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Abstract

Background

The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is

unexplained. Observational and interventional experimental evidence suggests that DNA

immunogenicity may be prevented by binding of human serum amyloid P component

(SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-

[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miride-

sap), developed for treatment of systemic amyloidosis and Alzheimer’s disease, depletes

circulating SAP by 95–99%. The proof-of-concept HIV-CORE 003 clinical trial tested

whether SAP depletion by CPHPC would enhance the immune response in human volun-

teers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-

protein regions of HIV-1.

Methods

Human volunteers received 3 intramuscular immunizations with an experimental DNA vac-

cine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion

of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adeno-

virus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After

administration of each vaccine modality, the peak total magnitudes, kinetics, functionality

and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized.

Results

No differences were observed between the CPHPC treated and control groups in any of the

multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except
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that after SAP depletion, there was a statistically significantly greater breadth of T-cell speci-

ficities, that is the number of recognized epitopes, following the DDDC vaccination.

Conclusions

The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced

only a very modest suggestion of enhanced immunogenicity. Further studies will be required

to determine whether SAP depletion might have a practical value in DNA vaccination for

other plasmid backbones and/or immunogens.

Trial registration

Clinicaltrials.gov NCT02425241

Introduction

Parenteral injection of naked DNA encoding pathogen or cancer-derived immunogens is a

highly desirable approach to vaccination but, for unknown reasons, it is not efficacious in

some species including humans. Serum amyloid P component (SAP) is the single normal

human plasma protein that binds avidly to DNA under physiological conditions [1]. Studying

different animal species, we found a complete concordance between the efficacy of DNA vacci-

nation and either the complete absence of SAP or the presence of SAP that does not bind

strongly to DNA. For example, mice respond well to DNA vaccination and have SAP that

binds DNA very weakly [2]. However, transgenic mice expressing human SAP lost potent

murine immune responses to DNA vaccination and this inhibition was completely abrogated

when the transgenic mice were treated with (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-

hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap) [3, 4], the SAP-depleting drug

[5]. In order to investigate whether human SAP might interfere with the immunogenicity of

DNA vaccination in humans, we conducted a phase I/IIa clinical trial of DNA vaccination in

subjects receiving infusion of CPHPC to deplete their circulating SAP at the time of each injec-

tion of DNA.

To tackle the enormous genetic plasticity of the human immunodeficiency virus type 1

(HIV-1), we pioneered a strategy, which focuses vaccine-elicited responses on the most con-

served regions of the HIV-1 proteome [6]. The first generation HIV-1 conserved immunogen,

HIVconsv [7], was presented to the immune system in the form of genetic vaccines using plas-

mid DNA, engineered non-replicating simian adenovirus ChAdV-63 and non-replicating

poxvirus modified vaccinia virus Ankara (MVA) [8]. The pSG2.HIVconsv DNA, ChAdV63.

HIVconsv and MVA.HIVconsv vaccines have been tested in a series of clinical trials in human

volunteers and shown to be safe and the last two highly immunogenic [8–12]. Clinical lots of

these vaccines were readily available for administration to human volunteers in the present

study, which aimed to improve the immunogenicity of the plasmid DNA vaccine component.

Materials and methods

The HIV-CORE 003 trial

The phase I/IIa HIV-CORE 003 trial was conducted in London, UK between October 2013

and February 2016. The trial was approved by the West London National Research Ethics Ser-

vice (NRES) Committee (Ref: 13/LO/0090) and by the UK Medicines and Healthcare products
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Regulatory Agency (Ref: 2012-004052-11). The study was conducted according to the princi-

ples of the Declaration of Helsinki (2008) and complied with the International Conference on

Harmonization Good Clinical Practice guidelines. All volunteers gave written informed con-

sent before participation. Tissue samples were stored and used in compliance with the UK

Human Tissue Act 2004 and with approval from local NRES.

