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ABSTRACT

Objective To identify existing prognostic delirium
prediction models and evaluate their validity and statistical
methodology in the older adult (=60 years) acute hospital
population.

Design Systematic review.

Data sources and methods PubMed, CINAHL,
PsychINFO, SocINFO, Cochrane, Web of Science and
Embase were searched from 1 January 1990 to 31
December 2016. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses and CHARMS
Statement guided protocol development. Inclusion
criteria: age >60 years, inpatient, developed/validated a
prognostic delirium prediction model. Exclusion criteria:
alcohol-related delirium, sample size <50. The primary
performance measures were calibration and discrimination
statistics. Two authors independently conducted search
and extracted data. The synthesis of data was done by the
first author. Disagreement was resolved by the mentoring
author.

Results The initial search resulted in 7,502 studies.
Following full-text review of 192 studies, 33 were
excluded based on age criteria (<60 years) and 27 met
the defined criteria. Twenty-three delirium prediction
models were identified, 14 were externally validated and
3 were internally validated. The following populations
were represented: 11 medical, 3 medical/surgical and

13 surgical. The assessment of delirium was often non-
systematic, resulting in varied incidence. Fourteen models
were externally validated with an area under the receiver
operating curve range from 0.52 to 0.94. Limitations

in design, data collection methods and model metric
reporting statistics were identified.

Conclusions Delirium prediction models for older

adults show variable and typically inadequate predictive
capabilities. Our review highlights the need for
development of robust models to predict delirium in

older inpatients. We provide recommendations for the
development of such models.

INTRODUCTION

Delirium is an acute disturbance of conscious-
ness and cognition precipitated by an acute
event such as sudden illness, infection or
surgery. This syndrome is a serious public
health concern, as up to 50% of hospital-
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Strengths and limitations of this study

» This study used the Preferred Reporting ltems for
Systematic Reviews and Meta-Analyses Statement
and the CHARMS checklist to develop a protocol in-
volving comprehensive search terms and databases.

» The assembled interprofessional authorship team
contributed different perspectives on delirium pre-
diction models and statistical methodology.

» This review focused on a narrow population and old-
er adult inpatients and could be expanded to include
all ages and settings including palliative care, long-
term care and the emergency room.

Delirium has been independently associ-
ated with increased mortality, morbidity in
terms of impaired cognition and functional
disability along with an estimated annual US
expenditure of $152billion.*™ Prediction
models allow clinicians to forecast which
individuals are at a higher risk for the devel-
opment of a particular disease process and
target specific interventions at the identified
risk proﬁle.m_lz At present, an extensive list
of modifiable and non-modifiable, predis-
posing and precipitating delirium risk factors
encumbers clinicians, hindering the ability
to select the most important or contrib-
uting risk factor.! '* An accurate and timely
delirium prediction model would formalise
the highest impact risk factors into a powerful
tool, facilitating early implementation of
prevention measures.'' This systematic review
expands on previous published reviews on
delirium prediction models by integrating
both medical and surgical populations while
examining statistical aspects of each study
including reporting metrics and includes
recently published models.

Aim

Our aim was to provide important recommen-
dations on study design for future delirium
prediction models while integrating knowl-

Heidi Lindroth: ised older adults will experience delirium edge gained from the study of both medical
hlindroth@wisc.edu in medical and surgical populations.'” and surgical populations. We conducted a
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systematic review of the literature focusing on the iden-
tification and subsequent validity of existing prognostic
delirium prediction models in the older adult (=60 years
old) acute hospital population.

