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Predictive distributions for between-study
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meta-analysis
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Numerous meta-analyses in healthcare research combine results from only a small number of studies, for
which the variance representing between-study heterogeneity is estimated imprecisely. A Bayesian approach to
estimation allows external evidence on the expected magnitude of heterogeneity to be incorporated.

The aim of this paper is to provide tools that improve the accessibility of Bayesian meta-analysis. We present
two methods for implementing Bayesian meta-analysis, using numerical integration and importance sampling
techniques. Based on 14 886 binary outcome meta-analyses in the Cochrane Database of Systematic Reviews, we
derive a novel set of predictive distributions for the degree of heterogeneity expected in 80 settings depending
on the outcomes assessed and comparisons made. These can be used as prior distributions for heterogeneity in
future meta-analyses.

The two methods are implemented in R, for which code is provided. Both methods produce equivalent results
to standard but more complex Markov chain Monte Carlo approaches. The priors are derived as log-normal
distributions for the between-study variance, applicable to meta-analyses of binary outcomes on the log odds-ratio
scale. The methods are applied to two example meta-analyses, incorporating the relevant predictive distributions
as prior distributions for between-study heterogeneity.

We have provided resources to facilitate Bayesian meta-analysis, in a form accessible to applied researchers,
which allow relevant prior information on the degree of heterogeneity to be incorporated. © 2014 The Authors.
Statistics in Medicine published by John Wiley & Sons Ltd.
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1. Introduction

In a meta-analysis, differences among the included studies’ results arise through genuine diversity in
the study designs and biases caused by methodological flaws in the studies, as well as random vari-
ation. Where between-study heterogeneity (that is, differences beyond those expected by chance) is
anticipated, the primary results for the meta-analysis are often obtained by fitting a random-effects meta-
analysis model. Many meta-analyses combine results from only a small number of studies: in a descriptive
analysis of the Cochrane Database of Systematic Reviews (CDSR), Davey et al. [1] found that 75% of
meta-analyses reported in Cochrane reviews contained five or fewer studies. In such cases, a conven-
tional random-effects meta-analysis is problematic because between-study heterogeneity is imprecisely
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estimated, and this imprecision is not acknowledged [2]. A fixed-effect model could be used in this
situation, but this does not account for variation in intervention effects across studies. A Bayesian
random-effects meta-analysis is advantageous in allowing researchers to incorporate external evi-
dence on the likely extent of between-study heterogeneity in a particular research setting, to reduce
the imprecision [3, 4], as well as facilitating prediction of effects in future studies and flexibility in
modelling [5, 6].

To enable systematic review authors to carry out Bayesian meta-analyses, it is desirable that infor-
mative prior distributions describing how much between-study heterogeneity is expected in various
research settings are made publicly available in advance. Researchers carrying out systematic reviews
and meta-analyses could then select an ‘off-the-shelf’ informative prior distribution suitable for the
setting of each meta-analysis. Recently, Turner et al. [7] explored the influence of meta-analysis char-
acteristics on between-study heterogeneity and derived predictive distributions for nine broad healthcare
settings.

The standard approach for performing a Bayesian meta-analysis incorporating informative priors is to
use Markov chain Monte Carlo (MCMC) methods, for example, within the winbugs software [8]. How-
ever, meta-analyses are very often performed by researchers without formal statistical training, who may
have difficulties with MCMC methods, and there is the complication of determining whether convergence
has been reached. For this reason, it would be desirable to find alternative implementations of Bayesian
meta-analysis, in order to make it more accessible. In Section 2, we present two non-MCMC methods for
performing Bayesian meta-analysis and provide code for implementing these in R [9]. A separate motiva-
tion for implementing Bayesian meta-analysis in R is that this would facilitate performing large numbers
of Bayesian meta-analyses, for example, in simulation studies when a range of methods are being com-
pared. Another objective is to find a method that produces results not affected by MC error, and which
does not require the burn-in period needed when using MCMC methods. In Section 3, we present a new set
of predictive distributions for the degree of between-study heterogeneity expected in a range of more spe-
cific research settings than those explored in our earlier work [7], as a resource for healthcare researchers
carrying out meta-analyses. Our methods for implementing Bayesian meta-analysis are applied to two
example data sets in Section 4, incorporating the predictive distributions obtained in Section 3 as prior
distributions for between-study heterogeneity. The dual aims of this paper are to provide alternative meth-
ods for implementing Bayesian meta-analysis and a more extensive library of predictive distributions
for heterogeneity in binary outcome settings, with the overall objective of improving the accessibility of
Bayesian meta-analysis.

2. Methods for performing Bayesian meta-analysis

In many Bayesian analyses, the complexity of the integrals to be evaluated is such that only MCMC
methods allow inference to be performed. However, when performing a standard meta-analysis using
a summary statistics approach and a log-normal prior for the heterogeneity variance [7], some sim-
pler methods of implementation can be proposed. Choice of a log-normal prior for heterogeneity was
informed by exploratory modelling of the underlying heterogeneity values in a large database of meta-
analyses, as described in detail in Section 3. Later, we describe methods based on numerical integration
and importance sampling, in addition to the standard MCMC approach.

