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Abstract 

About 15% of patients clinically diagnosed with Alzheimer’s disease do not show high tracer 

retention on amyloid PET. The present study investigates the clinical and demographic features, 

patterns of brain atrophy and hypometabolism and longitudinal clinical trajectories of these 

patients, with a particular emphasis on the AD-mimic typical amnestic subgroup. 38 amyloid 

PET-negative patients carrying a pre-PET diagnosis of AD (Aβneg-AD) from 4 centers 

(Amsterdam, Melbourne, San Francisco and Caen) were included in this study (11/27 

females/males; mean age=67±9). Detailed clinical histories, including the clinical diagnoses 

before and after the PET scan and at follow-up (>2 years), were collected. Patients were 

classified according to their pre-PET clinical phenotype as amnestic (memory predominant), 

non-amnestic (predominant language, visuospatial or frontal symptoms), or non-specific 

(diffuse cognitive deficits). Demographic, clinical, neuropsychological, MRI and FDG-PET 

data obtained at the time of the amyloid-PET scan were compared between Aβneg-AD 

subgroups, 27 Aβ-positive AD cases with a typical amnestic clinical presentation (Aβpos-AD; 

14/13 females/males; mean age=71±10) and 29 Aβ-negative cognitively healthy controls 

(Aβneg-HC; 15/14 females/males; mean age=69±12) matched for age, gender and education. 

There were 19 amnestic, 13 non-amnestic, and 7 non-specific Aβneg cases. Aβneg-AD 

subgroups did not differ in age, gender, education or APOE4 proportion. After the PET scan, 

clinicians altered the diagnosis in 68% of Aβneg-AD cases including 44% of amnestic versus 

94% of non-amnestic and non-specific cases. Amnestic Aβneg-AD were most often reclassified 

as frontotemporal dementia, non-amnestic as frontotemporal dementia or corticobasal 

degeneration, and non-specific as dementia with Lewy bodies. The longer-term clinical follow-

up was consistent with the post-PET diagnosis in most cases (89%), including in amnestic 

Aβneg-AD whose post-PET diagnosis remained AD. While the non-amnestic and non-specific 

Aβneg-AD usually showed patterns of atrophy and hypometabolism suggestive of another 



degenerative disorder, the amnestic Aβneg-AD had subtle atrophy and hypometabolism, 

restricted to the retrosplenium – posterior cingulate – posterior hippocampus junction. Aβneg-

AD patients have heterogeneous clinical presentations and likely represent a mixed population 

of initially misdiagnosed, mostly neurodegenerative, conditions. The clinical, cognitive, MRI 

and FDG profiles aided to find an alternative post-PET diagnosis in most non-amnestic cases. 

In the largest and most intriguing subgroup of amnestic Aβneg-AD however, the patients mimic 

typical AD in their clinical presentation and follow-up, so that an alternative diagnosis was not 

made in more than half of the cases – highlighting the need for a clinical framework and 

terminology to define these patients, who may have underlying limbic-predominant, non-Aβ-

driven pathologies.  

  



1. Introduction 

β-Amyloid (Aβ) deposition is one of the neuropathological hallmarks of Alzheimer’s disease 

(AD) (Hyman et al., 2012). For more than a decade, it has been possible to visualize these 

lesions in vivo with positron emission tomography (PET) radiotracers that bind to fibrillar Aβ 

plaques (Klunk et al., 2004). Most patients with a clinical diagnosis of probable AD have a 

positive Aβ scan (Aβpos-AD). However, a significant proportion, about 15% (ranging from 2 

to 32%) of patients across clinical series, have a negative Aβ scan (Aβneg-AD) (Doraiswamy 

et al., 2012; Jagust et al., 2010; Ossenkoppele et al., 2013; Ossenkoppele, Jansen, et al., 2015; 

Rowe et al., 2010; Sperling et al., 2014; Vandenberghe et al., 2010). Very few such cases have 

come to autopsy so that their etiology remains largely unknown. Some of the Aβneg-AD might 

correspond to false negatives due to technical issues or scan misinterpretation, or a lack of 

sensitivity of Aβ ligands in cases with low Aβ burden or atypical Aβ forms (Cairns et al., 2009; 

Johnson et al., 2013; Rosen et al., 2010; Schöll et al., 2012). The majority of Aβneg-AD cases 

probably reflect clinical misdiagnosis, as the accuracy of the clinical diagnosis of probable AD 

at expert centers is approximately 70% when compared to the cause of dementia as determined 

at autopsy (Beach et al., 2012). Clinical series have shown that clinicians change their diagnosis 

after disclosure of PET results from AD to a non-Aβ neurodegenerative or non-degenerative 

condition in a significant portion of Aβneg-AD cases, especially when prior diagnostic certainty 

was low (Ossenkoppele et al., 2013; Sánchez-Juan et al., 2014). This is particularly the case for 

patients who present with an atypical (non-amnestic) clinical phenotype (e.g. behavioural-

predominant or language deficits). However, clinicians may not revise their diagnosis when 

faced with a progressive amnestic disorder suggestive of “typical” AD, and identifying the 

etiologies of these intriguing cases is particularly challenging. In-depth description of the 

atrophy and hypometabolism pattern and longitudinal clinical trajectories of these patients 

would further our understanding of their possible underlying pathology, which is crucial to 



improve both the clinical diagnosis of AD and AD-like dementia and the understanding of the 

pathological mechanisms leading to AD symptoms. 

In the present study, we gathered detailed clinical and neuroimaging data on Aβneg-AD cases 

from different samples to further characterize this population compared to Aβpos-AD and Aβ 

negative healthy controls (Aβneg-HC). Patients were split in subgroups according to their 

baseline clinical presentation with the two following main objectives: i) to determine the most 

plausible alternative diagnosis per subgroup based on all available information (clinician 

judgment based on clinical, neuropsychological, CSF, neuroimaging data and follow-up clinical 

information); and ii) in the AD-mimic typical amnestic subgroup, especially those without an 

alternative diagnosis, to provide a comprehensive description of their neuroimaging (atrophy 

and hypometabolism) profile as a key to the possible etiologies. 

 

2. Methods 

2.1. Participants 

Aβneg-AD cases were identified by database searches in four Aβ PET research centers. In two 

centers recruitment for Aβ PET was derived from observational research studies of typical 

amnestic AD (Caen, France: CAEN and Melbourne, Australia: MEL), whereas in the other two 

recruitment centered around clinical populations with more diverse clinical profiles 

(Amsterdam, The Netherlands: AMS and San Francisco, United States: SF). Individuals were 

eligible for inclusion in this study if they had i) a pre-PET clinical diagnosis of probable AD 

according to international consensus NINCDS-ADRDA criteria (McKhann et al., 1984) 

without taking into account imaging data; ii) an Aβ-PET scan that was classified as negative by 

local readers (VLV, CCR, WJJ, VLS, GDR, BVB); and iii) a structural MRI scan (used for 

MRI and FDG-PET data processing).  