METHODS
This systematic review followed the protocol developed
from the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Statement and the CHARMS
checklist (online supplementary appendix A)."> ' A
delirium prediction model was defined as a statistical
model that either stratified individuals for their level of
delirium risk, or assigned a risk score to an individual
based on the number and/or weighted value of prede-
termined modifiable and non-modifiable risk factors of
delirium present. This review included studies focused on
(1) older adult (=60 years) population, (the US Centers
for Disease Control and Prevention and United Nations
define an older adult as 60 years of age and older),'” '
(2) inpatient hospital setting, (3) publication dates of 1
January 1990-31 December 2016 and (4) developed and/
or validated delirium prediction models. Studies were
excluded if they (1) studied a different patient popula-
tion (ie, emergency department, skilled nursing facilities,
palliative care and hospice) as these are unique patient
populations with characteristics requiring specific foci and
are not readily generalisable to a medical or surgical inpa-
tient hospital setting. Furthermore, recommended ther-
apies for treatment of delirium symptoms vary between
the populations,' *’ (2) related to alcohol withdrawal, or
delirium tremens, as the presence of alcohol withdrawal
complicates delirium assessment and (3) had a sample size
of <50 for methodological reasons (ie, underpowered).
All study designs were included. Studies were not limited
by time frame of delirium development (prevalent vs inci-
dent); however, only prognostic statistics were discussed.
The search terms were as follows: (‘Delirium’ OR
‘postoperative delirium’ OR ‘ICU delirium’ OR ‘ICU
psychosis’ OR ‘ICU syndrome’ OR ‘acute confusional
state’ OR ‘acute brain dysfunction’) AND (‘inpatient’
OR ‘hospital®*” OR ‘postoperative’ OR surg* OR ‘critical
care unit’ OR ‘intensive care unit’ OR CCU OR ICU)
AND (‘predict® model OR risk*). Electronic databases
of PubMed, CINAHL, PsycINFO, Cochrane Database
of Systematic Reviews, SocINDEX, Web of Science and
Embase were searched. Studies using a language other
than English were included if translation was available
through the University of Wisconsin-Madison Health
Sciences Librarian. Bibliographies of identified studies
were hand-searched for additional references. Study
quality was assessed through the Newcastle-Ottawa Scale
(NOS)? for case—control and cohort studies. Risk of bias
was assessed through the Critical Appraisal and Data
Extraction for Systematic Reivews (CHARMS) checklist.'®
Two authors (HL and SP) independently performed data
collection, data extraction and assessed study quality, with
any disagreement resolved by RDS.

Outcomes

Data extracted included: (1) study characteristics (study
design, population and sample size), (2) outcome
measure (method of identification and diagnosis,
frequency and length of screening), (3) model perfor-
mance information including the diagnostic accuracy
of the delirium prediction models, calibration metrics
and events per variable (EPVs), (4) characteristics of the
models (variables used in model and scoring/stratifica-
tion system), (5) cognitive measures used in the study and
(6) statistical methods applied for analysis. Five authors
were contacted for missing or incomplete data. Four
responses were received.

Statistics

Model performance was assessed through calibration
and classification metrics.'” The AUROC was the primary
measure collected to evaluate the discriminatory ability of
the delirium prediction models. Clinical utility statistics
such as sensitivity, specificity, positive predictive values,
negative predictive values, ORs, relative risk statistics and
use of decision curve analysis or clinical utility cure anal-
ysis were also collected from each delirium prediction
model in reference to the model’s reported cut-off value.
Goodness-of-fit statistics including %* and Hosmer-Le-
meshow tests were collected to evaluate effective model
calibration. Studies were also assessed for the inclusion
of calibration plots and slopes. Model calibration refers
to the agreement between observed outcomes and
predictions.”” Secondary preplanned outcome measures
included cognitive assessments and predictive variable
use per model.

Role of the funding source

The funding sources named had no role in this study.
All authors had full access to all the data in the study
and shared responsibility for the decision to submit the
publication.

Patient and public involvement
Neither patients nor the public were involved with the
development or design of this study.

RESULTS

Twenty-seven studies were identified for inclusion.
The initial search resulted in 7,502 citations, with 192
studies chosen for full-text review as detailed in the
PRISMA diagram (figure 1). We did not identify any rele-
vant, unpublished studies for this review. The inclusion
criteria were modified for two studies that developed
models in younger populations, but these models were
externally validated in the target population of this review
(age >60 years).> *’

Twenty-three delirium prediction models were developed,
14 were externally validated™’ 272051 33564154698 a0 three
were internally validated.***” ** Prospective cohort design was
used in 24 studies,? #3135 3749 Retrospective design was

