local interconnectivity, but it also has an approximately equivalent shortest path length 

compared with random networks. These two measurements can be summarized into 



a simple quantitative metric, small-worldness, /   , which is typically greater than 

1 for small-world networks (Humphries and Gurney, 2008). 

Network efficiency. The global efficiency of G measures the global efficiency of the 

parallel information transfer in the network (Latora and Marchiori, 2001), which can 

be computed as: 
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where Lij is the shortest path length between node i and node j in G.  

The local efficiency of G reveals how much the network is fault tolerant and shows 

how efficient the communication is among the first neighbors of the node i when it is 

removed. The local efficiency of a graph is defined as:  
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where Gi denotes the subgraph composed of the nearest neighbors of node i.  

 

Text S2. Network-based statistic (NBS) 

To localize the specific connected components in which the structural connectivity 

differed between each pair of groups, we used a NBS approach 34. First, the significant 

non-zero connections (backbone) within each group were detected using a 

nonparametric one-tailed sign test (p < 0.05, corrected). Next, the non-zero 

connections within either the patient or control groups were established and 

combined into a connection mask. The NBS approach was then performed within the 

connection mask, where a primary threshold (p = 0.05) was first applied to a t-statistic 



(two-sample one-tailed t tests). This t-statistic was computed for each link to define a 

set of supra-threshold links among which any connected components and their size 

(number of links) could then be determined. To estimate the significance for each 

component, the null-distribution of the connected component size was empirically 

derived using a nonparametric permutation approach (10,000 permutations). For each 

permutation, all subjects were randomly reallocated into two groups, and the t statistic 

was computed independently for each link. Next, the threshold (p = 0.05) was used to 

generate suprathreshold links among which the maximal connected component size 

was recorded. Finally, for a connected component of size M detected in the right 

grouping of controls and patients, the corrected p value was determined by calculating 

the proportion of the 10,000 permutations for which the maximal connected 

component was larger than M. Notably, the effects of age and gender were removed 

using a regression analysis before the statistical analysis of the connections. For a 

detailed description, see Zalesky et al. 34. 

 

Text S3. Group differences in global network metrics 

Both the patients and control subjects showed a small-world topology (lambda ≈ 1, 

sigma > 1) of the brain structural network. Among the three groups, significant group 

effects in all global network metrics were observed (Figure S1). Post hoc comparisons 

showed reduced strength, decreased global and local efficiency, increased shortest 

path length and decreased clustering in both the MS and CIS patients compared with 

controls. MS patients also showed increased gamma and sigma relative to controls. 



Compared with CIS patients, MS patients showed reduced strength, reduced global 

efficiency, increased shortest path length, and increased lambda, gamma and sigma 

(all p < 0.05).  

 



Supplemental Figures 

Figure S1. Group differences in the global network metrics. The bars and error bars 

represent the mean values and standard deviations of the network properties in each 

group after removing the effects of age and gender. Significantly reduced strength, 

global efficiency, local efficiency, clustering and increased shortest path length of the 

structural networks were observed in both CIS and MS patients relative to the controls 

(HC). *: p < 0.05; **: p < 0.01; ***: p < 0.005. 

 



Figure S2. Reproducibility of the rich-club organization in L-AAL network. (A) Hub 

distribution of structural backbone network across all subjects. Network hubs are 

represented with nodes in red, with nodal size indicating the degree of the regions. (B) 

Mean normalized RC coefficient curve under a series of thresholds k for each group. 

(C) Group differences in the strength of the rich-club, feeder and local connections. 

The bars and error bars represent the mean values and standard deviations of the 

connection strength in each group after removing the effects of age and gender. *: p < 

0.05; **: p < 0.01; ***: p < 0.005. 

 

 