All Aβ-PET scans (PIB or florbetapir standardized uptake value [SUV] images; see 

Supplementary Table S2) from the four centers were re-reviewed by a single reader blinded to 

all clinical information (GDR). Ambiguous cases (i.e. high degree of uncertainty or discordance 

across readers) were excluded, since the goal of this study was to characterize the clearly 

negative (compared to the clearly positive) AD cases, and not to deal with the issue of 

intermediate/ambiguous Aβ scans. Out of the 46 Aβneg-AD cases pre-selected by the centers 

(representing 9%-21% of all AD cases with an Aβ PET scan in those centers), 38 cases were 

finally included in the present study (Table 1; 3 from CAEN, 6 from MEL, 18 from AMS and 

11 from SF). Among the 8 cases that were excluded, 6 had ambiguous or positive Aβ-PET 

reading on re-review, 1 had an ambiguous pre-PET diagnosis and 1 was too severely impaired.  

For comparison, Aβ-positive AD cases (Aβpos-AD) and Aβneg-HC from each center were 

selected. The Aβpos-AD cases were eligible if they had a pre-PET clinical diagnosis of probable 

AD according to the NINCDS-ADRDA criteria (McKhann et al., 1984) with a typical amnestic 

clinical presentation, a structural MRI scan and an Aβ-PET scan that was classified as positive 

by the local reader. The Aβneg-HC were volunteers recruited through newspaper 

advertisements as described elsewhere (Mevel et al., 2013; Mormino et al., 2009; Ossenkoppele 

et al., 2012; Villemagne et al., 2011), who performed within normal limits on screening 

cognitive tests assessing memory, attention, language, visuo-spatial and executive functions. 

The same reader as for the Aβneg-AD (GDR) performed a blinded review of all Aβpos-AD and 

Aβneg-HC cases and all cases with an ambiguous Aβ PET scan were excluded.  The Aβpos-

AD and Aβneg-HC cases were selected so that the groups were matched to the Aβneg-AD 

group for age and education (and MMSE for AD). In total, 27 Aβpos-AD and 29 Aβneg-HC 

cases were included in the study. All participants included in this study underwent standard 

dementia screening that included medical history, informant-based history, physical and 

neurologic examinations, screening laboratory tests, MRI and neuropsychological testing. Pre-



PET clinical diagnosis was established by consensus in a multidisciplinary team. The 

demographic characteristics of the groups are indicated in Table 1. All participants or their 

surrogates provided informed consent to participate in research, and the local ethics committee 

in each centre approved for all protocols. 

2.2. Data collection 

To optimize data collection, AP or GC performed site visits at each of the centers following a 

pre-specified procedure. Before the visit, each centre prepared a list of cases (Aβneg-AD, 

Aβpos-AD and Aβneg-HC) with their corresponding demographic, ApoE genotype and 

neuropsychological data, results of CSF analyses when available, and a file summarizing 

available neuroimaging data (structural MRI, FDG-PET, Aβ-PET).  

The procedure for the site visit included:  

i) Reviewing the clinical history with one of the local site investigators (who was 

informed about each case being Aβneg-AD, Aβpos-AD or Aβneg-HC) based on the 

information available in the clinical report. When information was unclear or 

missing, the attending clinician of the patient (if different from the site investigator) 

was further interviewed. The systematically recorded clinical information included: 

presenting cognitive complaints, date of the first visit, reports from the clinical and 

neuropsychological assessment, whether the patient had a typical amnestic or non-

amnestic presentation, the differential diagnosis (if any), change of diagnosis after 

disclosing results of the PET scan, clinical follow-up and results of post-mortem 

analyses if available; 

ii) Checking that all neuroimaging data were available and de-identified; 

iii) Copying the neuroimaging data and performing a first pass quality control; 

iv) Getting information and explanation on the neuropsychological tests and scores. 



All Aβneg-AD patients were then classified according to their clinical phenotype in the last 

assessment prior to the PET scan. The clinical phenotype was determined by the clinician based 

on clinical and neuropsychological information. They were classified as i) “amnestic” Aβneg-

AD if they had predominant episodic memory deficits, with various involvement of other 

cognitive domains; ii) “non-amnestic” Aβneg-AD if their predominant deficit was in another 

cognitive domain than memory – i.e. if they had predominant language, visuospatial or frontal 

symptoms, while memory deficits, if present, were less prominent, or iii) “non-specific” Aβneg-

AD if they had a diffuse pattern of cognitive impairment (i.e. they did not present with a 

predominant deficit in one specific area of cognition).  

2.2.1. Neuropsychological scores 

To quantify and compare subgroup’s performances, the same or an equivalent test was selected 

within each center for each of the following cognitive functions: verbal episodic memory 

(immediate and delayed recall), visual episodic memory, executive functions, visuo-spatial 

function and semantic memory. The tests and scores selected for each centre are indicated in 

the Supplementary Material (Table S1). Each score was z-score transformed based on a control 

database from each corresponding centre.  

2.2.2. Neuroimaging data 

The scanner types and acquisition protocols for each site are indicated in Supplementary 

Materials. For voxel-wise analyses, MRI and FDG-PET data were processed and analyzed 

using SPM5 software (Statistical Parametric Mapping, Wellcome Trust Centre for 

Neuroimaging, London, UK). T1-weighted MRI images were segmented, spatially normalized 

to the MNI space, modulated to correct for nonlinear warping effects using the VBM5.1 toolbox 

and smoothed using a 12 mm full-width at half-maximum (FWHM) Gaussian kernel. FDG-

PET images were co-registered onto corresponding MRI, normalized using the deformation 

parameters defined from the VBM procedure performed on the corresponding MRI, scaled 



using the mean PET value of the cerebellar gray matter and smoothed using a 12 mm FWHM 

Gaussian kernel.   

Each scan was subject to a careful quality check both before and after preprocessing by three 

neuroimaging experts with more than 10 years of experience in neuroimaging data processing 

and analyses (FM, BL and GC). MRI data were considered for further analyses if the raw image 

and the results of the normalization and the segmentation processes were considered to be 

reliable. For FDG PET data, the selection was based on the quality of the raw PET images and 

the success of the co-registration (of the PET image onto the corresponding MRI) and the 

normalization (of the MRI) processes. The selection of images for voxel-wise analyses was 

based on a consensus agreement from the three experts on the criteria defined above based on 

qualitative assessment. Note that PET data were not corrected for atrophy as this would rather 

exacerbate differences due to the different MRI scanners. 