23-47
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Figure 1

used in four studies.?* %% * Nineteen studies used consecu-
tive sampling metho dls 23 2-31 333438 4042 44 45 4749 o of these
were part of a randomised control trial.** *! Eleven studies
focused on the medical population,23 2298340424548 3 11 (Juded
medical and surgical24 B4 and 13 recruited a surgical
population (seven orthopaedic,%_28 33849 e Cardiac,46
two non—cardiac,37 7 one general surgelrys5 and two onco-
logicalg6 %) None of the identified studies focused on
critical care patients. Data collection occurred on admis-
sion in 17 studies> 2 27 29-31 33-85 4045 48 49; participants were
approached within 48hours of admission. Seven studies
collected data preoperatively then followed participants
postoperatively.26 W IT94647 Daa collection overlapped with
delirium assessments in three studies.”’ > % The average
NOS quality ranking for included cohort studies was seven;
six studies received the maximum of nine stars. Risk of bias
was assessed using the CHARMS checklist,15 and results are
shown in figure 2. Further characteristics of studies are listed
in table 1.

Delirium assessment
The outcome variable was measured using the Confu-
sion Assessment Method in 21 studies.?® 25751 33-4043 46-49

PRISMA diagram: study selection. PRISMA, Preferred Reporting ltems for Systematic Reviews and Meta-Analyses.

The frequency of delirium assessment varied from two
or more assessments daily (3 studies),?® % 1! to once
daily (12 studies),? 270 32 34 3638 446049 oyery other day
(8 studies),?® 2729 3 I A28 oy ce following surgery’”
and undefined (3 studies).?* ** ** Of the studies that
assessed delirium twice or more daily, all of these
studies relied on ward nurse observations or tele-
phone interview with the nurse to identify delirium
symptoms.26 34 The principal investigator confirmed
the presence of delirium following the nurse report
of symptoms.”® * Twenty-one studies used trained
research or clinical personnel to conduct the delirium
assessments, 2 20727 208133404348 T pe e studies relied on
delirium diagnosis, or keywords designated as repre-
senting delirium, to identify the outcome measure
through retrospective chart review.”* **** Three studies
relied on clinical staff to recognise and chart delirium
symptoms.”® *' ¥ One of these studies retrospectively
confirmed the diagnosis of delirium through consensus
review of two authors; disagreement was resolved by
a psychiatrist.41 One study did not report details on
personnel performing delirium assessments.*
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Figure 2 This displays the CHARMS risk of bias assessment on all included studies. Study participants: design of included
study, sampling method and inclusion/exclusion criteria. Predictors: definition, timing and measurement. Outcome: definition,
timing and measurement. Sample size and missing data: number of participants in study, events per variable and missing data.
Statistical analysis: selection of predictors, internal validation and type of external validation.

Model design and statistical methods

Various statistical techniques were employed by the 23
included studies. Twelve used univariate or bivariate anal-
yses and selected variables with a predetermined statistical
value (range from p<0.05to p<0.25) for inclusion in the
model,#2032355T40424346 pive of these models paired bivar-
iate analyses with a bootstrapping technique to address
lower sample and event size.*** * % Four models based
their variable selection from a literature review of risk
factors for delirium.?” ** *! ##849 Ty used proportional
hazards regression modelling paired with bivariate anal-
yses and included variables with either a p value <0.25* or
a relative risk of >1.50.” Six studies published their power
analysis.”* # %7 % 141 Sixteen studies employed a form of

logistic regression. Twelve of these models applied a step-
wise regression approach.23 %526 29 30 S5-5T 4245 46 47 P pee
applied a stepwise forward selection process,” * * two
employed a stepwise backward selection process™ ** and
one used a combined approach.”’ Statistical methods
used for model building are further outlined in table 1.
Per TRIPOD reporting guidelines, validation studies
were categorised into type; narrow validation refers to the
same investigators subsequently collecting an additional
patient cohort, following the development cohort, and
broad validation refers to a validation cohort sampled
from a different hospital or country.”’™* As interpreta-
tion of validation studies is dependent on case-mix,” it
is important to note that 8 of the 14 externally validated
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. 1 39729-31 354146
models are categorised as narrow validations. > *” -1 %

Further information is outlined in table 2.

