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Abstract 23 
Subclonal architectures are prevalent across cancer types. However, the 24 
temporal evolutionary dynamics that produce tumour subclones remain 25 
unknown. Here we measure clone dynamics in human cancers using 26 
computational modelling of subclonal selection and theoretical population 27 
genetics applied to high throughput sequencing data. Our method determines 28 
the detectable subclonal architecture of tumour samples, and simultaneously 29 
measures the selective advantage and time of appearance of each subclone. 30 
We demonstrate the accuracy of our approach and the extent to which 31 
evolutionary dynamics are recorded in the genome. Application of our method 32 
to high-depth sequencing data from breast, gastric, blood, colon and lung 33 
cancers, as well as metastatic deposits, showed that detectable subclones 34 
under selection, when present, consistently emerged early during tumour 35 
growth and had a large fitness advantage (>20%). Our quantitative framework 36 
provides new insight into the evolutionary trajectories of human cancers, 37 
facilitating predictive measurements in individual tumours from widely 38 
available sequencing data. 39 
 40 
  41 
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Introduction 42 
Carcinogenesis is the result of Darwinian selection for malignant phenotypes, 43 
driven by genetic and epigenetic alterations that allow cells to evade normal 44 
homeostatic regulation and prosper in changing microenvironments1. High 45 
throughput genomics has shown that tumours across all cancer types are 46 
highly heterogeneous2,3 with complex clonal architectures4. However, 47 
because longitudinal observation of solid tumour growth unperturbed by 48 
treatment remains impractical, the temporal evolutionary dynamics that 49 
produce subclones remain undetermined, and consequently, there is no 50 
mechanistic basis that can be utilised to predict future tumour evolution and 51 
modes of relapse. More specifically, the magnitude of the fitness advantage 52 
experienced by a new cancer subclone has remained unknown.   53 
 54 
The subclonal architecture of a cancer – as measured by the pattern of intra-55 
tumour genetic heterogeneity (ITH) – is a direct consequence of the 56 
unobservable evolutionary dynamics of tumour growth. Therefore, given a 57 
realistically constrained model of subclonal expansion, the pattern of ITH in a 58 
tumour can be used to infer its most probable evolutionary trajectory. ITH 59 
represented within the distribution of variant allele frequencies (VAF), as 60 
measured by high coverage sequencing, is particularly amenable to such an 61 
approach.  62 
 63 
In this study, we build upon theoretical population genetics models of asexual 64 
evolution5 and Bayesian statistical inference on genetic data6 to measure 65 
cancer evolution in human tumours. This type of approach is established in 66 
the field of molecular evolution, where evolutionary processes are also difficult 67 
to measure directly7,8, and examples of applications of these approaches to 68 
human cancers date back to the previous century9,10. 69 
 70 
Recently, we have shown that under a neutral “null” evolutionary model (i.e. 71 
when all selected driver alterations are truncal and present in all cancer cells), 72 
the VAF follows a characteristic power law distribution11. Subsequent 73 
simulations that modelled space and subclonal selection demonstrated that 74 
genetic divergence in multi-region sequencing data could be used to 75 
categorize tumours based on the mode of their evolution12 (effectively-neutral 76 
or non-neutral), but the specific evolutionary dynamics that produce subclonal 77 
architectures, such as the fitness advantage of subclones, remained 78 
unmeasured. Here, using a combination of a stochastic branching process 79 
model of subclonal selection in cancer, an explicit sequencing error model, 80 
and Bayesian model selection and parameter inference, we identify the 81 
characteristic patterns of subclonal selection in the cancer genome and 82 
measure fundamental evolutionary parameters in non-neutrally evolving 83 
human tumours.  84 
 85 
  86 
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Results 87 
 88 
Theoretical framework of subclonal selection 89 
We developed a stochastic computational model of tumour growth applicable 90 
to cancer genomic data that accounts for subclonal selection (see Methods). 91 
The model is based on a classical stochastic branching process approach 92 
from population genetics13 that has been often used to model malignant 93 
populations5,14 and is here extended to be applicable to cancer sequencing 94 
data. Cells divide and die according to defined birth and death rates and 95 
daughter cells acquire new mutations at rate µ mutations per cell per division 96 
(Figure 1a). The fitness advantage of a mutant subclone is defined by the 97 
ratio of net growth rates between the fitter mutant (λm) and the background 98 
host population (λb) 99 
 100 

1 + 𝑠 = %&
%'

.       [1] 101 
 102 
This definition13 provides an intuitive interpretation for the fitness coefficient s: 103 
for example, s=1 implies that the mutant cell population grows twice as fast as 104 
the host tumour population, and s=0 implies λm=λb  such that the subclone 105 
evolves neutrally with respect to the background population. Within the model, 106 
neutral evolution (s=0) leads to a VAF distribution characterised by a power-107 
law distributed subclonal tail of mutations11,15-17 (Figure 1b), where the 108 
cumulative number of mutations at a frequency f is proportional to the inverse 109 
of that frequency, 1/f (in the non-cumulative VAF distribution such as Figure 110 
1b, this shows as ~1/f2). Alternatively, clonal selection (s>0) produces 111 
characteristic ‘subclonal clusters’ within the VAF distribution that have been 112 
observed in cancer genomes18 (Figure 1c). Importantly, as neutral mutations 113 
continue to accumulate within each subclone, the 1/f tail is also present in 114 
tumours with selected subclones (Figure 1c).  115 
 116 
A mathematical analysis of the model indicates how subclonal clusters 117 
encode the underlying evolutionary dynamics of a subclone: the mean VAF of 118 
the cluster is a measure of the relative size of the subclone within the tumour, 119 
and the total number of mutations in the cluster (i.e. the area of the cluster) 120 
indicates the subclone’s relative age (as later-arising subclones will have 121 
accumulated more mutations). Together, these two measures allow the 122 
fitness advantage s to be estimated19. We provide a summary derivation 123 
below and refer to the Supplementary Note for full details. 124 
 125 
We define t0=0 to be the time when the first transformed cancer cell begins to 126 
grow. At a later time t1, a cell in the tumour acquires a subclonal ‘driver’ 127 
somatic alteration that confers a fitness advantage, giving rise to a new 128 
phenotypically distinct subclone that expands faster than the other tumour 129 
cells. We note that to measure selection dynamics it is not important what the 130 
actual driver event is: genetic (point mutation or copy number alteration), 131 
epigenetic, or even microenvironmental drivers will all cause somatic 132 
mutations in the selected lineage to ‘hitchhike’20 to higher frequencies than 133 
expected under the neutral null model. The number of hitchhiking mutations, 134 
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𝑀)*+ acquired by the founder cell of the fitter subclone which has experienced 135 
Γ successful divisions between 𝑡- and 𝑡. is therefore 136 
 137 