We suppose that a conventional random-effects meta-analysis model [10] will be fitted in a new meta-
analysis, assuming a normal distribution for each observed intervention effect yi (e.g. log odds ratio) in
study i (i = 1,… , n), and known within-study variances s2

i :

yi ∼ N
(
𝜃i, s

2
i

)
𝜃i ∼ N(𝜃, 𝜏2)

The unknown parameters of interest in this model are the average intervention effect 𝜃 and the between-
study heterogeneity variance 𝜏2. To perform a Bayesian meta-analysis, we plan to choose an empirically
based log-normal distribution as an informative prior distribution for 𝜏2 ∶ 𝜏2 ∼ log-normal

(
𝜇𝜏, 𝜎

2
𝜏

)
,

where 𝜇𝜏 and 𝜎𝜏 are assumed known. Appropriate values for 𝜇𝜏 and 𝜎𝜏 will be derived in Section 3. As a
vague prior for 𝜃, suitable for intervention effects on a log odds ratio scale, we choose a uniform(−10, 10)
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prior in preference to a widely dispersed normal prior, to simplify the posterior distribution. The joint
posterior distribution for 𝜃 and 𝜏2 has the following form:

P(𝜃, 𝜏2|y1,… yn) ∝ f (𝜃, 𝜏2) = fU(𝜃; −10, 10) fL N (𝜏2;𝜇𝜏, 𝜎𝜏)
n∏

i=1

⎛⎜⎜⎜⎝
1√

s2
i + 𝜏2

𝜙

⎛⎜⎜⎜⎝
yi − 𝜃√
s2

i + 𝜏2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

where fU , fLN and 𝜙 are probability density functions for uniform, log-normal and standard normal
distributions, respectively.

2.1. MCMC methods

Following the conventional approach to carrying out a Bayesian meta-analysis, we can use MCMC
methods to obtain summaries of the joint posterior distribution for 𝜃 and 𝜏2, within the winbugs soft-
ware [8]. In order to produce very low MC error rates for an empirical comparison with methods
described in Sections 2.2 and 2.3, we based results on 1 000 000 iterations (more iterations than would
typically be required in practice), following a burn-in of 10 000 iterations. Convergence was checked
using the Brooks–Gelman–Rubin diagnostic [11], with five chains starting from widely dispersed
initial values.

2.2. Numerical integration

A different approach is to employ numerical integration methods to evaluate moments and percentiles of
the posterior distribution for 𝜃 and 𝜏2. We first evaluate the constant of proportionality, K, as follows:

1
K

=

𝜃=10

∫
𝜃=−10

∞

∫
𝜏2=0

f (𝜃, 𝜏2)d𝜃d𝜏2

Posterior moments of 𝜃 and 𝜏2 can then be found numerically. For example, the posterior mean for 𝜃 is
evaluated as:

E[𝜃] = K

𝜃=10

∫
𝜃=−10

∞

∫
𝜏2=0

𝜃f (𝜃, 𝜏2) d𝜃d𝜏2

Similarly, we can obtain cumulative distribution functions for 𝜃 and 𝜏2, for example,

F𝜏2[q] = K

𝜃=10

∫
𝜃=−10

q

∫
𝜏2=0

f (𝜃, 𝜏2) d𝜃d𝜏2

and use a search algorithm to find posterior percentiles and thus credible intervals for 𝜃 and 𝜏2.
R functions to implement these methods have been written and are available as Supporting Information

(S.1 and S.2). These functions are very simple to use. Numerical integration offers the advantage that no
simulation is required and the posterior summaries are unaffected by Monte Carlo (MC) error.

2.3. Importance sampling

As a third approach for evaluating the posterior distribution, we make use of importance sampling tech-
niques [12]. We first identify a proxy distribution that approximates the target posterior distribution and
is also easy to simulate from. We can then weight the simulated results appropriately to produce a sample
from the target distribution. Greater similarity between the proxy and target distributions leads to lower
variability in the weights and hence smaller MC error. Here, we choose to simulate 𝜏2 from the selected
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prior log-normal distribution, 𝜏2 ∼ log-normal
(
𝜇𝜏, 𝜎

2
𝜏

)
, on the basis that many meta-analyses contain

little information about 𝜏2, so the posterior and prior distributions are often similar. To provide a proxy
distribution for 𝜃, we substitute the prior mean 𝜏2

p = exp
(
𝜇𝜏 + 𝜎2

𝜏

/
2
)

for 𝜏2, and simulate from

𝜃 ∼ N

⎛⎜⎜⎜⎝𝜇p =

∑
yi

/(
s2

i + 𝜏
2
p

)
∑

1
/(

s2
i + 𝜏2

p

) , 𝜎2
p = s∑

1
/(

s2
i + 𝜏2

p

)⎞⎟⎟⎟⎠
where s ⩾ 1 is a scale factor, chosen to produce a heavier-tailed proxy distribution, as is recommended
for importance sampling [13]. This distribution is chosen because it is the usual approximation to the
distribution of the average intervention effect in a conventional random-effects meta-analysis [10], when
s = 1. The simulated 𝜃 and 𝜏2 are independent, and we denote the joint density by g(𝜃, 𝜏2). We draw a
large sample from g(𝜃, 𝜏2), and we weight the observations by the ratio of the true underlying density to
the simulation density:

w =
Kf (𝜃, 𝜏2)
g(𝜃, 𝜏2)