Variables

Figure 3 demonstrates the frequency of variable use in
the 14 externally validated delirium prediction models.
Baseline cognitive impairment was the most frequently
used variable. Six models defined baseline cognitive
impairment as a cognitive test score at or below the level
of dementia.?” * 3* ¥ % This cognitive test was adminis-
tered on study enrolment or extracted from past medical
records.” Two studies additionally evaluated chronic
cognitive impairment through family or caregiver inter-
view with the modified Blessed Dementia Rating Scale
(mBDRS).*"*! Four models combined the cognitive test
score derived on enrolment with a history of dementia
to define baseline cognitive impairment.”' ** ' * History
of dementia was defined as follows: two studies: family or
caregiver report supplemented with documented history
in medical record,” *' one study: medical record review
and interview with mBDRS” and one study: dementia
billing codes or prescription information.** One study
defined baseline cognitive impairment as a prespecified
key term in the electronic health.” Table 2 details cogni-
tive tests used in the externally validated delirium predic-
tion models.

Functional impairment was defined as follows: (1 study)
needing assistance with any basic activities in daily living
(ADL),” (1 study) domestic help, help with meals or phys-
ical care' and (2 studies) residence in nursing facility or
at home with caregivers,” and (2 studies) requiring a
home care package with professional caregivers or resi-
dence in a care home.” *® The latter being obtained on
admission from medical records.” * Two studies used
validated functional assessment tools (Instrumental Acti-
vites of Daily Living (iIADL) and Barthel Index) and evalu-
ated functional status 2weeks prior to hospitalisation.”” *!

Externally validated delirium prediction models are
detailed in table 2.

DPM name and regression model
used
Risk stratification model

Built from literature

frequency

Dev: chart audit

Val: DSM-IV

Daily clinical interview

Outcome variable and rate Delirium measurement and

Study grade (NOS) (%)
Dev: 2343 (8)

Delirium
Val: 64 (26)

T: 6 stars

S- ek
C:
O Kk

Predictive ability

Reported AUROC in externally validated delirium predic-
tion models ranged from 0.52 to 0.94 (figure 4). Of these
models, the highest performing model (AUROC 0.94,
95% CI 0.91 to 0.97) was developed and validated in a
surgical population.” Two models reported an external
validation AUROC above 0.80, indicating moderate
predictive ability.” * Both were developed and validated
in medical populations and share similarities with vari-
able use including pre-existing cognitive impairment and
presence of infection.

Study design population sample
size sampling method power
analysis

Dev: Retro

Val: P.Cohort

Med/surg

Dev: 27625

Val: 246

Consecutive

Model calibration

Six of the 14 externally validated delirium prediction
models reported calibration metrics. 2?1 3 B4 The
reported y” statistics were significant in five prognostic
models?*?! ** % and did not reach significance in one
model.* Four of the 23 studies that developed models

Continued
postoperative day; DSI, Delirium Symptom Interview; DAS, Delirium Assessment Scale; FAM-CAM, Family Confusion Assessment Method, RNs, Registered Nurses; IVAL, Internal Validation

Type of model: how authors designed their delirium prediction model (DPM), statistical method used.
Risk stratification model: points (weighted or unweighted) assigned per predictive risk factor present.

Rating Scale-R-98; DSM, Diagnostic Statistical Manual; EHR, Electronic Health Record; MDAS, Memorial Delirium Assessment Scale; Nu-Desc, Nursing Delirium Screening Scale; POD,
Built from literature: authors selected risk factors for DPM based on literature review.

Study design: Dev, development; Med, medical; P.Cohort, prospective cohort; Retro, retrospective design; Surg, surgical; Val, validation; Power analysis, reported in identified study.
Study grade: NOS, Newcastle Ottawa Scale; C, comparability; O, Ottawa; S, Selection; T, Total; Max 9 stars. Outcome variable: CAM, Confusion Assessment Method; DRS-98, Delirium

*Models developed in population <60 years of age but validated in population >60 years of age.

AWOL, DEAR, and RD are the names of the prediction models given by the developing authors.
CGA, Comprehensive Geriatric Assessment.

Rudolph et a/**

Table 1
Author
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Figure 3 This displays the mean frequency of variable use in the 14 externally validated delirium prediction models. ‘(P)’
indicated a precipitating risk factor used in a delirium prediction model. The following variables were used twice and are not
represented in the figure: BUN/Cr ratio (Blood Urea Nitrogen/Creatinine ratio), comorbidities, history of delirium, depression,
medications (1: upon admission, 1: added during hospital stay), restraint use and malnutrition (1: altered albumin level,

1: malnutrition scale). The following variables were used once and are not represented in the figure: bladder catheter use,

C reactive protein, emergency surgery, presence of fracture on admission, history of cerebrovascular accident, iatrogenic event,

intensive care unit admission and open surgery.

reported calibration statistics.” 574042 None of the
included studies reported calibration plots or slopes.

