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A B S T R AC T

Value of Information measures quantify the economic benefit of obtaining additional informa-

tion about the underlying model parameters of a health economic model. Theoretically, these

measures can be used to understand the impact of model uncertainty on health economic

decision making. Specifically, the Expected Value of Partial Perfect Information (EVPPI) can

be used to determine which model parameters are driving decision uncertainty. This is useful

as a tool to perform sensitivity analysis to model assumptions and to determine where future

research should be targeted to reduce model uncertainty.

Even more importantly, the Value of Information measure known as the Expected Value of

Sample Information (EVSI) quantifies the economic value of undertaking a proposed scheme

of research. This has clear applications in research prioritisation and trial design, where

economically valuable studies should be funded. Despite these useful properties, these two

measures have rarely been used in practice due to the large computational burden associated

with estimating them in practical scenarios. Therefore, this thesis develops novel methodology

to allow these two measures to be calculated in practice.

For the EVPPI, the method is based on non-parametric regression using the fast Bayesian

computation method INLA (Integrated Nested Laplace Approximations). This novel calculation

method is fast, especially for high dimensional problems, greatly reducing the computational

time for calculating the EVPPI in many practical settings. For the EVSI, the approximation is

based on Moment Matching and using properties of the distribution of the preposterior mean.

An extension to this method also uses Bayesian non-linear regression to calculate the EVSI

quickly across different trial designs. All these methods have been developed and imple-

mented in R packages to aid implementation by practitioners and allow Value of Information

measures to inform both health economic evaluations and trial design.
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I N T R O D U C T I O N TO VA L U E O F I N F O R M AT I O N

Broadly speaking, the objective of health economic evaluations is to maximise health gains

across a population given finite monetary resources and limited budget. These evaluations

are, therefore, the basis of assessments by bodies such as the National Institute for Health

and Care Excellence (NICE) in the UK that provide guidance on decision-making for publicly

funded health-care systems. They encompass a suite of approaches for combining costs and

clinical consequences of an intervention, in order to compare the intervention with alternative

options which may already be available. Typically, an assessment of the impact of uncertainty

on the decision making process is also included. Therefore, health-economics is, arguably, a

branch of applied statistics [13, 121], which is often performed using the Bayesian approach

[4, 90, 91, 106].

The process of health-economic evaluations involves the identification of suitable measures

of clinical benefits (generically termed as “effectiveness”) and costs associated with an inter-

vention. The costs usually include the cost of acquisition and implementation of the health

intervention (e.g. a drug), along with societal costs such as those related to number of days

off work or social care. As for the clinical benefits, they can be a “hard” measurement (e.g.

number of cases averted), but are, most often, considered in terms of Quality Adjusted Life

Years (QALYs) [75], combining the quantity and the quality of life provided by a given interven-

tion. Individual level variability in the costs and effectiveness is normally expressed in terms

of a joint probability distribution, indexed by a set of population level parameters.

Once the modelling step is complete and all relevant costs and benefits are included in the

model, the decision making process is performed under a strict decision theoretic framework

[96]. For each intervention, the health economic outcomes are combined into a utility function,

which quantifies the overall “value” of the intervention. The alternative associated with the

highest expected utility is then deemed as the most cost-effective, given current evidence —

notice that in a Bayesian context, this expectation is taken over the distributions of both the

individual level outcomes and population level parameters. From the decision-theoretic point

of view, the identification of the overall expected utility is all that is needed to reach the best

decision given the current state of knowledge available to the decision-maker [24, 25].

However, the implementation of a health care intervention is usually associated with risks

such as the irreversibility of investments [23]. Moreover, health economic models often in-

volve a relatively large number of parameters, usually estimated with limited information. For

these reasons, a thorough investigation of the impact of uncertainty on the decision making
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process of parametric uncertainty is recommended by several Health Technology Assessment

(HTA) bodies, [17, 28, 38, 45]. This process is known in the health economics literature as

Probabilistic Sensitivity Analysis (PSA).

Typically, PSA is carried out by defining probability distributions for the population paramet-

ers which represent the current level of uncertainty in these parameters. These distributions

then define a distribution for the costs and effectiveness measures and can therefore be used

to determine a distribution over the different possible decisions based on the current uncer-

tainty level in the model parameters. In most settings, this distribution is summarised by es-

timating the probability that each treatment option is cost effective. However, this analysis can

dramatically under/overestimate the sensitivity of the decision to uncertainty. For example, if

all treatment options have similar costs and effectiveness, there will be low probability of cost

effectiveness as the comparators are almost equally likely to be cost effective. However, ag-

onising over the decision between the alternative treatments is a waste of resources as they

all give approximately the same benefits and costs.

Therefore, the analysis of the Value of Information (VoI) [64] has become an increasingly

popular method for conducting PSA in health economic evaluations [1, 9, 13, 23, 27, 46, 47,

50]. The basic idea of this analysis to compare the decision based on current evidence to the

one that would be made had “more” information been available. In some settings, we consider

that it is possible to resolve all the uncertainty in the model parameters, while others consider

different strategies for collecting this additional information.

The main advantage of the analysis of the VoI over simply calculating the probability of cost

effectiveness is that it directly takes into account the opportunity cost of making the wrong

decision as well as the likelihood of modifying the decision. If this cost is low, the decision can

be taken immediately, even for a low probability of cost-effectiveness as deferring the decision

will have little value. Additionally, the value of the information can be directly compared with

the cost of gathering additional information to reduce uncertainty which allows us to determine

which studies should be funded. For this reason, it has been advocated that VoI measures

should be presented when representing decision uncertainty [4, 16, 46, 83].

Despite these useful features, the uptake of VoI analysis in health economic evaluation

has been slow. VoI analysis has been hindered by several different factors, both theoretical

and practical. Theoretically, decision makers often find these measures more challenging to

comprehend than the probability of cost-effectiveness [117]. This is partially to do with the

fact that VoI measures are unbounded and therefore is it more challenging to determine which

constitutes a “high” level of decision uncertainty, particularly when considering the value of

resolving all model uncertainty.

More importantly, however, there are practical barriers to using VoI measures as they are

very computationally costly unless restrictive assumptions are made [123]. It is relatively easy

to calculate numerically (but not analytically) the expected value of learning all the model

parameters perfectly. This is known as the (overall) Expected Value of Perfect Information

(EVPI). However, this quantity often has little practical use (except in models where this value

is very low), as it will be rarely possible to learn the exact value of all the underlying model
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parameters. Thus, the decision-maker is usually interested in the expected value of learning

about a subset of the model parameters or even more importantly the expected value of

information from a specific study.

In practice, subset analysis indicates which parameters are driving decision uncertainty

and is based on a VoI measure known as the Expected Value of Perfect Partial Information

(EVPPI). This measures the value of learning the exact value of a specific subset of the model

parameters. In general, the EVPPI can be calculated for different subsets of the model para-

meters to determine which parameters have the greatest economic value. These should then

be targeted in a future study in order to efficiently reduce decision uncertainty. It is also pos-

sible to calculate the value of a proposed study with a specific design using a VoI measure

known as the Expected Value of Sample Information (EVSI). Traditionally, both these meas-

ures have been highly computationally costly, with the EVSI more challenging to compute than

the EVPPI.

Recently, significant effort has been invested in developing more efficient methods for com-

puting the EVPPI [12, 46, 77, 86, 104, 110, 111] and the EVSI [1, 10, 11, 68, 70, 120]. Despite

these advances, there are still limitations to all of these methods which continue to hinder the

implementation of VoI measures in practical health economic evaluations. Therefore, this

thesis is concerned with addressing some of these issues and then proposes new methodo-

logy to calculate both the EVPPI and the EVSI.

In the remainder of this chapter, a formal introduction to the health economic modelling

framework and VoI measures is presented. This will include a discussion of the key concepts

and notation that will be used throughout to present the VoI methods and their calculation

methods. It will also discuss some key properties of these measures.

Chapter 2 follows this introduction by discussing calculation methods for the EVPPI. Firstly,

a full literature review is undertaken to determine the current methods available to calculate

the EVPPI. Two case studies are introduced to compare these methods and highlight the re-

maining difficulties associated with calculating the EVPPI. Following from this, §2.6 presents

the methodology that we have developed to calculate the EVPPI efficiently. This methodology

is based on a fast approximation to Gaussian Process regression and thus we begin this dis-

cussion by introducing Gaussian Process regression. We then present several different results

that will allow us to build up a fast Gaussian Process approximation method. The methodology

is then tested using two case studies to determine the accuracy and computational speed up.

Chapter 3 then presents calculation methods for the EVSI. We begin with a short discus-

sion of the most recent calculation methods for the EVSI to motivate the development of our

calculation method. Our method is then presented in simple terms before being extended to

calculate the EVSI across different sample sizes for the proposed trial using Bayesian non-

linear regression. Several technicalities relating to the method are also discussed and the

method is tested using several different examples ranging in complexity before being applied

to a real-life health economic model developed for assessing painkillers to treat chronic pain

[113].
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Chapter 4 then discusses the technical considerations required to integrate both these meth-

ods into general purpose software. We also discuss the graphics that have been developed

to present both the EVPPI and EVSI. These graphics aid understanding and presentation of

these VoI measures to ensure that they can be used in practical health economic evaluations.

The software also allows practitioners to determine when they have issues with the estimation

procedures. Therefore, the work presented in this thesis has addressed not only the major

computational concerns regarding the use of VoI measures but has also addressed some of

the theoretical concerns surrounding VoI measures by aiding practitioners to understand VoI

measures more clearly through the use of standardised graphics.

1.1 N OTAT I O N A N D B A S I C C O N C E P T S

Health economic decision making is concerned with determining the optimal intervention in

terms of costs and health effects among a number alternative options. In general, we compare

T + 1 alternative treatments, where the treatment with the index t = 0 is the current standard

of care that is being compared with T alternative, “innovative” treatments. Theoretically, it is

possible to consider the case where a large number of alternative interventions is available,

although in practice it is uncommon that T > 5.

As previously stated, health economic modelling involves estimating the effectiveness and

costs for each treatment under consideration, denoted by the pair (et, ct). To determine the

optimal treatment, these two health economic outcomes must be combined into a utility func-

tion to give a value for each of the treatments. In health economic evaluations, the treatments

are typically defined in terms of the monetary net benefit [107]

nbt = ket − ct.

Here, (et, ct) are typically subject to individual variability expressed by a joint probability dis-

tribution p(et, ct | θ) conditional on the model parameters θ. The parameter k is known as

the willingness-to-pay parameter. This value is typically set externally by the HTA body and

represents the amount of money the body is willing to spend to extend someone’s life by 1

year in perfect health. In England and Wales, NICE states that this threshold is between

£20 000− £30 000 [81] although recent analysis has estimated it closer to 13 000 [26].

In a full Bayesian setting, a complete ranking of the possible treatment options is obtained

by computing the overall expectation of this utility function over both individual variability and

parameter uncertainty

NBt = kE[et]− E[ct],

i.e. the expectation here is taken with respect to the joint distribution p(e, c, θ) = p(e, c | θ)

p(θ). The option t associated with the maximum overall expected utility NB∗ = maxtNBt

is deemed to be the most “cost-effective”, given current evidence. At this point, it is important

to note that the ranking of the treatments is based on the willingness-to-pay values which is

typically defined as an interval and not as a fixed number. Therefore, measures based on the
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utility function should be calculated for different values of k. However, as the utility function is

linear in k it is easy to calculate the expected monetary net benefit for many different values

and therefore perform some level of sensitivity analysis to this willingness-to-pay threshold.

1.2 P R O B A B I L I S T I C S E N S I T I V I T Y A N A LY S I S

In general, health economic evaluations are not simply concerned with the optimal treatment

under current information but also with the impact of uncertainty on the decision making pro-

cedure. In this setting, the uncertainty in the model parameters is defined using the joint

distribution p(θ), either using a fully Bayesian model or frequentist bootstrapping. This pro-

cess is known as Probabilistic Sensitivity Analysis (PSA) and is concerned with understanding

the impact of parametric uncertainty on the decision. Therefore, we are not interested in un-

derstanding the impact of individual level variation on the decision and so we consider the

monetary net benefit as a function of θ only by averaging out individual level uncertainty:

NBt(θ) = kE[et | θ]− E[ct | θ]. (1)

In line with [4], we term this the “known-distribution” net benefit. In the above expression, there-

fore, we are taking expectation with respect to the conditional distribution p(et, ct | θ). Thus,

while decision making is concerned withNBt, a deterministic quantity, PSA is concerned with

the random variable NBt(θ) where E [NBt(θ)] = NBt.

Typically PSA is carried out using a simulation based approach [2, 4, 7]. In a Bayesian set-

ting, models are normally estimated using a simulation approach, e.g. MCMC and therefore

the known-distribution net benefit values are created as a by-product of the health-economic

analysis. Thus, in a Bayesian setting, the simulated values for θ come from posterior draws

and the known-distribution net benefits are posterior draws from the distributions of the net be-

nefits which are either calculated deterministically or stochastically from the underlying para-

meters. In a frequentist setting, PSA is performed in addition to the main base case analysis

by using bootstrapping to obtain parameter samples, with the known-distribution net benefit

values then calculated as a function of these parameter draws.

Irrespective of the setting in which these parameter samples are taken, we denote θs, s =

1 . . . S, as a draw from the “distribution” of θ. We then denote the known-distribution net benefit

for this parameter vector as NBt(θs). Note, therefore, that throughout this thesis a “dataset”

and “data” with the s subscript do not typically represent data in the traditional sense. They

are simply simulated values from distributions representing the uncertainty in the parameter

estimates. For further clarity, Table 1 demonstrates this for the simple example, where the

underlying model is characterised by three parameters, θ = (π1, π2, ρ).

From this “dataset”, it is straightforward to calculate the probability of cost-effectiveness for

each of the treatments under consideration; simply calculate the proportion of simulations

for which the treatment is considered optimal. Therefore, it is trivial to use the probability of

cost-effectiveness as a summary measure for PSA [28, 49].
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Simulation π1 π2 ρ NB1 NB2 maxt
1 2875 55001 8.7 3249597 4313158 NB2
2 3617 76051 5.7 6269563 5594843 NB1
3 4312 32016 9.1 4706446 6895321 NB2
...

...
...

...
...

...
...

S 2161 45791 7.6 2797630 3253655 NB2

Table 1: A PSA “dataset” containing the simulated parameter values for all three parameters
in this model, along with the Net Benefit values for two treatments

1.3 VA L U E O F I N F O R M AT I O N M E A S U R E S

To define the VoI measures, recall that the optimal decision under current information is the

treatment that maximises the expected known-distribution net benefit,

max
t

Eθ [NBt(θ)] = max
t
NBt = NB∗.

Broadly speaking, VoI measures assume that it would be possible to gain extra information

that changes the known-distribution net benefit. In turn, this information could change the

optimal decision and the newly optimal treatment would give an alternative value for the op-

timal decision. The value of the information is then the difference between the value of the

current optimal decision and the value of the decision made with this additional information.

Alternative VoI measures then arise by considering different potential methods for collecting

the additional information.

1.3.1 Expected Value of Perfect Information

First of all, consider that it is possible to learn the exact value of every model parameter. This

is known as learning “perfect information” about θ and to find its value, consider the value of

learning that θ is exactly equal to θ′. In this case, the value of the optimal decision would be

max
t

NBt(θ
′),

where it is not necessary to take expectations as there is no remaining uncertainty in the

model (individual level variability is already marginalised out).

The above quantity is the value of learning that θ = θ′; however, as the value of the un-

derlying model parameters is not known, we need to summarise the value of the information

across all possible values of θ′. This is achieved by taking the expectation over all values of

θ′ to calculate the Expected Value of Perfect Information (EVPI);

EVPI = Eθ

[
max

t
NBt(θ)

]
−max

t
Eθ [NBt(θ)] . (2)
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To comprehend the EVPI more clearly, consider the visualisation in Figure 1. Two treatments

are under consideration and the known-distribution net benefit for each treatment is defined

as a deterministic function of a single model parameter θ. If the true value of θ is less than 0.4

then treatment 1 is optimal whereas if θ is greater than 0.4 then treatment 2 is optimal. The

expected values of each treatment under current information are represented by the purple

and blue dots on the graph for treatments 1 and 2 respectively. Therefore, the current optimal

treatment is treatment 2 and its value is represented by the blue dot and gives the second

term in equation (2).
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Figure 1: A visualisation of an EVPI calculation.

However, the EVPI is calculated by finding the value of the optimal treatment at each value

of θ, represented by the green line, and then taking the average, represented by the green

dot. This quantity is the first term in equation (2). Therefore, in this example, the EVPI is

then defined as the difference between the green and blue dots. In general, this quantity is

non-negative as the current optimal decision only changes when the net benefit of another

treatment dominates the globally optimal treatment, as for θ < 0.4 in Figure 1.

The EVPI gives an upper bound for any study aimed at reducing uncertainty in any of the

model parameters. If this value is very small, then it is possible to conclude that there is little

value in investigating any of the model parameters and therefore the decision on the optimal

treatment can be taken using the current information without considering collecting additional

data. If, however, the EVPI shows that there is value in a future study, it is useful to determine

which parameters are driving decision uncertainty and therefore where future research should

be targeted.
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1.3.2 Expected Value of Perfect Partial Information

We begin by assessing the value of obtaining perfect information about a specific subset of

parameters. Consider that the parameter vector can be split into two components θ = (φ, ψ),

where φ is the sub-vector of parameters of interest (i.e. those that could be investigated fur-

ther) and ψ are the remaining “nuisance” parameters, sometimes known as focal and non-

focal parameters respectively. The VoI measure that gives the value of obtaining perfect

information about φ is known as the Expected Value of Perfect Partial Information (EVPPI)

and is computed in a similar manner to the EVPI. Firstly, assume that we have perfect inform-

ation about the parameters of interest φ = φ′. Under this condition, the value of the optimal

treatment is then equal to

max
t

Eψ|φ′
[
NBt(φ

′, ψ)
]

, (3)

where the expectation is taken over the remaining uncertainty in the nuisance parameters.

The EVPPI is then calculated by taking the expectation of equation (3) across the support

of φ and subtracting the value of the current optimal decision:

EVPPI = Eφ

[
max

t
Eψ|φ [NBt(φ, ψ)]

]
−max

t
Eφ,ψ [NBt(φ, ψ)] . (4)

As with the EVPI, the EVPPI is bounded below by 0. It is also bounded above by the EVPI

and more generally, if there are two parameter subsets φ and ξ such that ξ ⊂ φ, the EVPPI

of φ is greater than or equal to the EVPPI of ξ.

To demonstrate this, assume that φ = (ξ, ξc), meaning that ξc is the set of “additional”

nuisance parameters arising within φ:

EVPPI(φ) = Eφ

[
max

t
Eψ|φ [NBt(θ)]

]
−max

t
Eθ [NBt(θ)]

= Eξ

[
Eξc|ξ

[
max

t
Eψ|φ [NBt(θ)]

]]
−max

t
Eθ [NBt(θ)]

≥ Eξ

[
max

t
Eξc|ξ

[
Eψ|φ [NBt(θ)]

]]
−max

t
Eθ [NBt(θ)]

= Eξ

[
max

t
Eξc|ξ

[
Eψ|(ξ,ξc) [NBt(θ)]

]]
−max

t
Eθ [NBt(θ)]

= Eξ

[
max

t
E(ψ,ξc)|ξ [NBt(θ)]

]
−max

t
Eθ [NBt(θ)] = EVPPI(ξ)

by Jensen’s inequality as the function max(·) is convex. While this property is logical, it is

always more valuable to learn about a larger number of parameters, it is also an important

tool for assessing EVPPI estimation methods and so must be demonstrated formally.

In a similar manner to the EVPI, the EVPPI is most useful when it demonstrates that there

is little value in learning about a subset of parameters. This is because it is rarely possible

to obtain perfect information about a model parameter. Therefore, if the EVPPI for a set of
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parameters is high, then it is of interest to determine how the uncertainty in these parameters

should be reduced.

1.3.3 Expected Value of Sample Information

The value of a specific study, aimed at reducing uncertainty in a subset of the model paramet-

ers, is known as the Expected Value of Sample Information (EVSI). It is defined in a similar

way to both the EVPI and the EVPPI, but rather than learning the exact value of the paramet-

ers we consider that the study would give rise to data X. These data update the information

about the model parameters in a Bayesian manner and the value of the optimal decision under

this additional information is

max
t

Eθ|X [NBt(θ)] , (5)

where Eθ|X [NBt(θ)] is the posterior mean of the known-distribution net benefit.

Again, as it is not known what data will arise from the future study, we calculate the EVSI

as the expectation of (5) over all the possible data sets from the future trial;

EVSI = EX

[
max

t
E(θ|X) [NBt(θ)]

]
−max

t
E [NBt(θ)] , (6)

where the distribution of the future data X ∼ p(X) is the prior predictive distribution of the

data. In general, the distribution for the data is defined conditional on the model parameters

through p(X | θ) and then the parameter uncertainty is integrated out;

p(X) =
∫

Θ
p(X | θ)p(θ)dθ,

where p(θ) is the prior/PSA distribution for the model parameters θ.
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Figure 2: A Pictorial Description of the EVSI

To aid comprehension, Figure 2 gives a pictorial representation of the EVSI. The top half

of the picture represents the standard health economic decision making process, where the



30 I N T R O D U C T I O N TO VA L U E O F I N F O R M AT I O N

distribution of the model parameters θ are dependent on synthesizing different information

sources. The model parameters are then fed through the economic model to determine the

known-distribution net benefit and the optimal treatment is found by taking the expectation

of the known-distribution net benefit. To calculate the EVSI, a potential study is designed

by determining a relationship between the model parameters and the future data. The data

from this study is used to update the model parameters and then a new distribution for the

known-distribution net benefit is found using the economic model. Finally, the optimal treat-

ment conditional on this new dataset is found and the value of the sample information is the

difference between these two values. The EVSI is then calculated as the average over all the

potential datasets.

Finally, the EVSI can be compared directly with the cost of the study to determine whether

there is net value in undertaking the study. If the EVSI is greater than the cost of the study,

then it should go ahead. If, on the other hand, the study cost exceeds the EVSI, then the

current information is sufficient to make a decision. Therefore, we define the Expected Net

Benefit of Sampling (ENBS) as the EVSI minus the study costs. The ENBS can then be used

to make decisions about whether the study should be undertaken or not. The ENBS can also

be used to design trials as we can search for the trial with the largest ENBS, further discussion

of the ENBS is given in §4.5.2.

1.4 M O N T E C A R L O C A L C U L AT I O N F O R VA L U E O F I N F O R M AT I O N M E A S U R E S

As the three key VoI measures have been defined, we consider methods for estimating these

quantities. Theoretically, these quantities are based on computing expectation and so it could

be possible to calculate them using integration. However, the integral of a maximum is very

challenging to compute even in simple settings implying that VoI measures are rarely available

analytically. However, it is possible to calculate all the measures using Monte Carlo (MC)

simulation, although, as will be demonstrated, this is very computationally intensive for the

EVPPI and the EVSI.

1.4.1 Calculating the EVPI by simulation

Once the PSA dataset is available, it is trivial to calculate the EVPI as the estimate relies

directly on the known-distribution net benefit values. Consider the definition of the EVPI in (2),

we can see that the MC estimator of the EVPI is,

ÊVPI =
1
S

S

∑
s=1

max
t

NBt(θs)−max
t

1
S

S

∑
s=1

NBt(θs).

Revisiting the PSA dataset in Table 2, we can see that the EVPI is calculated by taking the

row-wise maximum for each simulation and then averaging over all the rows, giving a value of

4 551 204. The EVPI is then calculated as the difference between this value and the value of

the optimal treatment (3 253 655).
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Simulation π1 π2 ρ NB1 NB2 maxt [NBt] maxt
1 2875 55001 8.7 3249597 4313158 4313158 NB2
2 3617 76051 5.7 6269563 5594843 6269563 NB1
3 4312 32016 9.1 4706446 6895321 6895321 NB2
...

...
...

...
...

...
...

...
S 3616 4762 6.7 5629348 2301928 5629348 NB1

Mean 2161 45791 7.6 2797630 3253655 4551204 NB2

Table 2: A PSA “dataset” containing the simulated parameter values for all three parameters in
this model, along with the Net Benefit values for two treatments, extended to demon-
strate how to estimate the EVPI by MC simulation.

1.4.2 Calculating the EVPPI by MC simulation

Calculating the EVPPI by MC simulation is more challenging and cannot be based directly

on the PSA samples. This is due to the inner expectation in the first term in equation (4).

Strictly, the MC estimation method for the EVPPI was first formalised in [12] and it uses nested

simulation to estimate the conditional expectation Eψ|φ[NBt(θ)]. To estimate the EVPPI, R
values must be sampled from the conditional distribution of ψ | φs for every PSA sample φs,

s = 1 . . . S. These R values are then used to calculate the known-distribution net benefit with

φ = φs and then to find the treatment with the maximum expected net benefit:

̂EVPPI =
1
S

S

∑
s=1

[
max

t

1
R

R

∑
r=1

[NBt(φs, ψr)]

]
−max

t

1
S

S

∑
s=1

NBt(θs). (7)

The main difficulty of using this estimator is the computational time required for this nested

simulation strategy. This method requires S× R computations, where S and R can typically be

in the order of 10 000 [12]. In addition to the sheer volume of simulations, some economic mod-

els can be expensive to run making this MC estimator impractical and occasionally impossible

to implement within realistic time frames. Nonetheless, as this estimator derives directly from

the definition of the EVPPI, we consider that this MC estimator with a long simulation run is

the “gold-standard” estimator for the EVPPI.

Note that, for low dimensional φ, it is possible to reduce the computation time for this es-

timator slightly by using quadrature to estimate the outer expectation [35]. This allows us to

cover the parameter space intelligently and therefore significantly reduce the number of “in-

ner” simulations, i.e. simulations from ψ | φs, requiring around 30-50 rather than S simulations

from the conditional distribution. However, for higher dimensional vectors φ this quadrature

method becomes more expensive than MC sampling.

1.4.3 Calculating the EVSI by MC simulation

Finally, calculating the EVSI by MC simulation follows a similar strategy to the EVPPI, although

an extra simulation step is needed to simulate the potential data sets. As the distribution for
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the potential data is defined using p(X | θ), the PSA values for the model parameters should

be used to estimate a potential data set for each PSA simulation, i.e. a sample Xs must be

simulated from p(X | θs) for s = 1, . . . , S. Conditional on each sample, R simulated parameter

values are then sampled from the posterior distribution p(θ | Xs). These R parameter values

are used to calculate the known-distribution net benefit and therefore the value of the optimal

treatment under sample information:

ÊVSI =
1
S

S

∑
s=1

[
max

t

1
R

R

∑
r=1

[NBt (θr | Xs)]

]
−max

t

1
S

NBt (θs) . (8)

Clearly this estimator has a similar computational cost to the EVPPI estimator as R × S
model runs are required. However, as the posterior distribution for the model parameters will

normally need to be estimated using MCMC methods rather than MC simulations, the inner

simulations normally have a higher computational cost than those for the EVPPI. This is be-

cause MCMC methods require burn-in and potentially thinning for all but the simplest models.

