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ABSTRACT 

Objective: To define values of normalized brain volume (NBV) that can be categorized 

as low, medium or high, according to baseline characteristics of RRMS patients. 

Methods: Expected-NBV (eNBV) was calculated for each patient based on age, 

disease duration, sex, baseline EDSS and T2-lesion volume, entering these variables 

into a multiple regression model run on 2342 RRMS patients (pooled 

FREEDOMS/FREEDOMS-II population).According to the difference between their 

observed NBV and their eNBV, patients were classified as having low-NBV, medium-

NBV or high-NBV. We evaluated whether these NBV-categories were clinically 

meaningful by assessing correlation with disability worsening. 

Results: The distribution of differences between observed NBV and eNBV was used to 

categorize patients as having low-, medium- or high-NBV. Taking the high-NBV-group 

as reference, the HRs for 2-year disability worsening, adjusted for treatment effect, were 

1.23 (95%CI 0.92;1.63, p=0.16) for the medium-NBV and 1.75 (95%CI 1.26;2.44, 

p=0.001) for the low-NBV. The predictive value of NBV-groups was preserved over 4 

years. Treatment effect appeared more evident in low-NBV patients (HR=0.58) than  in 

medium-NBV (HR=0.72) and in high-NBV (HR=0.80) patients, but the difference was 

not significant (p=0.57). 

Conclusions: RRMS patients can be categorized into disability risk-groups based on 

individual eNBV-values according to baseline demographics and clinical characteristics.  
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INTRODUCTION 

Magnetic resonance imaging (MRI) derived measures of brain volume (BV) can be used 

to assess overall tissue damage in relapsing-remitting multiple sclerosis (RRMS).1-4 In 

RRMS patients, brain volume loss (BVL) has been proven to occur throughout the 

disease course, including the early stages, and progresses at a rate considerably higher 

than that of healthy adults.5-10 Recent work has defined relevant threshold values to 

discriminate pathological vs. physiological BVL rates in patients with RRMS,11 and has 

demonstrated the relevance of BVL as a measure of damage,12 with a proposal to 

include BVL in composite measures assessing RRMS disease activity.13 

Many studies have shown that baseline BV and the rate of BVL correlate with disability 

worsening and are also predictive of future disability.14-17 Also brain atrophy have been 

shown to be correlated in MS patients to cognitive impairment 18-19, employment status20 

and quality of life21 . Whereas the correlation between low brain volumes and disability 

worsening in patients with RRMS has been demonstrated at a group level, it is more 

difficult to establish at the individual level whether the volume of the brain measured in a 

single patient can be considered low or high. In this post-hoc analysis, we evaluated the 

possibility of defining individualized values for BV normalized for head size (NBV) to 

classify an individual patient as having a low or a high volume of the brain according to 

the demographic characteristics and the disease status of the individual subject. We 

then evaluated this classification by testing its ability to predict -on-study disability 

worsening. 

MATERIALS AND METHODS 
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Standard protocol approvals, registrations, and patient consents 

The FREEDOMS and FREEDOMS II trials (ClinicalTrials.gov identifiers: NCT00289978 

and NCT00355134, respectively) and their extensions were conducted in accordance 

with the International Conference on Harmonization Guidelines for Good Clinical 

Practice and the ethical principles of the Declaration of Helsinki.18, 19 The ethics 

committees and institutional review boards of all participating centers approved the 

study protocols. All participants provided written informed consent.20, 21 

Patients and study design 

The study design and inclusion/exclusion criteria of the FREEDOMS and FREEDOMS II 

trials have been previously described.20, 21 Briefly, the studies included RRMS patients 