Risk of overfitting

EPVs were examined in each of the 14 externally vali-
dated models. Models estimating more parameters than
events in a 1:10 ratio are at risk of statistical overfitting,
potentially leading to overly optimistic model perfor-
mance.”? *7 In 14 models with external validation,
four had fewer than optimum events for the number of
parameters estimated in the development stage of the
models.”” ***** Five had fewer than optimum events in
the external validation stage.” ***' * Two models did
not reach optimum events for the number of param-
eters in either the development or the external vali-
dation studies.” *" Various statistical techniques such
as shrinkage procedures, the use of lasso or penal-
ised regression and internal validation methods are
suggested to counter the effects of lower EPV.' 7* %
None of the identified studies report use of statistical
shrinkage procedures. Five studies applied internal
validation techniques in the development stage

of their model to account for stability within their
24 95 37 38 46
model.

Clinical utility

Clinical utility of a prediction model may be evaluated
through several different statistical metrics including ORs,
relative risk, sensitivity and specificity, receiver operator
curves, R* and integrated discrimination improvement
indices as well as the clinical utility curve statistic and
the decision curve analysis.‘57 " Six externally validated
delirium prediction model studies reported ORs or rela-
tive risk statistics evaluating the highest risk stratification
cut-off point.Qg_31 34648 Seven studies reported sensitivity
and speciﬁcity,23 2733 H/ALB 4nd one study reported the
rate of true positives and false positives.* None of the iden-
tified studies reported decision curve analysis or clinical
utility curve analysis. While the majority of studies selected
variables that were either routinely used in practice or
were feasible to administer, two studies developed delirium
prediction models based on data routinely entered into
the electronic health record to increase feasibility of
use.”* ** Pendlebury ¢t al adapted variable definition and
use to match routine clinical assessment while externally
validating four delirium prediction models and creating
an additional risk stratification tool.”® *® Moerman et al
reported feasibility and reliability statistics following the
incorporation of the risk prediction tool into practice.*!
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Author Year (#D/N) DPM AUROC
~ Pendlebury 2016 (91/308) AWOL1 R 0.78 (0.68, 0.88)
Pendlebury 2016 (91/308) AWOL2 - 0.73 (0.63, 0.83)
Rudolph 2009 (48/109) CPR . 0.74 (0.74, 0.74)
Inouye 2007 (28/461) Inouye 07 [ | 0.75 (0.75, 0.75)
Carrasco 2014 (12/104) DPS 0.78 (0.66, 0.90)
Kim 2016 (99/533) Delphi . | 0.94 (0.91, 0.97)
Rudolph 2016 (64/246) e-NICE1 —a 0.69 (0.61, 0.77)
Rudolph 2016 (64/246) e-NICE2 N 0.72 (0.65, 0.79)
Rudolph 2016 (64/246) e-NICE3 o= 0.73 (0.66, 0.80)
Rudolph 2016 (64/246) e-NICE4 —_— 0.74 (0.66, 0.81)
Inouye 1993 (29/102) IPR — 0.66 (0.55, 0.77)
Kalisvaart 2006 (74/603) IPR —- 0.73 (0.65, 0.78)
Rudolph 2011 (23/100) IPR ———e—— 0.56 (0.42, 0.74)
Pendlebury 2016 (91/308) IPR1 —a— 0.73 (0.62, 0.84)
Pendlebury 2016 (91/308) IPR2 —a— 0.70 (0.60, 0.81)
Pendlebury 2016 (91/308) Isfandiaty1 —— 0.83 (0.74, 0.91)
Pendlebury 2016 (91/308) Isfandiaty2 —a— 0.77 (0.67, 0.86)
Pendlebury 2016 (91/308) Martinez1 —a— 0.78 (0.68, 0.88)
Pendlebury 2016 (91/308) Martinez2 B 0.75 (0.65, 0.84)
Pompei 1994 (86/323) Pompei —— 0.64 (0.59, 0.69)
Moerman 2012 (102/378) RD - 0.73 (0.68, 0.77)
Pendlebury 2016 Susceptibility —a— 0.81 (0.70, 0.92)
04 06 08 10 12
Area Under ROC Curve