Study population, vaccines, regimens and randomization

Forty healthy, HIV-1-negative adult male volunteers at low risk of HIV-1 infection were

enrolled (Fig 1) with mean (SD, range) age in years of 26 (6, 19–44) and including the follow-

ing ethnicities: 24 white British, 6 white other, 3 white Irish, 2 Indian, 1 Pakistani, 1 other

Asian, 1 mixed background. They each received experimental vaccines expressing the first-

generation HIV-1 conserved region-derived immunogen, HIVconsv (Fig 2A) [7], which was

delivered using plasmid DNA as pSG2.HIVconsv (D), engineered non-replicating simian ade-

novirus as ChAdV63.HIVconsv (C) and non-replicating poxvirus modified vaccinia virus

Ankara as MVA.HIVconsv (M) combined into heterologous regimens (Fig 2B). Construction

and manufacture of the vaccines were previously described [8, 10, 13]. We confirmed that

human SAP binds avidly to the vaccine plasmid DNA with Kd estimated from the binding iso-

therm as ~150 nM. All vaccine doses were administered by intramuscular needle injection. At

the outset, subjects were randomized to one of two groups cD or pD to receive an intravenous

Fig 1. CONSORT flow diagram of the HIV-CORE 003 trial. All CPHPC-treated volunteers completed the study protocol. Among the 20 volunteers allocated

to the placebo Group, 2 volunteers were lost to follow-up of whom 1 discontinued vaccinations.

https://doi.org/10.1371/journal.pone.0197299.g001
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infusion of CPHPC at 40 mg/hour in the experimental group or saline in the placebo control

group, respectively, before each dose of 4 mg of vaccine DNA. The DNA was injected 24 hours

after the infusion started and the infusion was terminated 2 hours later. The trial was initially

designed to compare the cDcDcDC (Groups 1a; n = 4) and pDpDpDC (Group 2a; n = 3)

regimens, however, following recruitment of the first 7 volunteers, it was modified to the

cDcDcDCM (Group 1b; n = 16) and pDpDpDCM (Group 2b; n = 17) regimens seeking to fur-

ther amplify, with the additional MVA.HIVconsv boost, any differences in immunogenicity

between the two groups. This Protocol modification was approved by the ethics committee,

Fig 2. Vaccine immunogen HIVconsv and the design of the HIV-CORE 003 trial. (A) Schematic representations of the HIVconsv immunogen and six pools

P1-P6 of a total of 199 overlapping peptides used for the detection of the human vaccine-elicited T-cell responses. HIVconsv is a chimaeric protein assembled

from 14 highly conserved regions of the HIV-1 proteome, the HIV-1 protein origins of which are colour-coded below. (B) Volunteers in the phase I/IIa

HIV-CORE 003 trial were randomized into Group 1 for depletion of serum amyloid P component (SAP) by a 26-hour infusion of drug CPHPC, or Group 2

receiving saline infusion alone as placebo, whereby the DNA was injected after 24 hours of infusion. All volunteers were boosted with non-replicating

recombinant virus vaccines expressing the same HIVconsv immunogen as indicated. cD–pSG2.HIVconsv DNA with CPHPC infusion prior to DNA

administration; pD–pSG2.HIVconsv with placebo infusion prior to DNA; C–non-replicating simian (chimpanzee) adenovirus-vectored vaccine ChAdV63.

HIVconsv; and M–non-replicating poxvirus-vectored vaccine MVA.HIVconsv. The number of volunteers recruited into each study group is indicated.

https://doi.org/10.1371/journal.pone.0197299.g002
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Power calculations for the group size

Power calculations were based on immunogenicity data obtained in trial HIV-CORE 002,

group DDDCM [8], and calculated for 20 participants in each group in trial HIV-CORE 003.