∝

n∏
i=1

1√
s2

i +𝜏2
𝜙

(
yi−𝜃√
s2

i +𝜏2

)
1
𝜎p
𝜙

(
𝜃−𝜇p

𝜎p

)
The proxy distribution for 𝜃 has been chosen in such a way that evaluation of the preceding weights is
straightforward, because the log-normal density of 𝜏2 has cancelled and need not be calculated. As in
all importance sampling algorithms, the constant of proportionality, K, is common to all weights and is
therefore not calculated. We can use the weighted sample of simulated 𝜃 and 𝜏2 to obtain moments and
quantiles for the target posterior distribution, using a root-finding algorithm in R. When applying this
method in Section 4, we use a sample of 1 000 000 simulations (more than would typically be required
in practice), to achieve very low MC error rates for the empirical comparison with results from other
methods. MC errors are calculated using the method described in the Supporting Information (S.3), where
the R code for implementation is also available. As the scale factor, we choose to use s = 4 throughout,
after finding that this works well across a range of examples.

3. Construction of predictive distributions for heterogeneity

3.1. Data set

We obtain predictive distributions for heterogeneity by modelling binary outcome data from meta-
analyses included in the CDSR (Issue 1, 2008), which were provided to us by the Nordic Cochrane
Centre. Most Cochrane reviews contain multiple meta-analyses, corresponding to different pair-wise
comparisons of interventions and different outcomes examined. In earlier work, each meta-analysis was
classified by outcome type, types of intervention compared and medical specialty to which the research
topic related [1]. Of 62 510 meta-analyses in the CDSR, meta-analyses were excluded if they included
only one study (29 205 meta-analyses), if the analysis was labelled as a subgroup or sensitivity analy-
sis or there was insufficient information for classification (10 837 meta-analyses), or if all data within
the meta-analysis appeared to be erroneous (15 meta-analyses). The extracted database thus included
22 453 meta-analyses; full details of the data extraction process are described elsewhere [1]. Here, we
analyse all extracted binary outcome meta-analyses: 14 886 meta-analyses from 1991 Cochrane reviews,
containing data from 77 237 individual studies. In some examples, review authors had presented data
for a set of studies but had chosen not to report the combined result from a meta-analysis. We treated
these ‘potential meta-analyses’ in the same way as meta-analyses, because the degree of between-study
heterogeneity may have affected the decision not to report a meta-analysis result. As our focus was
on overall heterogeneity in the meta-analysis, we also pooled data across subgroups, where these were
present. The structure of the data set is described in Table I, and the frequencies of the outcome types and
intervention comparison types used when deriving predictive distributions in Section 3.3 are presented
in Table II.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 984–998
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Table I. Structure of binary outcomes data set extracted from the Cochrane Database of Systematic Reviews:
number of pair-wise intervention comparisons per review, meta-analyses per comparison, studies per meta-
analysis and sample sizes of studies.

N Min 25% percentile Median 75% percentile Max

Number of comparisons 1991 reviews 1 1 1 2 20
per review
Number of meta-analyses 3884 comparisons 1 1 2 5 43
per comparison
Number of studies 14886 meta-analyses 2 2 3 6 294
per meta-analysis
Sample size 77237 studies 2 50 102 243 1 242 071

Table II. Distribution of outcome types and intervention comparison types among the 14,886 binary outcome
meta-analyses in the Cochrane Database of Systematic Reviews.

Number (%) of meta-analyses

Outcome types∗

Objective outcomes
All-cause mortality 1132 (8%)

Semi-objective outcomes
Obstetric outcomes 1288 (9%)
Cause-specific mortality/major morbidity event/composite (mortality or morbidity) 907 (6%)
Resource use/hospital stay/process 680 (5%)
Surgical/device-related success/failure 623 (4%)
Withdrawals/drop-outs 616 (4%)
Internal/external structure-related outcomes (e.g. radiograph outcomes) 472 (3%)

Subjective outcomes
General physical health indicators (e.g. BMI < 25) 276 (2%)
Adverse events 2330 (16%)
Infection/onset of new acute/chronic disease 2038 (14%)
Signs/symptoms reflecting continuation/end of condition 2184 (15%)
Pain 481 (3%)
Quality of life/functioning (dichotomised) 180 (1%)
Mental health indicators 189 (1%)
Biological markers (dichotomised)† 947 (6%)
Miscellaneous‡ 481 (3%)

Intervention comparison types
Pharmacological vs. Placebo/control 5599 (38%)
Pharmacological vs. Pharmacological 4118 (28%)
Non-pharmacological§ vs. Placebo/control 2412 (16%)
Non-pharmacological§ vs. Pharmacological 315 (2%)
Non-pharmacological§ vs. Non-pharmacological§ 2442 (16%)

BMI, body mass index.
∗Sixty-two meta-analyses were excluded where the outcome did not fit into any of our pre-defined categories and was
classified as ‘Other’.
†Biological markers (dichotomised) were regarded as subjective outcomes because cutpoints for dichotomisation are
often chosen post hoc.
‡Composite (including at least one non-mortality/non-morbidity), satisfaction with care and consumption.
§Non-pharmacological interventions: medical devices, surgical, complex, resources and infrastructure, behavioural,
psychological, physical, complementary, educational, radiotherapy, vaccines, cellular and gene, and screening.