Figure 4 This shows the published AUROC statistic for the 14 externally validated delirium prediction models. #D/N: number
of confirmed delirium in study/overall sample size. DPM: delirium prediction model name. The corresponding number of
references the different AUROCs calculated based on different cognitive tests applied to the model by the authors. Squares
with error bars: size of square corresponds to sample size of study. AUROC: reported area under the receiver curve statistic,

95% Cls.

DISCUSSION

This review identified moderate predictive ability
(AUROC 0.52-0.94) in 14 externally validated delirium
prediction models with 8 out of 14 models using narrow
validation. However, three main limitations were iden-
tified. First, study design, application and reporting of
statistical methods appear inadequate. Data collection
overlapped with the initial diagnosis of delirium in the
highest performing model as well as in two other included
studies, likely exaggerating model performance." 27525

Low EPV combined with limited application of internal
validation techniques contributed to an increased
risk of bias and likely the creation of overly optimistic
models.'? 5052 Second, broad variable definitions, partic-
ularly in functional and cognitive abilities, may have led
to overlapping data capture. For example, Pendlebury
et al demonstrated this possible effect in the develop-
ment of the Susceptibility Score, model performance did
not improve with the addition of functional impairment
to a model that already included cognitive impairment

Lindroth H, et al. BMJ Open 2018;8:019223. doi:10.1136/bmjopen-2017-019223
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and age.* Lastly, assessment of the outcome variable,
delirium, was largely non-systematic, once daily and
avoided weekends. In the studies that assessed delirium
more than once per day, the assessment was performed
by routine clinical staff, decreasing consistency. This is a
major limitation for an acute condition that fluctuates,
may occur suddenly and is dependent on precise, objec-
tive assessment. While case-mix between populations may
impact observed delirium rates, we believe it would be
advantageous for future studies to incorporate systematic,
frequent and consistent delirium assessments.

As delirium is a multifactorial syndrome representing
an interrelationship between premorbid and precip-
itating factors,” the time course of data collection is
important. Nine of the 14 externally validated delirium
prediction models incorporate precipitating factors into
their predictive model; two models® *' are intentionally
constructed in this manner. The inclusion of a precipi-
tating factor into a premorbid delirium prediction model
may provide important predictive power if designed in
the appropriate manner, as demonstrated by Inouye et
al® However, if variables are collected after the onset of
delirium, this would exaggerate model performance (eg,
ICU admission). As an example, one delirium predic-
tion model has a robust AUROC of 0.94 (95% CI 0.91 to
0.97).% This study excluded those with an MMSE <23 and
prevalent delirium. Data collection occurred within
the first 24hours following surgery; however, delirium
assessment began immediately after surgery, with a 50%
delirium prevalence on the day of surgery. This overlap
of data collection and delirium assessment likely exag-
gerated model performance for this outlier study. Seven
externally validated models included data about the
precipitating factor present on admission and either
excluded those with prevalent delirium or calculated
separate %I;I()nggisfor prevalent delirium versus incident
delirium.

Model underperformance may be explained by low
powered studies, insufficient EPV as well as the use of
univariate analyses and stepwise regression to select
predictive variables for inclusion into models. Although
these are common methods to use for model develop-
ment and may counter the effects of insufficient EPV, each
approach has significant drawbacks.”” Univariate analysis
may reduce predictive ability by inclusion of variables that
are not independent of each other, and stepwise regres-
sion disadvantages include conflation of p values and a
biased estimation of coefficients.'” **** ® While EPV was
originally adapted to ensure stability in regression covari-
ates, it has been identified as an important component to
predictive model stability and reproducibility due to the
result of overfitting.'”** *Ogundimu et aldemonstrate this
effect by simulating models with EPV of 2, 5, 10, 15, 20, 25
and 50. Stability of models increased as the EPV increased
and models including predictors with low population prev-
alence required >20EPV.*” The degree of model overfit-
ting should be assessed through calibration statistics and
forms of internal validation such as bootstrapping. Future

studies should consider the use of statistical methods to
counter low EPV including the application of statistical
shrinkage techniques and penalised regression using
ridge or lasso regression.'” ** % % ®* Furthermore, future
studies may benefit from the incorporation of advanced
statistical techniques such as Bayesian Networks and
machine learning that have shown to improve the perfor-
mance of previous prediction models that were built using
standard logistic regression.” % These methods facilitate
the exploration of complex interactions between risk
factors as well as adapt to changing patient conditions,
allowing for a dynamic model.