(diagnosed according to the revised McDonald criteria22), aged 18–55 years who had a 

score of 0–5.5 on the Expanded Disability Status Scale (EDSS) and one or more 

documented relapses in the previous year or two or more relapses in the previous 2 

years. The eligible patients were randomized (1:1:1) to receive fingolimod 0.5 or 1.25 

mg/day, or placebo for 2 years.20, 21 All patients who completed the 24-month 

FREEDOMS/FREEDOMS II trial were eligible for the extension. Following FDA 

approval of fingolimod 0.5 mg dose, all patients receiving fingolimod 1.25 mg in study 

extensions were switched to fingolimod 0.5 mg. The extension phase continued until the 

umbrella safety extension study (ClinicalTrials.gov identifier, NCT01201356) opened for 

enrollment for patients who participated in all completed fingolimod studies.23, 24 

Assessments 
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Standardized neurological assessments, including determination of EDSS were 

conducted at baseline and every 3 months. MRI scans were obtained at baseline, 

months 6, 12, and 24 or at the end of the study, if the patient discontinued the study 

prematurely.20, 21 MRI lesion activity and BVL were assessed by a central reading site 

(Medical Image Analysis Center, Basel, Switzerland) that remained blinded for clinical 

data and randomization. MRI protocols and analysis methods have been detailed 

elswhere20,21 

Outcome measures 

The NBV was assessed at baseline using Structural Image Evaluation using 

Normalization of Atrophy, Cross-sectional (SIENAX).25 Disability worsening was defined 

as an increase in the EDSS score of ≥1 point sustained for ≥3 months (1.5 points if 

baseline EDSS = 0). 

Statistical analysis 

The analysis was run in two separate steps. In step 1, a cross-sectional analysis of 

baseline data was performed. Baseline factors that are correlated with baseline NBV 

were assessed for the pooled dataset from FREEDOMS and FREEDOMS II trials. A 

multivariate linear regression analysis, including age, sex, disease duration, EDSS, T2 

lesion volume (T2LV) and trial indicator (reperesenting the studies), was performed and 

the partial correlation coefficient of each factor (adjusted for all the other variables) with 

NBV was estimated. Variables with a skewed distribution (T2LV and disease duration) 

were transformed in three ordered groups defined by the tertiles of their distribution. 
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Age and EDSS score were treated as continuous variables, whereas sex and trial were 

categorical variables. The “trial” effect was estimated and compared to the residual 

variability of NBV (after adjusting the regression model for all the other baseline 

characteristics) to understand the comparability of the NBV measure between the two 

trials, adjusting for the different population characteristics. The trial effect on NBV was 

evaluated by using the greatest standardized mean difference (Cohen’s d) between a 

model including and excluding the trial effect. The trial effect can be considered 

negligible if Cohen’s d<0.20. Then, for each individual patient, an expected NBV (eNBV) 

according to individual baseline characteristics was calculated using the coefficients 

from the regression model, according to the linear formula: 

eNBV = a + b*T2LV + c*EDSS + d*Age + e*MS duration+ f*Male sex 

Where a is a constant and b, c, d, e, f are the partial coefficients estimated by the 

regression model. 

The difference between the observed NBV and the expected (eNBV)-value from the 

statistical model for each patient indicates whether the patient has a NBV higher or 

lower than expected (according to demographic and disease status). 

Based on the distribution of these differences, patients were categorized into three 

groups: Low-NBV for patients for whom the NBV was more than 1 SD below the eNBV, 

medium-NBV for patients for whom the NBV was within 1 SD from the eNBV, and high-

NBV for patients for whom the NBV was more than 1 SD above the eNBV.  
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In step 2, the prognostic values of the three defined NBV groups on disability (EDSS) 

change over 2 years were evaluated in the placebo-treated patients and in the overall 

population, adjusting for treatment effect. In both the FREEDOMS and FREEDOMS II 

trials, baseline characteristics were similar between the fingolimod 0.5 mg and 1.25 mg 

groups and, the two doses of fingolimod showed similar results across all efficacy 

outcomes (relapse rates, clinical disability worsening, and focal MRI lesion activity and 

brain volume loss). Hence, the current analysis was simplified by pooling the fingolimod 

0.5 mg and 1.25 mg groups (presented together as the fingolimod group). The 

prognostic value of the NBV was also evaluated on the whole cohort (patients originally 

randomized to placebo and fingolimod arms) over the 4-year extension period. Finally, a 

differential fingolimod effect as compared to placebo according to the different baseline 

NBV groups was assessed. 