In addition to this, as the EVSI is concerned with the value of a specific study, the EVSI may

need to be calculated for multiple alternative study designs. This introduces additional com-

plexity to an already very computationally intensive procedure. Therefore, there is a need for

computationally efficient estimators for both the EVPPI and the EVSI before VoI measures

can be used in health economic evaluations.

The following two chapters present the computationally efficient estimation methods for both

the EVPPI and EVSI. Both chapters begin with a presentation of the current available calcula-

tion methods before moving on to our two novel calculation methods that have been developed.

These new methods are tested in a variety of health economic models and compared in terms

of accuracy and computational time with the most recent innovations in this field.
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C A L C U L AT I O N M E T H O D S F O R T H E E X P E C T E D VA L U E O F PA RT I A L

P E R F E C T I N F O R M AT I O N

This chapter begins with an extensive literature review detailing all the current methods avail-

able for calculating the EVPPI. All the methods are simulation based to some extent due to the

difficulty of finding analytically tractable solutions for the expectation of a maximum. This lit-

erature review highlights the remaining issues with these EVPPI calculation methods and mo-

tivates the latter half of the chapter which presents a novel calculation method for the EVPPI.

This new calculation method is based on non-parametric regression, specifically Gaussian

Process regression [88, 98] and uses Integrated Nested Laplace Approximations [102].

The majority of the first half of this chapter has been published in Medical Decision Making

as a paper entitled A Review of Methods for the Analysis of the Expected Value of Information

[60]. The majority of the second half of this chapter has been published in Statistics in Medi-

cine as a paper entitled Estimating the Expected Value of Partial Perfect Information in Health

Economic Evaluations using Integrated Nested Laplace Approximation [59]. Additional ele-

ments have also been published in Bayesian Cost Effectiveness Analysis with the R package

BCEA by Springer [5].

2.1 F I N D I N G A N A LY T I C A L E X P R E S S I O N S F O R T H E I N N E R I N T E G R A L

The computational complexity in calculating the EVPPI by MC simulation is directly related

to the inner conditional expectation in the first term of equation (4). Therefore, the compu-

tational effort required to calculate the EVPPI can be significantly reduced if the conditional

expectation

Eψ|φ [NBt(φ, ψ)]

can be expressed analytically as a function of φ. The PSA samples φs for s = 1, . . . , S can

then be inputted into this function to estimate this expectation without resorting to additional

sampling.

One possible method for finding the analytical expression of this function, first introduced in

[34], requires an approximately linear relationship between the incremental net benefit (INB)

(the difference between the net benefit of two treatments, e.g. INB = NB1 − NB0) and the

parameters of interest φ. It also requires that φ can be modelled (at least approximately) with

a Normal distribution. If both these assumptions hold then it is possible to derive analytical
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results based on the unit loss integral which then calculates the EVPPI in terms of the mean

and variance of the conditional INB.

In this case, some additional sampling is required to determine the mean and variance of

Eψ|φ [INB(θ)]. However, it is possible to estimate these values based on only two simulations

from the conditional distribution, rather than S >> 2. This greatly reduces the computational

time compared to the MC estimator but, as more recent methods rely solely on the PSA

samples and have much looser assumptions, this method has rarely been used in practice.

A second analytic method was first developed in [46] and derives the analytic expectation

under the assumptions that the net benefit is a linear function in the “nuisance” parameters ψ

and that these are independent of the parameters of interest φ. In this case, the conditional

distribution of ψ | φ is simply equal to the unconditional distribution. In addition to this, the

net benefit can be written as follows:

NBt(θ) =
nψ

∑
i=1

ψi f i(φ),

where the superscript i indicates that ψi is the i-th element in the ψ vector and f i(φ) is any

known function of the parameters of interest. This means that the expectation can be written

as

Eψ|φ

[
nψ

∑
i=1

ψi f i(φ)

]
= f i(φ)

nψ

∑
i=1

Eψ

[
ψi
]

,

so only the mean values for ψ, from the initial PSA samples, are required to calculate the

conditional expectation for each value of φ.

Therefore, provided the linearity assumption holds, or other expressions that would allow

for the calculation of each expectation separately, such as a multiplicative term between two

independent elements of ψ [12], it is possible to calculate the EVPPI using the PSA samples.

However, this approximation deteriorates if the independence assumption is not valid [34].

More recently, Madan et al. [77] explored some re-parametrisations and approximations of

the net benefit such that this method can be used when its original formulation does not

conform to these conditions. For example, if the net benefit is non-linear in ψ but ψ and φ

are independent, it would then simply be possible to re-parametrise the problem so that NBt

is linear in a new parameter set ψ′ = f (ψ).

They also explore the use of Taylor series to expand expressions that are non-linear in the

parameters of interest. This is gives an approximation to the true EVPPI, albeit a sufficiently

accurate one in many settings. Clearly, however, this method requires additional information

about the model along with the computation of (possibly complex) Taylor series expansions

making EVPPI calculation more challenging mathematically than computationally.

Finally, Oakley [86] developed a method where the incremental net benefit, as a function

of φ, is emulated using a Gaussian Process (GP), see §2.6. Based on this GP, additional

computations relying on quadrature methods are used to calculate the EVPPI. Due to the

relative complexity of this method, it has never been applied in practice and has been entirely

superseded by the method presented in §2.3 which also uses GPs.
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A review paper [34] considered the performance of all these estimators (except the Gaus-

sian Process method) and concluded that, provided the assumptions hold, all the methods

discussed so far are suitable for calculating the EVPPI. After the publication of this paper,

developments have been made so it is possible to calculate the EVPPI based solely on the

PSA samples irrespective of model structure. As the PSA samples are already available in

most health economic evaluations, these methods can be implemented with access to the

underlying model or model assumptions.

2.2 A P P R OX I M AT I O N S F O R S I N G L E PA R A M E T E R E V P P I

The first developments calculated the EVPPI for a single parameter φ. In this setting, two

methods were developed concurrently relying on the same underlying ideas: i) the first term for

the EVPPI can be approximated by the average known-distribution net benefit value, provided

the optimal decision remains constant; and ii) if a treatment option is optimal for one value of

the parameter φ′, it is still optimal for parameter values “close to” the point φ′. It is possible,

therefore, to approximate the first term in (4) provided the net benefits can be partitioned such

that there is an assurance that the optimal decision remains constant within each partition.

2.2.1 The Strong and Oakley Method

The first method [110] is based on the idea that if the parameter space is split into “small”

subsets, the optimal decision is unlikely to change within each of these subsets, as the optimal

decision is locally constant. Thus, to calculate the EVPPI, it is necessary to determine subsets

of the simulated values of NBt(θ) for which the simulated values of φ are similar. Practically,

this is achieved by reordering the known-distribution net benefit values so that they have to

same order as the simulated values for φ — note that since it is assumed that φ is a scalar,

ordering is trivial. This list of ordered values is then split into M small sub-lists of length

L = S
M . Within each sub-list the average known-distribution net benefit is calculated for each

treatment option and the maximum within each subset is used as an estimate for the first term

in equation (4), for each simulated value for φ.

Therefore, the following strategy can be used:

1. Obtain S PSA samples for θ and NBt(θ) for each treatment.

2. Sort the simulated values of the parameter of interest in ascending order — for simplicity,

we write the sorted vector as ϕ1, . . . , ϕS, where min φ = ϕ1 < . . . < ϕS = max φ.

3. Re-order the estimated known-distribution net benefits as NBt(ϕ1), . . . , NBt(ϕS), where

NBt(ϕs) is the net benefit corresponding to the s−th ordered simulated value of φ.
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4. Split the ordered list of known-distribution net benefits into m = 1, . . . , M sub-lists Lm

of length L and compute the average in each of the sub-lists and for each treatment t to

obtain

N̂Bm
t (θ) =

1
L ∑

j∈Lm

NBt(ϕj).

5. Compute ̂EVPPI =
1
M

M

∑
m=1

max
t

N̂Bm
t (θ)−max

t

1
S

S

∑
s=1

NBt(θ).

The approximation given by this method is highly sensitive to the value of M. If M is

large, the formula for the EVPPI is similar to MC estimator the overall EVPI estimate, giving

an upwardly biased estimate for the EVPPI. At the other end of the scale, if M is small, the

EVPPI is approximately 0 giving a downwardly biased estimate. Strong and Oakley [110]

use a normal approximation to estimate the upward bias of the EVPPI calculated using this

method. They suggest choosing M to be the largest number of subsets such that the upward

bias falls below a pre-specified threshold value. In this manner, the upward bias of the EVPPI

estimate, present when the chosen value of M is too large, is controlled while the downward

bias, present for small values of M, is likely to be avoided.

Practically, this bias calculation drives the estimate of the EVPPI. Specifically, if a parameter

has a high EVPPI then the bias is minimised with a higher value of M than with smaller values

for the EVPPI. This means that the bias must be estimated separately for each EVPPI cal-

culation to ensure consistency. This bias estimation method assumes a multivariate normal

distribution of the conditional expectation value within each sub-list Lm. Therefore, there is an

implicit assumption in the calculation the EVPPI using this method that the normal approxim-

ation is “good enough” to approximate the true bias.

2.2.2 The Sadatsafavi et al. Method

This second method for single parameter EVPPI [104] can be thought of as an extension to

the previous one, although both were developed concurrently. In this case, the ordered list

NB(θ) =


NB0(ϕ1) · · · NB0(ϕS)

NB1(ϕ1) · · · NB1(ϕS)

· · ·
NBT(ϕ1) · · · NBT(ϕS)


is split in an informed manner. The algorithm searches for the point(s) at which the parameter

of interest is directly responsible for a change in the optimal decision. Although, in general,

variations in a parameter may induce a change in the optimal decision a large number M
of times, in practice a single parameter is unlikely to modify it more than once or twice over

the range of values selected for the willingness-to-pay. Provided we search for the correct

number of decision changes for the parameter in question, the EVPPI estimator found using

this method tends to the true EVPPI value as the number of PSA samples goes to infinity.
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The algorithm developed by Sadatsafavi et al. is identical, in steps 1-3, to that of Strong and

Oakley described in the previous section, but then proceeds as follows:

4. Split the ordered list of net benefits into m = 1, . . . , M sub-lists Lm. In this case, the list

of known-distribution net benefit values is split at M points,
(

ϕL1 , . . . , ϕLM
)
, known as

the segmentation vector. This means that the m−th sub-list contains all the net benefit

values calculated with the value ϕ such that ϕLm ≤ ϕ < ϕLm+1 .

5. Calculate and store N̂Bm
t (θ) =

1
L ∑

j∈Lm

NBt(ϕj).

6. Maximise over all possible segmentation vectors to compute

̂EVPPI = max
(ϕL1 ,...,ϕLM )

1
M

M

∑
m=1

max
t

N̂Bm
t (θ)−max

t

1
S

S

∑
s=1

NBt(θ).

As the properties of the EVPPI estimate are dependent on searching for the correct number

of decisions M, Sadatsafavi et al. suggest a systematic method for choosing M, based on a

visual tool for determining the number of decision changes. This tool plots the cumulative sum

of the differences between the known-distribution net benefits for the two treatment options,

ordered in the parameter of interest φ.

As a function of φ we define

Ĉt,t′(ϕ) =
1
S

S

∑
s=1

I(φs < ϕ) [NBt(φs)− NBt′(φs)] . (9)

The extrema in this estimator will correspond to a change in optimal decision. For example, if

t is the optimal decision until φ = 1 then as φ increases from 0 to 1, only positive terms will be

summed, then as the optimal decision changes after 1, negative terms will be summed and

therefore the value of Ĉ will decrease.

We then plot Ĉ against the parameter of interest and visually search for maxima or minima.

In some cases, the visual tool can be used easily (Figure 3 LHS), but in others it can be

challenging to determine whether an extremum exists (Figure 3 RHS). This adds complexity

to the method as correctly identifying the number of decision changes is vital. This is seen

most clearly when the EVPPI is 0, i.e. when the parameter φ does not affect the optimal

decision. In this case M = 0, however, choosing M = 1 will estimate an EVPPI which is

strictly positive and therefore upwardly biased.

The advantages of these methods are that neither rely on additional sampling from the

health-economic model once the PSA samples are available. However, both are very depend-

ent on inputs that can be challenging to determine, or rely on normal approximation. Therefore,

an alternative method has been developed to calculate EVPPI using the PSA samples. This

method can also be used for multi-parameter EVPPI.
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Figure 3: An example of two plots showing the use of the visual tool for the Sadatsafavi et al.
for calculating single parameter EVPPI.

2.3 N O N - PA R A M E T R I C R E G R E S S I O N F O R E V P P I C A L C U L AT I O N S

The unit loss integral method [34] and the GP method [86] are both based on the idea that

the incremental net benefit can be approximated using regression (linear or non-parametric).

These regression formulæ can then simplify the EVPPI calculations. Strong et al. [111]

develop this idea further and demonstrate that the conditional expectation of the known-

distribution net benefit can be approximated using regression methods and based directly

on the PSA samples.

In particular, since the conditional expectation will not have a known functional form, flexible

regression methods should be used. These methods assume that the conditional expectation

of the known-distribution net benefit is a smooth function of the important parameters φ but

make no other assumptions. This leads to a general method for calculating the EVPPI in multi-

parameter settings. For each simulated value of the parameters s, Strong et al. propose to

approximate the inner conditional expectation in (4) as

NBt(θs) = Eψ|φs [NBt(φs, ψ)] + εs,

with εs ∼ Normal(0, σ2
ε ). Furthermore, the conditional expectation can be thought of as a func-

tion of φ only, as the conditional expectation is only dependent on the value of φ. Therefore,

the problem can be formulated as

NBt(θs) = gt(φs) + εs,

where gt(.) is an unknown function of φ that is estimated using non-parametric regression.

Strong et al. [111] suggest two alternative non-parametric regression methods: General-

ised Additive Models (GAMs) [54] and Gaussian Processes (GPs) [98]. GPs are a flexible

regression method based on the multivariate normal distribution. GPs introduce flexibility by

modelling the covariance matrix of the net benefits dependent on the φ values and some
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hyperparameters that are estimated using the net benefits. This hyperparameter estimation,

formally introduced in §2.6.1, can be computationally costly for larger numbers of net benefit

observations c.f. §2.6.

GAMs model the net benefit as a sum of “smooth” functions of the parameters φ. In stand-

ard software, splines [41, 124] are used to estimate these smooth functions. Broadly splines

are a class of flexible functions defined using piecewise parametric functions which are then

continuously joined together at specific points known as knots. The use of splines implies that

a large number of “regression” parameters [125] must be estimated to fit a GAM. This implies

that GAMs cannot be fitted for “large” φ as the number of required regression parameters

exceeds the number of data points. Both these non-parametric regression methods offer a

large amount of flexibility but other model specifications could be used.

In a general sense, the EVPPI estimate is calculated by means of the following algorithm:

1. Obtain S PSA samples for θ and NBt(θ) for each treatment.

2. For each treatment option t, fit a regression curve with φs as the observed “covariates”

and NBt(θs) as the observed “response”.

3. For each treatment t, find the s−th fitted values gt(φs) by inputting the observed values

φs into the regression curves.

4. Calculate ̂EVPPI =
1
S

S

∑
s=1

max
t

gt(φs)−max
t

1
S

S

∑
s=1

gt(φs).

Theoretically, these methods are amongst the most complex for calculating the EVPPI. How-

ever, due to the flexibility of non-parametric regression, “black-box” calculations that require

little input from the user are possible. Specifically, the R package mgcv [126] for GAM re-

gression and specific priors for the hyperparameters of the GP cf. §2.6 allows function to be

created to automate this process [108]. This has also led to the creation of web applications

such as Sheffield Accelerated Value of Information (SAVI [109]) and BCEAWeb [5] which allows

users to calculate EVPPI with using R.

2.3.1 GAM regression within mgcv

To understand the assumptions made by these “black-box” functions, we briefly present how

GAMs are fitted within the mgcv package. For this analysis, EVPPI calculations were under-

taken using the default settings within mgcv package. Therefore, we now briefly explore the

assumptions made for these defaults. Firstly, for a uni-variate φ, fitting a GAM implies that

gt(φ) is estimated as a weighted sum of basis functions

gt(φs) =
K

∑
k=1

αkBk(φs).

To fit the model, it is necessary to determine or estimate K, αk and Bk(φs). Within mgcv,

models for uni-variate predictors are specified using the s() function which uses thin plate
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regression splines as a basis function [124]. The number of knots for this class of splines is

given deterministically from the dimension of the spline basis, K.

K can be chosen, conditional on the data, within mcgv to ensure optimal properties. Spe-

cifically, K is chosen to overfit to the data being modelled. This ensures that the GAM is

sufficiently flexible to capture the true relationship between φ and gt(φ). Then, to prevent this

overfitting, the regression coefficients αk and the coefficients of the basis splines are penalised

using a quadratic penalty. This ensures that deviations from smoothness are supported by the

data rather than encouraged by the model specification. As with all penalisation methods, the

strength of the penalty must be chosen before estimating the model parameters. Within mgcv,

however, this penalisation strength is chosen automatically using a method presented in [125].

For multivariate φ, Strong et al. [111] suggest using a tensor product form of GAM regres-

sion to model potential interactions between the parameters in φ. Within mgcv, this is specified

using the te() function. By default, this model specification uses cubic regression splines as

its basis [41], where K and the penalty for the penalised regression are, by default, selected

to ensure accurate model fit.

2.4 C O M PA R I S O N O F M E T H O D S

As the performance of the EVPPI estimation methods has not been compared since the Coyle

and Oakley review [34], we assess the performance of these more recent methods by compar-

ing them with EVPPI estimates obtained using MC simulations. We begin by presenting the

two case studies used to compare the methodologies. We then discuss how the analysis was

performed before presenting the results of our analysis. We also compare the standard error,

computation time and ease of application before concluding that the Sadatsafavi et al. method

is only suitable for 2 decision settings and that the non-parametric regression methods offer

the best option for calculating the EVPPI.

2.4.1 Case Studies

2.4.1.1 Influenza Vaccine

Baio and Dawid [7] consider a Bayesian health-economic model synthesising information from

several sources is proposed to analyse the effect of the influenza vaccine on health-outcomes

and costs. This example is relatively simple but complex enough for the posterior distribution

to be intractable analytically. Therefore, the parameters values must be sampled from their

joint posterior distribution using MCMC methods. Updating the joint posterior may induce

correlations for parameters that are independent a priori, meaning that the independence

structure of the parameters is not known.

Two treatment options are considered, either the vaccine is available to the population (t =
1), or not (t = 0). If a patient gets influenza, they are treated with anti-viral drugs and will often

visit the GP. Complications may occur, including pneumonia and hospitalisation – in which
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case there will be some indirect costs such as time off work. The cost of the treatment is the

acquisition cost of the drugs, the time in hospital, the GP visits and the cost of the vaccine.

The benefit of the treatment is measured in QALYs (Quality Adjusted Life Years), where each

adverse effect contributes negatively to the benefit.

There are 28 key parameters in the model representing the probability of infection, the

reduction in risk due to the vaccine, the occurrence of complications, the monetary costs of

the interventions and the QALY loss due to different health states. A detailed discussion of

the full model parametrisation is presented in [7], based on [33]. The single parameter EVPPI

was calculated for all of these 28 parameters using all the methods outlined.

2.4.1.2 FEAST Trial

This example pertains to the FEAST trial for fluid resuscitation in the treatment of malaria

[77]. This is a decision tree model where both the probabilities of progression as well as the

QALYs and costs are estimated from various sources. The parameters in this setting are either

estimated using Bayesian updating based on a set of randomised controlled trials or sampled

directly from an informed prior distribution. Therefore, in this example, the independence

structure of some of the parameters is known. The example has four potential treatment

options, 3 different fluids and a standard of care arm.

The use of fluids is aimed at reducing the number of patients living with long term neurolo-

gical sequelae (NS) along with the risk of death. Living with long term health complications

has an added monetary and QALY cost. This model has 9 parameters and is used to test the

method proposed by Madan et al. [77]. Therefore, the Monte Carlo EVPPI values used in this

analysis as the “truth” are taken directly from that paper.

For each active interventions i = 1, 2, 3, the parameters in this case study represent the

effect of the different fluids on mortality: dM
i ; and on the NS risk: dS (which is assumed

constant across the fluids); the log-odds of death without fluids: α; the probability of NS at 28

days: pB and 6 months: pL; and the QALY loss per fatality: qM and per case of NS: qS.

2.4.2 Analysis

2.4.2.1 Influenza Vaccine

For this case study, only the single parameter EVPPI is calculated. As previously discussed,

both estimation methods only suitable for single parameter estimation have input values that

greatly affect the estimate. Therefore, to determine these values for the Sadatsafavi et al.

method, the suggested visual tool was used for each of the 28 parameters. It was decided

that 23 out of the 28 parameters change the optimal decision once as one extremum was

identified, the other parameters have no effect – these correspond to an EVPPI equal to 0 in

Table 4.

For the Strong and Oakley [110] method, the upward bias of the EVPPI estimate was as-

sessed for all the parameters in the data set. The number of subsets was taken as the largest
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number of subsets such that the upward bias remains below 0.1. The magnitude of the bias

differed for each parameter, and therefore the number of subsets needed to reduce the up-

ward bias below 0.1 was between 20 and 2. A larger number of subsets is associated with a

larger estimate for the EVPPI and so clearly this procedure impacts on the EVPPI estimate.

For the two-step MC procedure the outer loop had 1000 observed posterior samples for all

the parameters. As the case study is a Bayesian model with analytically an intractable pos-

terior distribution, the inner loop of the two-step MC procedure used MCMC methods to draw a

sample from this joint posterior distribution for all the parameters. To ensure convergence and

reduce autocorrelation, we took 2 chains of 100, 000 samples each for the inner loop, with a

burn-in of 9, 500 and thinning of 500. Therefore, the eventual sample of the known-distribution

net benefits had 1000 observations. A crude estimate of the MC error for these estimates

gives the error as around 10-30% of the underlying EVPPI value. This standard error is es-

timated by taking the variance of the maximum between 0 and the conditional expectation

conditional on each parameter, before dividing by 1000, the size of the outer loop, and adding

Monte Carlo error related to estimating the expected known-distribution net benefit under cur-

rent information. This gives the standard error that arises from the outer loop expectation but

entirely disregards any error coming from the inner loop. Ideally, the standard error would be

estimated following the procedure set out in [12] but simulations were not available for this

analysis.

Note, therefore, that the point estimates given in Figure 4 are subject to substantial MC

error. Ideally we would have reduced this error by using a greater number of simulations in

both the inner and outer loop. This was, however, computationally infeasible. Additionally, the

nested MC simulation for the EVPPI is subject to an upward bias [12] which will impact the

comparison with the alternative methods.

For the nested MC estimator, we require an estimate of the value of the optimal treatment un-

der current information. To calculate this, we sampled from our MCMC procedure 50, 000, 000

times, with a burn-in of 9, 500 and then thinned to 500, 000. This gives a PSA sample for the

known-distribution incremental net benefit with a mean of 0.041. This means that the value

of the optimal treatment under current information is 0.041. The MC error on this mean of

the known-distribution incremental net benefit is estimated as 0.017 by taking the variance

of the sample and dividing by the sample size. This assumes that the MCMC samples are

independent but this is a reasonable assumption given that the sample has been thinned.

Finally, the two different non-parametric regression methods suggested by Strong et al.

[111] were used to calculate the EVPPI by approximating the inner expectation in (4). This

analysis was carried out using the functions in [108]. Within this code, the default single

parameter GAM regression c.f. §2.3.1 is used and for GPs, Strong et al. use a specific model

structure to allow for the use of analytical results, therefore, no model structure needs to be

specified by the user and functions are provided to calculate the EVPPI with no additional

inputs, with the default 500 PSA samples used to estimate the hyperparameters.
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2.4.2.2 FEAST Trial

This analysis compares the performance of the different EVPPI estimation methods for all 12

subsets considered in Madan et al. [77]. Of these sets, 3 contain more than one parameter.

Therefore, this example allows the comparison of the multi-parameter EVPPI calculation meth-

ods as well as methods for single parameter EVPPI in a multi-decision setting. All the analysis

performed in this section was performed on 5 million samples from the FEAST analysis per-

formed by Madan et al.. This was thinned to 1000 as there was substantial autocorrelation

present in the sample and to reduce computational times.

All methods must be modified slightly for multi-decision, multi-parameter problems. For

the single parameter methods, the input values must be determined. To use the Sadatsafavi

et al. method for multi-decision problems it is necessary to decide the number of decision

changes for each pair of decisions. Therefore, in this setting, we used the visual tool for 6

different pairs of decisions for each calculation. This decreases the accuracy of this method

as the visual tool can be difficult to interpret and with 6 decisions per EVPPI calculation, there

is a higher chance of an error. In this case, the number of decision changes varied between 0

and 3.

For the Strong and Oakley [110] method the bias reduction technique was used. In this set-

ting the number of blocks was relatively small for all EVPPI calculations, varying only between

5 and 2. These values were determined by insisting that the upward bias for the EVPPI stand-

ardised by the EVPI had to fall below 0.02. This rescaling was used because the absolute size

of the bias is directly proportional to the absolute size of the values we are estimation and the

EVPI in this case was 541.

Extending the non-parametric regression methods to multi-decision models involves fitting

an extra regression curve per incremental decision. Therefore, 3 regression curves must be

found for each EVPPI calculation. As the GAM regression using the tensor product becomes

infeasible for “large” parameter subsets, the GP regression is the only option for two of the

three multi-parameter EVPPI calculations. Again, we use the default options of 500 PSA

samples to estimate the hyperparameters for the GP regression. For the multi-parameter

GAM method, we model full interactions.

All the analysis were run using R (version 3.2.1). The MCMC simulations were run using

JAGS [93] which was called using the R package rjags [92]. Computations were performed

on a PC with an Intel i7 processor and 8 GB of RAM.

2.4.3 Comparison of current EVPPI estimation methods

Figure 4 displays the single parameter EVPPI estimates for the five different methods for the

Vaccine Example. All the methods give approximately the same results for each parameter.