79 MRI scans (n= 32 Aβneg-AD, 24 Aβneg-HC and 23 Aβpos-AD) and 72 FDG-PET scans 

(n= 32 Aβneg-AD, 19 Aβneg-HC and 21 Aβpos-AD) were included in the corresponding voxel-

wise analyses. The demographic and clinical characteristics of the respective samples are 

indicated in Supplementary material; there was no significant difference in the characteristics 

of the MRI and FDG subsamples compared to those of the main sample. 

2.2.3. Cerebrospinal Fluid (CSF) 

CSF sampling was obtained in a proportion of the Aβneg-AD (18/38) from AMS and SF. In 

AMS, CSF was collected in 10 mL polypropylene tubes. Within 2h after collection, the CSF 

was centrifuged at 1800g for 10 min at 4°C and transferred into a second polypropylene tube, 

and stored at −20°C. Within 2 months after lumbar puncture, analysis of Aβ-β 1–42 (Aβ1–42), 

total tau (tau) and tau phosphorylated at threonine-181 (ptau) was performed using sandwich 

ELISAs (Innotest β-Aβ(1–42), Innotest hTAU-Ag and Innotest Phosphotau(181P); 

Innogenetics, Gent, Belgium). Aβ 1-42 was considered abnormal <550 pg/ml, total tau > 374 



pg/ml and ptau > 52 pg/ml or when the ratio of total tau/Aβ 1-42 was > 0,52 (Duits et al., 2014). 

Analyses were done by operators who were blinded to all clinical information. CSF collection 

and processing in SF followed the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

protocol (Shaw et al., 2009). Samples were frozen on dry ice and shipped overnight to the ADNI 

Biomarker Core laboratory at the University of Pennsylvania Medical Center.  Aβ1–42, tau 

(total), and p-tau181p were measured using the multiplex xMAP Luminex platform (Luminex 

Corp, Austin, TX) with Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium). Thresholds for 

CSF biomarkers and biomarker ratios were adopted from the autopsy-proven study by Shaw et 

al. (Shaw et al., 2009). 

2.3. Statistical analyses 

Demographic, clinical and neuropsychological data were compared between groups using 

ANOVAs and post-hoc two-by-two group comparisons. Chi-square tests were performed for 

categorical variables (gender and ApoE4). MRI and FDG-PET images were compared voxel-

wise between groups using the full factorial design in SPM5. Results are displayed at a 

threshold of uncorrected p (punc)<0.001 (cluster extent k>10 voxels) unless specified otherwise. 

Results described below are presented with all models performed without covariates. This 

appears as the best option given that the groups were matched to avoid reducing the degrees of 

freedom and associated statistical power in our analyses. Yet, to ensure that none of our findings 

were merely reflecting the effects of a covariate, all analyses were repeated including age, 

gender or centre as a covariate.  

 

3. Results 

3.1. Demographic and clinical data  



The Aβpos-AD, Aβneg-AD, and Aβneg-HC did not differ in age, gender or education (Table 

1). The proportion of APOE4 carriers was significantly higher in Aβpos-AD compared to both 

controls and Aβneg-AD but was not different between the controls and Aβneg-AD.   

Table 1: Demographic and clinical characteristics of the samples 

 Aβneg-AD 

(n=38) 

Aβpos-AD 

(n=27) 

Aβneg-HC  

(n=29) 

Group effect 

Age 67.4 ± 9.1 70.6 ± 9.8 69.3 ± 11.7 0.4 

Gender (M:F) 27 : 11 13 : 14 14 : 15 0.09 

Education 12.1 ± 4.1 13.1 ± 3.3 13.5 ± 4.0 0.4 

MMSE 23.0 ± 4.4 23.5 ± 3.3 29.0 ± 1.0* <0.001 

APOE4 1 4/32 (12%) 17/22 (77%)** 3/28 (11%) <0.001 

*: significant difference from both other groups in post-hoc tests (p<0.001); **: significant difference 

from both other groups in 2x2 Chi-square (p<0.001). 1indicated is number of APOE4 cases / number of 

cases with APOE genotyping (proportion). 

Among Aβneg-AD patients, there were 19 amnestic, 13 non-amnestic, and 7 non-specific cases. 

Aβneg-AD subgroups did not differ in age, gender, education or ApoE4 proportion. There was 

a trend for a group effect on MMSE (p=0.08) and post-hoc analyses showed that non-specific 

Aβneg-AD had slightly lower MMSE than amnestic Aβneg-AD (Table 2). Comparisons of the 

neuropsychological scores between these subgroups were consistent with their classification, 

showing overall more severe episodic memory deficits in Aβpos-AD and amnestic Aβneg-AD, 

while non-amnestic Aβneg-AD had lower performance on non-memory tasks (see details in 

Supplemental data text and Figure S1). 



Table 2: Demographic and clinical characteristics in Aβneg-AD subgroups 

 Amnestic 

Aβneg-AD 

(n=19) 

Non-amnestic 

Aβneg-AD 

(n=12) 

Non-specific 

Aβneg-AD 

(n=7) 

Group effect 

(p value) 

Age 68.6 ± 11 64.8 ± 5.7 68.3 ± 8.2 0.5 

Gender (M:F) 12 : 7 9 : 3 6 : 1 0.5 

Education 11.9 ± 4.5 12.6 ± 3.6 10.5 ± 2.1 0.8 

MMSE 24.5 ± 2.6 21.0 ± 5.9* 22.6 ± 4.8 0.08 

APOE4 1 4/17 (24%) 0/11 (0%) 0/6 (0%) 0.1 

*: post-hoc Fisher LSD difference from amnestic Aβneg-AD p=0.04. 1indicated is number of APOE4 

cases / number of cases with APOE genotyping (proportion). 

After Aβ PET, the clinicians altered the diagnosis in 23 of 34 (68%; missing information in 4 

cases) Aβneg-AD cases (Figure 1). Post-Aβ PET diagnoses included behavioral and/or 

language variants of frontotemporal dementia (FTD, n=11), corticobasal degeneration (CBD, 

n=5), dementia with Lewy bodies (DLB, n=3), epilepsy/depression (n=1), hippocampal 

sclerosis (n=1) and unknown (n=2, see Figure 1). The FTD diagnoses included non-fluent 

variant of primary progressive aphasia (n=3), behavioural variant of FTD (n=2), semantic 

dementia (n=1), mixed language and behavioral FTD (n=2), unspecified variant (n=2) and 

atypical FTD (n=1).  

When considering Aβneg-AD subgroups (Figure 1), clinicians did not change their clinical 

diagnosis in 56% of amnestic Aβneg-AD patients, but nearly always changed the diagnosis in 

non-amnestic and non-specific cases (94%; significantly different from the percentage in 

amnestic Aβneg-AD; chi-square p=0.002). Amnestic Aβneg-AD cases were most often 

reclassified as FTD, non-amnestic as FTD or CBD, and non-specific as DLB.  



