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A B S T R A C T

Beta-thalassaemia causes defective haemoglobin synthesis leading to ineffective erythropoiesis, chronic hae-
molytic anaemia, and subsequent clinical complications. Blood transfusion and iron chelation allow long-term
disease control, and haematopoietic stem cell transplantation offers a potential cure for some patients.
Nonetheless, there are still many challenges in the management of beta-thalassaemia. The main treatment option
for most patients is supportive care; furthermore, the long-term efficacy and safety of current therapeutic
strategies are limited and adherence is suboptimal. An increasing understanding of the underlying molecular and
cellular disease mechanisms plus an awareness of limitations of current management strategies are driving
research into novel therapeutic options. Here we provide an overview of the current pathophysiology, clinical
manifestations, and global burden of beta-thalassaemia. We reflect on what has been achieved to date, describe
the challenges associated with currently available therapy, and discuss how these issues might be addressed by
novel therapeutic approaches in development.

1. Introduction

Beta-thalassaemia is a monogenic disorder leading to reduced or
absent synthesis of the beta-globin subunit of adult haemoglobin [1,2].
It is characterized by ineffective erythropoiesis, chronic haemolytic
anaemia, and subsequent clinical complications [2–4]. Most patients
with beta-thalassaemia are born in resource-constrained countries, but
modern migration patterns have altered the epidemiology of this dis-
ease [5]; patients with beta-thalassaemia are now found even in
northern European countries. Affected children may present with
failure to thrive, growth retardation, or other more specific signs or
symptoms [6]. Lifelong disease management is required; individuals
with severe disease will not survive childhood without appropriate
treatment [6,7].

The survival and quality of life (QoL) of patients with beta-tha-
lassaemia in developed countries have improved markedly in recent
decades [7]. The availability of blood transfusion and iron chelation
strategies for patients with severe forms of beta-thalassaemia now allow
long-term disease control and improved QoL. Moreover, advances in
haematopoietic stem cell transplantation (HSCT) techniques have pro-
vided a potentially curative option for some patients.

Despite important improvements in the management of beta-tha-
lassaemia, there are still many challenges to overcome before global
disease control is achievable. For example, screening and prevention
programmes are inadequate in many resource-constrained countries,
and access to effective treatment is far from universal [5,8,9]. The main
treatment option for most patients is supportive care and, as such, many
patients require regular, lifelong transfusions and iron chelation
therapy. Current supportive interventions have not all been evaluated
in large, long-term clinical trials, and comparative studies to inform the
best method of care are limited. The convenience of administration and
cost of most available therapies for this chronic disease remain chal-
lenging. HSCT is only available for a subset of patients and the proce-
dure is not without risk. Gene therapy could offer a curative approach
but the technology is still considered experimental.

Our understanding of the underlying pathophysiological mechan-
isms of beta-thalassaemia and its associated clinical morbidity has in-
creased substantially in recent years [10]. This new knowledge and an
increasing awareness of the limitations of current management strate-
gies are driving research into novel therapeutic options for this patient
population. Here we provide an overview of the pathophysiology,
clinical manifestations, and global burden of beta-thalassaemia, and
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reflect on what has been achieved to date in the management of af-
fected patients. We also highlight ongoing challenges associated with
currently available therapeutic options, and discuss how these issues
might potentially be addressed by novel, potentially disruptive, ther-
apeutic approaches in development.

2. Epidemiology

Robust data on the frequency and natural history of the hae-
moglobinopathies are scarce [8]. However, it is conservatively esti-
mated that> 40,000 babies with beta-thalassaemia are born each year
[5]. Beta-thalassaemia is a truly global disease but is most prevalent in
South Asia, the Far East, the Middle East, and Mediterranean countries
[1,11,12]. The global distribution of beta-thalassaemia is attributed
largely to natural selection of heterozygote carriers because of protec-
tion against falciparum malaria [13]. Beta-thalassaemia is also be-
coming increasingly common in northern Europe, North America, and
Australia as a result of migration from areas of high prevalence [14,15].