Increasing age, pre-existing cognitive impairment and
functional and sensory impairments were the most
frequently used variables in the externally validated
delirium prediction models. However, many studies
employed different definition for these variables, making
comparisons difficult between models and limiting
generalisability across populations. Functional and phys-
ical impairments were broadly defined resulting in the
inability to discern whether impairments resulted from
truly physical origins or if the noted decrease in func-
tion was related to cognitive impairment leading to an
overlap in data collection. Age may not be a relevant risk
factor when considering an older cohort of patients; for
example, a recent study found that global cognition may
mediate the relationship between age and postoperative
delirium67; therefore, the inclusion of age in a delirium
prediction model may not add to the overall perfor-
mance of the model if cognition is adequately captured
or if only elderly patients are included in the study. This
effect was demonstrated by Pendlebury ef al, an improved
AUROC resulted when age was removed from the predic-
tion model (0.81 to 0.84).* As the inclusion of age, func-
tional, physical and cognitive impairments may result in
an overlap of data collection, future models may want to
explore variables that have not been frequently used in
delirium prediction yet are highly predictive of mortality,
surgical complications and depression. An example
would be the self-rated health question. This is a single-
item question evaluating an individual’s perception of
their own health and has been found to be a significant
predictor of sub;ective memory complaints, depression
and mortality.*"* Furthermore, this variable is feasible
as it takes minimal time and no training. Incorporation
of variables such as self-rated health may increase both
predictive ability and feasibility, thus improving clinical
utility.

The highest performing delirium prediction model
excluded those with pre-existing cognitive impairment,
did not incorporate a cognitive variable and used hearing
impairmentas a predictive variable (note the methodolog-
ical concerns of this study were discussed above).” Cogni-
tive impairment was the most frequently used variable
and is a known risk factor for delirium development.? ®’
Prior research demonstrates individuals with mild cogni-
tive impairment (MCI) are at a significantly higher risk
of delirium development.”” ™ All models used cut-off
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scores on cognitive tests that would indicate dementia,
providing no evaluation of subtler cognitive decline such
as MCI. Furthermore, Jones e/ al demonstrated a strong
linear relationship between risk of delirium and all levels
of cognitive function, even those considered unimpaired
through formal testing.67 In this study, a general cogni-
tive performance score was developed using a complex
battery of neuropsychological tests. Unfortunately, the
neuropsychological battery is too complex to be prac-
tical for the clinical setting. Fong et al found associations
between baseline executive functioning, complex atten-
tion and semantic networks to be associated with subse-
quent delirium development.”” The inclusion of MCI, or
simple cognitive tests as employed by Fong et al, as a vari-
able may increase the detection and prevalence of cogni-
tive impairment as a variable thus increasing its predictive
power. Further exploration into isolated cognitive tests
that are feasible to administer in a clinical setting as well
as sensitive to the spectrum of cognitive impairment may
enhance delirium prediction.

The clinical utility of a prediction model is dependent
on both its efficacy at predicting those at risk and feasi-
bility, hence both must be considered when building
and validating a model. Clinical utility is compromised
by efficacious models that are not feasible. Conversely,
a feasible model that is not effective at identifying those
at risk also lacks clinical utility. To this end, model
derivation must focus on building an effective model.
The next aspect that must be considered is the ability
to enhance clinical care. Predicting individuals at high
risk is clearly important, but to an experienced clinician,
delirium may already be anticipated. Maximum value
may be obtained by aiding in prediction of moderate
risk patients, where the risk of delirium may be more
ambiguous.