Among the patients who had longer-term (>2 years) follow-up (n=27, 80%), the post-PET 

diagnosis was supported and remained unchanged in most cases (n=24; 89%). Three non-

amnestic Aβneg-AD patients were followed to death and underwent brain autopsy at the UCSF 

Neurodegenerative Disease Brain Bank following previously published protocols 

(Ossenkoppele, Pijnenburg, et al., 2015). The post-mortem diagnoses were corticobasal 

degeneration (2) and Pick’s disease, pathological variants of frontotemporal lobar degeneration 

(Mackenzie et al., 2010). The two former cases had no amyloid at all (Thal stage 0, CERAD 

absent) and the later case showed sparse diffuse plaques without neuritic plaque (Thal stage 1, 

CERAD absent). 

 

Figure 1: Clinical diagnosis at baseline (in the last assessment prior to the Aβ-PET scan; 1st line), once 

the clinicians knew the results of the PET scan (2nd line), and after a >2 years clinical follow-up (3rd 

line). The neuropathological diagnosis is also indicated in three patients who died and underwent 

autopsy (4th line). AD: Alzheimer’s disease; CBD: corticobasal degeneration; CBD: corticobasal 

degeneration; DLB: dementia with Lewy Body; Ep: Epilepsy-depression; FTD: frontotemporal 

dementia; HS: hippocampal sclerosis; MCI unkn: MCI with unknown etiology; Prb: probable; unkn.: 

unknown disease. 

 



3.2. CSF biomarkers 

The results of CSF AD biomarkers in Aβneg-AD are indicated in Table 3. CSF Aβ42 results in 

Aβneg-AD patients were usually in the normal range, concordant with the negative Aβ PET. 

However, CSF total Tau or p-Tau levels were abnormal in more than half the cases. Only one 

patient had a CSF profile strongly suggestive of underlying AD, with low Aβ42 and high Tau/p-

Tau. The results of Aβneg-AD subgroups should be considered with caution because of the 

small sample sizes. They indicate that amnestic Aβneg-AD had either i) normal CSF results 

(45%) or ii) normal CSF Aβ42 with increased CSF total Tau or p-Tau levels (55%). Non-

amnestic Aβneg-AD presented with any combination of normal or abnormal Aβ42 or Tau/p-Tau 

levels; they notably included all Aβneg-AD cases with decreased Aβ42. CSF results were 

obtained in only 3 non-specific Aβneg-AD and 2 had increased Tau or p-Tau levels with normal 

Aβ42. 

Table 3: CSF profile per Aβneg-AD subgroup: number of cases (percentage) 

 N 

total 

Aβ42 normal, 

Tau/p-Tau 

normal 

Aβ42 low, 

Tau/p-Tau 

normal 

Aβ42 normal, 

Tau/p-Tau 

high 

Aβ42 low, 

Tau/p-Tau 

high 

All  18 7 (39%) 1 (5.5%) 9 (50%) 1 (5.5%) 

Amnestic Aβneg-AD 9 4 - 5 - 

Non-amnestic 

Aβneg-AD 

7 2 1 2 1 

Non-specific Aβneg-

AD 

3 1 - 2 - 

 



3.3. Neuroimaging 

The neuroimaging findings in the total Aβneg-AD group, compared to Aβpos-AD and Aβneg-

HC, are described in the Supplemental data (text and Figure S2). The neuroimaging findings 

for the different Aβneg-AD subgroups are shown in Figure 2. 

Compared to Aβneg-HC, significant atrophy in amnestic Aβneg-AD was restricted to small 

clusters in the right and left retrosplenium (not surviving family-wise correction for multiple 

comparisons at pFWE<0.05). With a more permissive threshold (punc<0.005), atrophy was also 

found in the hippocampus (anterior and posterior portions), ventral posterior cingulate cortex 

and orbito-frontal and dorsomedial prefrontal cortex. There was no area of significant 

hypometabolism in amnestic Aβneg-AD compared to Aβneg-HC; even at a more permissive 

threshold (punc<0.005), only very small clusters in the medial prefrontal, right middle temporal 

and posterior cingulate cortex were observed. As expected, both atrophy and hypometabolism 

were significantly less pronounced in amnestic Aβneg-AD compared to Aβpos-AD, in the 

temporo-parietal cortex (surviving at pFWE<0.05 in the left side) and precuneus. 

In non-amnestic Aβneg-AD, asymmetric atrophy was found in left greater than right prefrontal, 

temporal, temporoparietal and temporo-occipital cortex, temporal pole, insula, posterior 

cingulate and precuneus, amygdala and parahippocampal gyrus. The hippocampus was mostly 

preserved (except a small portion in the posterior end of the right hippocampus). Large portions 

of the prefrontal cortex and small clusters in the left temporal lobe survived multiple 

comparisons correction (pFWE<0.05). Significant hypometabolism was found in left greater 

than right dorsal (mainly lateral) prefrontal cortex and left angular gyrus (both surviving at 

pFWE<0.05). Compared to Aβpos-AD, non-amnestic Aβneg-AD showed greater atrophy 

especially in frontal and insular regions and caudate nucleus, but they also had small clusters 

of less significant atrophy in posterior temporal cortex. No significant difference was found in 

hypometabolism between non-amnestic Aβneg-AD and Aβpos-AD. 



Compared to Aβneg-HC, the non-specific Aβneg-AD showed restricted areas of atrophy in the 

orbital and dorsomedial frontal cortex (not surviving at pFWE<0.05), and significant 

hypometabolism predominantly in the temporal neocortex (surviving at pFWE<0.05) extending 

to the temporoparietal junction, and the prefrontal cortex (mainly bilateral). Compared to 

Aβpos-AD, atrophy was slightly less pronounced in non-specific Aβneg-AD while 

hypometabolism was more pronounced in the left insula and bilateral lingual cortex. 



 

Figure 2: Profiles of atrophy (A) and hypometabolism (B) in the three Aβneg-AD subgroups and in the 

Aβpos-AD compared to the Aβneg-HC. The threshold was set at punc<0.001, k>10.  



3.4. Additional analyses in the amnestic Aβneg-AD subgroup 

To further understand what distinguished amnestic Aβneg-AD from Aβpos-AD cases, we split 

Aβneg-AD according to their post-PET diagnosis, i.e whether or not the diagnosis changed after 

the clinician knew the results of the Aβ-PET scan. The diagnosis did not change in 10 amnestic 

Aβneg-AD (i.e. Aβneg-AD-unchanged) (Figure 1). Within this subgroup, longer term (> 2 

years) follow-up was available in all but one patient, and the diagnosis remained probable AD 

in 7/9 cases while diagnosis changed to unspecified MCI in the two remaining cases because 

their functional impairment was in the gray zone between MCI and dementia and they did not 

deteriorate during the follow-up. The 8 amnestic Aβneg-AD cases with a post-PET change in 

diagnosis were called amnestic Aβneg-AD-changed. Longer term (> 2 years) follow-up was 

available in 6 out of these 8 patients and the clinical diagnosis remained the same as the post-

PET diagnosis in all cases. 