𝑀)*+ = 𝜇Γ.     [2] 138 
 139 
The relationship between the mean number of divisions of a lineage, Γ and 140 
time measured in population doublings is Γ = 2𝑙𝑜𝑔(2)𝑡. (see Supplementary 141 
Note). The mutation rate per population doubling can be estimated from the 142 
1/f-like tail11. For a subclone that emerges at time t1, we would expect to 143 
observe 𝑀)*+ mutations at some frequency 𝑓)*+/2 (for a subclone at a cancer 144 
cell fraction 𝑓)*+ in a diploid genome, and assuming a sample with 100% 145 
tumour purity), and given the limited accuracy of VAF measurement inherent 146 
to next generation sequencing this will appear as a cluster of mutations with a 147 
mean 𝑓)*+/2 in the VAF distribution. Therefore, Equation [2] provides an 148 
estimate of t1, the time when the subclone appeared.  149 
 150 
Assuming exponential growth and well mixed populations, and considering 151 
that the subclone grows 1+s times faster than the background tumour 152 
population as defined by Equation [1], the frequency of the subclone will grow 153 
in time according to: 154 
 155 

𝑓)*+(𝑡9:;) = 	
9='(>?@)(ABCDEA>)
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.   [3] 156 

 157 
This equation leads to an expression for the fitness advantage s given the 158 
frequency 𝑓)*+ and the relative time of the subclones appearance t1, 159 
 160 
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 162 
Given an estimate of the age of the tumour expressed in population doublings 163 
tend, equations [2] and [4] provide a means to measure the selective 164 
advantage of a subclone directly from the VAF distribution (Figure 1d). tend 165 
can be derived from the final tumour size Nend by the relation 2GBCD =166 
(1 − 𝑓)*+) × 𝑁9:;. In the case of multiple subclones, Equation [4] takes a 167 
slightly modified form (Supplementary Note). We note that Equations [1-4] are 168 
known results in population genetics and have been previously used to 169 
describe the dynamics of asexual haploid populations 13.  170 
 171 
Our previously presented frequentist approach to detect subclonal selection 172 
from bulk sequencing data involves an R2 test statistic19 to reject the 173 
hypothesis of neutral evolution (s=0), the null model in molecular evolution21. 174 
Here we extended our previous work to examine different test statistics for 175 
assessing deviations from the null neutral model (see Supplementary Figures 176 
1-3 & Methods). However, the frequentist approach has limitations: it requires 177 
to choose the interval of the VAF distribution to test, and importantly only 178 
allows for the rejection of the null hypothesis (which is not necessarily 179 
evidence for the null itself).  180 
 181 
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To address these shortcomings, we implemented a Bayesian statistical 182 
inference framework (Supplementary Figure 4 & Methods) that fits our 183 
computational model incorporating both selection and neutrality to sequencing 184 
data, and simultaneously estimates the subclone fitness, time of occurrence, 185 
and the mutation rate. This method allowed us to perform Bayesian model 186 
selection22 for the number of subclones within the tumour and specifically 187 
calculate probabilities that a tumour contained 0 subclones (s=0, neutral 188 
evolution), 1 or more subclones (non-neutral evolution). The advantage of the 189 
Bayesian approach is that we can directly ask which model (neutral or non-190 
neutral) is best supported by the data, using the whole VAF distribution.  191 
 192 
Our framework models mutation, selection and neutral drift using a classical 193 
stochastic branching process13, while integrating several confounding factors 194 
and sources of noise in bulk sequencing data, principally allele sampling and 195 
depth of sequencing (see Methods and Supplementary Note). This approach 196 
allows sample-based schemes designed such that the data-generating 197 
process can be mimicked to account for complex experimental biases. 198 
Despite these confounding factors, we found that the 1/f tail accurately 199 
measures the mutation rate even in the presence of subclonal clusters 200 
(Supplementary Figure 5), and our inferred value of 1+s is largely insensitive 201 
to the final tumour size (Nend) when this value is realistically large (Nend>109) 202 
(Supplementary Figure 6 and Supplementary Note). 203 
 204 
We note that the theoretical framework is based upon the assumption of 205 
exponential growth, which is a growth pattern well supported by empirical data 206 
in many cancer types23-25. The impact of alternate models of growth, such as 207 
logistic and Gompertzian growth, is explored in the Supplementary Note. We 208 
also implemented a cancer stem cell model where only a subset of cells has 209 
unlimited proliferation potential and found that for the purposes of this study 210 
this has little impact on the expected VAF distribution, which in this scenario 211 
only measure events that occur in the stem cell compartment (Supplementary 212 
Figure 7).   213 
 214 
Recovery of evolutionary dynamics in synthetic tumours 215 
First, we assessed the degree to which subclonal selection is detectable 216 
within VAF distributions by performing a frequentist power analysis to 217 
examine the conditions under which we correctly reject the null when the 218 
alternative (selection present) is true. We performed simulations to measure 219 
the values of t1 (time of subclone formation) and s (magnitude of selective 220 
advantage of subclone) that lead to observable deviations from the null 221 
neutral model (see Methods) in high depth sequencing data (100X). Only 222 
subclones that arise sufficiently early (small t1) or that were very fit (large s) 223 
were able to produce detectable deviations in the clonal composition of the 224 
tumour (Figure 1e). 225 
 226 
We then applied our Bayesian framework to estimate evolutionary parameters 227 
from synthetic data (VAF distributions derived from computational simulations 228 
of tumour growth with known parameters). Our framework identified the 229 
correct underlying model with high probability for representative examples of a 230 
neutrally growing tumour (Figure 2a), a tumour with a single subclone (Figure 231 
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2b) and a tumour with 2 subclones (Figure 2c), and also recovers the 232 
evolutionary parameters in each case (Figures 2d-g). Given that we modelled 233 
tumour growth as a stochastic process, variability in our estimates was 234 
expected (see Supplementary Note). In a cohort of 100 synthetic tumours (20 235 
examples selected in Supplementary Figure 8), where the ground truth was 236 
known, the mean percentage error on parameter inference was below 10% 237 
(Figure 2h). The stochasticity also explains the width of the posterior 238 
distributions (Figures 2d-g). In particular, the rate of stochastic cell death has 239 
a large effect on the variability of lineage age and consequently can cause a 240 
slight over-estimation of the mutation rate and variability in the time taken for 241 
a lineage to clonally expand increases with increased cell death (see 242 
Supplementary Note).  243 
 244 
Monte Carlo analysis indicated that accurate measurement of subclonal 245 
evolutionary dynamics required high depth (>100X) for both whole-exome and 246 
whole-genome sequencing (Supplementary Figure 9). This analysis 247 