3.2. Selection of predictive model for heterogeneity

To explore the impact of meta-analysis characteristics on levels of between-study heterogeneity, we
fitted hierarchical models to the study data from meta-analyses within the CDSR data set. The data set
comprises binary outcome data rkjia

/
nkjia (number of events/sample size for two study arms indicated

by a = 0, 1) for study i within meta-analysis j within intervention comparison k. Within a particular
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pair-wise comparison of interventions, for example, selective serotonin reuptake inhibitors versus cogni-
tive behavioural therapy, multiple meta-analyses correspond to different outcomes analysed, for example,
remission from disease, pain and quality of life. Bayesian hierarchical models of the following form were
fitted to all meta-analyses simultaneously:

rkjia ∼ Bin
(
𝜋kjia, nkjia

)
logit

(
𝜋kjia

)
=

{
𝛼kji − 𝜃kji

/
2 a = 0

𝛼kji + 𝜃kji

/
2 a = 1

𝜃kji ∼ N
(
𝜃kj, 𝜏

2
kj

) (1)

where the baseline odds 𝛼kji and average treatment effects 𝜃kj are fixed effects, and a normal random-
effects distribution is assumed for the underlying log odds ratios 𝜃kji. Simultaneously, 𝜏2

kj is modelled as
described later and in Equation (2).

In meta-analysis j within intervention comparison k, the parameter 𝜏2
kj represents between-study het-

erogeneity. By fitting regression models to 𝜏2
kj, we can explore which known meta-analysis characteristics

are predictive of the degree of heterogeneity in the meta-analysis. In preliminary regression models, we
considered assuming log-normal, inverse-gamma or gamma distributions for 𝜏2

kj, informed by the shape
of the distribution of method-of-moments estimates for 𝜏2

kj and earlier work on modelling of heterogene-
ity values [3, 14]. The predictive fit of models was compared using the deviance information criterion
(DIC) [15]. In initial null regression models without predictors, the log-normal distribution was found to
produce a substantially better model (DIC 742589) than the inverse-gamma distribution (DIC 746404) or
gamma distribution (DIC 745503), when analysing the CDSR data set. We have therefore used log-normal
models throughout.

As predictors of between-study heterogeneity, we use type of outcome analysed and type of interven-
tions compared. In our previous work [7], the extent to which outcomes were objectively or subjectively
measured was used as a predictor, and outcome types were categorised into the broad groupings of ‘All-
cause mortality’ (considered the only objectively measured outcome), ‘Semi-objective’ and ‘Subjective’
outcomes. Assignment of outcome types to these groupings was determined by the co-authors of [7], in
discussion with a wider group of experienced researchers. ‘Semi-objective’ outcomes are outcomes that
are objectively measured but potentially influenced by clinical/patient judgement (e.g. caesarean section,
withdrawal from a study and hospital admission). ‘Subjective’ outcomes include self-reported outcomes
(e.g. pain and adverse events) and outcomes measured by an assessor, whose method of measurement
as well as judgement may influence the outcome (e.g. hypertension and infection). Here, we compared
the fit of three models using these three initial outcome categories, the 16 narrower outcome categories
listed in Table II or an intermediate set of 11 outcome categories. For intervention comparison type, we
compared the fit of models using either three categories (‘Pharmacological vs. Placebo/control’, ‘Pharma-
cological vs. Pharmacological’ or ‘Non-pharmacological (any)’) or five categories as in Table II. When
we had selected the best fitting sets of categories, we also extended this model to include interaction
terms between outcome and intervention comparison types. Alongside model fit, we considered the mix-
ing of the chains in different models and assessed model convergence using the Brooks–Gelman–Rubin
diagnostic [11].

The model with best predictive fit (DIC 742267) and satisfactory convergence was a model based
on 16 outcome categories and five intervention comparison categories (as listed in Table II), without
interaction terms. The chosen regression model for the underlying log-transformed heterogeneity values
is as follows. Sets of random effects uqk (for q = 1,… 5) allow for variability across intervention compar-
isons k, with separate between-comparison variances 𝜅2

1 ,… , 𝜅2
5 assumed for each of the five intervention

comparison categories listed in Table II. We note that k indexes all individual intervention comparisons
present in the hierarchical data set, while q = 1,… , 5 indexes the intervention comparison categories
listed in Table II. Error terms emkj (for m = 1,… , 3) allow for residual variation across meta-analyses
j within intervention comparisons k, with separate variances 𝜓2

1 ,… , 𝜓2
3 assumed for three groups of

outcome categories (grouped as objective, semi-objective and subjective as in Table II). Regression coef-
ficients 𝛽l (l = 1,… , 16) and 𝛾q (q = 1,… , 5) estimate average differences between outcome types
and intervention comparison types, respectively. As there were typically very few intervention compar-
isons studied within a systematic review (median 1 comparison per review, inter-quartile range 1 to 2),
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we decided not to allow additionally for variability across intervention comparisons within reviews.
In model (2), the xlkj and zqk are binary indicators of outcome type and intervention comparison type,
respectively, ordered as in Table II. (The comparison type indicator has one fewer subscript because
all meta-analyses j within comparison k relate to the same pair-wise comparison of interventions.) We
treated all-cause mortality and non-pharmacological versus non-pharmacological intervention compar-
isons as reference categories in the regression model, so we set 𝛽1 = 𝛾5 = 0. Therefore, 𝜏2

kj in (1) is
modelled as follows:

log
(
𝜏2

kj

)
= 𝜇k +

16∑
l=2

𝛽lxlkj +
3∑

m=1

emkjxmkj, where emkj ∼ N
(
0, 𝜓2

m

)
𝜇k = 𝜇 +

4∑
q=1

𝛾qzqk +
5∑

q=1

uqkzqk, where uqk ∼ N
(

0, 𝜅2
q

) (2)