Thus, at 0–12 weeks (after DDD), whereby the mean ± SD peak response in HIV-CORE 002

was 73 ± 67 spot-forming units (SFU)/106 PBMC, we had 96% power to detect a 10-fold in-

crease. At 12–20 weeks (after DDDC), whereby the mean ± SD peak response was 1644 ± 1287

SFU/106 PBMC, we had 86% power to detect a 2.3-fold increase. Finally, at 21–22 weeks (after

DDDCM), whereby the mean ± SD peak response was 3285 ± 2091 SFU/106 PBMC, we had

80% power to detect a 1.58-fold increase. Note, that the induced frequencies of specific T cells

in HIV-CORE 002 were the highest published frequencies of vaccine-elicited T cells in the

field of HIV-1 vaccines using subunit genetic vaccines and so it was not reasonable to expect

huge increases from the DDDC and DDDCM peak responses. For comparison, the STEP

study using three administrations a HAdV-5-vectored vaccine induced between 136–686 SFU/

106 PBMC [14].

Isolation and cryopreservation of PBMC

Phlebotomy was performed as described before [15]. Blood was collected into heparinized

vacutainers (Becton Dickinson) and processed within 6 hours. Isolated PBMC were cryopre-

served using standard procedures [16].

Peptides and antigens

HIVconsv-derived 15-mer peptides overlapping by 11 amino acids and spanning the entire

HIVconsv protein (Ana-Spec, San Jose, USA) were reconstituted to 10–40 mg/ml in DMSO

and diluted to working stock solutions of 4 mg/ml in PBS as described previously [15].

Ex vivo IFN-γ ELISPOT assay

Freshly isolated PBMCs were used in an IFN-γ ELISPOT assay as described previously [15,

17]. Pre-wetted ELISPOT plate membranes (S5EJ044I10; Merck Millipore) were coated over-

night at 4˚C with anti-IFN-γ antibody (10 μg/ml in PBS; clone 1-D1K; Mabtech), washed with

PBS and blocked with R10 (RPMI 1460 supplemented with 10% FBS, 2 mM L-glutamine, 10

mM HEPES, 1 mM sodium pyruvate and penicillin-streptomycin antibiotics; Sigma Aldrich)

for 1 hour at 37˚C. The PBMC were plated out at 2x105 cells/well in 50 μl. For HIVconsv, trip-

licate well were used for six peptide pools P1-P6, 1.5 μg/ml per peptide. Six negative no-peptide

control wells with R10 supplemented with 0.45% DMSO served as the background negative

control. Cells cultured with 10 μg/ml PHA (Sigma Aldrich) or a pool of FEC (influenza virus,

Epstein-Barr virus and human cytomegalovirus) known epitope peptides at 1 μg/ml each in

triplicates were used as an internal positive control. Cell line NKL served as an external positive

control for a consistent number of SFU independent of stimulation across different days and

assay plates. The cells were incubated overnight at 37˚C in 5% CO2. Spots were visualised

using biotin-conjugated anti-IFN-γ mAb followed by alkaline phosphate-conjugated streptavi-

din (both from Mabtech) and the colour was developed using substrate BCIP/NBTPlus (Mab-

tech). The reaction was stopped after 5 min by washing under the tap. The plates were air

dried overnight and the spots were counted using an AID ELISpot Reader and version 5.0 soft-

ware (AID GmbH). Median number of SFU in no-peptide wells was subtracted from test wells

and the results were presented as median net SFU/106 PBMC.
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Cultured IFN-γ ELISPOT assay

Frozen PBMC from volunteers were thawed and expanded in vitro with peptides plus IL-2

before being subjected to an IFN-γ ELISPOT assay. Short-term cell lines (STCL) were gener-

ated from all volunteers at the end of the pSG2.HIVconsv DNA vaccinations, the visit of

ChAdV63.HIVconsv administration, by re-stimulation of the cells with each of the six peptide

pools P1-P6 at 1.5 μg/ml per peptide in the presence of rhIL-7 at 25 ng/ml. The cells were

maintained in culture and supplemented with recombinant human IL-2 at 100 IU/ml on days

3 and 7. After 10 days, the SCTL were washed, re-cultured without IL-2 for a minimum of 24

hours and then assayed for IFN-γ release in an ELISPOT assay as described above.