demonstrates how the clonal structure becomes progressively obscured as 248 
the sequencing depth decreases. Depths of sequencing of less than 100X 249 
preclude a robust quantification of subclonal dynamics, and moreover the 250 
neutral model is preferred by our Bayesian model selection framework, even 251 
when it is false (Supplementary Figure 9). Importantly, this analysis showed 252 
that even in some cases when selection is present (particularly weak 253 
selection), neutral evolution is the most parsimonious description of the data.  254 
In other words, the observed dynamics are then ‘effectively neutral’. In 255 
addition, we note that while the increased mutational information provided by 256 
WGS and higher sequencing depths makes quantification of subclonal 257 
structure more robust, this can also reveal (neutrally) drifting populations that 258 
may be falsely ascribed as a selected clone (Supplementary Figure 10). We 259 
also investigated the robustness of the inference method to tumour purity and 260 
cancer cell fraction of the subclone finding that at 100X sequencing depth a 261 
minimum purity of 50% is needed to confidently identify subclones with cancer 262 
cell fraction >30% (15% VAF in a diploid genome), see Supplementary Figure 263 
11. 264 
 265 
Detectable subclones have a large selective advantage 266 
We first used our approach to quantify evolutionary dynamics in primary 267 
human cancers where high depth (>150X) and validated sequencing data 268 
were available. We considered whole-genome sequencing (WGS) of a single 269 
AML sample26, WGS of a single breast cancer sample18 and multi-region 270 
high-depth whole exome sequencing (WXS) of a lung adenocarcinoma27. To 271 
avoid the confounding effects of copy number changes, we exploited the 272 
hitchhiking principle and restricted our analysis to consider only somatic single 273 
nucleotide variants (SNVs) that were located within diploid regions (see 274 
Methods). After correction for cellularity the ‘clonal cluster’ at VAF=0.5, and a 275 
potentially complex distribution of mutations with VAF<0.5 representing the 276 
subclonal architecture were clearly observable.  277 
 278 
The AML and breast cancer cases both showed evidence of 2 subclonal 279 
populations, corroborating the initial studies but instead finding the lowest 280 
frequency cluster to be a consequence of all within-clone neutral 281 
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mutations18,26 (Figure 3a,b,h). Measurement of the evolutionary dynamics 282 
showed that for both cancers the subclones had considerably large fitness 283 
advantages (>20%, Figure 3i) and emerged within the first 15 population 284 
doublings (Figure 3j). In the AML sample, subclone 1 (highest frequency 285 
subclone) had putative driver mutations in IDH1 and FLT3 and subclone 2 286 
had a distinct FLT3 mutation and a FOXP1 mutation. In the breast cancer 287 
sample, no putative driver point mutations were found in the subclonal 288 
clusters but we note that the original analysis found that subclone 1 (highest 289 
frequency subclone) had lost one copy of chromosome 13. Interestingly, the 290 
breast cancer sample also exhibited a 100-fold higher mutation rate per 291 
tumour doubling compared to the AML sample (Figure 3k). We note that our 292 
mutation rate estimate corresponds to the number of mutations per base per 293 
population doubling. Due to the high cell death and possibly differentiation in 294 
cancers (both leading to lineage extinction), doubling in volume may require 295 
several rounds of cell division. To derive the mutation rates per base per 296 
division an independent measurement of the probability 𝛽 of a cell division to 297 
give rise to two surviving lineages is required (see Methods, Equation [9] and 298 
Supplementary Note). Mutational signature analysis28 of subclonal mutations 299 
provided support for the assumption of a constant mutation rate during 300 
subclone evolution (Methods and Supplementary Figure 12). 301 
 302 
In the lung adenocarcinoma case, multiple tumour regions (n=5) had been 303 
sequenced to high depth. Amongst these regions, only one region (region 12) 304 
showed strong evidence of a new subclone (Figures 3c,h, BF = 1.49) with a 305 
measured selective advantage of 30% (Figure 3j), while for all other regions a 306 
neutral evolutionary model was most probable (Figures 3d-g, BF = 6.36-307 
29.92). Region 12 had unique copy number alterations on chromosome 3 that 308 
could plausibly have caused the subclonal expansion (Supplementary Figure 309 
13). Together these data show spatial heterogeneity of the evolutionary 310 
dynamics within a single tumour. 311 
 312 
We then applied our analysis to 4 additional large cohorts of variable 313 
sequencing depth: WXS colon cancers from TCGA29 (Supplementary Figure 314 
14), WGS gastric cancers from Wang et al30 (Supplementary Figure 15), WXS 315 
lung cancers from the TRACERx trial31 (Supplementary Figure 16), and WXS 316 
metastasis samples (multiple sites) from the MET500 cohort32 317 
(Supplementary Figure 17). Based on our previous analysis of minimum data 318 
quality needed (see Supplementary Figure 11), we selected samples with 319 
purity >40% and number of subclonal mutations ≥25 for further analysis. 320 
Differentially selected subclones were detected in 29% (5/17 cases) of the 321 
gastric cancers and 21% (15/70 cases) of the colon cancers (Figure 4a). 322 
Interestingly the MET500 (51%, 58/113) data had a higher proportion of 323 
tumours with selected subclones. The measured selective advantage of these 324 
subclones was large (>20%) and emerged during the first few tumour 325 
doublings across all cohorts (Figures 4b,c). We note that in the metastases 326 
case, time is measured relative to the founding of the metastatic lesion, and 327 
differential selection of the subclone is measured relative to the other cells in 328 
the metastasis. Eventual founder effects in the metastasis are, by definition, 329 
clonal events in the sample, and so do not appear in the subclonal VAF 330 
spectrum. We also observed similarly large fitness advantages of subclones 331 
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within the TRACERx cohort, where 97% of cases (36 out of the 37 cases 332 
suitable for our analysis) were characterised by non-neutral dynamics 333 
(Supplementary Figure 16 and 18). 334 
 335 
Forecasting cancer evolution 336 
Measuring the evolutionary dynamics of individual human tumours facilitates 337 
prediction on the future evolutionary trajectory of these malignancies33. 338 
Specifically, we can predict how the clonal architecture of a tumour is 339 
expected to change over time (in the absence of new drivers): such 340 
predictions could be useful, for instance, to decide how often to sample a 341 
tumour when making treatment decisions. We note we can only predict the 342 
future subclonal structure of a tumour assuming that environmental conditions 343 
stay the same – e.g. that subclone selective advantages are constant and 344 
intervention such as treatment is likely to invalidate this assumption. 345 
 346 
Suppose a biopsy is taken and fitness of a subclone measured at some time t, 347 
we can then ask how long it will take for the subclone to become dominant 348 
(>90% frequency) in the tumour. From our model, the time for a subclone to 349 
shift from a frequency f1 to a frequency of f2 given a relative fitness advantage 350 
s is:  351 
 352 