The predictive model for heterogeneity was fitted using MCMC methods, and results were based on
100 000 iterations following a burn-in of 10 000 iterations. Further details of fitting the model and
winbugs code are provided in the Supporting Information (S.4). For each pair-wise combination of out-
come and intervention comparison types, we obtained a predictive distribution for the between-study
heterogeneity 𝜏2

new in a new meta-analysis in this setting. For example, the predictive distribution for
heterogeneity in a new meta-analysis with obstetric outcome (x2kj = 1), comparing a pharmacological
intervention with placebo (z1k = 1), is as follows:

log
(
𝜏2

new

)
∼ N

(
𝜇new + 𝛽2, 𝜓

2
2

)
𝜇new ∼ N

(
𝜇 + 𝛾1, 𝜅

2
1

)
Each predictive distribution is obtained under the full Bayesian model through analysis of the CDSR data
set, but it would be impractical if other researchers needed to refit the model themselves in order to obtain
a distribution for use as an informative prior. To allow us to summarize the distributions easily, we report
log-normal distributions fitted to each predictive distribution, using the posterior mean and standard devi-
ation for log

(
𝜏2

new

)
. The fitted distributions approximate well the predictive distributions obtained from

the full Bayesian model. In the applied examples in Section 4, results from using the original predictive
distributions as informative priors are compared with results from using fitted distributions.

3.3. Predictive distributions for a range of settings

The derived average heterogeneity variances 𝜏2 across meta-analyses with different outcome and
intervention comparison types are shown in Table III, with ratios of 𝜏2 also reported to express how much
higher or lower 𝜏2 values were in a range of categories compared against reference categories. These
results are based on the selected predictive model for heterogeneity defined by (1) and (2). All-cause
mortality is used as the reference outcome category; between-study heterogeneity levels were found to be
low for this outcome type as in our earlier work [7]. For outcomes relating to obstetric outcomes, cause-
specific mortality, a major morbidity event or composite mortality/morbidity, heterogeneity tended to be
somewhat higher than in meta-analyses of all-cause mortality. For all other outcome types, between-study
heterogeneity was typically substantially higher than in meta-analyses of all-cause mortality, and 95%
intervals for ratios of 𝜏2 values excluded the null value of 1. The outcome types for which heterogeneity
values were highest, on average, were pain and biological markers (dichotomised). These two outcome
types were among those regarded as subjectively measured outcomes, where we expected between-study
heterogeneity to be higher. For dichotomised biological markers, for example, high between-study vari-
ation could be caused partly by differing choices of cut-point and also whether the choice of cut-point
was made before or after seeing the data, as well as by differences in underlying method of measure-
ment, flaws in reporting or genuine diversity across populations. However, there was considerable overlap
across comparative ratios of 𝜏2 for subjectively measured outcomes and for those outcomes we regarded
as semi-objectively measured.

Compared to the category of non-pharmacological versus non-pharmacological interventions, hetero-
geneity tended to be lower in meta-analyses comparing pharmacological interventions versus placebo/
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Table III. Between-trial heterogeneity 𝜏2 among different types of meta-analysis, according to intervention
comparisons and outcomes, based on 14 886 binary outcome meta-analyses in the Cochrane Database of
Systematic Reviews; the ratios correspond to exp

(
𝛽l

)
and exp

(
𝛾p

)
in model (2).∗

Between-meta-analysis
Outcome types 𝜏2 (95% CI)† Ratio of 𝜏2 (95% CI) SD 𝜓 for log(𝜏2)

Objective outcomes 0.51 (0.20 to 0.92)
All-cause mortality 0.02 (0.01 to 0.02) 1 (reference)

Semi-objective outcomes 1.23 (1.08 to 1.38)

Obstetric outcomes 0.03 (0.02 to 0.04) 1.53 (1.09 to 2.17)
Cause-specific mortality/major morbidity 0.02 (0.02 to 0.03) 1.26 (0.85 to 1.87)
event/composite (mortality or morbidity)
Resource use/hospital stay/process 0.10 (0.07 to 0.13) 4.95 (3.57 to 7.24)
Surgical/device-related success/failure 0.12 (0.08 to 0.16) 6.10 (4.02 to 9.03)
Withdrawals/drop-outs 0.05 (0.04 to 0.07) 2.58 (1.75 to 3.97)
Internal/external structure-related outcomes 0.07 (0.06 to 0.10) 3.46 (2.27 to 5.18)

Subjective outcomes 0.90 (0.82 to 0.98)