The neuroimaging findings of the amnestic Aβneg-AD subgroups are shown in Figure 3. 

Because of the limited size of the subsamples, all results are shown and described at punc<0.005 

(and punc<0.05 when specified) with cluster extend k>50 voxels. The amnestic Aβneg-AD-

unchanged showed significant atrophy and hypometabolism compared to Aβneg-HC in the 

same region of the retrosplenial cortex encroaching the posterior hippocampus as amnestic 

Aβneg-AD. Interestingly, even at an exploratory threshold of punc<0.05, atrophy and 

hypometabolism remained mainly constrained to the posterior hippocampus, posterior 

cingulate and precuneus.  

The amnestic Aβneg-AD-changed group had significantly more atrophy compared to Aβneg-

HC in the medial orbitofrontal cortex, dorso-medial frontal cortex (superior frontal gyrus), 

thalamus, amygdala, and parahippocampal gyrus. Significant hypometabolism was observed in 

the middle and superior temporal gyri.  



Individual profiles of atrophy and hypometabolism were also assessed as illustrated in 

Supplemental material (Figure S3). They showed that three different scenarios could be found 

amongst the amnestic Aβneg-AD. About half of the cases presented with very slight and similar 

profiles of atrophy and hypometabolism restricted to the posterior hippocampus, retrosplenium 

and/or posterior cingulate cortex (representative examples in Figure S3B and S3C). In these 

cases, the clinical follow-up did not allow to identify an alternative diagnosis to probable AD. 

About one third of the cases had a profile of atrophy and hypometabolism consistent with 

another degenerative disease (representative example in Figure S3F); the clinicians changed the 

diagnosis based on this information and in all cases the longer-term clinical evolution was 

consistent with the new diagnosis. Finally, a small proportion of the amnestic Aβneg-AD cases 

(n=4, 22%) had a clinical progression that was not consistent with a neurodegenerative disease 

in that they were relatively stable or declined very slowly. Interestingly, the profiles of atrophy 

and hypometabolism were different in these later cases compared to both previous scenarios, in 

that they had either no atrophy and no hypometabolism, or very discrepant profiles with 

pronounced and extended atrophy and almost no hypometabolism (Figure S3D and S3E). It 

seems relevant to identify these cases as their clinical outcome is different and they likely do 

not have a neurodegenerative disease. 



 

Figure 3: Profiles of atrophy (upper row) and hypometabolism (lower row) in Aβpos-AD (left), amnestic 

Aβneg-AD-unchanged (middle) and amnestic Aβneg-AD changed (right), compared to Aβneg-HC. The 

results are displayed at punc<0.005 and punc<0.05, k>50; scale is in T-values. 

 

4. Discussion 

In this multicenter study we assessed the clinical, neuropsychological and neuroimaging 

features of patients clinically diagnosed with Alzheimer’s disease who had an amyloid-negative 

PET scan. We found Aβneg-AD patients to have heterogeneous clinical presentations and 

outcomes. 50% had a clinical phenotype typical of AD with memory predominant deficits 

(amnestic Aβneg-AD), 32% showed an atypical presentation with predominant deficits in a 

non-memory domain (non-amnestic Aβneg-AD), while the remaining 18% had a non-specific 

neurobehavioral phenotype (non-specific Aβneg-AD). After disclosure of PET scan results, the 

diagnosis was changed in two-thirds of all cases, including 44% of amnestic-Aβneg-AD cases 

versus all but one (94%) of non-amnestic and non-specific cases. The alternative diagnosis was 



another degenerative condition in a majority of cases (56% of all Aβneg-AD cases, 87% of the 

non-amnestic and non-specific Aβneg-AD cases), which reflects the overlap in clinical 

expression between the different degenerative diseases. The most frequent alternative diagnoses 

were FTD (48% of the cases for which the diagnosis was changed), CBD (22%) and DLB 

(13%).  

In the national Alzheimer’s coordinating center (NACC) autopsy database, a mismatch between 

the clinical and neuropathological diagnoses of AD was found in 17% of the 526 subjects 

diagnosed as clinically probable AD (Beach et al., 2012), and in 25% of patients diagnosed 

with possible or probable AD in a follow-up study (Monsell et al., 2015). The proportion of 

Aβneg-AD cases in the four centers in the present study (9 to 21%) is comparable to these 

postmortem studies, and to the rate of clinically diagnosed AD patients with negative Aβ PET 

reported in the literature (Doraiswamy et al., 2012; Jagust et al., 2010; Ossenkoppele, Jansen, 

et al., 2015; Salloway et al., 2014; Vandenberghe et al., 2010). 

The most frequent primary neuropathological diagnoses for the cases not meeting the 

neuropathological threshold for AD in Beach et al. (2012) were AD nevertheless (19%), FTD 

(17%; amongst which 7/15 had ubiquitin or TDP-43 positive inclusions and 3/15 had 

tauopathies), tangle-only dementia or argyrophilic grain disease (17%), cerebrovascular disease 

(11%), DLB (10%), hippocampal sclerosis (9%) and CBD (2%). The alternative clinical 

diagnoses in the present study were mostly similar, with differences likely reflecting the 

differences in the study design (e.g. postmortem versus clinical diagnoses, availability of both 

plaque and tangle data at autopsy versus Aβ biomarker only in the present study).  

A proportion of Aβneg-AD might reflect false negative Aβ scans. However, the fact that 

Aβneg-AD showed different profiles of hypometabolism and atrophy as compared to Aβpos-

AD makes this an unlikely explanation in the majority of cases in this study. Moreover, most 

Aβneg-AD had a normal CSF level of Aβ42, consistent with previous reports (Shimada et al., 



2011; Takeuchi et al., 2012), and studies showing high agreement between amyloid PET and 

CSF Aβ results. (e.g. (Palmqvist et al., 2014; Zwan et al., 2014)). Only two patients had low 

CSF Aβ42, suggesting that false negative Aβ PET may occur infrequently at least in our cohort, 

although postmortem confirmation would be needed. A few cases (especially those with an AD-

typical phenotype and clinical evolution, or low CSF Aβ) might yet have low levels (Cairns et 

al., 2009; Leinonen et al., 2008) or an atypical form (Schöll et al., 2009) of Aβ, that would not 

be detected with Aβ PET. As regard to CSF Tau and p-Tau, the high levels found in about half 

of the cases indicates that neurodegeneration and/or neurofibrillary tangles are likely present in 

at least 50% of Aβneg-AD in our study  (Blennow et al., 2010). 