Nonetheless, a large proportion of those affected by beta-tha-
lassaemia still live in resource-constrained countries [5]. Infant and
childhood mortality rates in these areas are declining, and more pa-
tients will survive to present for diagnosis and treatment of beta-tha-
lassaemia [8]. A combination of lower childhood mortality and popu-
lation growth is expected to lead to a substantial increase in the number
of affected births [8]. Therefore, despite limited available epidemiolo-
gical data on haemoglobinopathies, beta-thalassaemia is expected to
pose an increasingly severe global burden in future years [8].

3. Diagnosis and classification of disease

A diagnosis of beta-thalassaemia should be considered for any pa-
tient who has a hypochromic, microcytic anaemia. Diagnostic algo-
rithms utilizing red cell indices, haemoglobin levels, and reticulocyte
counts can efficiently differentiate iron deficiency anaemia and
common thalassaemia traits and disorders [1,16]. The level of hae-
moglobin and haemoglobin electrophoresis are important tools to re-
cognize carriers, patients with intermediate phenotype, and severely
affected patients. The use of DNA genotyping to obtain a definitive
diagnosis is becoming increasingly important, although not exclusively,
to confirm the clinical findings and predict disease severity [17]. Once a
diagnosis of clinically relevant beta-thalassaemia is made, a full blood
group genotype must be obtained before starting any treatment [18].
Guidance on diagnostic patient work-up is available in recent clinical
management guidelines [1,2].

Beta-thalassaemia was traditionally classified as major, intermedia,
or minor based on the severity of the clinical phenotype [15]. However,
over the past decade, there has been a transition to a simpler classifi-
cation system based on blood transfusion requirement. Today, patients
are considered to have either transfusion-dependent thalassaemia
(TDT) or non-transfusion-dependent thalassaemia (NTDT) (Fig. 1)
[1,2]. Patients with TDT require regular, lifelong blood transfusions for
survival, starting before the age of 2 years. Those with NTDT may need
transfusion therapy occasionally or for limited periods of time, espe-
cially during periods of growth and development, surgery, or pregnancy
[2,19,20]. Transfusion is also offered to patients with NTDT to prevent
or manage disease complications [2]. It must be remembered that
classification of TDT or NTDT only represents a patient's current clinical
status; patients may shift clinically between TDT or NTDT over time
(Fig. 1). Transfusion requirements should be re-evaluated inter-
mittently.

4. Pathophysiology

Beta-thalassaemia is a recessive disorder resulting from mutations in
the beta-globin gene. Based on available data and the authors' clinical
experience,> 300 beta-thalassaemia alleles have been described [21];

most are point mutations in the beta-globin gene or flanking region, but
deletion of the gene or upstream regulatory elements may occur [15].
Carriers with a single beta-thalassaemia allele are usually asympto-
matic; such individuals have a mild hypochromic, microcytic anaemia
and elevated haemoglobin A2 levels [15]. Homozygous or compound
heterozygous mutations in the beta-globin gene or promoter impair the
production of beta-globin leading to specific clinical phenotypes
[15,22]. Co-inheritance of a beta-thalassaemia allele and a structural
haemoglobin variant, such as haemoglobin E, results in a wide range of
clinical phenotypes [2,23], varying from completely asymptomatic to
severe disease.

Unpaired free alpha chains precipitate and are oxidized into me-
thaemoglobin and insoluble hemichromes [2,24]. Free iron catalyses
the formation of reactive oxygen species leading to oxidative cell da-
mage [24]. These pathogenic mechanisms result in apoptosis of ery-
throblasts, leading to ineffective erythropoiesis and haemolysis of ma-
ture red cells [24]. The central role of ineffective erythropoiesis in the
pathophysiology of beta-thalassaemia is shown in Fig. 2.

Although beta-thalassaemia is a monogenic disorder, the clinical
manifestations of the disease are diverse [25]. Indeed, patients with the
same beta-globin genotype can have very different clinical phenotypes
[25]. The clinical manifestations of beta-thalassaemia are now under-
stood to result not only from the severity of the beta-globin gene mu-
tations, but also the coinheritance of modifying factors [25].