Strengths and weaknesses of this study

This systematic review benefitted from a prospectively
developed protocol. A comprehensive literature search
from multiple databases using broad search terms
yielded 27 studies with 14 externally validated delirium
prediction models. Our author team is interprofessional,
providing the opportunity for different perspectives on
model evaluation. Furthermore, this review synthesises
evidence from both medical and surgical populations
while providing statistical-based recommendations for
study and model design for future delirium prediction
model studies.

The limitations of this systematic review may be that arti-
cles focused on a younger population were not included.
This limitation could narrow the generalisability of the
results of this systematic review to the broader popu-
lation; however, delirium predominantly affects older
adults. Furthermore, this review is limited by population
focus. We did not include prediction models built-in
palliative care, long-term care facilities or the emergency
department.

Strengths and weaknesses in relation to other studies

Past systematic reviews concluded that the identified
delirium prediction models were largely heterogeneous
in variable inclusion and were not sufficiently developed
for incorporation into practice.78_80 Recommendations
include further testing on existing delirium prediction
models followed by integration in practice as well as
further exploration into measurements that are feasible
clinically. This review included eight models not previ-
ously identified in past systematic reviews of delirium
prediction models. Furthermore, this review is the first
to identify study and model design issues and discusses
the paucity of measurements sensitive to the spectrum of
cognitive impairment.

Implications and future research

Two avenues may be pursued for future studies. The first
avenue involves model aggregation; currently available
delirium prediction models would be combined into a
meta-model through stacked regression in a new cohort
of participants. This method would update currently
published models to a new population, furthering gener-
alisability and bolstering broad external validation.®' Vari-
able definition could be harmonised in the meta-model
with the intention to use variables that are readily avail-
able and feasible for routine practice. This method would
further delirium prediction for those with dementia-level
pre-existing cognitive impairment as well as examine the
individual contributions of functional impairment due to
physical conditions, cognitive impairment or age through
model refitting. Nonetheless, a future meta-model would
continue presently identified limitations such as exclu-
sion of the spectrum of cognition. The second avenue
should focus on the development and broad validation of
delirium prediction models exploring the use of simple
cognitive tests that would be inclusive to MCI and sensi-
tive to the spectrum of cognition. Furthermore, future
models should consider development of dynamic predic-
tive models using advanced statistical methods such as
Bayesian Networks, artificial intelligence and machine
learning as these methods have shown to improve models
built using standard logistic regression.’ **

We suggest the following broad principles for use in
future studies: (1) delirium prediction models should be
developed only using data available prior to the onset of
delirium and likely should be focused in specific popu-
lations depending on whether the precipitating event
has occurred or not; (2) should include structured, twice
daily assessment (regardless of weekends) using validated
tools and trained research staff to identify delirium; (3)
should consider inclusion of variables and assessments
that are readily available in clinical practice and are
feasible to administer without extensive training or inter-
pretation where possible and not to exclude a more infor-
mative variable; (4) model development and validation
should follow rigorous methods outlined by Steyerberg®
and Steyerberg and Vergouwe™ including strategies to
counter low sample size and overly optimistic model
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performance, the use of Akaike information criterion
and Bayesian information criterion to assess model fit
and consider broad validations to expand case-mix and
generalisability; and (5) adhere to strict guidelines as
outlined by the TRIPOD Statement for statistical perfor-
mance reporting including calibration and clinical utility
statistics.”? 70722059

Two classes of delirium prediction models may be
required based on the acuity of the admission (elective
or emergency). If precipitating factors are included in an
elective admission delirium prediction model, where the
patient is yet to incur the delirium provoking event, an
individual’s delirium risk may be overestimated. In the
second option, inclusion of only premorbid factors may
underestimate delirium risk given the emergency clinical
scenario.

CONCLUSION

Twenty-three delirium prediction models were iden-
tified. Fourteen of these were externally validated, and
three were internally validated. Of the fourteen validated
delirium prediction models, the overall predictive ability
is moderate with an AUROC range from 0.52 to 0.94.
Assessment of the outcome variable, delirium, is often
non-systematic, and future studies would be improved
with more standardised and frequent assessment. Overall,
the variable inclusion and applied definitions in delirium
prediction models are heterogeneous, making compari-
sons difficult. To improve delirium prediction models,
future models should consider using standard variables
and definitions to work towards a prediction tool that is
generalisable to several populations within the remit of
understanding the relationship with the precipitating
event.
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