Luminex assay

The Luminex assay is a multiplex bead array that measures, in a single sample of culture super-

natant, the production by vaccine-elicited T cells of multiple cytokines and chemokines after

restimulation of the cells by specific-peptides. The procedures were described previously [15].

Cryopreserved PBMCs from three time points (pre-immune, peak pSG2.HIVconsv DNA and

peak ChAdV63.HIVconsv) were thawed and adjusted to 5 x 106 cells/ml in R10 containing

either a pool of all HIVconsv peptides at 1.5 μg/ml per peptide, Staphylococcus enterotoxin B

(SEB; Sigma-Aldrich) at 1.0 μg/ml, or medium alone as a negative control and anti-CD28 and

anti-CD49d mAbs both at 1 μg/ml in a final volume of 200 μl per well. The plates were incu-

bated for 48 hours at 37˚C, 5% CO2, and 150 μl of supernatant was removed from each well

and stored at -80 oC until use [18]. A human pre-mixed multi-analyte kit (Magnetic Luminex

screening assay, R & D Systems Ltd) was used to measure the following analytes; IFN-γ,

TNF-α, IL-2, IL-4, IL-6, IL-10, IL-13, IL-17A, SDF-1α (CXCL12), IP-10 (CXCL10), MIP-1α
(CCL3), MIP-1β (CCL4), RANTES (CCL5), Granzyme B and MIG (CXCL9). The culture

supernatants were diluted 1:1 and assayed in duplicate according to the kit instructions. Con-

centrations detected in unstimulated wells were used as background controls. The plate was

read using Luminex 200 and XPONENT software.

Polychromatic flow cytometry for memory subsets

PBMCs were thawed, incubated with 5 μl of the HLA-A�02:01/YQYMDDLV tetramer (NIH

Tetramer Core Facility) conjugated to PE for 10 min at room temperature, followed by the

addition of 100 μl of a mastermix of anti-membrane marker mAbs containing LIVE/DEAD

fixable aqua stain (Molecular Probes, Invitrogen), CD3 ECD (Beckman Coulter), CD4 BV605

and CCR7 Pacific blue (Biolegend), CD8 Alexa Fluor 700, CD14 PE-Cy7, CD16 PE-Cy7,

CD19 PE-Cy7, CD45RA APC, CD57 FITC, TIGIT PerCP-eFluor710, PD-1 APC-eFluor780

(eBiosciences) and CD27 Qdot 655 (Life Technologies). The cells were incubated at 4˚C for a

further 20 min, washed and fixed with 1% paraformaldehyde in PBS prior to running on an

LSRII flow cytometer (Becton-Dickinson).

Statistics

Statistical analyses were carried out using GraphPad Prism 6.0d. ELISPOT and Luminex

results were assumed to be non-Gaussian in distribution, thus non-parametric tests were used

throughout and medians (range) are shown. Area-under-curve (AUC) values were determined

for the response of each volunteer within each group and analyzed using the Kruskal-Wallis

test with post-hoc Dunn’s Multiple Comparison Test. For comparison of the peak and breadth

of responses to peptide pools, significance was determined by the Mann Whitney test. Two-

tailed P values were used and P values of less than 0.05 were considered statistically significant.
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Results

Safety and tolerability

All administrations of experimental vaccines and intravenous infusions of CPHPC were well

tolerated. There were no serious adverse events. There were comparable numbers of non-seri-

ous adverse events adverse events in the CPHPC and placebo groups (Table 1).

SAP depletion

At the time when the DNA vaccine was administered, the serum SAP concentration, measured

by electroimmunoassay [19], was always below the 1 mg/l lower limit of detection in all the

CPHPC recipients. All other serum samples from these subjects and from the recipients of the

normal saline placebo infusion, contained SAP concentrations within the reference range [19].