Aβneg-AD patients were characterized by a low prevalence of APOE4 (12% against 77% in 

the Aβpos-AD), consistent with previous reports (Serrano-Pozo et al., 2014; Shimada et al., 

2011; Takeuchi et al., 2012) and with the fact that APOE4 is strongly associated with Aβ 

deposition (Fouquet et al., 2014). In Monsell et al. (2015), minimal plaques were found 

postmortem in 13% of APOE4 carriers versus 37% of non-carriers in patients with a clinical 

diagnosis of possible or probable AD. In a recent clinical trial of anti-Aβ immunotherapy, the 

prevalence of Aβ PET-negativity in patients clinically diagnosed with mild-moderate AD 

dementia was 6.5% in ApoE4 carriers versus 36% in non-carriers (Liu et al., 2015; Salloway et 

al., 2014).  

4.1. Amnestic Aβneg-AD 

The largest subgroup of Aβneg-AD patients presented with a progressive amnestic disorder 

consistent with typical AD, and performed most similarly to Aβpos-AD on cognitive tests. The 

clinical follow up suggests that in most cases this condition is not benign: only 3/15 patients 

with longer-term clinical follow-up were reclassified as MCI as their cognition remained stable, 

while the others showed clinical progression consistent with ongoing neurodegeneration and 

dementia (i.e. probable AD in 7, FTD in 3, hippocampal sclerosis and DLB in 1 each). Within 



this group, patients whose diagnosis changed after the Aβ PET scan (44%) were most often 

reclassified as FTD (in 50% of the cases), and their neuroimaging profiles consistently showed 

predominant fronto-temporal alterations. However the diagnosis remained unchanged in 56% 

of cases. In the Aβneg-AD-unchanged group, atrophy and hypometabolism were restricted to 

the hippocampus, retrosplenial and PCC areas. These regions are known to be highly connected 

and involved in episodic memory (see e.g. (Ranganath and Ritchey, 2012)), which is consistent 

with the predominant episodic memory deficits of these patients. These patients seem likely to 

harbour a variety of limbic-predominant pathologies affecting the medial temporal lobe. One 

likely cause may be tangle-predominant dementia. Along the line of the recently termed primary 

age-related tauopathy (PART), patients with a clinical diagnosis of AD and neurofibrillary 

tangles but lacking Aβ plaques have been described in many cohorts (Crary et al., 2014). 

Amongst clinically diagnosed AD cases with no or sparse neuritic plaques from autopsy 

(excluding the cases with a non-AD pathological diagnosis in Serrano-Pozo et al., 2014), 40 to 

45% had substantial neurofibrillary degeneration (Braak stages ≥ III) (Monsell et al., 2015; 

Serrano-Pozo et al., 2014). On the other hand, more than half of Aβ-negative patients thus had 

Braak stages 0/I/II of neurofibrillary tangles, which is insufficient to account for their mild-to-

moderate dementia. Additional neuropathologies that specifically target the medial temporal 

lobe and hippocampal circuit include hippocampal sclerosis (with or without TDP-43 positive 

inclusions (Nag et al., 2015)) and argyrophillic grain disease, a primary tauopathy with 

inclusions that are morphologically and biochemically distinct from neurofibrillary tangles 

(Grinberg et al., 2013). Cerebrovascular disease and dementia with Lewy bodies can also mimic 

typical AD clinically, though are more often associated with a non-amnestic predominant 

clinical phenotype. Notably, Serrano-Pozo and colleagues found essentially no difference in the 

frequency and severity of concurrent vascular and Lewy body pathologies at autopsy in low 

versus high amyloid brains of patients diagnosed clinically with AD. White matter lesions were 



not assessed in the present study because of the lack of homogeneous data / information across 

centers. However, clinicians had access to the clinical MRIs and did not make the diagnosis of 

vascular dementia or vascular MCI despite the negative amyloid scans. Emerging tau-specific 

PET ligands may shed further light on the underlying pathology in these patients (Villemagne 

et al., 2015). 

It is particularly striking that amnestic Aβneg-AD-unchanged were comparable to Aβpos-AD 

in their clinical presentation and trajectories, while they had significantly less atrophy and 

hypometabolism in extended neocortical brain areas. It is possible that these patients have 

another pathological process, which is not measured here but contributes to their clinical profile 

and evolution. One can speculate that there is a causal relationship between the lack of amyloid 

deposition and the lack of atrophy/hypometabolism beyond the hippocampo-posterior cingulate 

cortex area in Aβneg-AD patients. Thus, Aβ may facilitate the spread of pathologies (e.g. tau 

in AD) and related neurodegeneration from the initial site of infection to distant connected brain 

regions (i.e. temporo-parietal, precuneus and frontal areas in AD). On the same line, as Aβneg-

AD tend to show very similar patterns of atrophy and hypometabolism, our results raise the 

question of the role of Aβ in the mismatch between atrophy and hypometabolism patterns 

typically found in AD (Chételat et al., 2008; La Joie et al., 2012). 

  

4.2. Non-amnestic and non-specific Aβneg-AD 

A second group of Aβneg-AD patients was characterized by non-amnestic predominant clinical 

presentations. These patients showed relatively greater impairment in non-memory domains 

compared to Aβpos-AD and amnestic Aβneg-AD. Predominant deficits in language, executive 

functions/behavior and visuospatial function characterize ~15% of AD patients presenting to 

academic dementia centers (Snowden et al., 2007) and even more in early-onset AD (Mendez 



et al., 2012). While these presentations are now recognized as AD phenotypes and are included 

in newly proposed AD diagnostic criteria (Dubois et al., 2014; McKhann et al., 2011), these 

patients also show significant clinical overlap with FTD-spectrum disorders (Alladi et al., 2007; 

Ossenkoppele, Pijnenburg, et al., 2015). In these cases clinicians changed their clinical 

diagnosis to FTD-spectrum syndromes (such as behavioral variant FTD, non-fluent variant 

primary progressive aphasia or CBD), and the topography of atrophy and hypometabolism was 

consistent with the alterations typically found in FTD (Diehl et al., 2004; Rabinovici et al., 

2007), CBD (Lee et al., 2011), and primary progressive aphasia (Gorno-Tempini et al., 2011; 

Nestor et al., 2003; Rabinovici et al., 2008). These diagnoses remained stable over time.  

The third (and smallest) subtype of Aβneg-AD presented with non-specific clinical symptoms 

and cognitive deficits. In these patients, AD may have represented a “default” diagnosis for a 

condition felt to be neurodegenerative in origin, but failing to conform a clearly described 

cognitive-behavioral syndrome. This group did not show a clear “signature” in the post-PET 

diagnoses (including DLB, CBD, and unknown dementia), clinical evolution, cognitive testing 

or MRI/FDG patterns, reflecting its heterogeneity as well as small numbers. In addition to 

cognitive deficits, these patients often have one or more of the following: global slowing (2 

cases), parkinsonism (1 case), depression (1 case), vascular lesions (2 cases), hallucinations (2 

cases) and cognitive fluctuations (2 cases), representing a mix of core DLB features, as well as 

potential non-degenerative comorbidities that might impact cognition.  Indeed, in two cases 

cognition was stable or even improved at follow-up, suggesting that some non-specific patients, 

despite meeting criteria for dementia at one point, may not have an underlying 

neurodegenerative disease. This subtype illustrates the utility of Aβ PET for “ruling-out” AD 

in patients with non-specific presentations, and potentially identifying treatable non-

degenerative etiologies in a subset. 