The impact of the baseline NBV category, on the cumulative risk of 3-month confirmed 

disability progression (CDP) was analyzed using a Cox model. The fingolimod treatment 

effect on CDP for each baseline NBV category was evaluated by a treatment by group 

interaction test. The difference in the probability of worsening according to baseline 

NBV in placebo- and fingolimod-treated patients was displayed using Kaplan–Meier 

plots. 

RESULTS 

NBV at baseline estimated from the patient’s demographics and disease 

characteristics 
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Complete MRI and clinical baseline data were available for 2342 patients from the 

pooled intent-to-treat populations from FREEDOMS (N=1267), and FREEDOMS II 

(N=1075) studies. Table 1 reports the baseline characteristics of the patients included in 

this analysis. The overall baseline average NBV (±SD) was 1518 (±84) cm3 and was 

similar between the FREEDOMS (1514 [±85] cm3) and FREEDOMS II (1521 [±83] cm3) 

populations, and the distributions were nearly superimposable. T2LV, EDSS, age, 

disease duration, and sex showed significant correlations with NBV (p<0.001; for all; 

Table 2).  

The eNBV according to each patient characteristic can be calculated as: 

eNBV = 1763 - 34.6*T2LV - 8.2*EDSS - 3.3*Age - 10.8*MS duration - 23.4*Male sex 

The numerical details for the eNBV calculation are reported (Table 2), with examples of 

the calculation of eNBV for patients with different baseline and disease characteristics 

(Figure 1). The R2 value of the model was 36% indicating that the variables included 

were able to account for 36% of the variance in baseline NBV among patients. 

The distribution of the differences between the observed NBV and eNBV (calculated for 

each patient) is shown in (Figure 2a). The SD of this distribution was 67 cm3 and 

represented the between-patient variability in NBV not accounted for by the examined 

characteristics. The average NBV (adjusted for all the other baseline factors) was 14 

cm3 higher in FREEDOMS II than in FREEDOMS (p<0.001) indicating significant trial 

effect. However, since the greatest standardized mean difference of model residuals 

between individual studies (Cohen’s d) was 0.13 (<0.20), the trial effect was considered 
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negligible as compared to the variability of NBV between patients and was not included 

in the calculation of the eNBV for each patient. 

The distribution of NBV differences from expected values (using 1 SD [67cm3] as the 

distance from the expected value) was used to categorize the patients in the low-NBV, 

medium-NBV and high-NBV groups. 

 Low NBV: NBV< eNBV − 67cm3 

 Medium NBV: eNBV − 67cm3 ≥ NBV ≤ eNBV + 67 cm3 

 High NBV: NBV > eNBV + 67 cm3 

According to this criterion, 365 patients (15.5%) were categorized as having low-NBV, 

1610 (69%) as having medium-NBV, and 367 (15.5%) as having high-NBV (Figure 2b). 

As the classification is individualized according to each patient’s demographic and 

disease characteristics at baseline (Figure 1), the same value of NBV can result in a 

different classification depending on the subject’s characteristics. For example, an NBV 

of 1500 cm3 would classify a young, non-disabled male patient with a low T2LV and a 

short disease duration in the low-NBV group, whereas the identical 1500 cm3 NBV 

value in an elderly, highly disabled patient with a high T2LV and a long disease history, 

would fall into the high-NBV group (Figure 1). 