The overall range of serum concentration of SAP in all subjects in the study when not receiving

CPHPC was 15–65 mg/l, with mean ± SD of 31 ± 5 mg/l in the placebo group and 31 ± 8 mg/l

in the CPHPC group.

SAP depletion did not produce a statistically significant increase in T-cell

induction

An ex vivo IFN-γ ELISPOT assay on freshly isolated PBMCs was employed for detection of

any effects that the SAP depletion could have on the efficiency of DNA vaccine priming and

subsequent boosts with virus-vectored vaccines. One hundred and ninety nine 15-mer pep-

tides overlapping by 11 amino acids (15/11) spanning the HIVconsv protein were arranged

into six peptide pools P1-P6 (Fig 2A) and used to enumerate HIVconsv-specific T cells to

assess the overall magnitude (as the sum of the 6 pool frequencies) and breadth (number of

Table 1. Non-serious adverse events.

Disorder SAE CPHPC Placebo

Cardiac Hypertension 1/20 (5.00%) 0/20 (0.00%)

Blood & lymphatics Enlarged lymph node in neck 0/20 (0.00%) 1/20 (5.0%)

General Headache 4/20 (20.00%) 7/20 (35.00%)

Fatigue 2/20 (10.00%) 5/20 (25.00%)

Insomnia 1/20 (5.00%) 1/20 (5.00%)

Pain 1/20 (5.00%) 0/20 (0.00%)

Dizziness 0/20 (0.00%) 1/20 (5.00%)

Fever 0/20 (0.00%) 2/20 (10.00%)

Rigors 0/20 (0.00%) 2/20 (10.00%)

Gastrointestinal Diarrhoea 1/20 (5.00%) 0/20 (0.00%)

Dysphasia 2/20 (10.00%) 1/20 (5.00%)

Nausea 1/20 (5.00%) 2/20 (10.00%)

Vomiting 0/20 (0.00%) 1/20 (5.00%)

Anorexia 0/20 (0.00%) 1/20 (5.00%)

Renal & urinary Abnormal odour 0/20 (0.00%) 1/20 (5.00%)

Skin & subcutaneous Rash 2/20 (10.00%) 2/20 (10.00%)

Musculoskeletal Injection site reaction 9/20 (45.00%) 12/20 (60.00%)

Myalgia 7/20 (35.00%) 8/20 (40.00%)

Neck stiffness 0/20 (0.00%) 1/20 (5.00%)

Infections & infestations Coryzal symptoms 0/20 (0.00%) 2/20 (10.00%)

Total All 13/20 (65.00%) 16/20 (80.00%)

https://doi.org/10.1371/journal.pone.0197299.t001
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recognized pools) of the vaccine-elicited responses. Of the total of 520 samples tested, 11 or

2.1% failed the quality control. The overall kinetics of the elicited responses throughout the

vaccination and follow-up periods for the SAP-depleted and untreated subjects showed very

similar patterns (Fig 3A). This observation was confirmed by the area under curve (AUC)

analysis of 13 volunteers in each group, for whom a complete data set was available. AUC was

carried out over the entire time of the study and following each vaccine modality separately:

the respective median AUCs for the CPHPC and placebo groups were 15 and 80 for pSG2.

HIVconsv DNA (week 0–12), 2520 and 2355 for ChAdV63.HIVconsv (week 0–16), and 15460

and 14780 for MVA.HIVconsv (week 0–20) (Fig 3B). Following the DNA vaccinations with

and without SAP depletion, we also failed to observe any differences for the six individual

pools of the HIVconsv peptides (Fig 3C). Next we evaluated the peak IFN-γ ELISPOT assay

frequencies of HIVconsv-specific T cells after each vaccine modality administration and,

again, for the CPHPC and placebo groups, the respective median (range) frequencies were 45

(5–220) and 48 (0–810) induced by pSG2.HIVconsv DNA, 1130 (40–6215) and 835 (135–