ΔT =
TUVW JX

>EJX
YMTUV	W J>

>EJ>
Y

%)
     [5] 353 

 354 
Figure 5 shows an in silico implementation of this method. The fitness 355 
advantage of a subclone was measured within a tumour at size N=105 using 356 
the Bayesian inference framework (Figure 5a), and the inferred values then 357 
use to predict subsequent growth of the subclone. The prediction well 358 
represented the ground truth (Figure 5b). 359 
 360 
In the case of the examined AML sample (Figure 3a), the measured fitness 361 
advantages predict the future clonal structure of the malignancy (in the 362 
absence of treatment). Specifically, the larger of the two subclones present at 363 
the point when the tumour was sampled is predicted to take over the tumour, 364 
while the smaller clone is projected to become too rare to remain detectable 365 
(Figure 5c). Despite the assumption of constant conditions, our framework 366 
could be extended in the future to simulate treatment effects when those 367 
mechanisms are known. 368 
 369 
 370 
 371 
 372 
Discussion 373 
 374 
Here we have demonstrated how the VAF distribution can be used to directly 375 
measure evolutionary dynamics of tumour subclones. We confirmed that 376 
subclonal selection causes an overrepresentation of mutations within the 377 
expanding clone, manifested as an additional ‘peak’ in the VAF distribution, as 378 
suggested by many recent studies18,26,34. However, irrespective of subclonal 379 
selection, the tumour will still show an abundance of low frequency variants (a 380 
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1/f-like tail) as the natural consequence tumour growth, wherein the number of 381 
new mutations is proportional to the population size. 382 
 383 
Our quantitative measurement of the selective advantage (relative fitness) of 384 
an expanding subclone revealed that detectable subclones had experienced 385 
remarkably large fitness increases, in excess of 20% greater than the 386 
background tumour population. Large increases in subclone fitness were also 387 
observed in metastatic lesions, indicating that there can still be on-going 388 
adaption even in late-stage disease, perhaps as a consequence of treatment. 389 
Because selection is inferred using only SNVs that shift in frequency due to 390 
hitchhiking, differential fitness can be measured by our analysis regardless of 391 
the underlying mechanism. Genetic driver mutations found within a subclone 392 
are one possible cause for the fitness increase. 393 
 394 
The values of fitness advantage we infer in human malignancies are similar to 395 
reports from experimental systems. Evidence from growing human pluripotent 396 
stem cells indicates that TP53 mutants may have a fitness advantage as high 397 
as 90% (1+s=1.9)35 and that single chromosomal gains can provide a fitness 398 
advantage of up to 50%36 (range 20%-53%). A study of the competitive 399 
advantage of mutant stem cells in the mouse intestine during tumour initiation 400 
(at constant population size) showed that KRAS and APC mutant stem cells 401 
have a ~2-4 fold increased fixation probability in single crypts37 and TP53 402 
mutant cells in mouse epidermis exhibited a 10% bias toward self-renewal38. 403 
Moreover, our inferred fitness advantages compare to large fitness 404 
advantages measured in bacteria39. Nevertheless, we acknowledge that 405 
experimental systems may differ significantly from in vivo human tumour 406 
growth and that new experimental systems are necessary to test these 407 
measurements. We also note that we are only able to measure large changes 408 
in fitness, and additional efforts will be needed to measure the complete 409 
distribution of fitness effects (DFE) within cancers. Furthermore, the inferred 410 
fitness value is sensitive to the underlying stochastic evolutionary model and 411 
thus caution is warranted in directly comparing fitness values.    412 
 413 
Our inferred in vivo mutation rates per population doubling are also in line with 414 
experimental evidence. Seshadri et al.40 reported somatic mutation rates in 415 
normal lymphocytes of 5.5x10-8-24.6x10-8 and a 10-100 fold increase in 416 
mutation rate in cancer cell lines such as B-cell lymphoma (5.2x10-7-13.1x10-417 
7) and ALL (66.6x10-7). A recent analysis of a mouse tumour model indicates 418 
somatic mutation rates in neoplastic cells are 11x higher than in normal 419 
tissue. 420 
 421 
Our analysis highlights that even if cancer subclones experience pervasive 422 
weak selection, it is not sufficient to alter the clonal composition of the tumour 423 
and therefore to cause the VAF distribution to deviate detectably from the 424 
distribution expected under neutrality. It is important to note that the (initial) 425 
growth of tumours makes them peculiar evolutionary systems, as tumour 426 
growth dilutes the effects of selection41. Thus, our analysis does not discount 427 
the possibility of a multitude of ‘mini-drivers’42 but shows that these must have 428 
a corresponding ‘mini’ effect  on the subclonal composition of a tumour (and 429 
that the VAF distribution in mini-driver tumours is well described by a neutral 430 
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model). We note however, that the ratio of non-synonymous to synonymous 431 
variants (dN/dS), a classical test for selection, identified only a small subset of 432 
genes (<20 in a pan-cancer analysis) with extreme dN/dS values indicative of 433 
strong selection21,43.  434 
 435 
Our previous analysis11 suggested that neutral dynamics were rejected in a 436 
higher percentage of colon cancers (approximately 65%) than the 21% 437 
reported here. The discrepancy is explained by the stochasticity in the 438 
evolutionary process where chance events can lead to deviations from the 439 
neutral 1/f distribution. Unlike our previous analytic derivation, the Bayesian 440 
model selection framework presented here captures this stochasticity (and 441 
hence neutral evolution is preferred in a greater proportion of samples). 442 
 443 
Our measurement of evolutionary trajectories facilitates mechanistic 444 
prediction of how a tumour changes over time as demonstrated in our in silico 445 
prediction (Figure 5a,b), with implications for anticipating the dynamics of 446 
treatment resistant subclones. This may have particular value for novel 447 
evolutionary therapeutic approaches such as ‘adaptive therapy’, where the 448 
goal is to maintain the existence of competing subclones that mutually 449 
supress the growth of another44,45. Our measurements of relative clone fitness 450 
could potentially be used to optimize treatment regimes in order to maintain 451 
the coexistence of competing populations. 452 
 453 
We acknowledge that features not described in our model, e.g. the spatial 454 
structure of the tumour, could affect the estimates of the evolutionary 455 
parameters46. Indeed, our analysis shows that there can be heterogeneity in 456 
the evolutionary process within a tumour (only 1/5 regions of a single lung 457 
tumour showed strong evidence of subclonal selection). Spatial models of 458 
tumour evolution can help elucidate other important biological parameters 459 
such as the degree of mixing within tumour cell populations, a purely spatial 460 
phenomenon which cannot be quantified using non-spatial models such as 461 
ours. We have recently shown how multiple samples per tumour increase the 462 
power to detect selection, in part because of the increased probability of 463 
sampling across a ‘subclone boundary’ where selection is evident12. We also 464 
acknowledge that complex, undetectable intermediate dynamics in the 465 
evolution of subclones, such as multiple small subclonal expansions before a 466 
subclone becomes detectable, are not modelled within our framework. 467 
 468 
In summary, we have developed a quantitative framework to infer timing and 469 
strength of subclonal selection in vivo in human malignancies. This is a step 470 
towards enabling mechanistic prediction of cancer evolution. 471 
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Figure Legends 494 