Prognostic value of the proposed NBV categories for predicting disability 

worsening 

The impact of the categorization according to baseline NBV, adjusted for all the other 

relevant characteristics in the model, on the cumulative risk of 3-month CDP over 2 
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years is shown in Table 3 and Figure 3. The probability of 2-year confirmed disability 

worsening, after adjusting for treatment effect, was associated with the NBV 

categorization (p=0.002). Taking the high-NBV group as a reference, the hazard ratios 

(HRs) for the medium-NBV and low-NBV groups were 1.23 (95% CI 0.92;1.63, p = 0.16) 

and 1.75 (95% CI 1.26;2.44, p = 0.001), respectively. In placebo-treated patients, the 

proportion of patients with disability worsening was 20% (standard error [SE] 4%) in the 

high-NBV group; 25% (2%) (HR = 1.30, 95% CI 0.83;2.05, p=0.25) in the medium-NBV 

group; and 37% (5%) (HR = 2.13, 95% CI 1.26;3.61, p=0.005) in the low-NBV group. 

The corresponding values in the fingolimod-treated patients were 16% (2%), 19% (1%), 

and 23% (3%), respectively (Figure 3a).  

The treatment effect tended to be more evident in patients in the low-NBV group (HR = 

0.58, 95% CI 0.38;0.88) than in patients in the medium-NBV (HR = 0.72, 95% CI 

0.57;0.90) and in the high-NBV (HR=0.80, 95% CI 0.47;1.36) groups. However, the 

treatment effect was not significantly different across the three NBV groups since the p-

value for interaction was not significant (p = 0.57). 

A consistent pattern was also observed for cumulative risk of 6-month CDP over 2 

years, although fewer events occurred (data not shown). Furthermore, the prognostic 

value of NBV in predicting disability worsening was confirmed over longer periods, up to 

4 years, using data from the FREEDOMS and FREEDOMS II extension studies (Figure 

3b). 

DISCUSSION 
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MS is a complex disease of the central nervous system. Although macroscopic, 

inflammatory lesions are the most evident aspect of MS pathology, a widespread 

pathology also occurs.1 Global brain atrophy, which starts at the earliest stage of MS 

and progresses through disease course, is the expression of such diffuse tissue 

pathology.10 While quantification is routinely used for MRI-derived assessment of 

lesions in clinical practice to guide clinical decisions22 this is much less common for 

MRI-derived cross-sectional and longitudinal measures of atrophy. Including BVL as a 

cumulative measure of widespread pathology of the CNS in RRMS, should provide a 

more comprehensive and balanced assessment of the patient disease course. 

Brain volume in MS depends on many demographic (age, sex) and clinical 

characteristics (disease duration, disability level etc.).17 In this study, we quantified the 

distribution of NBV in a large cohort of RRMS patients, adjusting for the relevant 

baseline characteristics in order to identify the NBV values of those subjects that are 

“far” from their expected values. By using this methodology, patients are classified as 

having a high, medium or low NBV relative to all other patients with similar baseline 

characteristics. We demonstrated that it is possible to define values for each individual 

patient of what we called “expected NBV” based on adjustments for disease-relevant 

covariates (T2LV, age, EDSS, disease duration, and sex) and proposed a formula 

which can be used to calculate the NBV cutoff for an individual patient. The putative 

clinical relevance of this was that, based on these individualized values of NBV, it is 

possible to identify patients who are at a higher risk for future disability worsening. 
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The present analysis represents the first attempt to define individual cutoff values of 

brain volume, acknowledging the patients baseline characteristics. Our results suggest 

that the classification of patients into low, medium, and high NBV categories allows for a 

better characterization of the patient risk of future disability worsening and may inform 

individual management through the course of the disease. It needs to be stressed, 

however, that the approach used here has several limitations that restricts its utility in 

clinical practice26. These include lack of standardization and varying quality in the MRI 

acquisition, as well as potential for inaccurate image post-processing. For example, 

data reported here might be different with different MRI acquisitions (e.g., field strength, 

voxel size, type of sequence, etc.) or different imaging analysis (e.g., software packages 

different from SIENAX, different imaging reading site, etc). These can be relevant 

sources of error that can affect the measurement estimation. Additionally, generic 

factors, such as lifestyle habits, genetic load, and concomitant pathologic conditions 

may also affect BV measurements and need to be taken into account when interpreting 

brain atrophy, particularly in the single patient assessment. Despite the above 

limitations, progress in computational technologies allows to expect a more convincing 

clinical use of MRI-based brain volumetry in a number of neurological disorders, 

including RRMS.27 Further studies are needed on independent datasets to evaluate 

whether cutoffs need to be re-calibrating after correcting for different MRI acquisition 

protocols  and analysis pipelines.  