The two parameters with the highest EVPPI are the same across all five methods: β1 and ω1,

representing respectively the probability and reduction in QALYs due to an influenza infection.

Although there is some discrepancy in the ordering, the results only differ slightly, certainly
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Figure 4: The EVPPI values, plus or minus one standard error for the parameters in the Vac-
cine example using 5 different methods - Strong and Oakley single parameter es-
timation (purple - SO), Sadatsafavi et al. single parameter estimation (blue - SAD),
Gaussian Process (green - GP) and GAM regression (pink - GAM) and two-step
Monte Carlo simulation (red crosses - MC)

in comparison to the Monte Carlo error of the value of the optimal treatment under current

information which is 0.02.

Figure 5 gives the EVPPI for all the parameter sets considered for the FEAST example. For

this example, the Sadatsafavi et al. method struggles to retrieve the true EVPPI. Therefore, this

method is not recommended in the multi-decision setting due to the difficulty in ascertaining
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the correct number of decision changes. The other methods give similar answers across all

the different parameter sets, with some difficulties with the Strong and Oakley method and

the GP regression for dM
3 and dM

4 (representing the effect of the saline and gelofusine fluids

on mortality, respectively) and for the GAM regression for the parameter subset of size four,

where the estimate is more than one standard error away from the MC “truth”. This suggests

that the GAM regression may be preferred in terms of accuracy for single parameter EVPPI

whereas the GP performs better in settings with 4 or more parameters.
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Figure 5: The EVPPI values, plus or minus one standard error for the parameters in the FEAST
example using 5 different methods - Strong and Oakley single parameter estimation
(purple - SO), Sadatsafavi et al. single parameter estimation (blue - SAD), Gaussian
Process (green - GP) and GAM regression (pink - GAM) and two-step Monte Carlo
simulation (red crosses - MC). Groups 1, 2 and 3 contain the following parameters
respectively, (dM

2 , dM
3 , dM

4 , α, pB, dS, pL), (dM
2 , dM

3 , dM
4 , α, pB, dS, qM) and (dM

2 , dM
3 ,

dM
4 , dS)

Broadly speaking, these results show that the approximation methods offer similar results

for health-economic models with only 2 decision options and so can all be used to estimate
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the EVPPI. The Sadatsafavi et al. method should be reserved for this setting. It is important

to note that the accuracy of the estimate of the EVPPI should only be reported to 2 or 3

significant figures, even when the analysis gives a much greater accuracy of calculation as all

these methods only approximate the true EVPPI.

Given that, in general, the methods produce broadly similar estimates for the EVPPI, it

seems pertinent to investigate the computation time required to produce the estimate. For the

Vaccine example, the single-parameter estimation methods and the GAM regression took less

than 0.01 seconds to find single parameter EVPPI estimates. In contrast, the GP regression

takes around 2-4 seconds, which is still fast in comparison to the MC estimation procedure

that takes around 55 minutes to calculate a single parameter EVPPI estimate. Therefore, all

the approximation methods offer significant computational savings in the dual-decision setting,

with the GP regression taking noticeably longer.

For the FEAST example, the single parameter estimation times are similar, although the GP

method increased for this example to 7-9 seconds as hyperparameters need to be estimated

for each (incremental) decision. The multi-parameter estimation times are significantly longer.

In the four parameter example, the GP method took 85 seconds, while the GAM regression

method took 184 seconds. Madan et al. [77] give the one step MC estimation time as 84

seconds while the two step MC is 31 minutes. Consequently, with a view to obtaining a

general purpose method, the GP regression is preferred for four parameter estimation in light

of the computation time and the lower accuracy of the GAM estimation method. Additionally,

the Madan et al. method is recommended in situations where it can be employed.

For the seven parameter examples, the GP regression times are 229 and 279 seconds

respectively. The Madan et al. estimation times are given as 9 and 10 seconds for single

step and 26 minutes for two step Monte Carlo. Clearly, therefore, in terms of computation time

the Madan et al. method is superior. However, it must be stressed that this method relies on

inspection of the net benefit function along with algebraic manipulation. Therefore, while the

computation time is low the time spent analysing the net benefit function will clearly be greater

than 279 seconds.

In addition to the computational time, it is useful to investigate the standard error for each of

the estimation procedures. This error is represented in Figures 4 and 5 and is fairly consistent

across the different methods and across the different parameter subsets sizes. In general,

larger estimates of the EVPPI are associated with a relatively smaller standard error.

The standard errors were calculated using methods specific to each EVPPI estimation

method. Firstly, for the GP regression method, the standard error is calculated by repeated

resampling from a multivariate normal distribution. Specifically, the GP regression method

specifies a multivariate normal model for the fitted values gt(φs). To calculate the standard er-

ror, simulations are taken from this multivariate normal distribution and each of these are used

to calculate the EVPPI. The standard error for the GP method is then estimated as the stand-

ard deviation of these EVPPI values. In this sense, the GP standard error estimate is entirely

dependent on the estimated model parameters and does not reflect additional uncertainty that

would arise from the model fitting procedure.
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For the GAM regression method, the standard error is calculated using a method similar to

the GP regression estimates. However, as the GAM method does not define a multivariate

normal distribution for the fitted values, this distribution is estimated before calculating the

standard error. Firstly, the mgcv package outputs the values of the basis functions for each

φs and the estimated values of the coefficients αk. These estimates can be combined to give

the mean vector for the fitted values using the formula in §2.3.1. The mgcv package also

estimates the covariance matrix of the regression parameters αk which can then be used to

give the covariance matrix of the fitted values. This gives a mean vector and covariance matrix

for a multivariate normal approximation to the fitted values. From this distribution, the standard

errors for GAM regression are calculated in the same way as for the GP regression. Therefore,

the GAM standard error is estimated conditional on the model and it assumes that the basis

functions accurately represent the underlying fitted values.

For the Strong and Oakley single parameter method, the standard error is estimated by

calculating the within-block variance and then averaging over all the blocks. More specifically,

the standard error averages over the within-block variance for the treatment that is considered

optimal within that block. This method gives the variance of the first term of the EVPPI es-

timator which must then be added to the variance of the value of the optimal treatment under

current information. This standard error calculation has parallels with the optimal method for

calculating the standard error of the nested MC estimator.

Finally, as no method is recommended to calculate the standard error of the Sadatsafavi

et al. method, we used bootstrapping to resample the incremental net benefit values before

repeatedly calculating the EVPPI. The standard error was estimated as the standard deviation

of these bootstrapped estimates. In some settings, estimated the standard error as 0 implying

that bootstrapping is unlikely to accurately estimate the standard error of this method.

2.4.4 Computational Time

To investigate the computational time required for the multi-parameter EVPPI estimation meth-

ods further, the EVPPI was calculated for increasing subsets for the Vaccine example (accur-

acy was not tested). The computational time was taken for subsets containing between 1 and

16 parameters for the GP regression method and 1 and 4 parameters for the GAM regression

as the number of parameters exceeds the number of data points for larger subsets.

The timing for the GAM regression is 0.13, 0.11, 0.66 and 122 seconds for increasing sub-

sets. Therefore, in terms of computational time the GAM regression is recommended for

subsets with fewer than 4 parameters. However, for four or more parameters, computationally,

it is advisable to use the GP regression. In addition to this, the GAM regression appears to be

less accurate for larger subsets as seen with the FEAST example. This is due to overfitting as

the number of parameters estimated to fit the GAM approaches the number of data points.

Figure 6 shows the computational time required to calculate the GP estimate for increas-

ing parameter subset sizes. The more parameters in φ the greater the computational time.

Additionally, we note that the computational time increases exponentially with the number of
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parameters. This causes difficulties when large sample sizes are coupled with larger para-

meter subsets as the cost of calculating the EVPPI using the GP method is proportional to S3,

where S is the PSA sample size, [111], along with a high cost associated with the number of

parameters.
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Figure 6: The computational time required for EVPPI estimation for the GP regression method,
varying with the number of parameters for which the EVPPI is being calculated.

2.5 S U M M A RY O F E V P P I C A L C U L AT I O N M E T H O D S

Thus far, we have presented the currently available methods for approximating the EVPPI

along with a formal comparison of the 4 more recent methods. One of these methods, the

Sadatsafavi et al. method, is unsuitable for multi-decision problems due to difficulties in ascer-

taining the inputs required for accurate estimation using this method. The other 3 methods

gave broadly consistent results when compared with MC estimator. All the methods also have

similar standard error, meaning that they should be compared on their computational time and

ease of implementation.

One of the remaining three methods can only be used for single parameter EVPPI which

limits its applicability. Additionally, a thorough understanding of the bias reduction tool for

identifying the correct input value is essential. Although standard functions are available for

calculation using this method [6, 110], the input values are still needed and a naive imple-

mentation of this function will lead the experimenter to grossly over/under-estimate the single

parameter EVPPI. Therefore, this method is largely superseded by the non-parametric regres-

sion methods.
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As the GAM regression requires negligible computational effort for single-parameter EVPPI,

it is the best method under these circumstances. In low-dimensional settings, the GAM

method is accurate as well as computationally efficient and therefore there is little merit in pur-

suing an alternative EVPPI calculation method when considering a small number of paramet-

ers of interest. However, for larger subsets, the computational time for this method increases

substantially as well as losing accuracy. Additionally, GAM regression is mathematically un-

stable for larger subsets of parameters (≥ 5) [111] and so cannot be used to approximate the

EVPPI.

For larger parameter subsets, ≥ 4, Gaussian Process regression is more accurate than

GAM regression and can be used in settings where this method breaks down. Unfortunately

the Gaussian Process method takes substantially more computational time as the number

of parameters in φ increases. In addition to this, the computational cost for GP regression

method is proportional to S3, so the GP becomes prohibitively expensive when large number

of parameters of interest φ are coupled with a large PSA simulation size.

Therefore, we propose a method that allows for fast computation of the EVPPI in these

high dimensional settings. This method is based on extension to the standard GP regression

approach exploiting results from the spatial statistics literature.

2.6 F A S T G AU S S I A N P R O C E S S R E G R E S S I O N

We have seen that GP regression can be used to estimate the EVPPI correctly but that the

computational time for the EVPPI estimate can be prohibitive in high dimensions. Therefore,

we have developed a fast approximation to the GP regression method that significantly re-

duces the computation time whilst retaining the accuracy in many settings. To present this

method, we formally introduce GP regression, focusing initially on the GP regression method

used by Strong et al..

Gaussian Processes are a family of stochastic processes used in statistics and machine

learning for non-parametric regression, classification and prediction [37, 98] and can be thought

of as an extension of the multivariate Normal distribution to an infinite vector of observations

[42, 98]. Strictly speaking, a GP is an infinite collection of random variables, any subset of

which follows a multivariate Gaussian distribution [97]. A GP is entirely defined in terms of

its mean and covariance functions [53, 76], which calculate the mean vector and covariance

matrix for each subset of random variables depending on some input values and a small set

of hyperparameters. These inputs determine the specific mean and variance for each random

variable in the process. Consequently, GPs can be used for regressing random variables on

a set of input values.

To fit a GP for non-parametric regression, the general form of the mean and covariance

function is specified by the modeller. In general, the covariance function is a taken as a

decreasing function of the “distance” between any two input values, i.e. points that are “closer”

have a higher correlation [88, 98] where “distance” and “closeness” can be measured using

any metric. These functions typically depend on a set of hyperparameters; for example, the
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covariance function is often defined in terms of a smoothness parameter that determines the

similarity between two points “close” together and a GP marginal variance parameter. Once

these general functions are specified, problem-specific values for the hyperparameters must

be determined.

In a Bayesian setting, vague and conjugate priors have been proposed for the hyperpara-

meters allowing for partially analytically tractable posterior distributions [89, 111]. Integration

and numerical optimisation can then be used to find maximum a posteriori estimates of the

GP parameters. Each numerical optimisation step requires the inversion of a dense matrix

which has a computational cost of S3, as quoted in §2.5. However, this computational cost is

often small in comparison to nested MC simulation.

Recall that the non-parametric regression method [111] requires estimating the function

gt(φ) using the model structure specified as

NBt(θs) = gt(φs) + εs. (10)

with εs
iid∼ Normal(0, σ2

ε ). Assuming a GP structure for the functions gt(·) in a linear regression

framework effectively amounts to modelling
gt(φ1)

gt(φ2)
...

gt(φS)

 ∼ Normal(Hβ, Σ), (11)

where: H is a design matrix;

H =


1 φ1

1 · · · φP
1

1 φ1
2 · · · φP

2
...

. . .

1 φ1
S · · · φP

S

 ; (12)

β is the vector of regression coefficients describing the linear relationship between the para-

meters of interest φ and the conditional expectation of the net benefits; and the covariance

matrix Σ is determined by the covariance function C, a matrix operator whose elements C(r, s)
describe the covariance between any two points gt(φr) and gt(φs).

Strong et al. [111] use a squared exponential, also known as an exponentiated quadratic,

covariance function CExp, defined by

CExp(r, s) = σ2 exp

[
P

∑
p=1

(
φ

p
r − φ

p
s

δp

)2]
(13)

where φ
p
r and φ

p
s are the r-th and the s-th simulated value of the p-th parameter in φ, re-

spectively. For this covariance function, σ2 is the GP marginal variance and δp defines the

smoothness of the relationship between two values that are “close together” in dimension p.
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For high values of δp the correlation between the two conditional expectations with similar val-

ues for φp is small. The δp values are also treated as hyperparameters to be estimated from

the data.

Combining equations (10) and (11), we can directly model the “observed” vector of net

benefits as 
NBt(θ1)

NBt(θ2)
...

NBt(θS)

 ∼ Normal(Hβ,CExp + σ2
ε I). (14)

The model in (14) includes 2P+ 3 hyperparameters: the P+ 1 regression coefficients β, the P
smoothness parameters δ = (δ1, . . . , δP), the marginal variance of the GP σ2 and the residual

error σ2
ε , also known as “nugget variance”. In this sense, the simulated output used to perform

PSA φs become covariates used to regress onto the known-distribution net benefits. Clearly,

therefore, the number of parame ters in φ affect the EVPPI computational time, as seen in

§2.4.4.

2.6.1 Hyperparameter estimation for GP regression

To determine hyperparameters for the GP, Strong et al. [111] set the following priors for the

model parameters:

• Each regression parameter in β is given an independent vague uniform prior π(βp) ∝ 1

for p = 1, . . . , P + 1.

• The GP marginal variance σ2 is given a weak inverse gamma prior σ2 ∼ IG(0.001, 0.001).

• The nugget variance σ2
ε is given a weak inverse gamma prior σ2

ε ∼ IG(0.001, 1).

• The smoothness parameters δ are each assumed to have a weak normal prior, δp ∼
N(0, 106) for p = 1, . . . , P.

Using this specification, it is possible to integrate out β and σ2 analytically by setting them

equal to their analytic posterior mean, as a function of the remaining hyperparameters. Nu-

merical optimisation determines the posterior mode of the remaining hyperparameters δ and

σ2
ε by optimising the log posterior density. The estimates for β and σ2 are then calculated

as a function of the MAP estimates for δ and σ2
ε using the function for their analytic posterior

means. This hyperparameter estimation is computationally intensive as evaluating the log

posterior density requires the inversion of the GP covariance matrix with a N3 computational

cost. The optimisation for δ and σ2
ε requires the computation of the log posterior density

for each step. In addition to this, numerical optimisers can struggle to find the mode as the

posterior surface has P + 1 dimensions. This results in incorrect hyperparameter values and

therefore incorrect estimates for the EVPPI. Most commonly, the optimiser gets stuck in a local

optimum that entirely discounts the information from some components whilst inflating the δp
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parameter for others. The can be mitigated by repeatedly finding the hyperparameters from

different initial values but this increases the computation time still further.

In the next section, therefore, we present a fast Bayesian approximation method known

as the Integrated Nested Laplace Approximation (INLA) that can be adapted to allow us to

calculate the hyperparameters for a GP efficiently.

2.7 T H E I N T E G R AT E D N E S T E D L A P L AC E A P P R OX I M AT I O N

The Integrated Nested Laplace Approximation (INLA) is a fast approximate Bayesian inference

method for a wide class of models known as latent Gaussian models [102]. This method per-

forms significantly better than MCMC methods for a fixed computational cost and can therefore

be used to quickly estimate the posterior distributions for parameters that characterise models

of this class. Although this method could been seen as restrictive, latent Gaussian models can

be used in many standard modelling scenarios, including regression models, dynamic models

and spatio-temporal models [102].

A model can be expressed as a latent Gaussian model, if the data, yi are defined by a

parametric family with a parameter µi that is linked, through some function h(·), to a structured

linear predictor ηi,

ηi = α +
n f

∑
j=1

f j(γji) +
nχ

∑
k=1

χkγki + εi, (15)

where f j(.) are unknown functions of the model parameters, χk are fixed regression coeffi-

cients, εi is some error term, and n f and nχ are the number of functions of covariates and

regressed covariates in the model [80]. The functions f j can be of any form and typically

can represent autoregressive models, spatial effects or seasonal effects. In addition to this

flexibility, also note that not including the functions f j retrieves a standard generalised linear

model.

After specifying the structured linear predictor and parametric model, the parameters of

this model must follow a specific structure that allows for fast computation of the posterior

distributions for these parameters. It must be possible to write our model using a hierarchical

structure with 2 layers of hyperparameters. At the first level of the hierarchy, we have a small

number (typically no more than 6) of hyperparameters;

Λ ∼ π(Λ), (16)

that can theoretically follow any prior distribution with known parameters. The parameters that

control the linear predictor, Γ = (χ, η, α), must then be a Gaussian Markov Random Field

(GMRF) [100] dependent on these hyperparameters, Λ,

Γ|Λ ∼ N(µ(Λ), Q−1(Λ)). (17)
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This implies that the parameter set Γ follows a normal distribution with a mean function and

covariance function dependent on the hyperparameters. The precision matrix, Q(Λ), must

be sparse where this sparsity corresponds to the Markov property of the field. An entry in

this matrix is 0 if and only if the two entries are independent conditional on all other entries.

This can be thought of a sparse neighbourhood structure underlying the parameters, where

only parameters that are connected have a non-zero entry in the precision matrix. Thus, the

precision matrix is sparse, allowing for fast computation of the posterior distribution for the

parameters. Note that a sparse precision matrix implies conditional independence, whereas

a sparse covariance matrix implies marginal independence, a much stronger restriction.

2.7.1 The INLA algorithm

INLA approximates the posterior distribution of the hyperparameters Λ by a nested Laplace

approximation [102]. Operationally, INLA explores the approximate joint posterior of the hy-

perparameters by determining the density using the Laplace approximation at different points

in the support of Λ. Linear interpolation is then used to find the approximate posterior joint

density for Λ. The different points are found by “stepping” through the space by some fixed

interval along the axis until the density falls below some known threshold. This creates a

lattice of points that are then used to approximate the posterior marginals of Λ by numerical

integration.

The marginals for the parameters Γ are then approximated using another (simplified) Laplace

approximation. This Laplace approximation is evaluated at the hyperparameter values at each

point in the lattice and the marginals for Γ are a weighted sum of the Laplace approximation

for each configuration of the hyperparameter set (weighted by the density at that point). In

this sense, the approximate marginals for Γ are nested within the Laplace approximation for

posterior distribution of the hyperparameters.

INLA is fast and accurate, when compared to a fixed length MCMC sampling algorithm,

provided the model structure is relevant. It is important to stress that INLA does not sample

from the posterior distributions but numerically approximates the required distributions. This

approximation can be improved by “stepping” through the hyperparameter space in finer steps.

This will increase the computational time as more lattice points are used for both the numerical

integration and to determine the distribution of the marginals for Γ.

R-INLA [103] is an R package that allows for simple implementation of the INLA algorithm.

It provides a simple user interface for this fast approximate Bayesian Inference and all results

presented using the INLA algorithm are taken using this interface. Additional information about

the INLA algorithm and the R-INLA interface can be found in [78–80, 101, 102].

2.8 S PAT I A L S TAT I S T I C S A N D S TO C H A S T I C PA RT I A L D I F F E R E N T I A L E Q UAT I O N S

An interesting application of GPs is in spatial statistics, where measurements are taken at

different points in a spatial domain and distance has a physical interpretation. For example,
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cases of influenza at locations in a geographical area (e.g. a country) or the level of pollution

at different monitoring sites. In this setting, the main assumption is that points that are “closer”

to each other in a geographical sense share more common features and are influenced by

common factors than those “further away” [116].

A very popular specification of a spatial model when exact locations are available is based

on the Matérn family of covariance functions [36], defined by

CM(r, s) =
σ2

Γ(ν)2ν−1 (κ‖φ
r −φs‖)νKν(κ‖φr −φs‖),

where ξ = (σ, κ, ν) is a vector of hyperparameters, ‖.‖ denotes the Euclidean distance and Kν

is the modified Bessel function of the second kind and order ν. The Matérn covariance function

is related to the covariance function in (13), which can be obtained when δp is constant for all

p = 1, . . . , P and ν → ∞ [98]. This implies that the resulting covariance matrix for a specific

set of input values is still dense and that the responses are not conditionally independent.

Lindgren et al. [74] demonstrate that a sparse matrix can be used to approximate a GP with

a Matérn covariance function (Matérn GP) by using Stochastic Partial Differential Equations

(SPDE). It can be shown that whilst a Matérn GP is defined in terms of a relationship with the

multivariate Gaussian it is also exactly equal to the function gt(φ) that solves a specific SPDE

τ(κ2 − ∆)
α
2 gt(φ) =W(φ),

whereW is Gaussian noise, ∆ is the Laplacian operator, α = ν + P
2 (with P = 2, in the spatial

context) and the marginal variance of the Matérn GP is

σ2 =
Γ(ν)

Γ(α)(4π)
P
2

κ−2ντ−2.

Therefore, finding the solution to this SPDE is exactly equivalent to finding the function gt(φ),

which as mentioned in §2.6 is instrumental in estimating the EVPPI.

The fundamental implication of this result is that efficient algorithms for solving SPDEs can

be used to approximate the Matérn GP. In practice, the SPDE is solved using the finite element

method [22]. First, the region over which the SPDE is being solved, i.e. the range of φ, is split

into small areas, e.g. in the 2-dimensional case a grid of small triangles. An example of this

triangulation in a true spatial example relating to rainfall in Switzerland is shown in Figure 7.

There are two triangulation boundaries with the border of Switzerland added for clarity in this

setting. An inner boundary encases (or “hugs”) all the data points relatively tightly while the

outer boundary is further from the points. This is because boundary conditions are imposed

on the SPDE solver and we do not wish these to impact the estimation of the Matérn GP.

The value of the Matérn GP is approximated by simple (linear) functions within each small

triangular area. Therefore, the points are closer together within the inner boundary to give a

good approximation to the Matérn GP, while in the outer region the grid can be rougher as the

approximation is not as important.
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Constrained refined Delaunay triangulation

Figure 7: An example of the grid approximation used to approximate the Matérn GP in a spatial
problem. The thick black line represents the border of Switzerland. The blue dots
represent the positions where data points have been observed. These data points
are used to estimate the value of the Matérn GP throughout the geographical space
(i.e. the whole area covered by Switzerland, in this case).

In the 2-dimensional case, the approximation is given by the sum of weighted linear func-

tions of φ that are equal to 1 at one vertex (intersections where several triangle meet) and

0 at all other vertices. Therefore, the weights of the linear functions determine the value of

the function at each vertex, where one of the linear functions is equal to 1 and all other linear

functions are equal to 0. Between the vertices (and therefore within the triangles) the value of

the Matérn GP is approximated by linear interpolation of the weights at the three corners of

the triangle.

The weights entirely determine the value of the Matérn GP at all points in the region of

interest and must be estimated from the data. Therefore, the weights are hyperparameters

controlling the value of the function gt(φ). The relationship between the weights is controlled

by τ and κ. Crucially, the weights are assumed to have a multivariate Gaussian distribution

with a specific precision matrix [74] which at least to a very good degree of approximation is

sparse, since non-zero entries correspond loosely only with points that “share a triangle”. This

allows us to approximate a Matérn GP with a Latent Gaussian Field where the model in (14)

becomes NBt ∼ Normal(Hβ,CM + σ2
ε I), which can be equivalently re-expressed as

NBt ∼ Normal(Hβ + f (ω), σ2
ε I), (18)

where ω = (ω1, . . . , ωG)
′ ∼ Normal

(
0, Q−1(τ, κ)

)
, where G is the number of grid points,

is the contribution from the Matérn covariance matrix to the expected value of the net benefit

and Q(τ, κ) is the sparse precision matrix determined by the SPDE solution.
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2.8.1 Computing the EVPPI using SPDE-INLA

This SPDE-INLA method has been developed and successfully applied in a spatial context

[14, 15, 105], where inputs are proper coordinates (i.e. longitude and latitude, hence defined

in a 2-dimensional space. However, calculating the EVPPI relies on a set of much higher

dimensional inputs. While in theory the SPDE machinery works in higher dimensional spaces,

the computational advantages will diminish in these cases.

To fully exploit the computational savings of the SPDE-INLA procedure, we re-express the

problem of computing the EVPPI in a “spatial” context. In this case, the simulated parameter

vector for φ designates a point in the P-dimensional parameter space. We consider that the

net benefit, calculated as a function of φ, has been “observed” at this point. We then wish to

find a representation of these P-dimensional points in at most 2-dimensional space, so that

we can efficiently estimate the Matérn covariance of this representation using the SPDE-INLA

methodology. If no such projection exists, then the computational complexity of fitting a Matérn

GP with a high dimensional SPDE means that the standard GP method is more appropriate.

As this projection will be used to predict the net benefit values, it makes sense to use a

regression-based dimension reduction method. This class of methods tries to find a sufficient

reduction, i.e. one for which the projection contains all the relevant information about the net

benefit function. Formally, we can express this condition as p (NBt | φ) = p (NBt | R(φ)),

where R(·) is the reduction function from RP → Rd where P is the number of parameters in φ

and d is the minimum number of dimensions needed to capture all the relevant information in

φ. Possible values for d can be determined by relatively standard testing procedures. There

are a wealth of methods that can be used to estimate this sufficient reduction [29–32, 72, 73].

Specifically, we focus on Principal Fitted Components [30, 31] to calculate the EVPPI.

2.8.1.1 Principal Fitted Components

Principal Fitted Components (PFC) is a model based inverse regression method. This means

that in order to find a sufficient reduction we consider a model for φ as a function of NBt. As

different models can be specified and lead to different sufficient reductions, the best fit model

amongst a set of candidates should be chosen before finding the sufficient reduction.