General physical health indicators 0.10 (0.07 to 0.15) 5.22 (3.28 to 8.57)
Adverse events 0.15 (0.13 to 0.18) 7.89 (6.03 to 10.6)
Infection/onset of new acute/chronic disease 0.08 (0.07 to 0.10) 4.24 (3.27 to 5.71)
Signs/symptoms reflecting 0.13 (0.11 to 0.15) 6.57 (5.04 to 9.08)
continuation/end of condition
Pain 0.16 (0.12 to 0.21) 8.24 (5.89 to 12.1)
Quality of life/functioning (dichotomised) 0.08 (0.05 to 0.13) 4.08 (2.27 to 7.11)
Mental health indicators 0.12 (0.07 to 0.19) 6.22 (3.53 to 10.7)
Biological markers (dichotomised) 0.17 (0.14 to 0.21) 8.74 (6.51 to 12.2)
Subjective outcomes (various)§ 0.07 (0.05 to 0.09) 3.48 (2.33 to 4.99)

Between-comparison
Intervention comparison types 𝜏2 (95% CI)‡ Ratio of 𝜏2 (95% CI) SD 𝜅 for log(𝜏2)

Pharmacological vs. Placebo/control 0.08 (0.07 to 0.09) 0.64 (0.50 to 0.81) 1.21 (1.07 to 1.36)
Pharmacological vs. Pharmacological 0.06 (0.05 to 0.07) 0.51 (0.39 to 0.66) 1.28 (1.10 to 1.46)
Non-pharmacological§ vs. Placebo/control 0.06 (0.05 to 0.08) 0.51 (0.38 to 0.70) 1.43 (1.21 to 1.66)
Non-pharmacological§ vs. Pharmacological 0.22 (0.13 to 0.34) 1.81 (1.04 to 2.96) 0.75 (0.07 to 1.40)
Non-pharmacological§ vs. Non-pharmacological§ 0.12 (0.10 to 0.15) 1 (reference) 1.11 (0.91 to 1.32)

SD, standard deviation.
∗Posterior medians from the full Bayesian model (1) and (2), with 95% credible intervals (CI).
†Averaged across intervention comparison types.
‡Averaged across outcome types.
§Subjective outcomes (various) and non-pharmacological interventions defined in Table II.

control, pharmacological versus pharmacological interventions, or non-pharmacological interventions
versus placebo/control. Heterogeneity tended to be higher in meta-analyses of non-pharmacological
versus pharmacological interventions.

The between-meta-analysis standard deviations 𝜓 (Table III) represent variation in levels of hetero-
geneity among meta-analyses relating to a particular outcome category, on the log scale, and can be
used to calculate an approximate 95% range exp

(
log

(
𝜏2
)
± 2𝜓

)
. The estimated variation was low-

est for meta-analyses examining all-cause mortality, where a 95% range is calculated as (0.007, 0.06).
For meta-analyses examining obstetric outcomes, where the between-meta-analysis standard deviation
was substantially higher, a 95% range is calculated as (0.003, 0.35). Similarly, the between-comparison
standard deviations can be used to calculate approximate 95% ranges for heterogeneity among meta-
analyses relating to a particular intervention comparison type.

In Table IV, we present a set of predictive log-normal distributions for the between-study heterogene-
ity expected in a future meta-analysis in each of 80 different settings, defined by the outcome categories
and intervention comparison categories compared in Table III. These distributions were obtained by

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 984–998
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fitting log-normal distributions to the predictive distributions obtained under the selected full
Bayesian model defined by (1) and (2). We propose using the fitted distributions in Table IV as prior
distributions for heterogeneity in future meta-analyses and will illustrate this in Section 4. Differences
among the predictive distributions reflect the differences observed in Table III. We note that the underly-
ing variances of the predictive distributions are assumed identical within each outcome category, as these
are defined by the between-meta-analysis variances 𝜓2

1 ,… , 𝜓2
3 in model (2); however, the variances of

the fitted distributions differ very slightly. An overall ‘average’ predictive distribution for a future meta-
analysis in a general healthcare setting, obtained from the null regression model without predictors, is a
log-normal(−2.56, 1.742) distribution for the between-study heterogeneity 𝜏2

new.
To help with interpretation of differing heterogeneity values, we give examples of the implications for

the variability in odds ratios, calculating expected 95% ranges for underlying odds ratios in pharmaco-
logical versus placebo/control meta-analyses assessing three different outcome types. Using the median
values of the predicted distributions (Table IV), we expect odds ratios with 95% ranges of 0.76 to 1.31
for all-cause mortality (using 𝜏2 = 0.019), 0.51 to 1.97 for surgical/device-related success/failure (using
𝜏2 = 0.12) and 0.45 to 2.24 for dichotomised biological markers (using 𝜏2 = 0.17), assuming central
values of 1 for all odds ratios.

4. Application to illustrative examples

To demonstrate use of informative priors for between-study heterogeneity in a Bayesian meta-analysis,
using the three different methods of implementation described in Section 2, we reanalyse the data
from two published meta-analyses. The first is a meta-analysis including four studies evaluating the
effectiveness of ticlopidine plus aspirin versus oral anticoagulants in patients who have undergone coro-
nary stenting, with respect to major bleeding events (Figure 1) [16]. In a conventional random-effects
meta-analysis using method-of-moments estimation [10], the estimate of between-study variance was
moderately high at 0.59 (I2 = 69%) but extremely imprecisely estimated (95% CI 0.005 to 30.0, cal-
culated using the Q-profile method [17]). The odds ratio comparing ticlopidine plus aspirin versus oral
anticoagulants was estimated as 0.37 (95% CI 0.14 to 0.98). This meta-analysis compares two active
pharmacological interventions, evaluated with respect to a major morbidity event, so we choose a log-
normal(−3.95, 1.792) distribution as an informative prior for 𝜏2 (Table IV), which has a median of 0.019,
and a 95% range 0.002 to 0.63.