In the present study, the overall baseline average NBV was very similar between the 

two large, multi-center clinical datasets (FREEDOMS and FREEDOMS II) with 

distributions that were nearly superimposable. This is indicative of a great homogeneity 
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in the NBV values, which is of paramount importance for the validity of the results. To 

create common cut-offs, in fact, there must be no systematic differences in NBV when 

measured in different settings. For this reason, these results need to be validated in 

other datasets to understand whether the same methodology and the same 

individualized values of NBV can be extended to other patient populations, especially to 

those beyond controlled clinical trials. Moreover, it is important to re-emphasize that the 

present analysis was based on the NBV calculations using SIENAX and cannot be 

extended to other methods of BVL assessment. Finally, although SIENAX is a widely 

used, standard method in clinical trials, its use in clinical practice on individual patients 

might be challenging and requires experienced personnel to perform accurate 

measurements.28 

Patients included in clinical trials are usually active inflammatory patients, due to the 

inclusion criteria aimed at enriching patients for activity at baseline. Whereas baseline 

inflammatory activity can affect the rate of brain volume change over time, the baseline 

value of NBV is much less affected by this and did not result associated to MRI activity 

assessed by gadolinium enhancement in this large dataset. More in general, however,, 

NBV is a measure of the brain volume loss occurred in the given patient until the time of 

the measurement, and for this is less intrinsically dependent of the inflammatory activity 

at the time, but rather dependent on the overall disease burden.  In that respect, the 

formula used to calculate the expected NBV included the T2 lesion burden, as 

expression of the overall focal pathology that can be associated to the baseline brain 

volume. As a consequence, the findings reported here can be generalizable to a typical 

clinic population of MS patients, composed of a mixture of active and inactive patients.   
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When discussing brain volume, brain reserve and cognitive reserve also need to be 

considered. Several studies have indicated that both, brain reserve and cognitive 

reserve, may serve as a buffer against future cognitive impairment.29-31 Our findings 

generally support this concept, as we showed that individuals with a higher-than-

expected NBV had a better prognosis for disability worsening over 2 and 4 years, than 

those with a lower NBV. This suggests that a window of opportunity exists, wherein 

therapeutic interventions can be the most effective in delaying disease worsening 

implying that an early intervention with an effective disease-modifying therapy may be 

linked to a more favorable long-term outcome.  

A number of studies have consistently shown a close correlation between BVL and 

disability worsening, particularly in the long-term.14, 17, 32 A recent post hoc analysis of 

data from the fingolimod phase III trials provided evidence that NBV at baseline was the 

strongest predictor of disability in RRMS patients and the correlation of BVL with 

worsening disability was stronger over four years than in the first two years on study.17 

The prognostic value of brain atrophy rates in predicting long term disability has also 

been demonstrated in other studies.14, 32 A large multicenter study reported that whole 

and central brain atrophy over one year can predict EDSS scores at 10 years in a 

heterogeneous group of MS patients.14 In a follow-up study reassessing RRMS patients 

from a phase III trial of interferon β-1a, brain atrophy rate was found to be the best MRI 

predictor of disability status at the 8-year follow-up.32 Consistent with these findings, we 

observed that the baseline NBV values in individual patients predicted disability 

worsening over 2 to 4 years. 
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In summary, we propose a methodology to calculate quantitative reference values for 

single-point NBV measurements, that allows to identify patients having a lower value of 

brain volume than that expected according to their clinical and demographic profile. This 

classification can be used to assign RRMS patients to distinct risk groups regarding 

future disability worsening and may help physicians to identify and appropriately treat 

patients at a higher risk of disability worsening.  
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