2785) induced by ChAdV63.HIVconsv, and 4020 (1440–9870) and 3345 (830–20305) follow-

ing MVA.HIVconsv, which were not statistically separable (Fig 3D). We also assessed whether

or not the SAP-depleted DNA priming affected the proliferative capacity of the induced T cells

by enumerating the HIVconsv-specific T cells following a 10-day peptide pool-expansion cul-

tured pre-immune and week 9 PBMCs. Once again, SAP depletion did not translate into

increased proliferative capacity of HIVconsv-specific T cells (Fig 3E). Finally, we analysed the

number of pools that individuals were able to mount T-cell responses against in parallel and

found significantly broader responses after the ChAdV63.HIVconsv vaccination for the SAP-

depleted group, whereby the SAP-depleted and placebo vaccine recipients responded to

median (range) of 6 (0–6) and 4.5 (1–6) peptide pools (P = 0.044 in unpaired Mann-Whitney

test) (Fig 3F) and 10 vs 4 volunteers responded to 6 pools, respectively (Fig 3G). Overall, fol-

lowing depletion of the SAP from human blood prior to intramuscular DNA administration,

we were unable to detect improved induction of T-cell responses with the exception of signifi-

cantly broader responses at only one point of the vaccination protocol, directly after the sub-

jects had received DDDC.

SAP depletion did not affect the vaccine-elicited T-cell functionality or

memory subtypes

T cells can only contribute to the body’s defence if they exert their effector functions effectively

and in a timely fashion. To assess any possible effects of the CPHPC treatment prior to DNA

priming on the functionality of the HIVconsv-vaccine induced cellular responses, volunteers’

cryopreserved and thawed PBMCs were incubated with peptide pools P1-P6 for 48 hours and

the tissue culture supernatants were analyzed using a multiplex bead array quantifying produc-

tion of 15 cytokines and chemokines. These measurements were carried out for pre-immune,

peak DNA and peak ChAdV63.HIVconsv samples. Overall, varied levels of analytes were

detected, but the two trial Groups could not be separated (Fig 4). Six individuals, 4 in the

CPHPC and 2 in the placebo groups, had HLA-A�02:01-positive tissue type, which allowed us

to carry out a highly sensitive evaluation of memory subtypes of their CD8+ T cells recognizing

HIV-1 Pol-derived epitope YQYMDDLYV using HLA-A�02:01/YQYMDDLYV peptide tetramers.

In a polychromatic flow analysis, all six vaccine recipients developed a tetramer-reactive CD8+

T cells, which were structured into naïve (CD45RAhiCCR7hiCD27hi), central memory

(CD45RAloCCR7hiCD27hi), transitional memory (CD45RAloCCR7loCD27hi), effector memory

(CD45RAloCCR7loCD27lo) and terminally differentiated (CD45RAhiCCR7loCD27lo) T cells.

No tetramer-reactive populations stained for the programmed cell death protein 1 (PD-1)/
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Fig 3. DNA priming of human T-cell responses with and without SAP depletion. Volunteers received heterologous vaccine

regimens, which included priming with DNA either preceded or not by depletion of SAP. The vaccines were as follows: cD–pSG2.

HIVconsv DNA after a 24-hour infusion of SAP-depleting CPHPC and additional 2-hour infusion after DNA administration (pink);

pD–pSG2.HIVconsv DNA with 26-hour infusion of saline as placebo (green); C–simian adenovirus ChAdV63.HIVconsv; and M–

poxvirus MVA.HIVconsv. All vaccines were delivered by intramuscular needle injection. Vaccine-induced T cells were enumerated in
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CD279 and T-cell immune receptor with Ig and ITIM domains (TIGIT) inhibitory markers.

Again, we were unable to detect any outstanding differences between the SAP-depleted and

placebo groups (Fig 5). Thus, depletion of circulating SAP prior to intramuscular needle

administration of plasmid DNA, had no obvious quantitative or qualitative effect on priming

of transgene-specific T cells nor did it influence subsequent boosts with simian adenovirus- or

poxvirus MVA-vectored vaccines.