The general form of these PFC models is based on a linear structure

φ = µ + Υ f (NBt) + ε,

where µ is the intercept; Υ is a P × d matrix to be estimated to determine the sufficient

reduction; f (·) is a vector-valued function of NBt; and ε is an error term in the exponential

family. The form of the error structure changes the way in which the reduction is calculated

and methods have been developed for independent, heteroskedastic and unstructured errors.

In order to use PFC, the function f (·) and the error structure need to be specified. Specific-

ally, we consider normally distributed errors and set f (NBt) =
[
α1NBt, α2NB2

t , . . . , αhNBh
t

]T
,

although in general f (·) can map to any function of NBt. Additionally, the number of dimen-
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sions d needed to capture all the relevant information in φ needs to be specified. It is then

advisable to select the value of d associated with the best performing inverse regression spe-

cification, e.g. in terms of model fitting, as measured by information criteria such as the AIC

[31].

The cost of fitting any of these models individually is negligible and thus fitting a number of

models in correspondence to a set of chosen d values adds very little to the computational

time required to estimate the EVPPI. In any case, because PFC assumes that the number of

dimensions needed to capture the information in φ is no larger than then number of dimen-

sions in the function f (·), for simple relationships between the net benefit and φ, the sufficient

regression is low dimensional.

If one dimension is sufficient to capture all the information in φ, there is no harm in using

a second component because this will only add information and the reduction will remain

sufficient. On the other hand, using two dimensions when the AIC suggests d > 2, will

lead to a loss of information. Consequently, the EVPPI estimate based on a two-dimensional

reduction of φ may be biased. In light of the large computational savings and the fact that the

AIC has a tendency to overestimate d [31], it may still be worth using the projection to estimate

the EVPPI and then perform thorough model checking (e.g. by means of the residual plots) to

assess the performance of the GP model fit. We return to this point in §4.3.

From the theoretical point of view, PFC provides a robust method for determining the suf-

ficient reduction [31]. Additionally, due to the flexibility of the INLA algorithm it is possible

to cater for more complicated structures in the relationships between the net benefit and the

parameters of interest. Both residual plots and extensions to the INLA algorithm are discussed

when the practical implementation of this method presented in §4.3.

2.9 T E S T I N G T H E I N L A - S P D E G AU S S I A N P R O C E S S R E G R E S S I O N M E T H O D

To assess this fast GP regression method, we present two case studies of health economic

models and compare the estimates of the EVPPI obtained using the direct GP regression

implemented by Strong et al. [108] and our SPDE-INLA projection method. For both case

studies, random subsets of between 5 and 16 important parameters were considered to com-

pare the performance of the GP procedures — notice that this represents the standard range

of parameter subsets that would be used practically for EVPPI calculation using GP [40, 111].

For each subset, the EVPPI was calculated using both methods and for a willingness-to-pay

threshold of k = 20 000 monetary units, say £. The computational time and EVPPI estimate

is then recorded for both methods to allow a direct comparison.

The first case study is the Vaccine example presented in §2.4.1.1. This example has 28 key

parameters, as previously discussed, representing the probability of infection, the reduction

in risk due to the vaccine, the occurrence of complications, the monetary costs of the inter-

ventions and the QALY loss due to different health states. However, there are also additional

sources of uncertainty present in the model; for instance, the true number of people getting
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influenza or the true number of people getting side effects. Considering all the uncertain

quantities in the model, the number of parameters increases to 62.

The second case study is a simple fictional decision tree model with correlated parameters,

presented at the SAVI web application [109] (hence this example is referred to as the “SAVI

study”). The model has two treatment options and 19 underlying parameters. A more in-

depth model description is presented in [12]. Most importantly, the 19 underlying parameters

are assumed to follow a multivariate Gaussian distribution with known structure and thus the

single loop MC methods can be used for some parameter subsets. The SAVI web application

provides 10 000 PSA samples of all the 19 parameters, along with the simulated costs and

benefits of both treatment options. This number of PSA samples poses a significant challenge

for the standard GP regression method. Therefore, only 1 000 observations are used for the

comparison with our SPDE-INLA method.

2.9.1 Computational Time

We begin our discussion of the two EVPPI estimation methods by comparing the computa-

tional time required to obtain an estimate. We used 1, 000 PSA samples for both case studies

and both methods. To compare our SPDE-INLA method, we used the code available from

Strong [108] with a slight modification. This modification changed the numerical optimiser for

the hyperparameter estimation to give quicker computation time and more accurate results. In

some cases this optimiser can struggle numerically and the slower optimiser must be used.

Additionally, to allow for a fair comparison between the two methods only 500 PSA runs

were used to estimate the hyperparameters. It is suggested by Strong et al. [111] that the

full PSA run should not used to calculate the hyperparameters to save computation time.

Once the hyperparameters have been estimated, all 1, 000 PSA samples are used to find

the fitted values ĝt(φs), so all the information is utilised. Using all 1, 000 observations for

the optimisation step can give more accurate results and is sometimes necessary (see for

example §2.10).

The computational time for the GP regression increases substantially with the number of

parameters of interest, between 17 and 470 seconds for the Vaccine case study and 17 and

71 seconds for the SAVI example. However, interestingly, the computation time does not

increase uniformly for GP regression. This is due to the numerical optimisation as occasionally

additional optimisation steps are required to reach convergence.

The computation time for our SPDE-INLA method remains constant as the number of para-

meters increases. This is because we are using projections and therefore the dimensionality of

the GMRF is not increasing. The computation time of our SPDE-INLA method is significantly

lower than the GP regression method, up to around 70 times faster. Even for 5 parameters

of interest, it is between 2 and 2.5 times faster, despite the fact that we are using all the data

points to estimate the hyperparameters, albeit from a projected input space.

To understand if our method scales to larger PSA datasets, EVPPI estimates using all 10 000

PSA samples from the SAVI case study were also calculated. The computational time required
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Table 3: The computational time required (in seconds) to calculate an EVPPI using both the
GP regression method and SPDE-INLA method for increasing numbers of paramet-
ers for both case studies

Number of parameters Computation time (seconds)
of interest Vaccine Example SAVI Example

GP SPDE-INLA GP SPDE-INLA

5 17 9 17 7
6 42 10 14 7
7 45 10 18 7
8 57 11 21 8
9 74 8 26 8
10 86 8 31 9
11 70 7 37 8
12 60 8 47 8
13 84 11 52 7
14 188 8 66 6
15 470 7 70 7
16 121 8 71 7

to calculate an EVPPI estimate was between 40 and 80 seconds with an average time of 56

seconds. This is important as it demonstrates that the computation time does not increase

exponentially using the SPDE-INLA method; the computation time is between than 6 and 10

times slower for a 10 fold increase in number of PSA samples. Crucially, the speed of our

SPDE-INLA method depends on the density of the SPDE grid approximation. Therefore, its

computational effort could be decreased by using a sparser grid, although this would affect the

quality of the EVPPI estimate. It would, therefore, be possible to use our method to calculate

the EVPPI for larger PSA data sets. This may be relevant, for instance, in models involving

individual level simulations [119], where larger PSA samples are required to fully assess the

underlying distributions.

2.10 A S S E S S I N G T H E AC C U R AC Y O F T H E E V P P I E S T I M ATO R S

In general, it is difficult to establish whether an estimate of the EVPPI is accurate because

analytical results are rarely available and MC simulation is very expensive. Thus, it is difficult

to determine which method is more accurate when the two approximate EVPPI values diverge,

as no baseline comparator is easily available. Nevertheless, there are at least two potential

features that we can use to assess the reliability of our estimates.

2.10.1 Monotonicity with respect to the number of parameters of interest

We have seen that the EVPPI is a non-decreasing function of the number of parameters of

interest, see §1.1. This means that, provided the smaller subsets are entirely contained within
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Figure 8: The EVPPI estimate for the Gaussian Process regression method (GP) and the new
method developed in this paper (SPDE) for increasing parameter subset size for the
Vaccine (panel a) and the SAVI (panel b) case studies.
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the larger subsets, the EVPPI estimates should be non-decreasing. This property provides

one way to assess the accuracy of the methods: if one method fulfils this property and the

other does not, then the former is likely to be more accurate. It is important to note that mono-

tonicity is a necessary condition for a good EVPPI estimate but not sufficient. It is possibly

to construct a function that gives a monotone sequence, such as simply giving the number of

parameters in the set, but clearly does not estimate the EVPPI at all.

Figure 8 shows the EVPPI estimate for increasing parameter subset sizes for both case

studies. For the Vaccine example, shown in panel (a), the standard GP regression method

has some difficulty retrieving monotonicity, specifically for the parameter set containing 10

parameters which is clearly overestimated. Our SPDE-INLA method also overestimates the

EVPPI for the set containing 10 parameters, but by 0.01 or less than 1%. This gives an indica-

tion of the accuracy of our EVPPI estimation method. This over-estimation for the standard GP

method is due to incorrect estimation of the hyperparameters based on the reduced PSA data-

set. If the hyperparameters are obtained using all 1 000 PSA samples then the EVPPI is 1.39,

which respects monotonicity but the computation time increases to 256 seconds compared to

86.

For the SAVI example (panel b) the monotonicity is respected across both methods and

the EVPPI values, rounded to 3 significant figures, are similar. For both examples, the EVPPI

values for the smaller parameter subsets are similar across both methods. As the length of φ

increases the SPDE-INLA method underestimates slightly compared to the standard GP but

only by at most 3% of the total EVPPI value. There is evidence that the SPDE-INLA method

is accurate while possibly guarding against spurious results that come from estimating the

hyperparameters based on a smaller subset of the PSA samples. Although, the SPDE-INLA

method may slightly underestimate the EVPPI for larger subsets.

2.10.2 The SPDE-INLA method as an EVPI approximation

Therefore, to investigate whether our method underestimates the EVPPI for these larger para-

meter subsets, we use the method to calculate the overall EVPI, which represents the largest

parameter subset available for each example. As mentioned in §1.4.1, the overall EVPI (4) can

easily be estimated by MC simulation. We can then use our method to calculate the overall

EVPI, by considering that all the underlying model parameters are of interest. This allows us

to compare our method directly with the “true” MC EVPI estimate. The EVPI was calculated

for both cases studies and the results are shown in Table 4. The computational time required

to calculate these estimates is 14 seconds for the Vaccine example and 8 seconds for the

SAVI.

For both case studies, the SPDE-INLA approximation is correct to two significant figures,

with a small discrepancy in the third significant figure. This gives a further indication that the

EVPPI estimated using our method is an accurate method for calculating the EVPPI, possibly

demonstrating that even for large numbers of parameters of interest the underestimation of

the EVPPI is not severe.
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Table 4: The EVPI values calculated using the PSA samples directly and our SPDE-INLA
method

Case Study MC EVPI SPDE-INLA EVPI

Vaccine 2.52 2.51
SAVI 2100 2080

For the Vaccine example, there are 62 parameters that contribute to the model uncertainty.

We are therefore approximating the Matérn covariance function with a projection from a 62- to

a 2-dimensional space. However, despite the difficulty of preserving the original data structure

with this projection, the AIC suggests that this is a sufficient reduction and the EVPI estimate

is still very close to the true value.

2.10.3 Analytic Results

Finally, we can compare our method with the “true” MC values calculated for the SAVI example.

Strong et al. [111] provide these EVPPI values for three different parameters subsets of size

2 and 4. Both GP regression and GAM can be used to calculate the EVPPI using all 10 000

available PSA samples and the willingness-to-pay is fixed at £10 000. Table 5 gives the “‘truth”

together with all three estimated values, GAM, GP regression and SPDE-INLA. It is clear that

our method’s performance is in line with the other approximation methods while all 3 methods

overestimate the true EVPPI value in this setting.

Table 5: Comparison of the EVPPI estimation methods, standard GP, GAM regression and the
SPDE-INLA method with “true” EVPPI values based on 107 Monte Carlo simulations.

EVPPI estimate (Time to compute in seconds)
Parameter Subset MC Simulations GP GAM SPDE-INLA

2 Parameters - φ5, φ14 248 274(375) 277(0.78) 278(41)
4 Parameters - φ5, φ6, φ14, φ15 841 861(367) 862(98) 856(48)

2 Parameters - φ7, φ16 536 549(390) 546(0.25) 549(43)

The computational time required to calculate these estimates are given in Table 5. Clearly,

for the 2 parameter setting the GAM regression method is the most appropriate as it takes

under a second to calculate the EVPPI estimate. However, for the 4 parameter example, the

computational time is lowest for our SPDE-INLA method, which takes half the computational

effort of the GAM regression method and around 10% of the standard GP. This also demon-

strates that for larger PSA samples, GAM regression may be preferred over GP regression in

terms of computational time, even for larger subsets.



2.11 C O N C L U S I O N 63

2.10.4 Standard Error

Thus far, we have not compared the standard error of the SPDE-INLA method with the stand-

ard error of the alternatives. It would be possible to calculate the standard error for the SPDE-

INLA method using a similar procedure as that outlined for the original formulation of the GP

regression. Specifically, the SPDE-INLA model could be used to simulated predicted values

from a multivariate Gaussian distribution. These simulated values could then be used to es-

timate the EVPPI a large number of times and the standard deviation of these estimates would

give an approximation to the standard error of the EVPPI estimate.

However, as in the standard GP case, this standard error would ignore uncertainty arising

from the misspecification of the SPDE-INLA model. This may have more serious implications

in the SPDE-INLA model as we are projecting from φ to estimate the Matérn covariance and

therefore ignoing uncertainty due to this projection may give an inaccurate representation of

the uncertainty in the EVPPI estimate from the SPDE-INLA method.

2.11 C O N C L U S I O N

This chapter began with a discussion of the available methods for calculating the EVPPI. A

full analysis of the more recent methods was undertaken and it was concluded that the best

EVPPI estimation methods are based on non-parametric regression [111]. While these meth-

ods are very efficient when only a small number of parameters of interest are considered, they

become expensive in higher dimensional settings. This is especially true when coupled with

large numbers of PSA simulations. Therefore, we developed an approximation method for

fast Gaussian Process regression to reduce the computation effort required to calculate the

EVPPI.

This novel method is based on a spatial interpretation of GP regression and projections into

2-dimensional space. This, in turn, allows us to use a fast computation method developed

in spatial statistics, based on finding a latent Gaussian field that approximates a Matérn GP.

Finally, this allows us to use the INLA methodology for fast Bayesian computation to fit the GP.

It also allows us to find fitted values at no additional cost, which are then used to estimate the

EVPPI.

There seems to be little loss of accuracy when using our method. For larger subsets of

parameters of interest, the EVPPI estimate is slightly underestimated compared to the stand-

ard GP methods, but this does not seem to be severe as the EVPI estimates are very close.

Additionally, in some examples, our method seemed to be more accurate than the standard

GP regression method, as we avoid breakdowns in numerical optimisation. These results are

conditional on the dimension reduction being sufficient to capture all the information in φ.





3

E S T I M AT I O N M E T H O D S F O R T H E E X P E C T E D VA L U E O F S A M P L E

I N F O R M AT I O N

This chapter begins with a brief overview of the currently available EVSI estimation methods

to determine the required elements for the novel EVSI estimation method. We then discuss an

EVSI estimation method based on moment matching and elements of preposterior analysis.

We present this method using several examples of varying complexity, each exploring a differ-

ent aspect of the method. The chapter then concludes with an extension to this methodology

using Bayesian non-linear regression to estimate the EVSI for different sample sizes. This

allows us to present a final example which uses the Expected Net Benefit of Sampling (ENBS)

to determine optimal study design in a practical health economic evaluation.

The methods in this chapter have been written up in three papers. Firstly, the main method

is published in Medical Decision Making in a paper entitled Efficient Monte Carlo Estimation

of the Expected Value of Sample Information using Moment Matching [62]. The technicalities

regarding the specific simulation size required to accurately estimate the EVSI are from the

paper entitled Calculating the Expected Value of Sample Information using Efficient Nested

Monte Carlo: A Tutorial, submitted to Value in Health [57]. Finally, the Bayesian non-linear

regression methodology is intended for submission in Medical Decision Making in a paper

entitled Estimating the Expected Value of Sample Information Across Different Sample Sizes

using Moment Matching and Non-Linear Regression [61].

3.1 C U R R E N T M E T H O D S F O R E V S I E S T I M AT I O N

To discuss the currently available approximation methods for the EVSI, first recall its definition:

EVSI = EX

[
max

t
E(θ|X) [NBt(θ)]

]
−max

t
E [NBt(θ)] . (19)

As with the EVPPI, the MC estimator of the EVSI requires nested simulations and it is the

inner “posterior” expectation that makes this estimator computationally intensive. Therefore,

EVSI estimation methods have been developed to approximate this inner expectation without

using full MC simulations.

As the EVSI is concerned with estimating the value of a specific study design, the estima-

tion methods for the EVSI are much more varied than for the EVPPI. Specifically, some of the

methods are concerned with estimating the EVSI for a specific type of data collection exer-
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cise, such as cluster randomised clinical trials [1, 11, 21, 120]. In general, these methods are

likely to be accurate and computationally efficient in the settings for which they were designed.

However, they have limited applicability and are typically based on finding analytical expres-

sions/approximations for the posterior mean of the net benefit under specific assumptions

about the parameters and the sampling distribution.

For example, if the PSA distribution for the parameters θ and the sampling distribution of

the data are from a conjugate family, it is possible to find the “posterior” for the parameters

analytically, rather than resorting to simulation, and therefore it may be possible to find an

analytical expression for the mean of the posterior net benefit. In these settings, the EVSI can

be calculated using a one-step procedure, where each PSA simulation θs for s = 1, . . . , S is

used to simulate a single potential sample Xs from p(X | θs). These ideas can be extended

when the design of the experiment and the net benefit functions conform to certain conditions.

In addition to this, some researchers use the central limit theorem to justify an approach based

on exploiting normal-normal conjugacy [43, 122].

In general, however, we are more interested in general purpose estimation methods for

the EVSI. These are methods that can be used irrespective of the underlying structure of the

health economic model and the design of the future experiment. These methods are all based

on approximating the inner conditional expectation in equation (6).

Firstly, Sweeting and Kharroubi [114] developed a method to approximate the posterior ex-

pectation using a weighted sum of the posterior density evaluated at a small number of points.

As the EVSI is based on the posterior expectation, this method can be used to approximate

the EVSI [10, 70] using a small number of posterior evaluations. However, the formulæ are

relatively complicated and assume that the posterior distribution can be maximised and differ-

entiated, which limits applicability.

It is also possible to extend methods based on the unit loss integral (see §2.1) to calculate

the EVSI [68]. This method begins by fitting a linear regression model between some of the

model parameters and the incremental net benefit. Provided the parameters of interest can be

approximately modelled using a normal distribution, it is then possible to estimate the mean

and variance of the “posterior” expectation. The unit loss integral then calculates the EVSI as

a function of this mean and variance. A similar approach has been developed in [67] using

regression to take advantage of closed form expressions for the posterior mean and variance

in normal-normal conjugate models, without relying on the unit loss integral. This extension

does not require a normal distribution for either the INB or the model parameters.

More recently, Menzies [84] has created an EVSI calculation method based on a sampling

importance re-sampling approach [99]. In this method, the PSA simulations for the net benefit

are re-weighted based on the likelihood of the data for each of the simulations of the paramet-

ers θs. This method avoids rerunning the health economic model as it is based solely on the

PSA simulations but it does involve a large number of matrix calculations which can be costly

if the PSA simulation size is large. It also requires that the full sampling distribution of the data

can be specified in order to re-weight the samples.
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Finally, Strong et al. [112] developed a non-parametric regression method that is similar to

the EVPPI calculation method presented in §2.3. For the EVSI, it is assumed that the data

X can be summarised in a low-dimensional sufficient statistic. A sufficient statistic is then

calculated for each θs for s = 1, . . . , S and non-parametric regression is used to estimate

the “posterior” mean based on each statistic. This method is fast but it can be challenging to

determine a low-dimensional sufficient statistic for some studies.

In light of these methods, we are interested in developing an approach that can be used

irrespective of the underlying health economic model. We also want to avoid limitations on the

form of the data. Therefore, our method can be used in any setting where a Bayesian model

can be specified for the parameters and the potential data. This also allows us to consider

complex designs, something that has been lacking from a large number of previous methods

[67], particularly, it is challenging to calculate the EVSI for unbalanced designs, trials targeting

multiple different model parameters and trials with missingness or dropout.

Therefore, in this section, we develop an alternative approximation method for the EVSI

by determining the properties of the distribution of the preposterior mean §3.2.1. We then

demonstrate that it is possible to approximate this distribution using moment matching. To

achieve this, we estimate the mean and variance of the preposterior mean using a small

number of future posterior samples. We discuss the theoretical grounding for this estimation

method to highlight scenarios where moment matching is unsuccessful at approximating the

EVSI.

We compare our methodology with analytic results, where they are available, simulation

based approaches and the EVSI estimation method based on sufficient statistics [112]. Spe-

cifically, we demonstrate that in the considered examples §3.5.3, our moment matching ap-

proach is successful in most settings where the sample size of the future data collection

exercise is sufficiently large.

3.2 P R E P O S T E R I O R A N A LY S I S

Preposterior analysis encompasses a large suite of approaches that are concerned with es-

timating the properties of a posterior distribution before relevant data have been collected.

These approaches are used in many different domains, from model calibration [3, 69], to

model checking [8] and experimental design [19, 44, 65, 118]. The EVSI is an important ex-

ample of preposterior analysis as we are interested in the posterior expectation of the known-

distribution net benefit before the data have been collected.

Therefore, to discuss this EVSI estimation method, we begin by formally framing the EVSI

within a Bayesian context. Firstly, the PSA distribution p(θ) is the prior for the model paramet-

ers. Interestingly, the PSA distribution is normally informed by past data, e.g. in the form of a

previously conducted trial, and would normally be denoted as p(θ | D), whereD indicates the

existing data. But, as we are discussing the collection of future data, the information in D is

prior to the information in X. Note, therefore, that the prior contains a relatively large amount

of information about the underlying model parameters and the known-distribution net benefits.
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Throughout this section, we will also need to consider the prior for the known-distribution net

benefits. To ease the explanation of the EVSI calculation method, we will use the notation

NBt(θ) = NBθ
t , so the prior for NBθ

t is denoted p
(
NBθ

t
)
.

As before, data that would arise from the study are denoted X and are defined using the

sampling distribution p(X | θ). The distribution of X is given by the prior predictive distribution

– again noting that prior means “prior to the new sample” and is conditional on D. In most

settings, the data collection exercise will produce data about N different individuals. From this

point forward, therefore, N will be referred to as the sample size and is reserved for discussion

about X. This contrasts directly with simulation size S which is reserved for discussion about

simulating from the prior or posterior for θ. This distinction allows us to discuss S simulations

of sample size N which relates to S simulations from the prior predictive distribution p(X)

of a data collection exercise with sample size N. Finally, Xs will be used to denote the s-th

simulated data set, whereas XN denotes a theoretical data collection exercise of sample size

N.

3.2.1 The distribution of the preposterior mean

The distribution of the preposterior mean is the distribution over the possible future values for

the posterior mean before the data have been collected. Therefore, the preposterior mean

is exactly the inner posterior expectation in the definition of the EVSI (6). To understand this

quantity and its distribution more clearly consider a standard Bayesian analysis, performed

after the data have become available and observed to the value x. In this case, the posterior

mean will simply be a number (or vector for multivariate distributions), with the value of the

mean conditional on those data x. Therefore, if the data are unobserved and we consider

p(X) as the distribution over all possible datasets, then the posterior mean has a distribution

dependent on p(X).

As in standard Bayesian analysis, the preposterior mean of the net benefit is given by

µX
t := Eθ|X

[
NBθ

t

]
=
∫

Θ
NBθ

t p(θ | X)dθ =
∫

Θ
NBθ

t
p(X | θ)p(θ)

p(X)
dθ.

The only difference for preposterior analysis is that X is a random variable rather than an ob-

served data set x. Throughout this chapter, we use the notation µX
t to denote the preposterior

mean, for decision t = 0, . . . , T highlighting that the preposterior mean is a function of X.

Based on this notation, the definition of the EVSI can be rewritten as

EVSI = EX

[
max

t
µX

t

]
−max

t
Eθ

[
NBθ

t

]
.

Notice that this definition requires that we determine the treatment with the largest posterior

mean net benefit for each potential sample. Therefore, to calculate EVSI, it is necessary to

find the distribution of the joint preposterior mean across all the alternative treatment options.
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3.2.2 Examples of the distribution of the preposterior mean

To illustrate the concept of the preposterior mean, we introduce a simple example using the

Beta-Binomial conjugate family. Assume that a new drug is available and is associated with a

probability θ of curing a particular disease. As this drug is new, it is assumed that there is very

limited evidence on its effectiveness. This assumption could be expressed, in a very simplistic

way, by modelling θ ∼ Beta(1, 1). We note, however, that it is likely that some information

would be available, in practical settings (e.g. from small trials), so a more informative prior

should be used instead. The effectiveness measure is whether the disease has been cured,

meaning that the population level effectiveness is θ. Assume further that the drug costs c are

known and that the willingness-to-pay is some constant k.

The reference treatment option is to do nothing. This has no cost and no effectiveness as

this (non-life-threatening) disease does not improve without drug intervention. This implies

that the two net benefit values are

NBθ
0 = 0 and NBθ

1 = kθ − c.

The future experiment is to give N people the drug and observe how many are cured. This

can be expressed using a binomial distribution for the future sample X | θ ∼ Bin(N, θ). The

prior predictive distribution in this setting is given by

p(X) =
∫ 1

0

(
N
X

)
φX(1− φ)N−Xdφ = B(X + 1, N − X + 1)

N!
X!(N − X)!

=
X!(N − X)!N!

(N + 1)!X!(N − X)!
=

1
N + 1

,

where B(·, ·) is the Beta function. This implies that all samples for X are equally likely. Note

that this prior predictive distribution for X is entirely due to our choice of prior.

Once the prior predictive distribution for X is known, the distribution of the preposterior mean

for the two treatment options is determined by calculating the posterior mean (conditional on

X) for both the net benefit functions. Obviously, the posterior mean for NBθ
0 is µX

0 = 0 and

therefore the distribution of the preposterior mean is simply a point mass at 0. However, the

posterior mean for NBθ
1 does depend on the future value of the random variable X:

µX
1 = Eθ|X

[
NBθ

1

]
=
∫ 1

0
(kθ − c) p(θ | X)dθ

= k
1 + X
2 + N

− c,

as θ | X ∼ Beta(1 + X, 1 + N). Therefore, the distribution of µX
1 is conditional on the uniform

prior predictive distribution for X, which in turn is conditional on the uniform prior for θ. This

means that the distribution of the preposterior mean is uniform over all possible values for µX
1 ,

calculated as a function of the N + 1 possible X values.
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The EVSI can then be used to summarise µX
0 and µX

1 and, dependent on the values of k, c
and N, gives an upper limit to the value for the future data collection exercise. We note that

this trial has value as the future sample may change our optimal treatment. A future sample

indicates that t = 1 (the new drug) is optimal if

1 + X
2 + N

>
c
k

and that t = 0 (doing nothing) is optimal otherwise. As an example, for k = 20 000, c = 10 000

and N = 5, the EVSI can be calculated exactly as:

EVSI =
(

0 + 0 + 0 +
10 000

7
+

30 000
7

+
50 000

7

)
1
6
− 0 =

15 000
7

= 2 142,

which must be compared with the cost of a trial with 5 participants to determine whether that

specific trial is worth funding.