When incorporating this prior distribution in a Bayesian meta-analysis using MCMC methods,
the central estimate (posterior median) for 𝜏2 reduced to 0.04, with 95% credible interval 0.001 to 0.95.
The prior and posterior distributions obtained for 𝜏2 using MCMC methods are illustrated in Figure 2,
on a log scale; these are fairly similar, because the data set provides little information about 𝜏2. In a
data set such as this, we would prefer to incorporate relevant external information on the likely val-

Figure 1. Conventional (DerSimonian and Laird, marked D + L) and Bayesian random-effects meta-analyses
combining odds ratios (ORs) from example 1: four studies of ticlopidine plus aspirin versus oral anticoagulants
for prevention of major bleeding events following coronary stenting; 95% confidence intervals and % weight in

meta-analysis shown.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 984–998

993



R. M. TURNER ET AL.

Figure 2. Histograms (a) and (b) show prior and posterior distributions respectively for heterogeneity variance
𝜏2 in Example 1. Histograms (c) and (d) show prior and posterior distributions for 𝜏2 in Example 2. Distributions

obtained using MCMC methods.

ues of 𝜏2 than to estimate the combined treatment difference using a very imprecise estimate of 𝜏2.
The combined odds ratio for the treatment difference has changed to 0.54 (95% CI 0.23 to 0.92) in the
Bayesian meta-analysis (Table V). Figure 2 displays the relative weights assigned to each study under the
conventional random-effects and Bayesian meta-analyses. In the Bayesian meta-analysis, the relative
weights assigned at each iteration are monitored, and posterior medians of weights are reported. The
reduction in the between-study heterogeneity estimate has caused the weighting of the studies in the
meta-analysis to change substantially in comparison with those used in a conventional random-effects
meta-analysis (Figure 1). The study weights have moved towards the weights allocated to the studies
under a fixed-effect meta-analysis, and the combined odds ratio is now closer to the fixed-effect odds
ratio of 0.61 (95% CI 0.41 to 0.93).

As a second example, we consider a meta-analysis including four studies evaluating the effectiveness
of auricular (ear) acupuncture for treatment of cocaine dependence, where the outcome was withdrawal
from the treatment (Figure 3) [18]. The meta-analysis compares a non-pharmacological intervention
against a control (sham acupuncture), with respect to a withdrawal/drop-out outcome, for which the rel-
evant predictive distribution is log-normal(−3.21, 1.912) (Table IV). In a conventional random-effects
meta-analysis, between-study heterogeneity was estimated as 0 (95% CI 0 to 4.12), with I2 = 0%. When
incorporating the chosen prior information in a Bayesian meta-analysis using MCMC methods, the cen-
tral estimate for heterogeneity changes to 0.03, with 95% credible interval 0.001 to 0.54. As in the
previous example, the prior and posterior distributions for 𝜏2 are similar (Figure 2). Although the central
estimate of 0.03 for 𝜏2 has increased only slightly from the conventional estimate of 0, the 95% interval
for the combined odds ratio has widened substantially because the Bayesian analysis takes into account
the uncertainty in 𝜏2(Table V).

In both examples using the informative prior distributions from Table IV, the results from perform-
ing a Bayesian meta-analysis using numerical integration, importance sampling and MCMC methods are
almost identical (Table V), as we expect. They are also nearly identical to a full Bayesian analysis incor-
porating the CDSR data set directly; so ignoring the uncertainty in 𝜇𝜏 and 𝜎𝜏 in the log-normal

(
𝜇𝜏, 𝜎

2
𝜏

)
prior for 𝜏2 appears unimportant. In contrast, the use of a vague prior for 𝜏2 gives notably different results
(Table V). To explore sensitivity of the results to choice of informative prior for heterogeneity, we re-
analysed each example using the generic ‘average’ predictive distribution for heterogeneity as a prior. The
central estimates and 95% credible intervals for the combined odds ratio are moderately similar to those
obtained when using setting-specific prior distributions in both examples (Table V). Results obtained for
𝜏2 are more sensitive to choice of prior; this is unsurprising given how little information on heterogeneity
is provided by the data.
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Figure 3. Conventional (DerSimonian and Laird, marked D + L) and Bayesian random-effects meta-analyses
combining odds ratios (ORs) from Example 2: four studies examining withdrawal from cocaine dependence
treatment: acupuncture versus sham acupuncture; 95% confidence intervals and % weight in meta-analysis shown.

5. Discussion

The number of included studies is small in many meta-analyses, leading to imprecision in estimation of
the between-study heterogeneity variance when a random-effects model is used. It is therefore beneficial
to perform a fully Bayesian random-effects meta-analysis and declare an appropriate informative prior
distribution for heterogeneity. We have proposed two non-MCMC methods for implementing Bayesian
meta-analysis, based on numerical integration and importance sampling methods. In addition, we have
provided a set of predictive distributions for heterogeneity in a range of specific research settings, which
can be used directly as informative priors in future meta-analyses of binary outcomes.