Discussion

Enhancement of the immunogenicity of DNA vaccines in humans, making them effective in

clinical practice, is highly desirable and there is compelling experimental animal evidence that

depletion of human SAP might be helpful. Availability of the experimental SAP-depleting

drug, CPHPC (now known by its recently awarded WHO International Non-Proprietary

Name, miridesap) at University College London [5], and of experimental GMP vaccines,

including one vectored by plasmid DNA [8], in Oxford University, uniquely enabled us to test

this idea in humans. Infusion of CPHPC for 24 hours before each injection of the DNA vaccine

reduced circulating SAP, as expected, to less than 1 mg/l. Multiple parameters of DNA vac-

cine-primed T cells were compared in the SAP-depleted and control groups: kinetics of

appearance, frequency at peak, proliferative capacity, ability to produce intercellular signalling

molecules and structure of memory subtypes. However, only the breadth of response, that is

the number of different epitopes that T cells as a population recognize at any one time, reached

statistical significance (P = 0.044) favouring the SAP-depleted recipients. This was observed

only after the DNA prime-simian adenovirus boost regimen (DDDC), but not after DNAalone

(DDD), and it was no longer detected after the MVA boost (DDDCM).

After vaccinating the first 7 volunteers with DDDC, we amended the immunization proto-

col by adding another rather strongly boosting vaccine modality MVA in the hope that any

minor differences achieved during the DNA priming phase would be amplified. We have

learnt since and here that a strongly boosting vaccine may have the opposite effect; rather than

amplifying differences, it blurs them and masks them [20]. For that reason, we focused our

search for effects on the vaccine-elicited T-cell responses on the period after DDD priming

and before the simian adenovirus boost. Nevertheless, neither cultured IFN-γ ELISPOT assays

nor profiling of functional molecules produced following a cognate peptide stimulation in
vitro yielded any statistically separable results between the CPHPC- and placebo-treated

groups.

We conclude that depletion of SAP with the regimen adopted here did not appreciably

improve the immunogenicity of the naked DNA encoding the HIVconsv antigen. Our hypoth-

esis may thus be wrong. However, the strong rationale provided by the experimental animal

findings, that created the hypothesis, still remains and the present suggestion of a possible

effect on breadth of immune response hints that it may be valid. There are several possible

a fresh ex vivo (A-D and F) or following a 10-day expansion (E) IFN-γ ELISPOTs assay using 6 peptide pools P1-P6 spanning the

HIVconsv immunogen. (A) Total frequencies were calculated as the sum of T cells responding to 6 pools of peptides P1-P6. The times

of vaccine administration are indicated below the graphs. (B) Comparison of AUC using group median T-cell frequencies for each

time point in the CPHPC (n = 13) and placebo (n = 13) groups. Only volunteers with full a data set were used. (C) Peak responses to

individual pools P1-P6 elicited by plasmid DNA (week 0–8) are shown. (D) Peak T-cell frequencies induced following plasmid pSG2.

HIVconsv DNA (week 0–8), ChAdV63.HIVconsv (week 8–12) and MVA.HIVconsv (week 16–20). (E) The proliferative capacity

determined as the frequencies of HIVconsv-specific T cells following a 10-day restimulation of samples from week 12. (F) Breadth of

induced T-cell responses defined as the number of recognized peptides pools (out of 6) following the ChAdV63.HIVconsv boost,

whereby breadth for all (left) and HLA-A�02:01-positive subjects receiving CPHPC (n = 11) or placebo (n = 9) (right) are shown. Data

are presented as median with range. (G) Bars depict the number of responders to 0–6 peptide pools P1-P6. The median, interquartile

and total range, and individual values are plotted for each visit (A, C, D, and E).