3.2.2.1 Distribution of preposterior mean for Exponential-Gamma conjugacy

In this second example, a Gamma prior is assumed for the model parameter θ ∼ Gamma(α, β).

The data collection exercise is then assumed to be N independent observations from an Ex-

ponential distribution conditional on θ; Xj ∼ Exp(θ) with j = 1, . . . , N. We consider the

distribution of the preposterior mean for different values of N, where the two net benefit func-

tions are:

NBθ
0 = c0 and NBθ

1 = kθ − c1.

Figure 9 presents the distribution of the preposterior mean for incremental net benefit (NBθ
1 −

NBθ
0) for α = 5, β = 1, k = 200, c0 = 900 and c1 = 100.

Firstly, note that the distribution of the preposterior mean gets closer to the prior as the

sample size increases for the data collection exercise. The distribution of the preposterior

mean also has larger variance as the sample size increases. These two properties are at

odds with the intuition that the distribution of the mean gets more concentrated and sym-

metrical as the sample size increases. Nonetheless, these counterintuitive results hold be-

cause the “strength” of the data increases as the sample size increases and so the posterior

mean deviates further from the prior mean. This implies that the variance of the preposterior

mean does increase as the sample size increases. In addition to this, at the current state of

knowledge, i.e. before the data collection has taken place, it is not possible to learn anything

additional about the parameters. Therefore, if a future data collection exercise gives exact

information (perfect information) about the parameter location then the distribution of possible

posterior means is equal to distribution of possible parameter values i.e. the prior distribution.

To clarify these ideas further, we now consider a normal-normal conjugate example.



3.2 P R E P O S T E R I O R A N A LY S I S 71

−1000 −500 0 500 1000 1500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Distribution of Preposterior Mean for
      Increasing Sample Sizes

Preposterior mean

D
en

si
ty

N=2

N=3

N=4

N=6

N=10

N=25
N=100

Prior

Figure 9: The distribution of the exact preposterior mean for different samples sizes using
Exponential-Gamma conjugacy, with the prior for the net benefit marked in black.

3.2.2.2 Distribution of the preposterior mean for Normal-Normal conjugacy

For this example, a Gaussian prior for θ is defined as

θ ∼ N(θ0, σ2
θ )

while the data collection exercise is N independent samples from a different Gaussian distri-

bution;

Xi ∼ N(θ, τ2).

To use conjugacy results, it is assumed that the variances σ2
θ and τ2 are known. Therefore,

the sample mean of X has a Gaussian distribution, conditional on θ and so the prior-predictive

distribution for X̄ is

X̄ ∼ N
(

θ0, σ2
θ +

τ2

N

)
.

Finally, the net benefit functions for this example are defined as

NBθ
0 = 0 and NBθ

1 = kθ − c.

The preposterior mean for the NBθ
1 is then

Eθ|X(NBθ
1) = k

(
τ2

τ2 + Nσ2
θ

θ0 +
σ2

θ
τ2

N + σ2
θ

X̄

)
− c,
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which is a linear function of the prior predictive distribution for X, which is Gaussian. Therefore,

the distribution of the preposterior mean is Gaussian with mean and variance equal to the

mean and variance of the preposterior mean;

Eθ|X(NBθ
1) ∼ N

(
kθ0 − c, k2 σ4

θ
τ2

N + σ2
θ

)
.

Thus, the distribution of the preposterior mean is centred on the prior mean for NBθ
1. So, it is

not possible to learn any additional information about NBθ
1 on average before doing the study.

Additionally, it is easy to see that as N increases, the denominator of the variance gets smaller.

This implies that the variance increases as the sample size of the data collection exercise

increases. Finally, as N → ∞ the variance simplifies to the prior variance, demonstrating that

as the sample size of X increases, the distribution of the preposterior mean p(µX
1 ) tends to

the prior for the NBθ
1.

3.3 E S T I M AT I N G T H E D I S T R I B U T I O N O F T H E P R E P O S T E R I O R M E A N

In §1.4.3, we saw that the distribution of the preposterior mean can be calculated by MC

simulation, also formalised outside of the health economic context [94]. We discussed that this

method is computationally intensive as a large number of future samples Xs for s = 1, . . . , S
should be simulated. Each sample is then used to update the prior and find the posterior

p(θ | Xs) by simulation in order to calculate the posterior mean. Our methodology presented

below reduces the number of simulations required from p(X) by exploiting the information

available in the prior.

Throughout, we have been concerned solely with the distribution of the preposterior mean

which, in §3.2.2, was computed by finding the prior predictive distribution p(X) and the func-

tional relationship between the preposterior mean and the sample X. However, if the prior

predictive distribution is not known, as in most practical situations, then a known functional

form of the µX
t cannot be used to determine the distribution of the preposterior mean. There-

fore, while other EVSI estimation methods have focused on estimating a functional form for the

expected net benefit conditional on the future sample (cf §3.1), we focus solely on estimating

the distribution of the preposterior mean. Therefore, we are simply concerned with estimating

a probability density, for which there is a large wealth of statistical theory.

3.3.1 Expectation and Variance for the preposterior mean

To approximate the probability density of the preposterior mean, we begin by estimating its

mean and variance. In this analysis, the interest lies with the expectation and variance con-

ditional on the value of X, implying that standard formulæ for conditional iterated expectation

can be used to calculate both the expectation and variance of the preposterior mean.
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Therefore the mean of the distribution of the preposterior mean is given by

EX
[
µX

t
]
= EX

[
Eθ|X

[
NBθ

t

]]
= Eθ

[
NBθ

t

]
,

which implies that the expectation of the preposterior mean is equal to the prior mean, con-

firming what was observed in the examples. Again, preposterior analysis does not give any

additional information about the net benefit. On average, over all the expected samples (which

are conditional on the prior beliefs), the expected net benefit is the same.

The variance of the preposterior mean has a more complex formula but can also be re-

expressed using iterated expectation as

σ2
X = VarX

[
µX

t
]
= VarX

[
Eθ|X

[
NBθ

t

]]
= Varθ

[
NBθ

t

]
− EX

[
Varθ|X

[
NBθ

t

]]
.

This means that the variance of the preposterior mean is equal to the variance of the prior

known-distribution net benefit minus the expectation, over all the possible samples X, of the

posterior variance. Therefore, to calculate the variance of the preposterior mean distribution

practically, the average posterior variance over all possible samples X must be estimated.

However, §3.4.1 demonstrates that the average posterior variance can be estimated using

a significantly reduced number of posterior samples compared to calculating the EVSI by

simulation.

3.3.2 Moment Matching

Moment matching is a common method of performing parameter inference within a model but

has recently been applied in the context of estimating an unknown density [18, 48]. In general,

an unknown distribution can be accurately characterised by a large set of moments. However,

it can also be approximated using a known distribution and “matching” a small number of the

moments. This means that an alternative family of distributions is chosen and then parameters

are found to determine a distribution in this family with the same moments as the distribution of

interest. In the simplest setting, this involves approximating the distribution of the preposterior

mean by a Gaussian with the mean and variance calculated using the formulæ in (20).

However, this is unlikely to be sufficiently accurate for our purposes as the EVSI is strongly

influenced by the tails of the distribution of the preposterior mean. This is due to the fact that

the optimal decision is most likely to be different from the current optimal decision in the tails

as the current decision is, by definition, optimal for the majority of the prior mass.

Therefore, the EVSI estimate will be significantly improved if the distribution of the prepos-

terior mean is approximated using moment matching with an alternative distribution that is

closer to that of the preposterior mean. In fact, we suggest that the prior distribution for the

net benefit is similar enough to the true distribution of the preposterior mean to give a good

approximation for the EVSI, specifically for larger sample sizes N. This is because, while a

specific future sample would give additional information, the preposterior analysis (before the

data are collected) cannot give any information in addition to that contained in the prior. At
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this point, it is worth reiterating that the prior is normally a posterior distribution conditional on

data and is, therefore, more likely to contain useful information about the parameters and the

net benefits.

In this sense, the unknown distribution of the preposterior mean net benefit p(µX
t ) is approx-

imated by a distribution with the correct expectation and variance but all other distributional

properties such as the skewness are determined from the prior p(NBθ
t ). This idea can be

generalised to situations where the sample X is dependent on a subset φ of the underlying

model parameters θ (see §3.4.3) and although we acknowledge difficulties in some specific

cases (§3.5.1), it is successful in many settings (§3.5.3).

3.3.2.1 Linear transformation to moment match

Practically, to “moment match” with the prior, the distribution of the preposterior mean is estim-

ated by a shifted and rescaled version of the prior. This implies that a linear transformation of

NBθ
t must be found such that a NBθ

t + b has the same mean and variance as the distribution

of the preposterior mean:

Eθ

[
a NBθ

t + b
]
= Eθ

[
µX

t
]
⇒ aEθ

[
NBθ

t

]
+ b = Eθ

[
NBθ

t

]
Varθ[a NBθ

t + b] = Var[µX
t ]⇒ a2Varθ[NBθ

t ] = σ2
X ,

where σ2
X is the variance of the preposterior mean distribution that can be written as a function

of the prior variance and the expected posterior variance. Solving for a and b yields

a =

√
VarX

[
µX

t
]

Varθ

[
NBθ

t
] = σX√

Varθ

[
NBθ

t
] and b = Eθ

[
NBθ

t

]
(1− a), (20)

which depend on the prior expectation, prior variance and expected posterior variance for the

net benefit.

Interestingly, these constants allow for a relatively simple interpretation of the approximation

of the density of the preposterior mean. The constant a can be thought of as the proportion

of the variance in NBθ
t that is explained by the future sample X. This means that the more

closely the sample X reflects the underlying θ values, the higher the value of a.

The constant b in (20), however, is the prior (and preposterior) mean weighted by one minus

this explained variance. This weight is directly related to how closely the sample reflects the

underlying values of θ. Thus, the density of the preposterior mean is estimated as a convex

combination of the prior for the net benefit and the mean of the net benefit.

As the sample size in the data collection exercise increases, then the sample X (or some

summary measure of X) reflects the underlying value of θ more closely. In turn, this implies

that the density of the preposterior mean reflects the prior for the net benefit more and more

closely. This property is required for any distribution to accurately estimate the distribution of

the preposterior mean, as seen in Figure 9.
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Given the linear transformation in (20), it is possible to write down our approximation for the

density of the preposterior mean directly as a function of the density of the prior p(NBθ
t )

p(µX
t ) ≈

1
a

p
(

µX
t − b

a

)
.

Note that this density does not approximate the function µX
t itself but the density p(µX

t ).

As samples from the prior of the net benefit are available in the form of PSA simulations,

approximating the density of the preposterior mean is simply a matter of estimating the con-

stants a and b. However, as the prior mean and variance can be calculated from the available

prior samples, the approximation of these two constants reduces to estimating the expected

variance of the preposterior mean (§3.4). Additionally, note that these formulæ are simply

based on means and variances and are therefore very simple to calculate, while the proposed

transformation of the prior is also very simple.

3.3.2.2 Why does the moment matching estimation work?

Before considering the estimation method for the variance of the preposterior mean, we

provide some justification for this moment matching method. To begin, consider two special

cases; at one extreme, assume that X is independent of the underlying model parameters:

p(X | θ) = p(X). Evidently, this setting would never occur as decision makers only consider

data collection that would aid the decision making process. Nevertheless, if the sample is

independent of the model parameters then the distribution of the preposterior mean is a point

mass at the prior mean

Eθ|X
[
NBθ

t

]
= Eθ

[
NBθ

t

]
,

by the condition of independence.

Using the definition for a and b from (20), note that

a =

√√√√Var
[
Eθ|X

[
NBθ

t
]]

Varθ

[
NBθ

t
] = 0

and

b = Eθ

[
NBθ

t

]
(1− a) = Eθ

[
NBθ

t

]
,

which means that the approximation for the density of the preposterior mean is also equal to

the prior mean and therefore exact for all model structures when the sample and the model

parameters are independent. While, practically, this is a relatively unimportant result, it does

indicate that our approximation is roughly accurate when the variance of the preposterior

mean is small.

At the other end of the scale, it is possible to show that our approximation using mo-

ment matching is exact when the sample is deterministically linked to the model parameters,

i.e. X = h(θ) for some h(·). In this setting, the conditional mean for the net benefit is equal to

the known-distribution net benefit since, if the value for X is known, then the exact NBθ
t value
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is also known. In a similar manner to above, it can be shown that a = 1 and b = 0 so the

approximation for the density of the preposterior mean is equal to NBθ
t which, again, is the

exact distribution for the preposterior mean.

Therefore, as the variance of the preposterior mean increases, the approximation becomes

exact. This has a practical implication since, provided the posterior is consistent, this ap-

proximation is accurate for large sample sizes. This is because, as the sample size N in-

creases, the distribution of the preposterior mean reflects the prior more closely (Figure 9) as

the sample contains more information about the underlying values for θ.

To extend these ideas, this approximation is accurate for moderate N when the posterior

mean net benefit is a weighted average between the prior mean and a data summary

Eθ|X
[
NBθ

t

]
= c Eθ

[
NBθ

t

]
+ d g(X),

where c and d are constants and g(·) is an arbitrarily complex function of the data which must

have a similar density to NBθ
t .

For all conjugate settings in the exponential family, the posterior mean can be written as

weighted average of the prior mean and a data summary [39]. Therefore, it is sufficient to con-

sider whether the prior predictive distribution of the data summary has a similar distribution to

the prior. In the simplest setting, it is possible to demonstrate that this is true in the normal-

normal setting, as seen in §3.2.2.2, and therefore, our approximation will be accurate when

the prior for the net benefit is approximately normal, coupled with an approximately normal dis-

tribution for g(X). In §3.5.3, we demonstrate that the approximation can give biased estimates

in non-normal settings. However, the bias is minimal for realistic sample sizes and decreases

further as the sample size N increases since the preposterior distribution approaches the prior

and the variance of the preposterior mean tends to the prior variance.

3.4 A P P R OX I M AT I N G T H E P R E P O S T E R I O R M E A N D I S T R I B U T I O N B Y S I M U L AT I O N

As previously discussed, using the moment matching methodology reduces approximating the

distribution of the preposterior mean to estimating the constants a and b from §3.3.2, under

the assumption (usually true, in the context of health economic evaluation) that simulations

from the distribution for NBθ
t under current information are available. These constants are

based on the mean and variance of the prior for the net benefit (i.e. prior to the future sample

X), and the expected posterior variance over all possible samples X. Therefore, the following

section is concerned with estimating the expected posterior variance using a small number

of posterior samples. This reduces the number of posterior samples needed compared to

the nested Monte Carlo simulation and therefore reduces the computational time required to

approximate the distribution of the preposterior mean.
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3.4.1 Estimating the variance of the preposterior mean

To begin, it may seem that estimating the expected posterior variance over different possible

samples of X by Monte Carlo simulation would not save computational time compared to

estimating the distribution of the preposterior mean by finding the posterior mean for different

samples. However, in general, the posterior variance is relatively stable implying that the

posterior variance changes relatively little across the different future samples X compared

to the posterior mean. This stability is most extreme in the normal-normal conjugate setting

where the posterior variance is independent of the posterior mean and dependent simply on

the variance of the sample X, not its location. Therefore, the posterior variance is the same

for each future sample X for a fixed sample size N, implying that only one posterior sample

is required to estimate the expected posterior variance which is then used to estimate the

constant b (20).

With substantial departures from normality, the posterior variance is no longer independent

of the location of the samples, but, as shown in §3.6, a small number of posterior samples

(around 20-50) can be used to estimate the expected posterior variance, even in highly non-

normal settings. This is because quadrature can be employed to reduce the number of hypo-

thetical posterior variance estimates that are needed for this estimation.

Specifically, quadrature is employed to calculate

EX

[
Varθ|X

[
NBθ

t

]]
= Eθ

[
EX|θ

[
Varθ|X

[
NBθ

t

]]]
,

where the two outer expectations on the RHS allow us to take an expectation over the prior

predictive distribution without direct sampling. We use quadrature to estimate the outer ex-

pectation with respect to θ and Monte Carlo simulation across the different quadrature points

for the inner expectation with respect to X | θ.

In most data collection exercises, X will only be directly conditional on a small number of

parameters as in general researchers are only directly interested in 1 or 2 parameters when

designing a trial. Therefore, the outer expectation, with respect to θ above, will typically be

over a uni- or bi-variate vector, in which case quadrature is simple to implement. In §3.4.3, we

further the discussion of situations where the sample is only dependent on a sub set of the

model parameters. More broadly, it is possible to sample from the prior-predictive distribution

of the data although it is then more challenging to determine how to implement quadrature in

this setting §4.4.2.

In general, we suggest that each of the parameters that are directly informed by X should

be reordered so they are in ascending order. The q
Q+1

th, for q = 1, . . . , Q values in these

reordered lists should then be selected, giving the sample quantiles for each of the parameters

updated by X. These sample quantiles are used to give good coverage over all possible

values of θ. Each future sample X is simulated conditional the sample quantiles for each of

the elements in φ. These samples are then used to update the posterior and calculate the

variance. As MC simulations are used to estimate the inner expectation, we recommend in

excess of 30 simulations to avoid the dependence on specific samples. Notice here that there
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is a clear trade-off between accuracy of the estimate for the variance of the preposterior mean

and the computational time required to obtain this estimate, we return to this consideration

in §3.6. The advantage of this method is that good coverage is achieved with relatively low

computational cost compared to standard MC simulation. §3.8.2 discusses a brief extension

to this method to ensure greater coverage.

3.4.2 Calculating the EVSI for a specific set of treatment options

Thus far, we demonstrated how to estimate the distribution of the preposterior mean for the

net benefit. However, to calculate the EVSI, we need to compute the joint distribution of the

preposterior means across the different treatments to find the dominant treatment. In general,

this requires the estimation of the posterior variance-covariance matrix for the net benefits for

the different treatments.

While this adds little theoretical complexity, this EVSI estimation method is more stable if

we work directly with the incremental net benefit (INB); defined as the difference between two

treatment options, e.g. INBθ
t =NBθ

t−NBθ
0, t = 1, . . . , T. In dual decision settings (i.e. T = 1),

the optimal treatment is found by comparing INBθ
1 with 0; if INBθ > 0 then treatment 1 (t = 1)

is optimal and if it is negative t = 0 is optimal. The distribution of the preposterior mean INBθ
1

is then estimated using moment matching, and the EVSI is calculated using

EX

[
max

{
0, Eθ|X

[
INBθ

1

]}]
−max

{
0, Eθ

[
INBθ

1

]}
,

where µX = Eθ|X
[
INBθ

1
]

is only based on scalar mean and variance values rather than a

mean vector and a variance-covariance matrix.

When more than two options are under consideration (multi-decision setting), it is also

preferable to work with the INB as it reduces the size of the variance-covariance matrix, i.e. the

EVSI can be calculated based on the variance-covariance matrix for the distribution of INBθ
1

and INBθ
2 rather than NBθ

0, NBθ
1 and NBθ

2. This reduces the number of parameters that need

to be estimated as there are only 3 unique elements in the variance-covariance matrix rather

than 6.

3.4.3 Nuisance Parameters

In realistic health economic models, it is very unlikely that the proposed data collection exer-

cise will directly inform all the model parameters θ. For example, a clinical trial may only give

information about the drug effectiveness and not the societal costs of the disease. In fact, the

future study should be designed to target only those parameters that have value, as shown

by the EVPPI analysis. Therefore, we will be considering studies that target uncertainty in a

subset of the underlying model parameters φ ⊂ θ.

In general, there is no guarantee that the shape of the prior distribution for INBθ
1 conditional

on all the model parameters θ will be the same as the distribution of INBθ
1 conditional on φ.
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To demonstrate the phenomenon, we introduce a simple two parameter model: φ ∼ Be(1, 4)

and ψ ∼ N(−0.5, 1) where NBθ
0 = 10 000ψ − 4 000; NBθ

1 = 10 000φ − 6 500; and INBθ
1 =

10 000(φ− ψ)− 2 500.

D
en

si
ty

−40000 0 20000 40000 60000

0e
+

00
1e

−
05

2e
−

05
3e

−
05

D
en

si
ty

2000 4000 6000 8000 10000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

Figure 10: The distribution of the incremental net benefit conditional on both the model para-
meters θ (LHS) and conditional on the parameter of interest φ (RHS) for the simple
two-parameter model.

Figure 10 (LHS) shows the prior for INBθ
1 which has a similar shape to a normal distribution

— particularly in the tails. However, as INBθ
1 is linear in φ, the distribution of INBθ

1 conditional

on φ would be a shifted and scaled Beta distribution which has a very different shape, as seen

in Figure 10 (RHS). Therefore, if the prior for INBθ
1 was used to approximate the distribution

of the preposterior mean when X only updates information about φ, the mean and variance

would be correct but the shape would be approximately normal which would lead to inaccurate

estimates for the EVSI.

To identify a more appropriate shape for the distribution of the preposterior mean, the un-

certainty due to the nuisance parameters ψ should be marginalised out. This means that the

nuisance parameters do not impact the shape of the approximate distribution of the prepos-

terior mean: ∫
Ψ

INB(φ, ψ)p(φ, ψ)dψ = Eψ|φ[INBθ
t ] = INBφ

t . (21)

Note, however, that this marginalisation is exactly the calculation required to estimate the

EVPPI and should therefore already be available when trying to calculate the EVSI [117].

However, if these values are not available then the methods in Chapter 2 can be used to

efficiently marginalise out uncertainty due to φ.
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Note that, to rescale the sample of the INBφ
t , rather than INBθ

t , the constant a from equation

(20) becomes:

a =
σ√

VarφINBφ
t

,

where σ, the standard deviation of the preposterior mean, must still be calculated as a function

of the variance of INBθ
t — not the variance of INBφ

t — and the mean posterior variance, as

outlined in §3.4.1.

3.4.4 The Moment Matching algorithm for EVSI estimation

Finally, to clarify the Moment Matching method, we briefly present the algorithm in the dual-

decision setting. The extension to multi-decision is trivial but slightly complicates the notation

and so is revisited in §4.4.3.

1. Obtain the PSA simulations θs and INBθs
1 for s = 1, . . . , S.

2. From these simulations, estimate the mean and variance of INBθ
1, denoted µ and σ2

respectively.

3. Determine the parameter(s) φ that will be updated by proposed data collection exercise.

4. Estimate the INBφs
1 , the expectation of INBθ

1 conditional on φs only, for s = 1, . . . , S, and

its variance σ2
φ.

5. Find Q quantiles of the PSA simulations separately for each element of φ. We denote

the vector that contains the q-th quantile for each element of φ, φq for q = 1, . . . , Q.

6. For each φq, sample a potential future dataset Xq from p(X | φq).

7. For each future dataset Xq, update the posterior distribution p(θ | Xq) and calculate

INBθ
1. From this, calculate the variance of INBθ

1, denoted σ2
q .

8. Estimate the variance of µX
1 with the following formula

σ2
X ≈ σ2 − 1

Q

Q

∑
q=1

σ2
q .

9. Rescale INBφs
1 for s = 1, . . . , S:

INB∗1,s =
INBφs

1 − µ

σφ
σX + µ.

10. Estimate the EVSI using INB∗1,s:

EVSI ≈ 1
S

S

∑
s=1

max
{

0, INB∗1,s
}
−max {0, µ}
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3.5 E X A M P L E S F O R T H E E V S I E S T I M AT I O N P R O C E D U R E

To test this approximation for the distribution of the preposterior mean, we now estimate the

EVSI in several different examples. This section begins with two “toy” examples that exploit

conjugacy to find both analytic results and computationally efficient algorithms to calculate

both the true distribution for the preposterior mean and the true EVSI. These examples are

used to explore some difficulties associated with estimating the EVSI using this methodology

and demonstrate situations when it is suitable. Firstly, the Beta-Binomial example from §3.2.2

is extended to demonstrate the difficulties associated with using a continuous approximation

for discrete samples. Exponential-Gamma conjugacy is then exploited to demonstrate this

methodology where the data summary does not have the same distribution as the prior.

Following this, a more realistic health economic model is presented to explore the full cap-

abilities of this methodology. This is based on a decision tree model developed in [1] and

explores the EVSI estimation procedure in the presence of nuisance parameters φ. The new

methodology presented here is also contrasted with EVSI estimation methods based on suffi-

cient statistics [112] and MC simulation.

Finally, we investigate the variance estimation procedure by considering the performance

of the estimator of the variance of the preposterior mean in a highly non-normal setting. We

also use a chemotherapy example [4] to explore the optimal way to choose Q — the number

of quadrature points for the variance estimation.

3.5.1 Discrete Samples with Beta-Binomial Conjugacy

Revisiting the first example presented in §3.2.2, the parameter θ is modelled using a vague

Beta prior θ ∼ Beta(1, 1) and the data have a binomial distribution X | θ ∼ Bin(N, θ). The

two net benefit functions are then NBθ
0 = 0 and NBθ

1 = kθ − c, so INBθ
1 = kθ − c.

In this setting, the approximation of the distribution of the preposterior mean could be poor,

as the data collection exercise is discrete, implying that the true distribution of the preposterior

mean is also discrete, while the prior for INBθ
1 is continuous. This phenomenon can be seen

most clearly when the binomial sample size N = 1 and there are two equally likely possible

samples, X = 0 and X = 1. This implies that there are two equally likely possible preposterior

means; µ0
1 = k

3 − c or µ1
1 = 2k

3 − c. Clearly, this distribution will never be well approximated

by a shifted and rescaled beta distribution.

To investigate when such a continuous approximation is suitably accurate, we estimate the

EVSI for different possible sample sizes N. Due to the conjugate structure, it is possible

to calculate both the EVSI and the variance of the preposterior mean analytically. The true
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variance of the preposterior mean is then used to calculate a and b from §3.3.2. These are

then used to approximate the EVSI by shifting and rescaling the prior for the net benefit:

EVSI ≈ 1
10 000

10 000

∑
s=1

max
{

0, a INBθs
1 + b

}
,

where θs is the s-th simulated value from the prior for θ (in this case, we use a simulation size

of 10 000).