Figure 1. Modelling patterns of subclonal selection in sequencing data. 495 
(a) In a stochastic branching process model of tumour growth cells have birth 496 
rate b and death rate d, mutations accumulate with rate μ. Cells with fitness 497 
advantage (orange) grow at a faster net rate (b-d) than the host population 498 
(blue). (b) The variant allele frequency (VAF) distribution contains clonal 499 
(truncal) mutations around f=0.5 (in this example of diploid tumour), and 500 
subclonal mutations (f<0.5) which encode how a tumour has grown. In the 501 
absence of subclonal selection, a neutral 1/f2 tail describes the accumulation 502 
of passenger mutations as the tumour expands. (c) A selected subclone 503 
produces an additional peak in the distribution while a 1/f2 tail is still present 504 
due to passenger mutations accumulating in both the original population and 505 
the new subclone. (d) In the presence of subclonal selection, the magnitude 506 
and average frequency of the subclonal cluster of mutations (red) encode the 507 
age and size of a subclone respectively, which in turn allows measuring the 508 
clone’s selective advantage. (e) Frequentist power analysis of detectability of 509 
an emerging selected subclone on simulated data. Only early and/or very fit 510 
subclones caused significant alterations of the clonal composition of a tumour, 511 
resulting in the rejection of the neutral (null) model. Tumours were simulated 512 
to 106 cells and scaled to a final population size of 1010 with a mutation rate of 513 
20 mutations per genome per division, each pixel represents the average 514 
value for the metric (area between curves) over 50 simulations. 515 
 516 
Figure 2. Accurate recovery of evolutionary parameters from simulated 517 
data using Approximate Bayesian Computation. Our method recovered 518 
the correct clonal structure in simulated tumour data for representative 519 
examples of (a) a neutral case, (b) a 1 subclone case and (c) a two subclones 520 
case. Grey bars are simulated VAF data, solid red lines indicate the median 521 
histograms from the simulations that were selected by the statistical inference 522 
framework (500 posterior samples), shaded areas are 95% intervals. The 523 
inferred posterior distributions of the evolutionary parameters contained the 524 
true values (dashed lines) for (d,f) the time of emergence of the subclones 525 
and (e,g) the selection coefficient 1+s. (h) The mean percentage error in 526 
inferred parameter values across a virtual tumour cohort (n=100 tumours) was 527 
below 10%. Boxplots show the median and inter quantile range (IQR), upper 528 
whisker is 3rd quantile + 1.5*IQR and lower whisker is 1st quantile - 1.5*IQR. 529 
 530 
Figure 3. Quantifying selection from high-depth bulk sequencing of 531 
human cancers. Both (a) an acute myeloid leukemia (AML) sample and (b) a 532 
breast cancer sample sequenced at whole-genome resolution showed 533 
evidence of two selected subclones. (c) In the case of a multi-region whole-534 
exome sequenced case of lung cancer, one sample showed evidence of a 535 
single subclone whereas four other samples (d-g) from the same patient were 536 
consistent with the neutral model. Grey bars are the data, solid red lines 537 
indicate the median histograms from the simulations that were selected by the 538 
statistical inference framework (500 posterior samples), shaded areas are the 539 
95% intervals. (h) Bayesian model selection reports the expected clonal 540 
structure for each case (Bayes Factors reported above histograms). (i) 541 
Inferred subclone fitness advantages were 20% and 80% faster than the 542 
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original population. (j) Inferred times of subclone emergence indicated 543 
subclones arose within the first 15 tumour population doublings. (k) Inferred 544 
mutation rates were of the order of 10-7 mutations per base per tumour 545 
doubling in solid tumours but ~10-9 in AML, reflecting the respective 546 
differences in mutational burden between cancer types. All posterior 547 
distributions were generated from 500 samples.  548 
 549 
Figure 4. Quantifying selection in large cohorts of primary tumours and 550 
metastatic lesions. (a) 21% of colon cancers (N=70) from TCGA (sequenced 551 
to sufficient depth and with high enough cellularity for statistical inference), 552 
29% of WGS gastric cancers (N=17) (data from ref.30, filtered for cellularity) 553 
and 53% of metastases (N=113) from sites had evidence of differentially 554 
selected subclones. When present, differentially selected subclones were 555 
found to have (b) large fitness advantages with respect to the host population 556 
and (c) emerge early during growth. Bayes Factors for subclonal structures 557 
for all data are reported in Supplementary Table 5. Posterior distributions 558 
were generated from 500 samples. Boxplots show the median and inter 559 
quantile range (IQR), upper whisker is 3rd quantile + 1.5*IQR and lower 560 
whisker is 1st quantile - 1.5*IQR. 561 
 562 
Figure 5. Predicting the future evolution of subclones. (a) VAF distribution 563 
of an in silico tumour sampled at 105 cells was used to measure the fitness 564 
and time of emergence of a subclone. Grey bars are the simulated data, solid 565 
red lines indicate the median histograms from the simulations that were 566 
selected by the statistical inference framework (500 posterior samples), 567 
shaded areas are the 95% intervals. Inset shows error from ground truth. 500 568 
posterior samples were taken to perform the inference. (b) These values were 569 
then used to predict the spread of the subclone as the tumour grew to 107 570 
cells, showing the predictions matched the ground truth. Predictions were 571 
made by extrapolating the posterior distribution of 1+s using equations in the 572 
main text. Solid line shows the median value from the posterior distribution, 573 
shaded area shows the 95% interval. (c) Using the same approach in the 574 
AML sample, where we measured 1+s, t1 and t2, we would predict that 575 
subclone 2 would become dominant within 3-4 further tumour doublings while 576 
subclone 1 will become too small to be detected. 577 
 578 
 579 

580 
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Methods 695 
 696 
Simulating tumour growth 697 
We implement a stochastic birth-death process simulation of tumour growth, 698 
followed by a sampling scheme that recapitulates the ‘noise’ of cancer 699 
sequencing data. The sampling scheme is required to ensure that the 700 
underlying evolutionary dynamics measured from the data are not confounded 701 
by such noise. We first introduce the simulation framework for an 702 
exponentially expanding population where all cells have equal fitness, and 703 
then show how elements of the simulation are modified to include differential 704 
fitness effects and non-exponential growth (see Supplementary Note for 705 
details). 706 
 707 
Tumour growth is assumed to begin with a single transformed cancer cell that 708 
has acquired the full set of alterations necessary for cancer expansion. In our 709 
model, this first cell will therefore be carrying a set of mutations (the number 710 
of these mutations can be modified) that will be present in all subsequent 711 
lineages, and thus appear as clonal (present in all cells and thus will generate 712 
the cluster of clonal mutations at frequency ½ for a diploid tumour) within the 713 
cancer population. 714 
 715 
To simulate tumour, and subclone evolution, we specify a birth rate b and 716 
death rate d (b>d, for a growing population), meaning that the average 717 
population size at time t is: 718 
 719 

𝑁(𝑡) = 𝑒(+M;)G    [6] 720 
 721 
We set b=log(2) for all simulations, such that in the absence of cell death the 722 
population will double in size at every unit of time. The tumour grows until it 723 
has reached a specified size Nend, where the simulation stops. At each 724 
division, cells acquire 𝜐 new mutations, where 𝜐 is drawn from a Poisson 725 
distribution with mean 𝜇, the mutation rate per cell division. We assume new 726 
mutations are unique (infinite sites approximation). Not all divisions result in 727 
new surviving lineages because of cell death and differentiation. The 728 
probability of a cell division producing a surviving lineage 𝛽 expressed can be 729 
expressed in terms of the birth and death rates: 730 
 731 

𝛽 = +M;
+

.     [7] 732 
 733 
Simulating subclonal selection 734 
To include the effects of subclonal selection, a mutant is introduced into the 735 
population that has a higher net growth rate (birth minus death) than the host 736 
population. We only consider the cases of one or two subclonal populations 737 
under selection at any given time. We deem this simplification to be 738 
reasonable as the number of large-effect driver mutations in a typical cancer 739 
is thought to be small (<10 see ref44). Additionally, we found that sequencing 740 
depth >100X is required to resolve more than 1 subclone (Supplementary 741 
Figure 9). Fitter mutants can have a higher birth rate, a lower death rate, or a 742 
combination of the two, all of which results in the mutant growing at a faster 743 
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rate than the host population. Given that the host/background population has 744 
growth rate bH and death rate dH, and the fitter population has growth rate bF 745 
and death rate dF, we define the selective advantage s of the fitter population 746 
as: 747 
 748 