Numerical integration routines can be fragile, and this method could therefore potentially be problem-
atic in some data sets. However, over a large range of examples, we have not experienced any problems
when using this method. An advantage of numerical integration is that the results are not affected by MC
error. When using importance sampling, we have seen one example where the MC error remained high
even for a very large number of simulations. In this example, it was necessary to increase the scale factor
(from 4 to 20), and the MC error then reduced to an acceptable level. As a safeguard against these poten-
tial problems, we would recommend using both numerical integration and importance sampling methods
to perform Bayesian meta-analysis, as this takes very little extra time, to check that the answers agree
as expected. Both numerical integration and importance sampling have the advantage of not requiring a
burn-in period, which is needed when using MCMC methods. We have described methods for implement-
ing log-normal priors for heterogeneity, as this distribution gave the best model fit in the CDSR database
analysed in this paper. If predictive distributions for heterogeneity of a different distributional form were
obtained from other data sources, the MCMC and importance sampling methods of implementation could
be very easily modified, whereas adapting the numerical integration method would require more effort.
A disadvantage of the proposed numerical integration and importance sampling methods is that they can
be applied only when analysing summary data and assuming a normal distribution for the log odds ratios.
This is the most common approach used for binary outcome meta-analysis, but the alternative binomial
likelihood approach is preferable in principle [19]. We chose to use the preferred binomial likelihood
approach when modelling the CDSR data to obtain predictive distributions for heterogeneity.

The size and breadth of the CDSR data set has allowed us to compare levels of between-study hetero-
geneity across numerous types of research setting. However, there are also some limitations to working
with such a large data set. The classifications of meta-analysis characteristics were extremely time con-
suming and were completed by one person (Jonathan Davey) in an earlier work [1]. Automated data
extraction was used to obtain the data from each meta-analysis in the CDSR; the database therefore
includes only data presented numerically in tables or figures by Cochrane review authors, and meta-
analyses described only in the text are excluded. This could cause us to under-estimate the overall levels
of heterogeneity, as meta-analyses reported in the text alone may tend to include more heterogeneous
studies. In our analyses, we have modelled total between-study heterogeneity, which comprises variation
attributable to true diversity among the study designs, variation attributable to biases and unexplained
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variation. As a conventional random-effects model will be used to analyse many future meta-analyses,
this is the most practically relevant approach. In our current work, we have developed predictive dis-
tributions for meta-analyses relating to binary outcomes, by analysing predictors of the heterogeneity
variance 𝜏2 on the log odds ratio scale. The majority of meta-analyses in healthcare research analyse
binary outcomes (66% of meta-analyses in the CDSR database [1]). We plan to extend our work in the
future to examine predictors of the I2 measure [20] across meta-analyses, to allow prediction of hetero-
geneity for multiple outcome types (e.g. continuous, binary and ordinal) and compare average levels of
heterogeneity across outcome types.

Empirically derived informative prior distributions for heterogeneity variances have been proposed
previously by Higgins and Whitehead [3] and by Pullenayegum [14]. Higgins and Whitehead constructed
an informative prior for a specific meta-analysis in gastroenterology, by fitting an inverse-gamma dis-
tribution to the heterogeneity variances of 18 meta-analyses including similar studies. Pullenayegum
constructed a joint prior for heterogeneity and the summary intervention effect, fitted to 314 meta-
analyses, in which the prior for heterogeneity was allowed to depend on the magnitude of the intervention
effect. In our models, we chose to predict heterogeneity from known characteristics of the meta-analyses
only, in order that priors can be fully specified before the analysis and to facilitate simpler implementation.

In an earlier paper, we presented predictive distributions for broader categories of outcome and inter-
vention types [7]. We would recommend using the predictive distributions obtained here for specific
research settings if the new meta-analysis fits directly into the categorisation. If not, perhaps because the
meta-analysis could be placed in several different categories, the predictive distribution presented for a
general health research setting may be suitable as a prior, or one of the predictive distributions presented
for broader categories in our earlier paper [7]. For all-cause mortality only, we have presented predic-
tive distributions in both papers; these differ slightly, because they are obtained under different models,
but using either distribution as a prior for heterogeneity would lead to similar results in a Bayesian
meta-analysis. In our previous work, we examined medical specialty type in our regression models for
heterogeneity but found no evidence of differences across medical areas; this characteristic was there-
fore not used as a predictor of heterogeneity in our current work. Prior distributions are not available
for meta-analyses in settings outside the scope of the CDSR database, but these could be constructed by
those with access to another suitable database of meta-analyses, using the code provided in this paper.

Informative prior distributions for heterogeneity variances could be used in more complex meta-
analysis models as well as in simple random-effects models. In a multivariate meta-analysis, the priors
presented in this paper can be applied directly if the heterogeneity variances and correlations are sep-
arated in the between-study variance–covariance matrix [21, 22]. In a network meta-analysis including
multiple intervention comparisons, it is common to assume equal heterogeneity variances across compar-
isons. Provided all intervention comparisons are within one category presented in this paper, the priors
here can also be applied in this setting.

In small meta-analyses, we recommend that the random-effects model is fitted using Bayesian
estimation, with an appropriate informative prior distribution declared for the between-study variance.
Bayesian estimation in meta-analysis can be achieved using MCMC, numerical integration or importance
sampling methods.
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