While the variance of the preposterior mean is available analytically, the estimator for the

EVSI is still subject to variability due to the specific prior simulation of θ. Therefore, 10 000

different simulations of size 10 000 were taken from the prior for θ and used to calculate the

EVSI with the moment matching method to find the sampling distribution of the EVSI estim-

ator. This distribution quantifies the uncertainty in the EVSI estimate that arises from using

simulation to estimate the distribution of INB1 and using moment matching to estimate µX
1 ,

as the variance is estimated analytically, this distribution excludes uncertainty in the variance

estimation procedure. Therefore, if moment matching is accurate, these distributions should

be centred on the true analytic value for the EVSI with little variance. This uncertainty would

be difficult to estimate in practice.
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Figure 11: The distribution of the EVSI estimator over 10 000 different simulations from the
prior of θ for 4 different sample sizes for X for the Beta-Binomial conjugate model.
The red line represents the analytical value of the EVSI.
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Figure 11 shows the sampling distribution of the EVSI estimator for different sample sizes

for X, with a red line marking the sample specific EVSI for each sample size N. The top LHS

shows that the EVSI estimator for N = 1 has a significant downward bias as the sampling dis-

tribution does not include the true EVSI value of 1667. This clearly indicates that the weighted

prior distribution is not a suitable approximation for the distribution of the preposterior mean in

this setting, as expected. However, as the sample size increases, the bias decreases and for

a sample size of only 10 it is negligible, as the distribution of the EVSI is centred at the true

value.

This analysis indicates that even if the distribution of the preposterior mean is discrete, it can

be well approximated when the sample size for X is sufficiently large, > 10 in this example. In

general, if the estimation of the EVSI is the primary interest, then a smaller sample size may

be permitted, as we rarely require that the EVSI is estimated to a high degree of accuracy.

This is because the EVSI is compared with trial costs which are rarely known with certainty.

Additionally, the EVSI is based on incorrect model assumptions meaning that even if the EVSI

is highly accurate given the model, it will be approximate when applied in practice.

3.5.2 Non-linear mean function with Exponential-Gamma conjugacy

We now revisit the second example in §3.2.2 where a Gamma prior is assumed for the para-

meter of interest θ ∼ Gamma(α, β), the data collection exercise is assumed to be N inde-

pendent observations from an exponential distribution Xj ∼ Exp(θ), j = 1, . . . , N and the

two net benefit functions are:

NBθ
0 = c0 and NBθ

1 = kθ − c1.

Throughout §3.5.2, we present the results for α = 5, β = 1, k = 200 and c0 = 900 and

c1 = 100 as in Figure 9.

Using Gamma-Exponential conjugacy, it is trivial to show that the preposterior mean is equal

to

µX
1 = Eθ|X

[
INBθ

1

]
= k

α + N
β + ∑N

i=1 Xi
− c1 − c0,

which means that both the variance of the preposterior mean and the EVSI can be found

analytically, as for the previous example. Therefore, any difficulties in estimating the EVSI are

because the weighted prior distribution is not a suitable approximation to the distribution of

the preposterior mean. As this is a conjugate model, this misspecification is because the data

summary does not have the same distribution as the prior.

Figure 12 shows the sampling distribution of the EVSI values, over different prior samples,

for different values of N. The uncertainty represented in this sampling distribution is the same

as for the Beta-Binomial example §3.5.1. In this example, moment matching with the prior

gives a biased EVSI estimate for small samples. However, this bias is at most 4% of the

total EVSI value, meaning that it can still be used, as the estimate is sufficiently accurate for

decision making. It is recommended, however, to remember that the EVSI estimate is slightly
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Figure 12: The distribution of the EVSI estimator over 10 000 different simulations from the
prior of θ for 4 different samples sizes for X using the Exponential-Gamma conjug-
ate model. The red line represents the analytic value of the EVSI.

biased for small sample sizes and therefore care should be taken interpreting the EVSI for

these small samples. As N increases, this bias becomes negligible as the distribution of the

preposterior mean tends exactly to the prior as the sample size increases, see Figure 9.

3.5.3 Case Study: Ades et al. Decision Tree Model

To demonstrate the effectiveness of our methodology in a more practical scenario, we use a

decision tree model developed in Ades et al. [1]. This model has two treatment options, a

standard of care and a new treatment, aimed at avoiding a critical event. This critical event

leads to a reduction in QALYs for the remainder of the patient’s life. The new treatment reduces

the probability of the critical event but the patient may also experience side effects which give a

short term reduction in QALYs along with a direct cost of additional treatment. The model has

11 parameters, of which 4 are subject to uncertainty which is then modelled using 4 mutually

independent distributions; a complete model description is given in Ades et al. [1] or Strong

et al. [112].
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For this case study, we consider four different data collection exercises, the first three have

been tackled by Ades et al. and the fourth investigates the moment matching method when φ

is not unidimensional;

1. To reduce uncertainty in the probability of side effects for the new treatment φ1, 60

patients are given the new treatment and the number who suffer from side effects is

recorded.

2. To reduce uncertainty in the quality of life after the critical event φ2, the quality of life for

100 patients who experienced the event is recorded.

3. To reduce uncertainty in the odds ratio of the effectiveness of the two treatments φ3, a

randomised control trial with 200 patients on each arm is undertaken.

4. To reduce uncertainty in the probability of the critical events in both treatment arms

φC
3 , φT

3 , the same randomised control trial is undertaken but the analysis informs these

two probabilities directly.

For a full description of the distributional assumptions for these studies, particularly the differ-

ence between study 3 and study 4, see Strong et al. [112].

3.5.3.1 Computations for the Ades et al. Model

To calculate the EVSI using the moment matching methodology, 1 000 000 simulations were

taken for the 4 stochastic model parameters. These are then combined with the other seven

parameters to calculate 1 000 000 simulations for INBθ
1 under current information. These sim-

ulations for INBθ
1 were used to find INBφ

1 , the fitted INBθ
1, using GAM regression [55] obtained

with the gam function from the mgcv package [126] in R. The simulations were also used to find

the mean and variance of INBθ
1.

To estimate the preposterior variance, the expected posterior variance was estimated using

MCMC procedures with Q, the number of quadrature points, equal to 30. This was achieved

using JAGS through R [92] with 10 000 simulations from each posterior distribution and 1 000

simulations used as burn-in. This means that in total 1 330 000 simulations were used to

estimate the EVSI in this example, although note that the PSA simulations were reused for

each EVSI calculation. Fewer simulations could be used but as this example has a small

computational cost it was possible to use this number of simulations to improve the accuracy

of the methods. The computational time required to estimate the posterior variance with this

number of simulations was between 3.8-6.1 seconds.

To assess the accuracy of our method, the expected posterior variance was estimated us-

ing the above procedure 1 000 times for each trial. Each of these estimates for the expected

posterior variance was then used to approximate the EVSI using moment matching to give a

distribution for the EVSI estimate obtained using moment matching. Therefore, the sampling

distributions given in §3.5.3.2 represent uncertainty in the variance estimation procedure but

do not take into account MC error arising from the prior simulations. This represents uncer-

tainty in Q but not in the size of the PSA simulations S. In a standard analysis, our method
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would produce a point estimate for the EVSI rather than these distributions and it would be

impossible for a user to access this distribution.

To determine the accuracy of our method, we compared with the computationally intensive

two-step nested Monte Carlo procedure [12] and the Strong et al. method [112] based on

sufficient statistics and non-parametric regression which is an accurate and efficient estima-

tion method for models where the data can be summarised using a low dimensional sufficient

statistic. For the experiments targeting φ1, φ2 and φ3, the comparator values are taken dir-

ectly from the Strong et al. paper where the estimates are based on 1010 and 106 simulations

respectively. For the two parameter EVSI estimate, the results for these two methods were

obtained using the same number of simulations. The computational times to obtain these

estimates were 8.4 seconds for the Strong et al. method and 207 595 seconds (approximately

2.4 days) for the nested Monte Carlo method.

3.5.3.2 EVSI estimates for the Ades et al. Model

Figure 13 plots the sampling distribution of the EVSI estimate, over the different estimates

of the expected posterior variance, obtained using our moment matching method for the four

alternative study designs. The solid line gives the value of the estimate obtained by nested

Monte Carlo (which can be considered as the “truth”), the dashed line is the estimate obtained

using the Strong et al. method and the dotted line is the average moment matching estimate.

Evidently, the moment matching method is in line with these two alternative estimation meth-

ods for the studies considered, although the two-parameter estimation has a slight upward

bias. Nonetheless, the true EVSI value is well within the 90% interval, represented by the

solid black line on the axis in Figure 13.

Figure 13 also demonstrates that the EVSI estimate calculated using moment matching is

less accurate for experiments with smaller EVSI — as the EVSI gets smaller, the 90% inter-

vals get wider. This is because the estimate is based on the difference between the prior

variance and the expected posterior variance. When the EVSI is small then this difference is

also small and therefore the posterior and prior variance needs to be estimated with greater

precision because the difference can be greatly affected by the Monte Carlo error in the vari-

ance estimation. It is important to note that the accuracy demonstrated in Figure 13 depends

on accurately estimating the prior variance. Therefore, our moment matching method should

not be used if the initial PSA simulation size is very small.

3.6 C A L C U L AT I N G T H E VA R I A N C E O F T H E P R E P O S T E R I O R M E A N

As stated in §3.4.1, the estimation for the variance of the preposterior mean is highly effective

when the prior for the INBθ
t is roughly normal. Therefore, to test this procedure we assume a

highly non-normal prior for the INBθ
t . Counterintuitively, it is possible to exploit normal-normal

conjugacy to carry out this investigation by setting INBθ
1 = θ2 − 5 where θ is normal a priori

with mean 0 and precision 0.2: θ ∼ N (0, 5). The data collection is then assumed to be 10

independent observations Xj ∼ N(θ, 1) for j = 1, . . . , 10. Conjugacy can now be used to
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Figure 13: The “sampling distribution” of the EVSI conditional on the distribution over the dif-
ferent estimates for the variance of the preposterior mean for φ1, φ2 and φ3 for the
Ades et al. example [1]. The solid red line represents the EVSI calculated using
Monte Carlo methods and 1010 simulations. The dashed blue line represents the
EVSI estimate obtained using the Strong et al. method with 106 simulations. The
dotted brown line represents the average EVSI estimate obtained using moment
matching and the solid black horizontal line represents the 90% interval for this es-
timation method. The comparator methods (MC and Strong et al.) are taken from
Strong et al. [112] for the first three graphics.

calculate a value for the posterior for θ efficiently, while inducing a highly non-normal prior for

the INBθ
1.

Using conjugacy, it is possible to estimate both the EVSI and the variance of the preposterior

mean cheaply using Monte Carlo methods [1]. Therefore, using 10 000 samples from the prior

for the INBθ
1, the EVSI is estimated as 2.00 and the variance of the preposterior mean is

35.20. As these estimates are obtained using simulation methods, there is some uncertainty

surrounding these estimates of the “true” variance of the preposterior mean.

The estimation method for the variance of the preposterior mean requires Q quadrature

points spaced throughout the domain of θ. Practically these are taken as the Q quantiles for

θ, i.e. the S q
Q+1–th θ values in an ordered sample, with q = 1, . . . , Q.

Figure 14 shows the average estimate, over 500 simulations, for the preposterior variance

for increasing values of Q up to Q = 100 — this means that 1 000 simulations were taken from
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Figure 14: The estimate of the variance of the preposterior mean for increasing numbers of
quadrature points. The red line gives the variance of the preposterior mean calcu-
lated using all the samples in the prior for θ. The dashed lines are the standard
errors for the estimates of the variance of the preposterior mean.

100 different posterior distributions 500 times. The red line in Figure 14 shows the estimated

value of the variance of the preposterior distribution calculated using the method from [1]. The

dashed lines indicate plus or minus one standard deviation from the mean estimate of the

variance of the preposterior distribution for the different sample sizes. The standard deviation,

in this setting, represents the uncertainty from limited Q and limited posterior samples. It does

not include uncertainty due to the MC estimation of the variance of the prior. Again, it would

not be possible to calculate this standard error using one estimation method.

In general, our estimation method for the variance of the preposterior mean produces biased

estimates for small numbers of quadrature points. However, once the number of quadrature

points exceeds 30, the true variance is within one standard deviation of the average estimate of

the variance of the preposterior mean. The standard deviation of this estimate also decreases

as the number of quadrature points increases.

Table 6 shows the EVSI estimate and its bias when we use the estimated variance of the

preposterior mean given in Figure 14 and our moment matching methodology. Notice that

while all the EVSI values are over-estimated the percentage bias drops below 0.02 for more

than 30 quadrature points. Therefore, it seems that a relatively small number of quadrature

points are reasonable for estimating the variance of the preposterior mean, even in signific-

antly non-normal settings.

Although Table 6 demonstrates that the variance estimate will become more accurate as

the number of quadrature points increases, using more quadrature points does involve a

greater computational burden. Thus, estimating the EVSI using this method requires a trade-

off between computational time and accuracy. In this sense, we need to determine an optimal

value of Q that allows us to trade off these two considerations. To investigate potential values
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Number of simulations 1 2 3 5 8 10 ∞
Estimate of EVSI 2.30 2.24 2.20 2.16 2.12 2.10 2.00
Percentage Bias 0.15 0.12 0.10 0.08 0.06 0.05 0.00

Number of simulations 20 30 40 50 75 100 ∞
Estimate of EVSI 2.06 2.05 2.03 2.02 2.01 2.01 2.00
Percentage Bias 0.03 0.02 0.02 0.01 0.01 0.01 0.00

Table 6: The EVSI estimate for different numbers of posterior samples using the moment
matching method.

for Q, a simple, but relatively realistic health economic model for a new chemotherapy drug is

used.

3.6.1 A new chemotherapy drug

This model assesses the cost-effectiveness of a new chemotherapy drug for the treatment of

cancer against the standard of care [4]. After the treatments are administered, the patients

may experience haematological (blood related) side effects. If these side effects occur then

the patient either requires hospital admission or ambulatory care, depending on the severity

of the side effects. The new drug is assumed to reduce the likelihood of having side effects

and therefore reduces the cost of treating the side effects while increasing the quality of life

for the patients.

There are 10 model inputs; cH and cA, the cost of hospital and ambulatory care respectively;

At, Ht and SEt for t = 0, 1, the number of patients requiring hospital care, ambulatory care or

experiencing side effects for the two different treatments; πt, the probability of experiencing

side effects for the two treatment options and γ, the probability of requiring hospital care once

side effects have been experienced. The effectiveness measure in this is example is taken to

be the total number of people who do not experience side effects and the costs are equal to

the total cost of treatment the drug related side-effects. Finally, to compute the VoI measures,

the willingness-to-pay parameter, representing the amount of money the payer is willing to pay

to avoid one person being affected by side effects, is taken as £6 000.

Before calculating the EVSI, we perform a full VoI analysis [117] to determine whether the

decision uncertainty is sufficiently high to warrant additional research. Firstly, the EVPI is

calculated as £104 549 which is sufficiently high that a future study to reduce decision uncer-

tainty would likely have value. Furthermore, to determine where to direct future research, we

consider the single-parameter EVPPI for all the underlying model parameters, given in Table

7. This analysis indicates that the parameter driving decision uncertainty is the probability of

experiencing side effects on the treatment arm, π1. Therefore, a study is designed to learn

more information about π1.
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Parameter A0 A1 H0 H1 SE0

EVPPI 16350 30320 30740 18480 35750

SE1 ca ch π0 π1 γ

35250 0 4780 22930 24660 6850

Table 7: The single parameter EVPPI values for all the parameters in the Chemotherapy
model.

3.6.1.1 A trial to reduce uncertainty in π1

In this setting, the trial involves giving the new Chemotherapy drug to 150 patients and meas-

uring the number of patients who experience blood related side effects. For simplicity, we as-

sume complete compliance with the treatment and full follow-up. However, it would be easy to

make these assumptions more realistic and generate data with some elements of missingness

and then use these datasets to find the posterior. Under these assumptions, the possible fu-

ture samples are modelled using a binomial distribution conditional on π1, X ∼ Bin(150, π1).

3.6.2 Determining the optimal number of quadrature points

In this example, the posterior for the model parameters is found again using MCMC simulation

and therefore, to investigate the best value for Q, the total number of posterior simulations

was fixed at 500 000. This fixes the computation time required to estimate the EVSI across

the different values of Q. It also implies that, as Q increases, the number of samples from the

posterior p(θ | X) decreases. The calculation time for one EVSI estimate is between 17 and

32 seconds on a i7 intel core processor with 32GB of RAM using R 3.2.1.

Figure 15 presents the sampling distribution of the EVSI estimate with Q between 20 and

100. Again, the EVSI estimate varies because different posterior samples give different values

for the posterior variance and therefore varying estimates for the EVSI. Ideally, the sampling

distribution of the EVSI would be centered on the true EVSI value, indicated by a black line,

with little variance. These sampling distributions represent uncertainty in the variance estima-

tion procedure but exclude uncertainty due to the specific prior sample taken to estimate the

prior variance and the sample for moment matching.

Figure 15 demonstrates that a larger Q produces a more accurate EVSI estimate as the

distribution is closer to the true EVSI value. However, the computational time does increase

slightly are Q increases, even for a constant number of posterior simulations, because the

MCMC analysis requires burn-in and initialisation. However, this analysis seems to recom-

mend that Q should be taken larger than 30 to give a more accurate estimate of the EVSI.

At this point, we briefly investigate whether Q should simply be taken as large as possible.

In this case, the total number of posterior simulations is reduced to 5 000. This restricts the

number of posterior simulations used to calculate the posterior variance to between 250 and

50 simulations. Figure 16 demonstrates that the sampling distribution of the EVSI estimates

remains constant for Q > 50. This implies that increasing Q does not improve accuracy when



3.7 S U M M A RY O F T H E B A S I C M O M E N T M AT C H I N G M E T H O D 91

Q = 20

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
5e

−
05

Q = 30

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
6e

−
05

Q = 40

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
6e

−
05

Q = 50

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
6e

−
05

Q = 60

EVSI
D

en
si

ty

0 10000 20000 30000 400000e
+

00
6e

−
05

Q = 70

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
6e

−
05

Q = 80

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
6e

−
05

Q = 90

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
6e

−
05

Q = 100

EVSI

D
en

si
ty

0 10000 20000 30000 400000e
+

00
8e

−
05

Figure 15: The sampling distribution of the EVSI estimates calculated using variance estim-
ates with different numbers of quadrature points and a total of 500 000 posterior
simulations. The number of quadrature points for the variance estimate are given
in the title. The vertical line represents the MC estimate for the EVSI.

the number of posterior simulations is not sufficient to accurately represent the underlying

posterior distribution.

In light of this analysis, Q should be chosen in the following manner. Firstly, determine how

many posterior simulations are required to adequately capture the posterior distribution of θ.

Then determine, the total computational time available to estimate the EVSI. The value of Q
should then be chosen as the total computational time divided by the number of posterior

simulations needed to capture the distribution of θ. Provided Q is greater than 30 then this

method can be used to estimate the EVSI and will likely provide accurate results, conditional

on the sample size of the study being sufficiently large.

3.7 S U M M A RY O F T H E B A S I C M O M E N T M AT C H I N G M E T H O D

Thus far, we have presented an estimation method that reduces the significant computational

burden required to estimate the EVSI accurately compared to standard MC simulation. The

method is based on the PSA simulations for the model parameters and the net benefit. It

estimates the distribution of the preposterior mean using moment matching by performing a

linear transformation of the PSA simulations for the incremental net benefit. To perform this

matching, nested MC simulation is used to calculate the expected posterior variance across

different samples. Nonetheless, this reduces the required number of nested simulations from

106 to between 30− 50.
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Figure 16: The sampling distribution of the EVSI estimates calculated using variance estim-
ates with different numbers of quadrature points and a total of 5 000 posterior simu-
lations. The number of quadrature points for the variance estimate are given in the
title. The vertical line represents the MC estimate for the EVSI.

Compared to some of the recent methods for calculating the EVSI (c.f. §3.1), the use of

nested simulations implies that this method is relatively slow. However, this additional compu-

tational cost allows for a more flexible model specification as it does not require that the data

can be summarised in a low-dimensional summary statistic or that the likelihood for the data

can be expressed in closed form. It is also easy to consider realistic study designs including

missingness, unbalanced designs and complex studies investigating several underlying model

parameters.

Perhaps most importantly, the method is based solely on Bayesian updating, which typically

must be designed in order to analyse the data once the experiment has been performed.

Therefore, calculating the EVSI aids in modelling trial results as researchers can use the

procedure that has already been defined. This aligns trial design with trial analysis once the

research has been performed.

However, the use of nested simulations makes it challenging to use this methodology for

assessing a large number of different trial designs. This is because the nested simulations

must be obtained for each of the different designs, vastly increasing the number of simulations

needed to calculate the EVSI.

Therefore, we consider an extension to this EVSI calculation method that efficiently estim-

ates the EVSI across different sample sizes. This method is still based on the variance of the

posterior distribution but uses Bayesian non-linear regression to avoid sampling Q posterior

samples for each sample size and simply requires Q posterior samples in total.
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3.8 C A L C U L AT I N G T H E E V S I F O R D I F F E R E N T S A M P L E S I Z E S

To extend the EVSI estimation method so it can be used for a range of sample sizes, we

begin by considering which sample sizes should be investigated. In general, the trial itself will

define practical limits for possible sample sizes, e.g. financial or ethical constraints would give

a largest possible sample size, Nmax, and clinical restriction would imply a smallest possible

sample size, Nmin. Therefore, we consider a vector N = (N1, N2, . . . , NQ) which contains Q
sample sizes between Nmax and Nmin.

As before, we consider generating Q potential future samples from the sampling distribution

p(X | θ), or more specifically p(X | φ), but in this case, the simulation strategy should

also change with N, in the simplest setting this would involve simulating N i.i.d samples from

p(X | φ). To generate these potential samples, we consider the pair of values (φq, Nq)

and simulate one dataset for each pair. This means that we are simulating only one data

set for each sample size. These Q datasets are used to update the posterior for the model

parameters and calculate the known-distribution net benefit, which in turn is used to calculate

the posterior variance of the known-distribution incremental net benefit INBθ
t , denoted σ2

q .

However, we now use an alternative method to estimate σ2
X from σ2

q . This is because we are

now interested in estimating σ2
X(N), i.e. the variance of the expected posterior mean µX

t (N)

for different samples of size N. In a similar manner to Müller and Parmigiani [85], we use

regression methods to estimate a function f (N) = σ2
X(N), using σ2

q . The estimated values σ2
q

are generated conditional on a specific future dataset Xq, of size Nq. This dataset represents

one possible future, which is subject to variation due to random sampling and dependence

on the specific value of φq. In the standard setting, we marginalise out this dependence on

the specific φq values by taking the mean of σ2
q . However, in this extended setting, we use

regression to marginalise out this dependence across the different sample sizes Nq.

Therefore, we use the values of σ2
q , obtained by simulation, to estimate the function f (N)

using

σ2 − σ2
q = f (Nq) + εq,

where εq is an error term that captures variation in σ2
q due to using simulated datasets with

sample size Nq. To present this method, we restrict ourselves to bi-decision settings (T = 1)

so σ2
q is a scalar quantity. In multi-decision settings, σ2 and σ2

q are both matrices and therefore

f (·) must be a matrix valued function, complicating the explanation. Therefore, the multi-

decision extension of this method is discussed in §4.4.3.
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3.8.1 A Bayesian non-linear model

To estimate the variance of the preposterior mean for different sample sizes, we suggest a

suitable function f (·) and a distribution for the error, along with priors for the model parameters.

In the bi-decision setting, we define

f (N) = σ2
φ

N
N + h

, (22)

where h is a parameter to be estimated.

The functional form of f (·) reflects information available about the behaviour of the variance

of the preposterior mean. Specifically, the variance of the preposterior mean increases as the

sample sizes increases and f (·) is an increasing function. In addition to this, an infinite sample

size for X implies perfect information about the model parameters targeted by the study, and

therefore the maximum variance for the preposterior mean is σ2
φ. The function f (·), therefore,

also has an asymptote at σ2
φ. Furthermore, the functional form of f (·) is the exact relationship

between the variance of the preposterior mean and Nq in normal-normal conjugate settings

with only one underlying model parameter. So, while realistic health-economic models are

not based on normal-normal conjugate models, this function is approximately correct in some

settings.

To define the full Bayesian model, the residual variance is assumed to be normal; εq ∼
N(0, σ2

Q) for all q = 1, . . . , Q. Priors are then needed for h and σ2
Q. Throughout this section,

we use a non-central half-Cauchy prior for σQ, as suggested by Gelman [52], where the para-

meters of the Cauchy-distribution are dependent on the data. This is because the scale of the

σ2
q changes significantly across health economic models. Therefore, the prior mean for σ2

Q is

set as half the standard deviation of σ2
q and the prior variance is the standard deviation of σ2

q .

Finally, a data dependent normal prior, truncated at 0, is set for h with the mean of this normal

distribution set to Nmax
2 and its variance set as 200× Nmax, giving vague priors for h and σ2

Q.

3.8.2 Calculating the EVSI for different sample sizes

Fitting this non-linear model using the values for σ2
q requires MCMC and therefore, the pos-

terior distribution for h is estimated by simulation. These posterior simulations can then be

used to estimate a distribution for σ2
X(N), irrespective of whether N is in Nq, by calculating

f (N) = σ2
X(N) = σφ

N
N + h

,

for each posterior simulation for h. In theory, these estimates of the variance of the prepos-

terior mean of the net benefit can be used to estimate the EVSI by following steps 9 and

10 in the Moment Matching algorithm in §3.4.4. This would give a posterior sample for the

EVSI, where uncertainty in the EVSI reflects uncertainty in the estimation of the variance of

the preposterior mean.
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However, this process is computationally intensive if we have a large number of posterior

samples for σ2
N. Therefore, it is more computationally efficient to calculate the EVSI for a

small number of samples from the posterior of σ2
X(N). We advise that the posterior of σ2

X(N)

is summarised by finding credible intervals, for a small number of confidence levels. The EVSI

is then calculated for these posterior quantiles only. For example, in §3.9, the posteriors are

summarised by finding the median, the 75% and 95% central credible intervals. Note that the

quantiles found for the EVSI using this method are not the posterior quantiles for the EVSI as

the relationship between the expected posterior variance and the EVSI is highly non-linear.

Calculating the EVSI using this method only represents uncertainty due to the estimation

of h, the regression parameter. Therefore, these distributions exclude all other sources of

uncertainty for the EVSI estimation, including estimation based on a specific sample from

the prior and estimation based on specific sample from the posterior distribution of the INB.