1 + 𝑠 = +\M;\
+]M;]

      [8] 749 
  750 
Fitter mutants can be introduced into the population with a specified selective 751 
advantage s and at a chosen time t1, allowing us to explore the relationship 752 
between the strength of selection and the time the mutant enters the 753 
population. 754 
 755 
Simulation method and parameters 756 
We used a rejection kinetic Monte Carlo algorithm to simulate the model45. 757 
Due to the small number of possible reactions (we consider at most 3 758 
populations with different birth and death rates) this algorithm is more 759 
computationally efficient than a rejection-free kinetic Monte Carlo algorithm 760 
such as the Gillespie algorithm. The input parameters of the simulation are 761 
given in Supplementary Table 1. 762 
 763 
 764 
The simulation algorithm is as follows: 765 
 766 

1. Simulation initialized with 1 cell and set all simulation parameters. 767 
2. Choose a random cell, i from the population. 768 
3. Draw a random number r~Uniform(0, bmax+dmax), where bmax and dmax 769 

are the maximum birth and death rates of all cells in the population. 770 
4. Using r, cell i will divide with probability proportional to its birth rate bi 771 

and die with probability proportional to its death rate di. If bi+di 772 
<bmax+dmax there is a probability that cell i will neither divide nor die. If 773 
𝛽 = 1, ie no cell death then in the above dmax = 0. 774 

5. If cell divides, daughter cells acquire 𝜈 new mutations where  775 
𝜈 ~Poisson(μ). 776 

6. Time is increased by a small increment .
_(+&`aF;&`a)

𝜏, where 𝜏 is an 777 
exponentially distributed random variable47. 778 

7. Go to step 2 and repeat until population size is Nend. 779 
 780 
The output of the simulation is a list of mutations for each cell in the final 781 
population.  782 
 783 
Generating millions of simulations for parameter inference 784 
 785 
A number of simplifications to our simulation scheme were made to improve 786 
computationally efficiency when used in our Bayesian inference method, a 787 
procedure that requires potentially many millions of individual simulations to 788 
be run in order to get accurate inferences. Our ultimate goal was to measure 789 
the time subclones emerge and their fitness. These parameters are measured 790 
in terms of tumour volume doublings, not in terms of cell division durations (as 791 
this is unknown in human tumours). Our approximations allow us to quantify 792 
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relative fitness of subclones, measured in units of population doubling, from 793 
the VAF distribution. The approximations are: 794 
 795 
Approximation 1: We model differential subclone fitness by varying the birth 796 
rate only, and setting the deth rate to 0 (e.g. 𝛽 = 1, all lineages survive). This 797 
increases simulation speed because a smaller number of time steps are 798 
required to reach the same population size and ensures that tumours never 799 
die out in our simulations.  800 
 801 
Timing the emergence of subclones depends on the number of mutations that 802 
have accumulated in the first cell that gave rise to the subclone. This is the 803 
product of the number of divisions and the mutation rate (𝑛 × 𝜇), or 804 
equivalently the number of tumour doublings ×	the effective mutation rate 805 
(𝑛;d*+He:f) ×

g
h
). Given we measure everything in terms of tumour doublings 806 

and the effective mutation rate (𝜇/𝛽) is the only measure available to us from 807 
the VAF distribution (from the low frequency 1/f tail), we reduce our search 808 
space by fixing 𝛽 = 1 and varying 𝜇, recognizing that in reality the effective 809 
mutation rate is likely to have	𝛽 < 1.  810 
 811 
We do note however that cell death (𝛽 < 1) can affect our inferences in two 812 
ways. First of all, in the presence of one or more subclones, the low-frequency 813 
tail which encodes g

h
 consists of a combination of two or more 1/f tails. If there 814 

are large differences in the 𝛽 value between subclones, then the inference on 815 
the effective mutation rate from the gradient of the low-frequency tail may be 816 
incorrect. For example, a fitter subclone could arise due to decreased cell 817 
death rather than increased proliferation. To quantify this effect, we simulated 818 
subclones with differential fitness due to decreased cell death and measured 819 
the error on the inferred g

h
. Even in cases where the death rate was 820 

dramatically different in the subclone compared to the host population (𝛽 =821 
1.0 vs 𝛽 = 0.5) the mean error on the estimates of the mutation rate was 42% 822 
(Supplementary Figure 5), significantly less than the order of magnitude 823 
previously measured between cancer type11 and so we conclude that the 824 
constant 𝛽 assumption is therefore acceptable. We do acknowledge however 825 
that we may underestimate the effects of drift, which will be accentuated in 826 
tumours with high death rates. 827 
 828 
Approximation 2: We simulate a smaller tumour population size compared to 829 
typical tumour sizes at diagnosis, and scale the inferred values a posteriori. 830 
We note that the VAF distribution holds no information on the population size 831 
(it measures only relative proportions) and furthermore simulating realistic 832 
population sizes (in the order of tens or hundreds of billions of cells in human 833 
malignancies) is computationally unfeasible. To circumvent this, we generate 834 
synthetic datasets that capture the characteristics relevant to measuring the 835 
fitness and time subclones emerge, namely the effective mutation rate 836 
(g
h
)	encoded by the low frequency part of the distribution, the number of 837 

mutations in any subclonal cluster and their frequency. Theoretical population 838 
genetics is then used to transform these measurements into values of fitness 839 



 20 

and time (via Equations [2] and [4]), and values are scaled by the realistic 840 
population size 𝑁9:; = 10.-.  841 
 842 
Simulation length was required to allow the single cell that gives rise to the 843 
subclone sufficient time to accumulate the number of mutations ultimately 844 
observed in the empirical datum. In general, we found Nend=103 to be 845 
sufficient, except for the breast cancer and AML samples where we used the 846 
more conservative Nend=104. In general, Nend=104 is sufficient to be able to 847 
measure the range of parameters considered in Figure 1e. 848 
 849 
To appropriately scale the estimates of s requires an estimate of the age of 850 
the tumour in terms of tumour doublings. Using Equation [4] with a final 851 
population size of 𝑁9:;, we can calculate 𝑡9:; as: 852 
 853 

𝑡9:; =
TUV	((.Mm@K')×_BCD)