4.3. Limitations 



The lack of autopsy data (except in three cases) is a limitation of the present study as 

postmortem analysis would be the gold standard for identifying the etiology of Aβneg-AD 

cases. Note that 19% of the cases not meeting full neuropathological criteria for AD in Beach 

et al. (2012) were nevertheless diagnosed with AD as the primary cause of dementia, illustrating 

that histopathological analyses does not always provide a clear answer; in some cases, the 

pathological processes underlying their dementia might not be identified using current 

techniques. 

Another limitation is the lack of standard cognitive tests and the fact that we compared 

retrospectively data from different centers that sometimes used different cognitive tests. 

Similarly, only clinical follow-up was available in the present study. Future prospective, 

longitudinal studies including an Aβneg-AD sample tested using a standardized 

neuropsychological battery will be needed to further assess whether subtle difference in the 

nature,  degree or evolution of cognitive (including episodic memory) deficits are present. 

4.4. Conclusion 

This study shows that Aβneg-AD is neither a rare nor a benign condition. The clinical evolution 

suggests an underlying neurodegenerative disease in most patients, including those with a 

typical amnestic presentation or the less typical non-amnestic cases. In the latter, who likely 

reflect misdiagnosis, Aβ PET imaging proved to be useful to rule-out AD, as shown in previous 

studies on the clinical impact of amyloid PET imaging. The individual profiles of atrophy and 

hypometabolism help, not only to find an alternative diagnosis in those cases, but also to detect 

the cases that might not have a neurodegenerative disease and remain relatively stable clinically. 

In the amnestic Aβneg-AD cases however, an alternative diagnosis could not be found in 

slightly more than half of the cases: they have no amyloid and showed atrophy and 

hypometabolism restricted to the restrosplenial cortex, but they mimic AD in their clinical 

presentation as well as in their clinical trajectory. Based on the current neuropathological 



definition of AD they should not be called AD, but there is a need for a clinical framework and 

terminology for the classification of these patients. They likely represent a mixed population of 

limbic-predominant AD-mimics (e.g. tangle-only dementia but also hippocampal sclerosis with 

TDP-43 inclusions, or argyrophilic grain disease) or other non-Aβ-driven pathologies. Further 

in-vivo exploration (including Tau-PET imaging) and extensive longitudinal assessment with 

autopsy data are needed to expand on our understanding of these intriguing clinical cases.  

 

Funding:  

This study was supported by the Fondation Plan Alzheimer, Programme Hospitalier de 

Recherche Clinique, Agence Nationale de la Recherche, Région Basse Normandie, Institut 

National de la Santé et de la Recherche Médicale, NIA P01-AG1972403 (BLM), and ADRC 

P50-AG023501 (BLM and GDR), Alzheimer’s Association (GDR), State of California DHS 

04-33516 (BLM), John Douglas French Alzheimer’s Foundation (BLM and GDR), Avid 

Radiopharmaceticals (GDR), NHMRC project grant 1071430 (VLV and CCR) and Senior 

Research Fellowship (VLV). 

Ackowledgements 

Authors are grateful to J. Mutlu, C. Tomadesso, R. de Florès, J. Gonneaud, G. Poisnel, S. Egret, 

C. Lebouleux, A. Manrique, M-C. Onfroy, L. Barré, A. Abbas, A. Quillard, for their help with 

recruitment, cognitive testing and imaging examinations. We thank J. Vogel, P. Ghosh, B. 

Cohn-Sheehy, for their help with data collection.  

 

Tables and Figures 

Included in the text for the sake of proof reading 

 



References 

Alladi S, Xuereb J, Bak T, Nestor P, Knibb J, Patterson K, et al. Focal cortical presentations of Alzheimer’s 
disease. Brain 2007; 130: 2636–2645. 

Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the Clinical Diagnosis of Alzheimer Disease at 
National Institute on Aging Alzheimer Disease Centers, 2005–2010: J. Neuropathol. Exp. Neurol. 2012; 
71: 266–273. 

Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in 
Alzheimer disease. Nat. Rev. Neurol. 2010; 6: 131–144. 

Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM, Shah AR, et al. Absence of Pittsburgh 
compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal 
fluid markers of Alzheimer disease: a case report. Arch. Neurol. 2009; 66: 1557–1562. 

Chételat G, Desgranges B, Landeau B, Mézenge F, Poline JB, de la Sayette V, et al. Direct voxel-based 
comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 2008; 
131: 60–71. 

Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related 
tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. (Berl.) 2014; 
128: 755–766. 

Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Förstl H, Kurz A. Cerebral metabolic patterns at 
early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol. Aging 2004; 
25: 1051–1056. 

Doraiswamy PM, Sperling RA, Coleman RE, Johnson KA, Reiman EM, Davis MD, et al. Amyloid-β 
assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study. Neurology 2012; 
79: 1636–1644. 

Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research 
diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014; 13: 614–629. 

Duits FH, Teunissen CE, Bouwman FH, Visser P-J, Mattsson N, Zetterberg H, et al. The cerebrospinal 
fluid ‘Alzheimer profile’: easily said, but what does it mean? Alzheimers Dement. 2014; 10: 713–723.e2. 

Fouquet M, Besson FL, Gonneaud J, La Joie R, Chételat G. Imaging brain effects of APOE4 in cognitively 
normal individuals across the lifespan. Neuropsychol. Rev. 2014; 24: 290–299. 

Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of 
primary progressive aphasia and its variants. Neurology 2011; 76: 1006–1014. 

Grinberg LT, Wang X, Wang C, Sohn PD, Theofilas P, Sidhu M, et al. Argyrophilic grain disease differs 
from other tauopathies by lacking tau acetylation. Acta Neuropathol. (Berl.) 2013; 125: 581–593. 

Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on Aging–
Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. 
Alzheimers Dement. 2012; 8: 1–13. 

Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The Alzheimer’s Disease 
Neuroimaging Initiative positron emission tomography core. Alzheimers Dement. 2010; 6: 221–229. 



Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on 
appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and 
education. Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear 
Medicine and Molecular Imaging. Alzheimers Dement. 2013; 9: e106–109. 

Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in 
Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004; 55: 306–319. 

La Joie R, Perrotin A, Barré L, Hommet C, Mézenge F, Ibazizene M, et al. Region-specific hierarchy 
between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia. J. 
Neurosci. 2012; 32: 16265–16273. 

Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, DeArmond SJ, et al. Clinicopathological 
correlations in corticobasal degeneration. Ann. Neurol. 2011; 70: 327–340. 

Leinonen V, Alafuzoff I, Aalto S, Suotunen T, Savolainen S, Någren K, et al. Assessment of beta-amyloid 
in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-
labeled Pittsburgh Compound B. Arch. Neurol. 2008; 65: 1304–1309. 

Liu E, Schmidt ME, Margolin R, Sperling R, Koeppe R, Mason NS, et al. Amyloid-β 11C-PiB-PET imaging 
results from 2 randomized bapineuzumab phase 3 AD trials. Neurology 2015; 85: 692–700. 

Mackenzie IRA, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature and nosology 
for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 
(Berl.) 2010; 119: 1–4. 

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s 
disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and 
Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939–944. 

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of 
dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers 
Dement. 2011; 7: 263–269. 

Mendez MF, Lee AS, Joshi A, Shapira JS. Nonamnestic presentations of early-onset Alzheimer’s disease. 
Am. J. Alzheimers Dis. Other Demen. 2012; 27: 413–420. 

Mevel K, Landeau B, Fouquet M, La Joie R, Villain N, Mézenge F, et al. Age effect on the default mode 
network, inner thoughts, and cognitive abilities. Neurobiol. Aging 2013; 34: 1292–1301. 

Monsell SE, Kukull WA, Roher AE, Maarouf CL, Serrano G, Beach TG, et al. Characterizing 
Apolipoprotein E ε4 Carriers and Noncarriers With the Clinical Diagnosis of Mild to Moderate Alzheimer 
Dementia and Minimal β-Amyloid Peptide Plaques. JAMA Neurol. 2015 

Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL, et al. Episodic memory loss is 
related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 2009; 132: 1310–
1323. 

Nag S, Yu L, Capuano AW, Wilson RS, Leurgans SE, Bennett DA, et al. Hippocampal sclerosis and TDP-
43 pathology in aging and Alzheimer disease. Ann. Neurol. 2015; 77: 942–952. 



Nestor PJ, Caine D, Fryer TD, Clarke J, Hodges JR. The topography of metabolic deficits in posterior 
cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. J. Neurol. Neurosurg. 
Psychiatry 2003; 74: 1521–1529. 

Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BNM, et al. 
Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015; 313: 1939–
1949. 

Ossenkoppele R, Pijnenburg YAL, Perry DC, Cohn-Sheehy BI, Scheltens NME, Vogel JW, et al. The 
behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological 
features. Brain 2015; 138: 2732–2749. 

Ossenkoppele R, Prins ND, Pijnenburg YAL, Lemstra AW, van der Flier WM, Adriaanse SF, et al. Impact 
of molecular imaging on the diagnostic process in a memory clinic. Alzheimers Dement. 2013; 9: 414–
421. 

Ossenkoppele R, Zwan MD, Tolboom N, van Assema DME, Adriaanse SF, Kloet RW, et al. Amyloid 
burden and metabolic function in early-onset Alzheimer’s disease: parietal lobe involvement. Brain 
2012; 135: 2115–2125. 

Palmqvist S, Zetterberg H, Blennow K, Vestberg S, Andreasson U, Brooks DJ, et al. Accuracy of brain 
amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42: a cross-validation study 
against amyloid positron emission tomography. JAMA Neurol. 2014; 71: 1282–1289. 

Rabinovici GD, Jagust WJ, Furst AJ, Ogar JM, Racine CA, Mormino EC, et al. Abeta amyloid and glucose 
metabolism in three variants of primary progressive aphasia. Ann. Neurol. 2008; 64: 388–401. 

Rabinovici GD, Seeley WW, Kim EJ, Gorno-Tempini ML, Rascovsky K, Pagliaro TA, et al. Distinct MRI 
atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am. 
J. Alzheimers Dis. Other Demen. 2007; 22: 474–488. 

Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 2012; 
13: 713–726. 

Rosen RF, Ciliax BJ, Wingo TS, Gearing M, Dooyema J, Lah JJ, et al. Deficient high-affinity binding of 
Pittsburgh compound B in a case of Alzheimer’s disease. Acta Neuropathol. (Berl.) 2010; 119: 221–233. 

Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, et al. Amyloid imaging results from the 
Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 2010; 31: 1275-
1283. 

Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of 
bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014; 370: 322–333. 

Sánchez-Juan P, Ghosh PM, Hagen J, Gesierich B, Henry M, Grinberg LT, et al. Practical utility of amyloid 
and FDG-PET in an academic dementia center. Neurology 2014; 82: 230–238. 

Schöll M, Almkvist O, Axelman K, Stefanova E, Wall A, Westman E, et al. Glucose metabolism and PIB 
binding in carriers of a His163Tyr presenilin 1 mutation. Neurobiol. Aging 2011; 32: 1388-1399. 

Schöll M, Wall A, Thordardottir S, Ferreira D, Bogdanovic N, Långström B, et al. Low PiB PET retention 
in presence of pathologic CSF biomarkers in Arctic APP mutation carriers. Neurology 2012; 79: 229–
236. 



Serrano-Pozo A, Qian J, Monsell SE, Blacker D, Gómez-Isla T, Betensky RA, et al. Mild to moderate 
Alzheimer dementia with insufficient neuropathological changes. Ann. Neurol. 2014; 75: 597–601. 

Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal 
fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann. Neurol. 2009; 
65: 403–413. 

Shimada H, Ataka S, Takeuchi J, Mori H, Wada Y, Watanabe Y, et al. Pittsburgh compound B-negative 
dementia: a possibility of misdiagnosis of patients with non-alzheimer disease-type dementia as having 
AD. J. Geriatr. Psychiatry Neurol. 2011; 24: 123–126. 

Snowden JS, Stopford CL, Julien CL, Thompson JC, Davidson Y, Gibbons L, et al. Cognitive phenotypes 
in Alzheimer’s disease and genetic risk. Cortex J. Devoted Study Nerv. Syst. Behav. 2007; 43: 835–845. 

Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for 
prevention trials. Neuron 2014; 84: 608–622. 

Takeuchi J, Shimada H, Ataka S, Kawabe J, Mori H, Mizuno K, et al. Clinical features of Pittsburgh 
compound-B-negative dementia. Dement. Geriatr. Cogn. Disord. 2012; 34: 112–120. 

Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid 
imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann. Neurol. 2010; 68: 
319–329. 

Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future 
directions. Lancet Neurol. 2015; 14: 114–124. 

Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of 
Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 2011; 69: 181–192. 

Zwan M, van Harten A, Ossenkoppele R, Bouwman F, Teunissen C, Adriaanse S, et al. Concordance 
between cerebrospinal fluid biomarkers and [11C]PIB PET in a memory clinic cohort. J. Alzheimers Dis. 
2014; 41: 801–807. 

 