It would be possible to get a model based estimate of the uncertainty in the EVSI estimate

due to dependence of the specific samples σ2
q by taking the predictive distribution of σ2

X(N)

directly from the Bayesian model rather than calculating it conditional on the posterior for h.

However, this estimate of the error would be incorrect if the regression model for σ2
X(N) is

poorly specified. This would also ignore error due to the specific prior sample and is unable

to estimate the bias due to using the moment matching method to estimate the EVSI.

An important practical consideration for this method is that φq and Nq should be uncorrel-

ated. This is because there is normally a relationship between σ2
N and φq. In some settings,

this can then mask/inflate the relationship between σ2
N and N. Thus far, φq has been defined

as the sample quantiles for each element of the PSA vector for φ and Nq as equally spaced

values between Nmin and Nmax. However, this specification induces an unintentional correl-

ation between φq and Nq which can bias the results severely. Therefore, it is suggested that

each element of φq is randomly reordered to avoid this correlation. Reordering the elements

separately also helps to increase the coverage of the Xq values and therefore improve the

EVSI estimation.

It is also important to note that this curve fitting method is based on regression. Therefore,

it is advisable to check the model fit for the expected posterior variance before calculating

the EVSI. In particular, the residuals should be checked for approximate normality and should

exhibit no structure, as in standard regression modelling.

3.9 E S T I M AT I N G T H I S E V S I U S I N G N O N - L I N E A R R E G R E S S I O N

We implemented this extended method using a hypothetical model [10] and compared to both

the standard MC estimator and the EVSI calculation method developed by Menzies [84]. It is

then implemented for a practical health-economic example [113] where the EVSI calculations

are again compared with the standard MC estimator. Using this final example, we consider

the cost of undertaking the trial and use the EVSI to determine the optimal trial design. This

analysis is also compared with the standard sample size calculations. Throughout this section,

the computational time to complete these analyses is considered.
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Mean Standard Deviation
Parameter t = 0 t = 0 t = 0 t = 1
Drug Cost (θ1, θ11) $10 000 $15 000 $10 $10
Probability of Hospitalisation (θ2, θ12) 0.1 0.08 0.02 0.02
Days in Hospital (θ3, θ13) 5.2 6.1 1 1
Hospital Cost per Day (θ4) $4 000 $4 000 $2 000 $2 000
Probability of Responding (θ5, θ14) 0.7 0.8 0.1 0.1
Utility Change due to Response (θ6, θ15) 0.3 0.3 0.1 0.05
Duration of Response (years) (θ7, θ16) 3 3 0.5 1
Probability of Side Effects (θ8, θ17) 0.25 0.2 0.1 0.05
Utility Change due to Side Effects (θ9, θ18) −0.1 −0.1 0.02 0.02
Duration of Side Effects (years) (θ10, θ19) 0.5 0.5 0.2 0.2

Table 8: The Parameters for the Brennan and Kharroubi example. The mean and standard
deviations for the distributions of the parameters is also given.

3.9.1 The Brennan and Kharroubi Example

The first model, developed by Brennan and Kharroubi [10] and modified by Menzies [84], has

two treatment options t = 0 and t = 1 which are both used to treat a hypothetical disease.

For each drug, a patient can respond to the treatment, experience side effects or visit hospital

for a certain length of time. A utility value is assigned to each of these possible outcomes and

costs are associated with the drugs and hospital stays.

All the parameters are assumed to be normal with the mean and standard deviation given

in Table 8. In this example, it is assumed that θ5, θ7, θ14 and θ16 are correlated with correlation

coefficient 0.6 and the parameters θ6 and θ15 are also correlated with a correlation coefficient

0.6 and independent of the other set of parameters.

The net benefit is given by subtracting the costs from the utility values multiplied by a

willingness-to-pay of k = $100 000. Therefore, the net benefit functions for the two treatments

are

NB0(θ) = k(θ5θ6θ7 + θ8θ9θ10)− (θ1 + θ2θ3θ4),

NB1(θ) = k(θ14θ15θ16 + θ17θ18θ19)− (θ11 + θ12θ13θ4).

Five alternative data collection exercises are proposed by Menzies and are also considered

in this analysis:

1. A clinical trial collecting information on the probability that a patient responds to the two

treatment options which informs parameters θ5 and θ14.

2. A study looking at the utility improvement for responding to the different treatments which

informs parameters θ6 and θ15.

3. A study investigating the duration of response to the therapy (for those who do respond),

informing parameters θ7 and θ16.

4. A study combining the first two studies, i.e. informing θ5, θ6, θ14 and θ15.
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5. A study combining all the previous studies and therefore informing θ5, θ6, θ7, θ14, θ15 and

θ16.

The likelihood for the data collection is assumed to be independent normal in all settings. The

mean of the distribution is then related to the parameter of interest and the standard deviation

of the data collection exercise informing each parameter is given in Table 9.

Data Standard Deviation
Parameter t = 0 t = 1
Probability of Responding (θ5, θ14) 0.2 0.2
Utility Change due to Response (θ6, θ15) 0.2 0.2
Duration of Response (years) (θ7, θ16) 1 2

Table 9: The assumed standard deviation for the data collection exercise targeting uncertainty
in the corresponding parameter.

3.9.1.1 Analysis for the Brennan and Kharroubi example

To estimate the EVSI for different sample sizes using our method, the known-distribution INB

is estimated using one million simulations from the parameter distributions. This implies that

the prior variance and mean for INBθ
1 is estimated using this full sample. The fitted values

conditional on φ, INBφ
1 were also found using these one million simulations for all the data

collection exercises, except exercise 5, using GAM regression §2.3. As exercise 5 has 6

underlying model parameters, GAM regression could not be used and therefore the INLA-

SPDE method (c.f. §2.8.1) was used based on 20 000 simulations.

In line with Menzies [84], sample sizes between Nmin = 5 and Nmax = 200 are considered

for each of the different exercises. Throughout the analysis, we set Q = 50 which implies

that 10 000 simulations are taken from 50 different posterior distributions to calculate the vari-

ance of the posterior INBθ
1 for 50 different sample sizes. The distribution for the EVSI is then

determined using the method described in §3.8.2.

The results determined using the EVSI estimation method proposed in this thesis are com-

pared with the conventional approach for calculating the EVSI and the method developed by

Menzies. These results are taken directly from Menzies [84] and are the most accurate estim-

ates available. The conventional approach requires one billion model evaluations per sample

size compared with 500 000 model evaluations for the Moment Matching method to estimate

the EVSI across the different sample sizes.

3.9.2 A Health Economic Model for Chronic Pain

Sullivan et al. [113] developed a cost-effectiveness model for evaluating treatment options for

chronic pain. The model has a Markov structure with 10 possible states, where each state has

an associated utility score and cost. The disease progression for chronic pain is as follows,

the treatment is administered and a patient can either experience adverse effects (AE) or not.

The patient can then withdraw from treatment, either due to the AE or otherwise. They can
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then continue to another treatment option or withdraw completely from treatment. After the

second line of treatment, they either have subsequent treatment or discontinue, these are both

assumed to be absorbing states.

In the standard model, used for this example, it is assumed that a patient can either be

offered morphine or a new innovative treatment in the first line of treatment. If they withdraw

and receive a second treatment, they are only offered oxycodone meaning the only difference

between the two treatment arms occurs when the first treatment is administered. The new

innovative treatment is more effective and reduces the probability of AE but is more expensive.

The model is built in a UK context and therefore the willingness-to-pay is taken as £20 000.

For a more in-depth presentation of all the model parameters, see [113]. The PSA distributions

are defined as gamma distributions for costs and beta distributions for probabilities and utilities.

The parameters for these distributions are chosen such that the mean of the distribution is

informed by a literature review and the standard deviation is taken as 10% of the underlying

estimate.

3.9.2.1 Analysis for the Chronic Pain Example

A full VoI analysis, as set out by Tuffaha et al. [117], is undertaken for the chronic pain model.

To begin, 100 000 simulations are taken from the prior for the model parameters. These are

the fed through the Markov model to give 100 000 simulations for INBθ
1. Calculating the EVPPI

based on these simulations indicates that the most valuable parameters are those relating to

the utility of the different health states for the first line of treatment. Specifically, the utility of not

having any AE from the treatment and withdrawing from the treatment without experiencing

AE.

In response to this, we designed an experiment to learn more information about the utility

of these two health states, which, if known with certainty, would account for about 79% of the

uncertainty in the decision. Questionnaires are a standard method for determining QALYs and

therefore, we designed an experiment to send questionnaires to N different participants. We

assume, in a simplistic manner, that a participant is interviewed if they withdrew from the first

treatment without any AE and they are questioned about both health states which they can

accurately recall. This means that the each questionnaire directly updates information about

both the key utility parameters.

It is assumed that the two responses to the questionnaire are transformed into QALYs which

are then modelled with independent beta distributions that directly informing about the two

utilities – not having AE and withdrawing without AE. The means of these beta distributions

are set as the utility of interest and the standard deviation of the beta distributions are equal to

0.3 and 0.31 respectively, taken from Ikenberg et al. [66]. We consider sample sizes between

Nmin = 10 and Nmax = 150. It is then assumed that only a proportion of the questionnaires

are returned, leading to missingness in the data.

Within this context, two different designs are considered based on an incentive study run

alongside the MINT trial [51, 71]; the questionnaire could be sent with £5 incentive to complete.

The MINT study demonstrated that sending the incentive improved response rate from 68.7%
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to 75.7% while increasing the cost from £4.64 to £9.35. The difference in cost is not equal

to the incentive because non-respondents are chased up by telephone which costs staff time

and other resources and sending the financial incentive reduces the number of chase-up calls

needed.

Therefore, we will use the EVSI to answer two key questions regarding the design of this

study; firstly, should the incentive be used? and secondly, how many questionnaires should be

sent? The EVSI is estimated for both response rates using Q = 50 with 10 000 posterior simu-

lations fed through the Markov model and used to estimate σ2
q for each q = 1, . . . , Q. The EVSI

results using the moment matching method are compared, in this model, with full MC simula-

tions for sample sizes 10, 25, 50, 100 and 150. These nested MC estimators were calculated

using 100 000 PSA simulations to generate the future samples and then 100 000 posterior

simulations for each PSA simulation. So, 1 billion simulations were used for each sample size

to estimate the EVSI using nested Monte Carlo simulations as opposed to 500 000 simulations

for our novel method.

3.10 E S T I M AT I N G T H E E V S I AC R O S S D I F F E R E N T S A M P L E S I Z E S : R E S U LT S

3.10.1 The Brennan and Kharroubi example

Figures 17, 18 and 19 show the EVSI estimates for all the five exercises for the BK example.

The solid line gives the EVSI calculated with the median of the posterior distribution of σ2
q ,

whereas the dashed line is the 75% credible interval and the dotted line the 95% credible

interval. The EVSI estimates from the two-step Monte Carlo estimator and the Menzies estim-

ator are given by the red dots and the blue crosses respectively. The two-step MC estimator

(representative of the “true” EVSI) is within the 95% credible interval for all exercises.

Figures 17, 18 and 19 demonstrate that the EVSI is estimated with more relative precision

as the EVSI estimate increases. Again, this is because, for small values of the EVSI, the dif-

ference between σ2
q and the variance of the INBθ

t is small so the estimate of the two variances

needs to be very accurate to correctly estimate the difference. However, the confidence bands

allow researchers to assess the accuracy of the EVSI estimate. If the EVSI estimate is too

variable to aid decision making, then more simulations should be undertaken. In general, extra

simulations should be gained by increasing Q, provided the number of posterior simulations

is sufficient to characterise the distribution of the posterior INB §3.6.2.

3.10.2 Chronic Pain

Figure 20 plots the economic value for both studies in the chronic pain example; the gray lines

are the economic value of the study with no incentive and the black lines are the value of the

incentive study from the moment matching method. In this setting, the economic value is the

difference between the EVSI and the cost of the study, from [51]. Clearly, the no incentive

study is economically more valuable than the incentive study. This is because the reduced
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Figure 17: The EVSI estimate with error bounds for data collection exercise 1 (top) and ex-
ercise 2 (bottom) in the BK example. These are compared with the 2-level MC
estimates (red dots) and the Menzies estimates (blue crosses).
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Figure 18: The EVSI estimate with error bounds for data collection exercise 3 (top) and ex-
ercise 4 (bottom) in the BK example. These are compared with the 2-level MC
estimates (red dots) and the Menzies estimates (blue crosses).
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Figure 19: The EVSI estimate with error bounds for data collection exercise 5 in the BK ex-
ample. These are compared with the 2-level MC estimates (red dots) and the
Menzies estimates (blue crosses).

missingness in the questionnaire responses is not economically valuable enough to warrant

the cost of the incentive. Note, however, that the dominance of the no incentive study is

uncertain for very small sample sizes as the EVSI distributions overlap.

Figure 20 also gives the Monte Carlo estimates for the economic study value; the black

crosses give the value for the no incentive study and the grey crosses for the incentive study.

Using these estimates we demonstrate that calculating the EVSI using the moment matching

method with non-linear regression in line with the nested MC simulation. This demonstrates

that, in this example, our novel EVSI calculation method is accurate despite the non-linear

and non-Gaussian Markov model structure of the health economic model.

Analysing the economic value for different sample sizes allows us to determine that the op-

timal sample size in terms of economic benefit is 16 for the incentive study and 27 for the no

incentive study. Therefore, in this example, the optimal study is a no incentive study with 27

participants. Once 27 participants have been recruited the additional information gained by

sending more questionnaires is no longer worth the additional cost of sending the question-

naire and chasing the participant for a response. In a standard sample size calculation where

we aim to half the parameter uncertainty, the required number of responses is 75 which is

clearly economically inefficient.

The total computational time to calculate the EVSI for both studies using our novel calcula-

tion method is 331 seconds or around 5 and a half minutes on a standard desktop computer
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Figure 20: The economic value of the two alternative questionnaire collection strategies for
different sample sizes in the chronic pain example. The grey curves indicate the
potential value of the study without incentives and the black curves the value of
the study with incentives estimated using the moment matching method. The black
crosses represent the no-incentive MC simulation estimates and the grey crosses
represent the same estimates for the incentive study.

with a Intel i7 Pro processor using R version 3.2.1. This computational time includes fitting

the regression model to determine the EVSI by sample size for both study designs, which is

around 5 seconds per study. On the other hand, the nested MC simulations required between

between 7 and 68 days to calculate each EVSI estimate, with a total computation time of

around 311 days for 10 estimates. Therefore, the computational time in this setting is highly

competitive compared to other methods even though this study is non-conjugate and the eco-

nomic model has a Markov structure.

3.11 D I S C U S S I O N O F T H E E V S I C A L C U L AT I O N M E T H O D S

The EVSI has long been touted as an alternative method for performing sample size calcula-

tions for designing trials. However, its application has been limited by the immense computa-

tional time required to obtain the number of EVSI estimates needed to optimise over different

sample sizes. Recently, several approximation methods have been proposed for the EVSI

which have reduced the computational time per estimate to allow for this type of analysis.

However, the computational time increases linearly with the number of sample sizes required

in these standard analysis.
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In this chapter, we presented a method to approximate that EVSI based on a small number

of nested simulations. The advantage of this method is that it can be extended to allow for the

calculation of the EVSI over different sample sizes for a minimal fixed additional computational

cost. This means that the cost for a single EVSI estimate and an evaluation for different sample

sizes is approximately equal. An additional advantage of this method is that it relatively simple

to calculate provided that a model can be defined for the data and that it is possible to sample

from the model conditional on the underlying model parameters.

Throughout the chapter, we have applied this method to a large number of health economic

models of varying degrees of complexity. We concluded with a full VoI analysis to a real-life

health economic model designed to evaluate interventions that treat chronic pain. The ana-

lysis determines the optimal study design and sample size required to adequately estimate

QALYs relating to treatment for chronic pain. This demonstrates the power of using VoI meas-

ures to motivate study design. It also demonstrates that this type of analysis can be achieved

within a feasible computational load.



4

P R AC T I C A L C O N S I D E R AT I O N S F O R G E N E R A L P U R P O S E

S O F T WA R E

The methods presented in this thesis should theoretically allow researchers to use both the

EVPPI and EVSI in practice to determine research priorities and optimal trial designs for a

large number of health economic models. However, while these methods are valid for calculat-

ing these measures, they can be complicated to implement for practitioners working in health

economics. Therefore, there is a need for general purpose software to be made available

to help with the calculation and presentation of both these VoI measures. This should aid

with the comprehension of these measures, which has been cited as another barrier to their

widespread use [117].

Therefore, we now detail the technical considerations required to implement these methods

in general purpose software. We also discuss some additional methodology to deal with

situations where these estimation procedures can struggle, alongside modifications that must

be made to allow them to be implemented within R functions. We also present some standard

graphics for these VoI measures to aid with the presentation to other stakeholders in health

economic evaluations.

Finally, practitioners will often wish to use these functions to calculate the EVPPI and EVSI

without an in-depth knowledge of the underlying methodologies. This means that we must de-

velop some “debugging” methods for practitioners to determine whether the EVSI and EVPPI

have been accurately estimated. Therefore, this chapter also details these debugging meth-

ods and how practitioners should improve the approximations when they encounter difficulties.

Some of the description of the R package BCEA comes from the book entitled Bayesian

Cost-Effectiveness with the R package BCEA published in the Use R! series by Springer [5].

Description of the graphics for presenting the EVSI comes from the paper entitled Develop-

ment of a New Software Tool to Compute the Expected Value of Sample Information: An

application to the HomeHealth intervention [58] presented at the HESG Winter Meeting 2018.

4.1 T H E r PAC K AG E bcea

BCEA [6] is an R [95] package that provides integrated health-economic evaluations based on

the PSA samples. The aim of BCEA is to produce standardised output, mostly in terms of

standard graphics, that can be used to present the results of a health economic evaluation.

Therefore, BCEA includes functions to calculate both the EVPI and the EVPPI and is also
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used to produce graphics for both these measures. In addition to this, BCEA is also coupled

with a shiny web application [20] BCEAWeb that allows researchers with no knowledge of R to

produce these graphics alongside a standardised report.

4.1.1 Using BCEA for the EVPI

Due to the ease with which the EVPI can be calculated by MC simulation, the EVPI was

already included in BCEA before the start of this work. Nonetheless, it is briefly presented here

for completeness. The main difficulty associated with including the EVPI in the BCEA package

is the specification of the net benefit function. Recall from §1.2, that the known-distribution net

benefit for each treatment is defined as:

NBt(θ) = kE[et | θ]− E[ct | θ],

where k is the willingness-to-pay that must be specified by the HTA authority. Additionally, we

stated that this willingness-to-pay value is normally defined in a range rather than a specific

value, for example, NICE suggests taking k between 20 000 and 30 000 [87] while Claxton et

al. suggest it should be taken closer to 13 000 [26].

The definitions of all VoI measures are dependent on the known-distribution net benefit and

therefore dependent on deciding a value for k. Therefore, in BCEA, the EVPI is calculated for a

large number of different values of k, defined on a grid. In the standard BCEA procedure, this

grid is defined as 501 points between 0 and 50 000.

To present these results coherently, the EVPI is plotted across the different values for

the willingness-to-pay, as in Figure 21. In general, figures for VoI measures over different
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Figure 21: Expected value of perfect information for the Vaccine example §2.4.1.1.
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willingness-to-pay values exhibit slightly strange behaviour. Specifically, the graph will nor-

mally exhibit break-points, at just over 20 000 in Figure 21. This is the point at which the

optimal treatment switches. In a large number of health-economic evaluations, the new treat-

ment(s) will be more expensive and more effective than the standard-of-care. If this is the

case, then there will be a willingness-to-pay where the payer is then “willing to pay” for the

additional level of effectiveness. At this point, the optimal decision switches from the standard

of care to the new innovative treatment(s). This creates a discontinuity in the graph for any

VoI measure and is associated with the point where the decision uncertainty is maximised.

4.2 C A L C U L AT I N G T H E E V P P I U S I N G bcea

The SPDE-INLA method for calculating the EVPPI is integrated into BCEA in the function evppi.

Most of the other EVPPI calculation methods, presented in §2, are also integrated into this

function, with GAMs the default for single parameters and SPDE-INLA for all larger parameter

subsets.

4.2.1 Calculating the EVPPI for different willingness-to-pay values

As with the EVPI, it is desirable to calculate the EVPPI for a large number of different willingness-

to-pay values. In §2.3, the EVPPI approximation is developed using non-parametric regres-

sion to fit a model between the known-distribution net benefit and the parameters of interest.

At first glance, this suggests that a standard BCEA procedure should calculate the EVPPI us-

ing non-parametric regression 501 times, across the different willingness-to-pay thresholds.

Clearly, this is infeasible given the computational time of an EVPPI analysis, so this procedure

is adapted to integrate EVPPI calculations into BCEA.

Specifically, we calculate a separate regression curve for the costs and for the effects,

Eψ|φs [NBt(φs, ψ)] = Eψ|φ [k e(φs, ψ)− c(φs, ψ)]

= k Eψ|φs [e(φs, ψ)]− Eψ|φ [c(φs, ψ)] ,

and then combine the fitted values for different thresholds k. This greatly reduces the compu-

tational cost of calculating the EVPPI for different values for k as you only have to calculate

two regression curves. However, it adds additional complexity compared to §2.3, as we are

now estimating two regression curves for each decision.

4.2.2 Incremental Costs and Effects

Furthermore, it is possible to reduce the computational complexity of the EVPPI calculation by

working with incremental costs and effects. Therefore, for each EVPPI calculation with T + 1

treatment options (where t = 0 indicates the reference treatment as in §1.1), we would only fit

T regression curves. In this setting, the incremental costs and effects for the reference treat-
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ment is 0 for all PSA samples. This implies that the conditional expectation for the reference

treatment is also 0 irrespective of the parameters of interest φ.

Therefore, in BCEA, the EVPPI is found by estimating 2T regression curves. The fitted values

from these regression curves are combined for different values of k and then the optimal

treatment is found by determining which treatment has the largest fitted net benefit. If all

the treatments have a negative net benefit, then the reference treatment is optimal. Fitting

fewer regression curves improves the numerical stability of this method along with reducing

the computational time [111]. As an aside, the computational time results in §3.5.3.2 are the

times taken to calculate one regression curve as both examples have two treatment options

T = 1 and we were working with the incremental net benefit directly.

4.2.3 The SPDE-INLA mesh

As the SPDE-INLA approximation to the latent Gaussian field is built up on a triangulation

(Figure 7), an accurate triangulation must be created. Previously, in §2.8, we discussed the

considerations for the triangulation; it must completely surround the data points with a sig-

nificant distance from the outermost data point to the final boundary, as there are artificial

constraints at the boundary of the triangulation. As the computation time for this method is

related to the number of grid points, a tight boundary hugs the data points closely and within

this boundary the mesh points are dense to give a good approximation. Outside of this in-

ner boundary, the approximation can be rougher and the triangles are therefore larger. The

mesh approximation is most efficient when the two dimensions (coming from the projections

for EVPPI calculation) are on approximately the same scale. Therefore, the PSA inputs are

rescaled in BCEA before calculating the projection. This avoids situations such as that shown

in Figure 22 (a), where a large number of triangles cover an area with no observations. Res-

caling has no effect on the estimated EVPPI value [111] but does significantly decrease the

computation time.

The triangulation must be dense enough to adequately capture the underlying structure or

the EVPPI estimate will be incorrect. For integration in BCEA, we have set a default mesh

density that is a twentieth of the range of the projected scaled φ values. However, larger data-

sets require denser triangulations to calculate the EVPPI efficiently as typically the number of

mesh points should be greater than the number of data points. Therefore, we have allowed

the user to change the value for the creation of the mesh.

4.2.4 The INLA procedure

As discussed in §2.7, the INLA algorithm explores the hyperparameter space in steps. If these

steps are too large then the approximation does not work well and sometimes the numerical

results break down. The size of these steps must change dependent on the scale of the

underlying response variable and the parameters. In this case, the response variable is the

observed incremental costs and effects which, across models, are often on wildly different
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(a) (b)

Figure 22: Two grid approximations for the same data set. The LHS shows the triangulation
when the variables are left on their original scale, with the projected data points in
blue. Notice that there are a large number of triangles in this case, but a relatively
small number that surround the data points. In contrast to this, on the right, where
the data points are scaled we note that a much larger number of mesh points
cover the data, allowing for a more accurate Matérn field approximation for a fixed
computational time.

scales. The parameters of interest will also have different ranges. Therefore, it is often im-

possible to specify one step size taking into account all these different variables. To overcome

this issue, the parameters of interest are normalised and the incremental costs and effects

are multiplied by a factor such that their range is fixed and small. This rescaling is used so it

can be easily reversed once the fitted values are available. This is because the EVPPI must

be calculated on the same scale as the original costs and effects.

Within the evppi function it is also possible to fine tune the size of steps through the hyper-

parameter space. This means it is possible to fix numerical issues that occur when the steps

in the parameter space are too small or too large.

4.2.5 Principal Fitted Components

In order to determine the PFC, discussed in §2.8.1.1, the best fit inverse regression model

must be found as this estimates the sufficient reduction. Additionally, the number of dimen-

sions in the sufficient reduction must be tested as insufficient reductions will likely lead to

incorrect EVPPI estimation. Within BCEA, the best fit model is found as follows. Firstly, the

optimal error structure, amongst the three possible candidates, independent, heteroskedastic

or unstructured, is determined. Using a polynomial with degree 2, the three models are fitted

and the error structure with the lowest AIC is chosen.
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Then the optimal function for the PFC must be found given this error structure. For simplicity,

in BCEA, we restrict the class of functions by default to polynomials with degrees between 2

and 10. However, ideally, it would also be possible to specify different functions. The best fit

function is selected from the 9 possible candidates by choosing the model with the lowest AIC.

The net benefit values are centred and rescaled so the range is 2 in order to find the PFC. This

is because high degree polynomials create computationally singular matrices for large costs

or effects causing the numerical results used to find the PFC to break down.

Using the optimal model, we then find the PFC, and the dimension with the lowest AIC

score is then taken as the dimension of the sufficient reduction. If this number exceeds 2 then

the user is warned. The function then proceeds to calculate the EVPPI while assuming that

the PFC has dimension 2. This gives a slightly different reduction even in the case where 2

dimensions are deemed sufficient. These 2 components are then used to calculate the mesh

and the EVPPI.

Operationally, this model selection procedure must be repeated for the costs and effects

for each incremental decision option. Therefore, the PFC model fitting procedure must be

repeated 2T times, which can add to the computational complexity in models with a large

number of potential treatments.