TUV	(n)
,     [10] 854 

 855 
where 𝑓)*+ is the frequency of the subclone. We assumed a realistic 𝑁9:; =856 
10.-, for generating the posterior distributions in Figures 3 & 4. We also 857 
generated posterior distributions for s as a function of 𝑁9:;, for the AML, 858 
breast and lung cancers. For realistically large Nend (>109) the exact choice 859 
has minimal effect on our inferred values of s (Supplementary Figure 6). 860 
 861 
To confirm that these assumptions do not invalidate our approach, we 862 
generated synthetic datasets with cell death and large final population size 863 
(106). We then used our inference method (detailed below) with the 864 
simplifying assumptions to infer the parameters used to generate these 865 
synthetic tumours. This demonstrated that we were able to accurately recover 866 
the input parameters when the simplifications were applied (Figure 2).  867 
 868 
 869 
Sampling 870 
To mimic the process of data generation by high-throughput sequencing we 871 
performed various rounds of empirically-motivated sampling of the simulation 872 
data. Sequencing data suffers from multiple sources of noise, most 873 
importantly for this study is that mutation counts (VAFs) are sampled from the 874 
true underlying frequencies in the tumour population (both because of the 875 
initial limited physical sampling of cells from the tumour for DNA extraction, 876 
and then due to the limited read depth of the sequencing). Additionally, it is 877 
challenging to discern mutations that are at low frequencies from sequencing 878 
errors, and the limited sampling of sequencing assays means that many low 879 
frequency mutations are likely not measured at all. Consequently only 880 
mutations above a frequency of around 5-10% with 100X sequencing are 881 
observable with certainty48. The ability to resolve subclonal structures is thus 882 
dependent on the depth of sequencing. 883 
 884 
Our sampling scheme to generate synthetic datasets was as follows. For 885 
mutation i with true frequency VAFtrue, the sequence depth Di is Binomially 886 
distributed: 887 
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𝐷e~𝐵d I𝑛 = 𝑁, 𝑝 =
𝐷
𝑁L 888 

for a tumour of size N. The sampled read count with the mutant is Binomially 889 
distributed with the following parameters: 890 

𝑓e~𝐵d I𝑛 = 𝐷e, 𝑝 =
𝑉𝐴𝐹Gw*9
𝑁 L 891 

or if over-dispersed sequencing is modelled49,50 we use the Beta-Binomial 892 
model, which introduces additional variance to the sampling: 893 

𝑓e~𝐵𝑒𝑡𝑎𝐵𝑖𝑛 I𝑛 = 𝐷e, 𝑝 =
𝑉𝐴𝐹Gw*9
𝑁 , 𝜌L 894 

where 𝜌 is the overdispersion parameter, and 𝜌 = 0 reverts to the Binomial 895 
model. Finally, the sequenced VAF for mutation i is given by: 896 

𝑉𝐴𝐹e =
𝑓e
𝐷e

 897 

 898 
Modelling stem cells 899 
Stem cell architecture was modelled with two-compartments: long lived stem 900 
cells and short lived non-stem cells. Stem cells divided symmetrically to 901 
produce two stem cells with probability 𝛼 and asymmetrically to produce a 902 
single stem cell and a single differentiated cell with probability 1 − 𝛼. 903 
Differentiated cells divided n further times before dying. At each division all 904 
cells accumulated mutations as described above. We used 𝛼 = 0.1 and n=5. If 905 
𝛼 = 1.0 then the model is equivalent to the above exponential growth model. 906 
 907 
Bayesian Statistical Inference 908 
We used Approximate Bayesian Computation (ABC) to infer the evolutionary 909 
parameters. We evaluated the accuracy of our inferences using simulated 910 
sequencing data where the true underlying evolutionary dynamics was known. 911 
The simulation approach to generate synthetic data was taken instead of a 912 
purely statistical approach, as the simulation naturally accounts for effects that 913 
would be difficult to represent in a pure statistical model (such as the 914 
convolution of multiple within subclone mutations at lower frequency ranges). 915 
Furthermore, the posterior distribution reported from this method naturally 916 
account for uncertainties due to experimental noise and stochastic effects 917 
such as Poisson-distributed mutation accumulation and stochastic birth-death 918 
processes. For in-depth discussion on these stochastic effects, see the 919 
Supplementary Note.  920 
 921 
As in all Bayesian approaches, the goal of the ABC approach was to produce 922 
posterior distributions of parameters that give the degree of confidence that 923 
particular parameter values are true, given the data.  Given a parameter 924 
vector of interest θ and data D, the aim was to compute the posterior 925 
distribution 𝜋(𝜃|𝐷) = �(�|�)�(�)

�(�)
, where 𝜋(𝜃) is the prior distribution on θ and 926 

𝑝(𝐷|𝜃) is the likelihood of the data given θ. In cases where calculating the 927 
likelihood is intractable, as was the case here where our model cannot be 928 
expressed in terms of well-known and characterized probability distributions, 929 
approximate approaches must be sought. The basic idea of these ‘likelihood 930 
free’ ABC methods is to compare simulated data, for a given set of parameter 931 
values, with observed data using a distance measure.  Through multiple 932 
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comparisons of different input parameter values, we can produce a posterior 933 
distribution of parameter values that minimise the distance measure, and in so 934 
doing accurately approximate the true posterior. The simplest approach is 935 
called the ABC rejection method and the algorithm is as follows51: 936 
 937 

1) Sample candidate parameters θ* from prior distribution π(θ) 938 
2) Simulate tumour growth with parameters θ*  939 
3) Evaluate distance, δ between simulated data and target data 940 
4) If δ < ε reject parameters θ* 941 
5) If δ ≥ ε accept parameters θ* 942 
6) Return to 1 943 

 944 
We used an extension of the simple ABC rejection algorithm, called 945 
Approximate Bayesian Computation Sequential Monte-Carlo (ABC SMC)22,52. 946 
This method achieves higher acceptance rates of candidate simulations and 947 
thus makes the algorithm more computationally efficient than the simple 948 
rejection ABC. It achieves this increased efficiency by propagating a set of 949 
‘particles’ (sample parameter values) through a set of intermediate 950 
distributions with strictly decreasing ε until the target εT is reached, using an 951 
approach known as sequential importance sampling53. The ABC SMC 952 
algorithm also allows for Bayesian model selection to be performed by placing 953 
a prior over models and performing inference on the joint space of models 954 
and model parameters, (m, θm). In contrast to many applications of ABC that 955 
use summary statistics, we use the full data distribution, thus avoiding issues 956 
of inconsistent Bayes factors due to loss of information54,55. For further details 957 
on the algorithm see references22 and the Supplementary Note on the specific 958 
details of our implementation. Bayes factors for all data are shown in 959 
Supplementary Tables 5 and 6. We found that the probability of neutrality was 960 
significantly correlated with our frequentist based neutrality metrics and that 961 
the inferred mutation rates were highly similar (Supplementary Figure 19). 962 
 963 
The clonal structure of the cancer is encoded by the shape of the VAF 964 
distribution, we therefore used the Euclidean distance between the two 965 
cumulative distributions (simulated and target datasets) for our inference. 966 
 967 
Testing for Selection in the Frequentist paradigm 968 
We also refined a simple analytical test in order to rapidly determine what 969 
evolutionary parameters of selection lead to an observable deviation of the 970 
VAF distribution from that expected under neutrality.  Previously, we showed 971 
that under neutrality, the distribution of mutations with a frequency greater 972 
than f is given by11: 973 
 974 

𝑀(𝑓) = g	
h
W.
m
−	 .