https://doi.org/10.1371/journal.pone.0197299.g003
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Fig 4. Functionality of vaccine-induced human T cells primed using plasmid DNA in the presence or absence of SAP. The functionality of T cells elicited

with (pink) and without (green) CPHPC treatment prior to the DNA administration was assessed in the Luminex assay measuring the concentration of

secreted signalling molecules into the culture supernatant by volunteers’ PBMC following a 48-hour HIVconsv peptide restimulation. The functionality of

specific T cells was determined after pSG2.HIVconsv DNA (CV1 and PV1), ChAdV63.HIVconsv (CV2 and PV2) and MVA.HIVconsv (CV3 and PV3)

administration. At no point and for no measured cytokine were the values statistically separable between the CPHPC and placebo recipients (Mann-Witney

test).

https://doi.org/10.1371/journal.pone.0197299.g004
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reasons for this marginal outcome. We excluded one possibility, namely that SAP does not

bind the particular DNA immunogen we used, but the contrary possibility remains: the inhibi-

tory potency of SAP may be so great that even the trace amount of residual SAP after CPHPC

infusion was sufficient to block DNA immunogenicity. We may thus have used insufficient

CPHPC to achieve our desired objective. Given the potential value to human health of effica-

cious DNA vaccines, and the possible development of an oral dosing form of CPHPC that

would make practical SAP depletion a viable proposition, further clinical studies with more

effective SAP depletion ahead of DNA vaccination would be worthwhile. In the present trial,

CPHPC was infused for just 24 hours before DNA injection and continued for only 2 hours

thereafter, based on logistical feasibility in this volunteer study. While circulating SAP was pro-

foundly depleted, we do not know whether SAP was adequately removed from the extracellular

compartment of the tissues, specifically the intramuscular sites of DNA injection. The binding

of SAP to DNA is very avid and we do not know how much SAP may be sufficient to suppress

the capacity of the DNA to transfect cells and trigger expression of the encoded protein immu-

nogen. Investigation of the effects of SAP depletion on immunogenicity of DNA vaccines

delivering different immunogens, if they are available, will also be of considerable interest.

Meanwhile, the experimental vaccines that were employed in the HIV-CORE 003 trial were

the first generation of HIV-1 T-cell vaccines [7], which focuses elicited T-cell responses on

highly functional conserved regions of the HIV-1 proteome common to most global variants,

Fig 5. HLA-A�02:01/YQY tetramer-aided analysis of human CD8+ T-cell memory subsets. For six HLA-A�02:01-positive vaccine recipients, frozen and

thawed PBMCs from indicated time point were analyzed for memory subsets defined as TN−naïve T cells (CD45RAhiCCR7hiCD27hi). TCM—central memory

(CD45RAloCCR7hiCD27hi), TTM—transitional memory (CD45RAloCCR7loCD27hi), TEM—effector memory (CD45RAloCCR7loCD27lo), and TTD—terminally

differentiated (CD45RAhiCCR7loCD27lo). See S1 Fig for the gating strategy. D–pSG2.HIVconsv DNA; C–ChAdV63.HIVconsv; M–MVA.HIVconsv. The

number next to the regimen indicates weeks after administration of the last vaccine.

https://doi.org/10.1371/journal.pone.0197299.g005
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which are the most vulnerable parts of HIV-1 [6]. These vaccines have now been used in 8 clin-

ical trials in UK, Europe and Africa. They have proven the concept that, in-natural-infection

subdominant protein epitopes can be taken out of the context of the whole proteins/virus and

delivered by an in-human potent regimen such as the simian adenovirus-MVA sequential

administration to induce robust HIV-1-specific T-cell responses. These can inhibit in vitro
replication of viruses of 4 major global clades [8, 9, 11, 21] and, in HIV-1-positive patients,

provided a preliminary signal of controlling HIV-1 viremia after pausing antiretroviral treat-

ment [12]. As we demonstrated previously, having induced robust CD8+ T-cells response in

the volunteers of this trial provides a further opportunity to identify novel subdominant, but

potentially protective HIV-1 epitopes [22]. Accumulation of knowledge about protective epi-

topes may in turn help predict early success or failure of future candidate T-cell vaccines

against HIV-1.
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