4.3 L I N E A R P R E D I C TO R A N D R E S I D UA L P L OT T I N G F O R E V P P I E S T I M AT I O N

In practice, the SPDE-INLA estimation procedure for the EVPPI works well in many examples.

However, the user may encounter difficulties when the 2-dimensional reduction is not sufficient.

If this is the case, the user will receive a warning. However, as the AIC has a tendency

to overestimate the size of the sufficient reduction [31] we require a method to determine

whether the EVPPI estimation is still suitable.

As we are calculating the EVPPI using regression methods, it is possible to check the fit of

the model, and thus the accuracy of the EVPPI estimate, using standard methods for model

checking. Therefore, in line with Strong et al. [112], we recommend that residual plots are

used to determine whether the SPDE-INLA model has captured all the relevant information

about the relationship between the costs or effects and the parameters of interest φ.

To demonstrate this analysis, we use the FEAST example from §2.4.1.2. In this case, we are

interested in estimating the EVPPI using the parameters of interest (dM
2 , dM

3 , dM
4 , α, pB, dS, pL).

Using the Madan et al. method presented in §2.1 [77], the EVPPI for these parameters is

estimated as 546. However, in this setting, the AIC suggests that the sufficient reduction has

greater than two dimensions for some of the incremental costs and effects and the EVPPI is

estimated as 523.

Inspecting residuals gives some information about whether the SPDE-INLA model fit is good

and therefore whether the function gt(φ) is estimated correctly. Figure 23 demonstrates clear

structure in the residuals, which indicates that the SPDE-INLA procedure is not picking up all

the structure in the data. As the SPDE-INLA method is an approximation, it is possible to

estimate the EVPPI accurately by reverting to the standard GP method (provided there are
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Figure 23: Residual plots for the incremental costs and effects for treatment 3 and 4 in the
FEAST example with no interactions in the linear predictor. Treatment 1 is taken as
the reference treatment.

some assurances that the hyperparameters have been estimated correctly). Nonetheless, due

to the computational complexity of this standard method it is preferable to begin by augmenting

the SPDE-INLA method.

In general, the SPDE-INLA fit can be improved by adding additional structure to the linear

predictor to correct for some of the information lost through the dimensionality reduction. This

means that the H matrix in equation (12) changes its form to include non-linear functions of

the parameters. For example, in a three parameter setting the Hβ would have this structure;

β0 + β1φ1
s + β2φ2

s + β3φ3
s + β4φ1

s φ2
s + β5φ1

s φ3
s + β6φ2

s φ3
s .

Allowing for 2nd or 3rd order interactions between the parameters can account for the informa-

tion lost, whist retaining the computational advantages of the SPDE-INLA method. Evidently,

the computational time will increase as the number of hyperparameters to be estimated in-

creases. Specifically, the number of hyperparameters increases with respect to number of

parameters in φ, so using interactions when φ is high-dimensional can be expensive, al-

though still less expensive than the standard GP method.

It may also be possible to use underlying information about the model parameters to reduce

the number of interactions needed. For example, there may be evident sub-groups within

the parameter set, costs, probabilities, and interactions within these subsets could then be

modelled. Most importantly, the use of residual plots allows users to understand whether this

additional manipulation is needed.

Introducing 3rd order interactions for each incremental costs and effects measure produces

a residual plot (Figure 24) that is slightly closer to the expected structure for some of the

incremental costs and effects, and gives an EVPPI estimate of 543 which is very close to

the true EVPPI value. However, there are still some clear issues with the fitted values for

the incremental effects for the 4th treatment. The same behaviour is also exhibited for the

incremental effects for treatment 2 (Figure not shown). The fitted values for the incremental

costs for treatment 3 also exhibit some strange structure for small values of the fitted costs.
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Figure 24: Residual plots for the incremental costs and effects for treatment 3 and 4 in the
FEAST example with 3rd order interactions in the linear predictor. Treatment 1 is
taken as the reference treatment.

Therefore, we advise that the standard GP methodology is used for these three regression fits,

while we retain the SPDE-INLA method to find the other three regression curves. This gives

an EVPPI estimate of 551 – in this case, surprisingly, this estimate is actually a little further

from the truth, despite better model fit.

In general, this is an example of “mixed strategy” EVPPI estimation and this is our recom-

mendation when the sufficient reduction has greater than 2 dimensions. This allows research-

ers to retain the computational efficiencies of the SPDE-INLA method in situations where it is

valid but resort to more accurate and computationally costly estimation methods when needed.

We suggest that residual plots should be used to determine whether the estimation is suitable.

Once the EVPPI has been estimated then BCEA includes a plot function for an evppi object

(Figure 25) which displays both the EVPPI and the EVPI. This graphic is useful as the EVPPI

is typically used for ranking different parameter sets in terms of importance. In this sense, it

is useful to index the EVPPI against the EVPI to determine whether the parameter subset is a

large contributor to decision uncertainty.

4.4 S O F T WA R E TO C A L C U L AT E T H E E V S I

In general, the theory and calculation of the EVPPI is relatively simple compared to the EVSI.

Specifically, as the EVSI is concerned with designing a specific experiment it is more challen-

ging to create generally applicable software. This is because the user must be able to design

their experiment rather than basing the analysis solely on the PSA samples which will already

be available. In addition to this, the number of potential design considerations is very large.

For example, we have seen that researchers vary the willingness-to-pay in VoI calculations.

However, for the EVSI we can also think of varying the number of patients in the future trial

and other considerations such as the number of people who will benefit from the treatment or

the length of time the treatment will be available.
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Figure 25: An example of the graph produced when an evppi object is plotted in R.

Therefore, we have created a new R package known as EVSI [56] which includes the mo-

ment matching method for calculating the EVSI along with a suite of graphics to explore dif-

ferent trial design considerations. The following section begins by discussing the functions for

calculating the EVSI. This includes modifications to allow the EVSI calculation across different

willingness-to-pay values and extensions to multi-decision settings. We then discuss the dif-

ferent graphics that can be used to present the EVSI, taking into account the different design

issues.

4.4.1 Calculating the EVSI for different willingness-to-pay values

As each EVSI calculation is based on Q > 30 posterior updates, the calculation for differ-

ent willingness-to-pay thresholds must avoid rerunning the full calculation method for each

threshold. Again, this can be achieved by exploiting the linear definition of the known-distribution

net benefit;

Eθ|X [NBt(θ)] = k Eθ|X [et(θ)]− Eθ|X [ct(θ)] .

In this setting, moment matching is used to estimate samples from the distribution of the

incremental costs and effects separately. The resulting samples are then combined for each

threshold and used to calculate the EVSI. This adds little complexity to the methods as they

have already been presented. Note, as in all other settings, we work with the incremental

costs and effects throughout the EVSI estimation procedures.
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4.4.2 Sampling from the prior-predictive distribution

To estimate the EVSI, it is necessary to simulate potential data sets Xq. In Chapter 3, the

potential future datasets Xq for q = 1, . . . , Q are simulated by taking the quantiles of φq and

generating one sample from p(X | φq). To use this simulation method within a function, the

user must specify a sampling distribution for the data and a model to update the parameters.

However, as the sampling distribution of the data is defined in the Bayesian model for up-

dating the parameters, it is possible to simulate the future datasets directly from the prior-

predictive distribution for X. Therefore, in this software, users are simply required to supply

a Bayesian model to determine the posterior of the parameters, along with functions that cal-

culate the costs and effects, conditional on those parameters. The function then begins by

running the Bayesian model with unknown data X. This allows us to directly simulate from the

prior-predictive distribution of X and then use these simulated samples to update the posterior

of the model parameters.

The current method for selecting samples from the prior-predictive distribution of X pro-

ceeds by randomly selecting a parameter in the φ vector for each q = 1, . . . , Q. The q
Q+1

th

quantile is then found for the selected element of the φ vector. If we consider a matrix con-

taining the MCMC samples for both the model parameters and the data, then we select the

sample from the prior-predictive distribution that is found in the same row as the quantile

for the selected element of the φ vector. In this sense, we are selecting the prior-predictive

sample that is generated when the selected element of φ is equal to its quantile value. This

is not an ideal method of selecting elements from the prior-predictive sample of X and future

work will focus on more suitable methods to find these samples. One suggestion is to use

clustering to span the prior-predictive space efficiently.

4.4.2.1 Prior-predictive sampling across multiple sample sizes

When we estimate the EVSI across different sample sizes, the prior predictive distribution must

be found for each sample size. This can add to the computation time as the Bayesian model

must be run 2Q times to achieve the EVSI estimate, first to find the prior-predictive distribution

of Xq and then to update the posterior conditional on this dataset. Therefore, for computational

reasons, the user can supply the future datasets, rather than sampling them directly within the

function. This is because also becomes significantly more challenging to determine what

is meant by “spanning” the prior-predictive sample space in this case. Currently, a similar

method to the standard setting is used to determine the prior-predictive samples. The main

difference is that the order in which the different quantiles are found are randomly reordered

to avoid a relationship with N. In practice, the optimal selection method in this setting may

be random and therefore future work should focus on the ideal method for selecting these

prior-predictive samples within the EVSI package.
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4.4.3 Calculating the EVSI in multi-decision problems

Estimating the EVSI in multi-decision health economic models (i.e. when more than 2 treat-

ments are under consideration) using the simple moment-matching matching is very similar

in the dual-decision setting. The only difference is that the variance of the known-distribution

incremental net benefit is a matrix in the multi-decision setting. Therefore, the EVSI is calcu-

lated using the inverse and inverse square root of the variance matrix, however, as these are

well-defined, they can be easily used.

In practice, working with variance matrices (as opposed to scalar values) adds a little compu-

tational complexity. This is because the moment matching method is based on calculating the

difference between two variance matrices, both calculated by simulation. Occasionally, this

leads to a variance matrix for the preposterior mean costs or effects that is not positive defin-

ite. In these settings, it is necessary to determine the “nearest” positive definite matrix to the

matrix that has been estimated by simulation. This is found using the eigen-decomposition

of the estimated “variance” matrix V. Specifically, the nearest positive definite matrix V∗ is

created by calculating

V∗ = MD∗MT,

where M is the matrix of eigenvectors of V and D∗ is a diagonal matrix of the eigenvalues of

V where any negative eigenvalues are set to 0 [63]. This eigen-decomposition is also used to

find the matrix inverse and square root of V∗ in a computationally efficient manner.

Calculating the EVSI across sample sizes in a multi-decision problem is more problematic.

The non-linear model defined in equation (22) is a scalar function and the variance of the

preposterior mean is a matrix in multi-decision settings. Therefore, we must extend this re-

gression model to a matrix valued function. In practice, we extend the non-linear regression

function by fitting the non-linear model from equation (22)

f (N) =
N

N + h

separately for each unique element of the variance matrix. Again, it is possible to demonstrate

in a decision model with three treatment options that this is approximately accurate in normal-

normal conjugate settings. Specifically, the constant h is slightly dependent on N through the

expression:

h =
aN + b
cN + d

,

where a, b, c and d are all constants that depend on the prior and posterior variance of the

costs or effects.

Using this specification for the function f (·), we fit

T(T + 1)
2

× 2 = T(T + 1)

regression models separately to calculate the EVSI across different sample sizes, where T is

the number of incremental decisions. These curves are then used to calculate the variance-
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covariance matrix for the costs and effects. Again, this allows us to calculate a and b from

equation (20) and therefore find the distribution of the preposterior mean for the incremental

effects and costs. Finally, these are used to calculate the EVSI, following the algorithm in

§3.4.4.

As an additional complication, recall that the distribution of the EVSI estimate was approxim-

ated by a low-dimensional summary of the distribution of the posterior distribution for h. This

method becomes more complicated when multiple curves are being fitted. Nonetheless, in

the EVSI package, we have simply summarised these distributions by finding the quantiles

for each curve and then used these to create the variance-covariance matrices for the costs

and effects. These are then used to find possible distributions for the preposterior mean of

the costs and effects and then the EVSI is calculated from these distributions. This method

clearly does not give credible intervals for the EVSI but simply a low-dimensional summary of

the possible EVSI values.

4.5 V I S UA L I S AT I O N S F O R T H E E V S I

Visualisations for the EVSI are more complicated than for both the EVPI and EVPPI as there

are more variants in an EVSI analysis. Therefore, a suite of graphics has been included in

the R package EVSI to aid researchers to explore different aspects of the EVSI analysis. Most

importantly, a shiny web application [20] has also been included in the EVSI package. Again,

this web interface allows researchers with no knowledge of R to explore the graphics presented

below and can either be launched from within R or is available at https://egon.stats.ucl.

ac.uk/projects/EVSI/.

Firstly, a graphic is available to plot the EVSI across willingness-to-pay, in a similar manner

to the graphics seen for the EVPI and EVPPI, displayed in Figure 26 (a). This compares the

relative sizes of the EVSI, EVPPI and EVPI and demonstrates whether the sampling strategy

efficiently updates information about the model parameters. Evidently, this graphic is more

complicated for the EVSI as it will likely have been computed across different sample sizes.

This means that it is possible to plot this graphic for every sample size which can result in a

large number of plots.

Therefore, it is possible to produce a graphic where different sample sizes can be displayed

at the same time, Figure 26 (b). This allows the user to ascertain how quickly the EVSI

approaches the asymptote of the EVPPI. However, as this graphic can be difficult to read,

especially when a large number of alternative sample sizes are considered, we allow the

sample size to be changed dynamically in the shiny web application so the researcher can

efficiently explore the different possible sample sizes for the potential future study.

4.5.1 Displaying uncertainty in the EVSI estimate

As discussed in §3.8.2, if the EVSI is estimated across different sample sizes using non-linear

regression, then the posterior of the h parameter is used to generate a low-dimensional sum-

https://egon.stats.ucl.ac.uk/projects/EVSI/
https://egon.stats.ucl.ac.uk/projects/EVSI/
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Figure 26: The EVSI plotted across different willingness-to-pay thresholds, (a) shows the EVSI
for one sample size and (b) across a large number of sample sizes.

mary of EVSI values. In some sense, this summary represents uncertainty in the EVSI that

arises from the estimation procedure. In many settings, it is useful to explore this uncertainty

graphically. It is also beneficial to explore the behaviour of the EVSI estimates across different

sample sizes. In this setting, both the EVSI estimate and the uncertainty bands will change

as a function of the willingness-to-pay threshold.

Figure 27 shows the EVSI estimate across different sample sizes for a fixed willingness-to-

pay threshold, along with uncertainty bands. The EVSI will always be increasing and bounded

above by the EVPPI and we can clearly see this behaviour on the graphic. A key feature

of the moment matching method is that the EVSI becomes relatively more uncertain as the

EVSI decreases, which can also be explored using this graphic especially using the shiny

web application which allows users to change the willingness-to-pay threshold dynamically. In

general, decisions regarding future funding decisions should not be made based on the EVSI

estimate if the uncertainty bands are wide. In this case, Figure 27 displays an EVSI estimate

with relatively tight uncertainty bands.

If the EVSI has been calculated using an alternative calculation method, then it can still

be displayed across different sample sizes using this graphic. In this setting, the graphic

would not give information about the uncertainty in the estimation procedure but simply allow

researchers to determine what sample sizes give close to perfect information. This graphic

also checks that the EVSI remains below the EVPPI for all sample sizes which gives some

assurance that the estimation procedure is accurate.
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Figure 27: The EVSI plotted across different values of N for a specified willingness-to-pay
value. The graphic also shows uncertainty bands for the EVSI.

4.5.2 Expected Net Benefit of Sampling

The Expected Net Benefit of Sampling (ENBS) is the difference between the EVSI and the

cost of undertaking the study. This gives the net economic value of undertaking the study in

question. In the first instance, we consider whether the ENBS is greater than 0, i.e. will the

proposed study be of value to society/the payer? If the ENBS is positive, then researchers

are often interested in finding the optimum study design. There are many different possible

designs that could be evaluated but as it is cheap to estimate the EVSI across different sample

sizes using the moment matching method, we include functions to find the optimal sample size

for the proposed study.

Normally, the EVSI is calculated from an individual perspective, in fact, the y-axis on Figure

27 has the label “per person EVSI”. This means that the known-distribution net benefit is

calculated as the net benefit of the treatment for each individual who would be affected by

the disease. So, the EVSI is the value of sample information to each person that would be

affected by the disease. However, if the proposed study is run, the information gleaned from

that study will impact the entire population of people with the disease, known as the incidence

population. Therefore, to calculate the ENBS, we must multiply by the number of people who

will benefit from the treatments under consideration [115].
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In practice, multiplying the EVSI by the incidence population, implies that payers should

fund trials in high prevalence diseases more frequently then those targeting low prevalence

diseases. This is because VoI measures are concerned with the risk of implementing an

inefficient treatment that appears efficient under current information. If an inefficient treatment

is only going to be used by a small number of patients then this waste of resources may not

be severe even if the treatment turns out to be economically inefficient. Therefore, the more

widespread the disease, the more people will use the treatment and the more money will

be wasted if the treatment turns out to be inefficient. Therefore, more information is needed

before making a decision about which treatment to fund in high prevalence settings.

In addition to multiplying by the incidence population, we must also consider that the treat-

ment will be used for several years. In line with standard economic analysis, discounting

should be used to imply that immediate benefits of the treatment are more valuable than fu-

ture benefits [87]. This discounting is applied up to a time at which it is assumed that a new

treatment would enter the market and dominate the treatments under consideration. This is

known as the time horizon of the treatment [82] and changes from intervention to intervention.

In some disease areas, such as oncology, the time horizon is short, while other disease areas

are less fast moving and treatments will be used for a longer period of time.

In the EVSI package, continuous discounting is used to estimate the ENBS, which is calcu-

lated as
P
d

(
1− e−dT

)
EVSI− Cstudy

where P is the incidence population, d is the discount factor (normally, 3.5% [87]), T is the

time horizon of the treatment and Cstudy is the cost of undertaking the study. Evidently,

this definition is heavily dependent on the incidence population, time horizon and study cost,

where all of these values are subject to uncertainty. For example, the number of years before

a competitor treatment reaches the market is rarely known with certainty, neither is the exact

number of people affected by a disease.

4.5.2.1 Probability of a cost-effective trial

Ideally, the ENBS would be used to calculate whether a trial should go ahead. However, as

there is an element of uncertainty in all the key elements of the ENBS definition (including

uncertainty in the EVSI itself), we have developed a graphic to explore the uncertainty in all

these different elements. Specifically, we use a graphic with incidence population and time

horizon as the two axes which then displays a heat-map for the probability of a cost-effective

trial (Figure 28), where uncertainty in the ENBS is due to uncertainty in both the EVSI and the

study costs.

Practically, the user specifies maximum and minimum possible values for the trial costs,

these are usually available as they must be included in applications for trial funding. More

specifically, if the EVSI has been estimated across different values for N, users specify the

set up costs for the trial, typically sunk costs such as equipment or training that will be spent

no matter the size of the trial, and per person costs, costs relating to recruitment and retention
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Figure 28: The probability of a cost-effective trial for different lengths for the time horizon and
levels of incidence population. The probability represents the uncertainty in the
study costs and EVSI estimates.

of each study participant. This allows us to calculate the ENBS across the different sample

sizes. It is then assumed that the expected trial costs are normally distributed, centred on

the midpoint between the maximum and minimum trial costs. The standard deviation of this

distribution is computed by assuming that there is a 95% chance that the trial costs fall within

the maximum and minimum. Finally, the EVSI distribution is also approximated with a normal

distribution so the distributions for the EVSI and the costs can be combined analytically.

Figure 28 then allows the user to find the probability of a cost-effective trial for different

combinations of incidence population and time horizon. For example, the study is unlikely

to be cost-effective if the expected time horizon is less than 5 years, but if the time horizon

is nearer 20 years then the study can go ahead almost irrespective of the number of people

affected by the disease.

Figure 28 is generated for a specific study size and a specific willingness-to-pay value, both

of which are also unknown. Therefore, this graphic is included in the shiny web application.

Again, users can easily change both the sample size and the willingness-to-pay dynamically

to explore the probability of cost effectiveness for a large number of alternative specifications

of the underlying health economic model and study design. Note that if both the EVSI and
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the study costs are known with certainty, Figure 28 simply gives a stop/go decision for each

combination of time horizon and incidence population.

4.5.2.2 Optimal study design

Finally, it is possible to find the optimal sample size of a proposed study. Again, this analysis

is subject to the same uncertainties seen previously, namely uncertainty in willingness-to-pay,

incidence population, time horizon, cost of the study and the EVSI. Nonetheless, for a fixed

incidence population, time horizon and willingness-to-pay, it is possible to find the optimal

sample size and produce a graphic that represents the uncertainty in the ENBS estimate.

This translates into uncertainty about the optimal sample size.
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Figure 29: The ENBS across different sample sizes. The alternative curves represent the
uncertainty in the value of the ENBS arising from uncertainty in knowledge about
the study costs and the EVSI estimation procedure.

Figure 29 demonstrates the proposed graphic for this optimal sample size analysis. Firstly,

the ENBS rises to an optimal value before descending when the cost of enrolling additional

patients in the trial exceeds the additional value given by the patient. In Figure 29, the ENBS is

always positive, so even though an optimal sample size exists, a trial of any of the considered

sizes would have an economic benefit, for this willingness-to-pay, incidence population and

time horizon. The red triangle on the x-axis marks the sample size at which the ENBS reaches

its maximum, 128 patients in this example. The red line then highlights the sample sizes for
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which the ENBS is within 5% its maximum. In most settings, the ENBS is a relatively “flat”

function, i.e. there are a large number of sample sizes for which the cost of an additional

patient is approximately equal to the extra value that a patient would bring. Therefore, we

suggest that any sample size within this red region (between 60 and 297) would be suitable.

In practice, the ENBS can therefore be used alongside standard sample size calculations.

These determine a trial size by considering how many patients would be needed to find a

statistically significant result in the key clinical outcome. It is likely that users will perform

these sample size calculations before/alongside the EVSI and then wish to confirm whether

this sample size is within the “red” region.

Again, the web application displays this graph dynamically for different combinations of

willingness-to-pay values, incidence populations and time horizons. The web application also

outputs the numerical values for the optimal sample size and the 5% interval for the sample

size. Thus, this graphic can be compared with these numerical values and the uncertainty

bands can be used to visually inspect both the probability of cost-effectiveness and the cer-

tainty surrounding this optimal sample size.

4.6 C O N C L U S I O N

This chapter has concluded the work on VoI measures by presenting two software packages

that have been designed to implement the methods developed in this thesis. Both methods

required slight modifications before they can be integrated into software, particularly related to

estimating VoI measures across different willingness-to-pay thresholds. This software allows

researchers without an in-depth knowledge of the VoI estimation methods to use VoI to inform

research and trial design decisions.

Another key element of the software is the inclusion of standard graphics for the present-

ation and interpretation of VoI measures. Standardised presentation is especially important

for the EVSI and ENBS analysis as this often requires researchers to assess these meas-

ures across a large number of model and trial specifications. The final contribution to the

presentation of these measures is the development of two shiny web applications that allow

the exploration of standard graphics without any knowledge of R.
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This thesis presented novel methodology to estimate VoI measures using simulation. Spe-

cifically, we have focussed on the EVPPI, which gives the economic value of gaining perfect

information about a subset of the heath-economic model parameters, and the EVSI, which

gives the economic value of a specific study designed to reduce model uncertainty. Both

these measures could be used as a tool for research prioritisation and the EVSI can be exten-

ded to determine “optimal” trial designs from a health economic perspective.

To develop these new methods, Chapter 2 began by investigating the currently available

methods for calculating the EVPPI. This investigation concluded that estimating the EVPPI us-

ing non-parametric regression, first introduced by Strong et al. [111], is accurate and compu-

tationally efficient when the number of parameters of interest is small (< 4). It also concluded

that an alternative method should be developed for higher dimensional settings, especially

when a large PSA dataset is available.

Therefore, in §2.6, this thesis developed a fast method for Gaussian Process regression

which exploited results from the spatial statistics literature, the INLA algorithm and dimension

reduction to calculate the EVPPI efficiently. In Chapter 4, we then explored some extensions

that allow us to approximate the EVPPI efficiently even when this SPDE-INLA method breaks

down. These extensions use standard model fitting techniques to determine whether the fast

Gaussian Process regression is still sufficiently accurate and then suggests that a combination

of different regression methods should be used to calculate the EVPPI.

Based on this work, we developed the evppi function within the BCEA package so that the

EVPPI can be estimated within a feasible time frame for almost all health-economic models,

provided PSA simulations are available. Importantly, the evppi function only requires a small

number of user inputs, so practitioners can use this function to calculate the EVPPI in practice,

without a full understanding of the SPDE-INLA method. The BCEA package also couples

EVPPI calculations with standard graphics to help key stakeholders understand and digest

VoI analysis.

To further extend the use of VoI analysis, Chapter 3 develops a novel algorithm for calculat-

ing the EVSI. In basic settings, the posterior expectation of the known-distribution net benefit

across different potential future samples is estimated in order to calculate the EVSI using mo-

ment matching. Specifically, the mean of these posterior variances are used to rescale the

PSA simulations for the known-distribution net benefit. An extension to this method allows us
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to calculate the EVSI across different sample sizes using Bayesian non-linear regression to

estimate the mean posterior variance for each sample size.

The advantage of this novel methodology is that it places minor restrictions on the structure

of the underlying health economic model and data collection process. Specifically, it can

be applied provided a Bayesian model can be specified for the model parameters and the

sampling distribution of the potential datasets. Chapter 4 presents software that calculates the

EVSI based solely on this Bayesian model. The drawbacks of the moment matching method

is that it requires additional simulation from the health economic model and can therefore be

slower computationally than other EVSI calculation methods. Although throughout this thesis,

the moment matching methods are highly competitive in terms of computational time.

Finally, this thesis develops a suite of graphics designed to aid the interpretation of the

EVSI, included within the R package EVSI. These graphics either present the EVSI directly or

the ENBS, a function of the EVSI, which calculates the economic value of a proposed trial.

Therefore, the ENBS can be used to determine whether a trial should be funded and the

optimal design of that trial amongst a set of alternative options. The ENBS has frequently

been touted as a potential method for trial design but computational and theoretical barriers

have hindered the application of the ENBS in these settings. The graphics within the EVSI

package should aid researchers to present the ENBS to stakeholders and decision makers to

give a tangible understanding of VoI measures by comparing the value and cost of a proposed

study.

Future work in this area, therefore, must focus on applying these methods to practical health

economic decision models. These applications need to inform trial design and funding applic-

ations so practitioners in these areas understand the power of VoI analyses. Now that the

computational barriers have largely been overcome, it is important to engage in a dialogue

with practitioners and ensure that both the methods and tools will be used in practical health-

economic evaluations.
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