m&`a
Y     [11] 975 

 976 
We fit a linear model of M(f) against 1/f and used the R2 measure of the 977 
explained variance as our measure of the goodness of fit. 978 
 979 
Another approach is to use the shape of the curve described by Equation [5] 980 
and test whether our empirical data collapses onto this curve. To implement 981 
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this approach, here we defined the universal neutrality curve,	𝑀�(𝑓). Given an 982 
appropriate normalization of the data, the mutant allele frequency distribution 983 
governed by neutral growth will collapse onto this curve, although we 984 
recognize that deviations due to stochastic effects are possible. We can 985 
normalize the distribution described by Equation [5] by considering the 986 
maximum value of M(f) at f=fmin. 987 
 988 
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 994 
𝑀�(𝑓) is independent of the mutation rate and the death rate and therefore 995 
allows comparison with any dataset. To compare this theoretical distribution 996 
against empirical data we used the Kolmogorov distance, Dk, the Euclidean 997 
distance between	𝑀�(𝑓) and the empirical data and the area between 𝑀�(𝑓) 998 
and the empirical data. The Kolmogorov distance Dk is the maximum distance 999 
between two cumulative distribution functions. Supplementary Figure 1 1000 
provides a summary of the different metrics. 1001 
 1002 
To assess the performance of the 4 classifiers we ran 105 neutral and non-1003 
neutral simulations and compared the distribution of the test statistics for 1004 
these two cases. Due to the stochastic nature of the model, not all simulations 1005 
that include selection will result in subclones at a high enough frequency to be 1006 
detected, therefore to accurately assess the performance of our tests we only 1007 
included simulations where the fitter subpopulation was within a certain range 1008 
(20% and 70% fraction of the final tumour size). All 4 test statistics showed 1009 
significantly different distributions between neutral and non-neutral cases 1010 
(Supplementary Figure 2). Under the null hypothesis of neutrality and a false 1011 
positive rate of 5%, the area between the curves was the test statistics with 1012 
the highest power (67%) to detect selection, slightly outperforming the 1013 
Kolmogorov distance and Euclidean distance, with the R2 test statistics 1014 
showing the poorest performance with a power of 61% (Supplementary 1015 
Tables 2 and 3). 1016 
 1017 
We also plotted receiver operating characteristic (ROC) curves by varying the 1018 
discrimination threshold of each of the tests of selection and calculating true 1019 
positive and false positive rates (using a dataset derived from simulations with 1020 
subclonal populations at a range of frequencies, Supplementary Figure 3).  1021 
This analysis showed that R2 had the least discriminatory power, with the 1022 
other 3 performing approximately equally well (see Supplementary Table 4 for 1023 
AUC). Increasing the range of allowed subclone sizes decreased the classifier 1024 
performance, likely because the subclone could merge into the clonal cluster 1025 
or 1/f tail when it took a more extreme size. 1026 
 1027 
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Code Availability Statement 1028 
Code for the simulation and inference method, frequentist based neutrality 1029 
statistics and bioinformatic scripts are available at: 1030 
https://marcjwilliams1.github.io/quantifying-selection 1031 
 1032 
Bioinformatics analysis 1033 
Variant calls from the original studies were used for the AML data26, 1034 
TRACERx31 data and MET500 data32. Our analysis of the TCGA colon cancer 1035 
cohort and gastric cancers is explained in our previous publication11.For both 1036 
these cohorts, we required the cellularity>0.4 to perform the analysis. For the 1037 
breast cancer data18 and lung cancer data27, bam files from the original study 1038 
were obtained and variants were called using Mutect256 and filtered to require 1039 
at least 5 reads reporting the variants in the tumour and 0 reads in the normal. 1040 
To mitigate the effects of low frequency mutations arising from paralogous 1041 
regions of the genome we filtered any mutations where 75bp regions either 1042 
side of the mutations had multiple BLAST hits (minimum of 100bp hit length, 1043 
maximum of 3% mismatching bases). 1044 
 1045 
Copy number aberrations could also potentially result in the multi-peaked 1046 
distribution we observe, hence we only used mutations that were found in 1047 
regions identified as diploid (and without copy-neutral LOH). The original AML 1048 
study found no evidence of copy number alterations. For the TCGA colon 1049 
cancer cohort we used paired SNP array data to filter out mutations falling in 1050 
non-diploid regions. For the TRACERx data and MET500 data we used allele 1051 
specific copy number calls provided in the original studies to filter the data. 1052 
For all other datasets we applied the Sequenza algorithm to infer allele 1053 
specific copy number states and estimate the cellularity57. As the original 1054 
breast cancer study found evidence of subclonal copy number alterations in 1055 
multiple chromosomes we only used mutations on chromosome 3 for our 1056 
analysis, (Supplementary Figure 20). BAFs of regions called as copy neutral 1057 
by Sequenza in the lung cancer sample were consistent with a diploid 1058 
genome (Supplementary Figure 21). 1059 
 1060 
We used cellularity estimated provided by the Sequenza algorithm to correct 1061 
the VAFs for each individual sample. For a cellularity estimate κ, the corrected 1062 
depth for variant 𝑖 will be 𝑑�� = 𝜅 × 𝑑e. When cellularity estimates from 1063 
Sequenza were unavailable (MET500 and TRACERx) we fitted the cellularity 1064 
using our ABC method by including it as an additional parameter. 1065 
 1066 
As noted our simulation can account for the over-dispersion of allele read 1067 
counts. To measure the over-dispersion parameter 𝜌, we fitted a Beta-1068 
Binomial model to the clonal cluster where we know 𝑉𝐴𝐹Gw*9 = 0.5. We used 1069 
Markov Chain Monte Carlo (MCMC) to fit the following model to the right hand 1070 
side of the clonal cluster so as to minimize the effects of the 1/f distribution or 1071 
subclonal clusters: 1072 
 1073 

𝑓e~𝐵𝑒𝑡𝑎𝐵𝑖𝑛(𝑛 = 𝐷e, 𝑝 = 𝑉𝐴𝐹Gw*9, 𝜌) 1074 
 1075 
where 𝐷e is the sequencing depth, 𝑓e is the allele read count and 𝜌 is the 1076 
overdispersion parameter. We then used this estimate for 𝜌 in the simulation 1077 
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sampling scheme. Supplementary figure 22 shows the fits to the clonal cluster 1078 
for the AML data using both the Beta-Binomial and Binomial model, and 1079 
supplementary table S7 reports the over-dispersion parameter for each 1080 
dataset. We also used this analysis to further refine the cellularity estimate 1081 
provided by sequenza, ensuring that the clonal cluster was centred at VAF = 1082 
0.5. We note that some of the over-dispersion is likely artificial and introduced 1083 
by the cellularity correction. 1084 
 1085 
Mutational signatures in the breast cancer sample and AML sample 1086 
(Supplementary Figure 12) were identified using the deconstructSigs R 1087 
package58 using the latest mutational signature probability file from COSMIC. 1088 
Signature assignment was restricted to signatures known to be active in the 1089 
respective cancer types. All other parameters were set to default values. To 1090 
generate confidence intervals, we bootstrapped the assignment by generating 1091 
50 datasets by sampling 90% of the mutations and running the regression on 1092 
each dataset, we then report the mean value and the 95% CI. 1093 
 1094 
Data Availability Statement 1095 
Only publically available data was used in this study, and data sources and 1096 
handling of these data are described above. 1097 
 1098 
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