So-called ‘secondary modifiers’ of beta-thalassaemia are situations
that alter the relative imbalance of alpha- and beta-globin chains [2].
Co-inheritance of alpha-thalassaemia or hereditary persistence of ex-
pression of gamma-globin act to lessen the globin chain imbalance [25].
‘Tertiary modifiers’ of beta-thalassaemia are those that alter the clinical
complications of disease [2]. Genetic polymorphisms may modify bi-
lirubin metabolism, iron homeostasis, bone metabolism, cardiovascular
disease, and predisposition to infection [2,25]. Malaria antibody status
also seems to modify the phenotype of patients with haemoglobin E/
beta-thalassaemia [26].

5. Clinical manifestations

Mature red blood cells haemolyse in the peripheral circulation, and
binding of immunoglobulin and complement triggers their sequestra-
tion by the spleen [24]. Chronic haemolytic anaemia negatively affects
growth and organ and vascular function, and may cause other com-
plications such as acute cholecystitis. Chronic anaemia also leads to
poor tissue oxygenation and high erythropoietin levels [24]. Pro-
liferation of erythroid precursors in the bone marrow leads to medul-
lary expansion, skeletal deformities, and compensatory extramedullary
haematopoiesis [24,27].

In the context of ineffective erythropoiesis and chronic haemolysis,
red blood cells have prothrombotic potential that can cause hypercoa-
gulability [3,28]. Vascular manifestations such as venous thrombosis
and pulmonary hypertension are now well recognized in patients with
beta-thalassaemia, especially those who have undergone splenectomy
or have NTDT [3].

Ineffective erythropoiesis and chronic tissue hypoxia also inhibit
hepatic synthesis and secretion of hepcidin [29,30]. Low circulating
levels of hepcidin promote duodenal iron uptake, release of recycled
iron from the reticuloendothelial system, and hepatic iron storage [18].
Iron overload, mediated by low circulating levels of hepcidin [18,28] or
regular blood transfusions [1], is a major concern. The clinical effects of
iron overload include cardiomyopathy, liver fibrosis or cirrhosis, and
endocrinopathies [6], and are observed more commonly among pa-
tients with TDT than NTDT.

The complex pathophysiology of beta-thalassaemia leads to wide-
ranging clinical manifestations (Fig. 2). Recent data suggest an asso-
ciation between the degree of anaemia (haemoglobin level) and mor-
bidity development in those with NTDT [31]. Large prospective trials
are required to confirm whether outcomes for patients with NTDT may
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be improved by more aggressive intervention to increase haemoglobin
levels and reduce iron absorption.

6. Quality of life

The clinical manifestations of beta-thalassaemia and the demands of
treatment impair the physical, emotional, social, and academic func-
tioning of affected patients, and reduce their health-related QoL
(HRQoL) [4,7,32–38]. Recent evidence suggests that better HRQoL
among children with beta-thalassaemia is associated with good iron
control (e.g. through improved adherence), minimization of side effects
of iron overload and chelation therapy, prevention of comorbidities,
and fewer hospital visits [39]. As such, early diagnosis and good clinical
management are key to optimizing the overall HRQoL and survival for
affected children [39–42].

Patients with beta-thalassaemia may now expect to live for 50 years
or more. However, improved patient survival in recent decades has
revealed previously unidentified health issues [43]. Multiple morbid-
ities, even unrelated to thalassaemia, tend to manifest with increasing
age, and these clinical sequelae negatively affect the HRQoL of those
with beta-thalassaemia [4,38,43]. A holistic approach to care for pa-
tients of all ages is required [1].

7. Health economic considerations

Long-term medical care for patients with beta-thalassaemia requires
specialist, multidisciplinary input and is expensive [1,44–46]. Health-
care resource utilization and costs tend to increase with age [37]. The
cost of treatment for beta-thalassaemia in the UK is estimated to have
increased by almost one-third (32%) over the past 16 years; the cost of
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required (e.g. surgery, 
pregnancy, infection)

Intermittent transfusions 
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Transfusions not required
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•   Beta-thalassaemia minor
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•   Severe HbE/beta-thalassaemia
•   Hb Barts hydrops (alpha-thalassaemia major)

Transfusion requirement

Fig. 1. Spectrum of thalassaemia syndromes based on
clinical severity and transfusion requirement.
HbE, haemoglobin E; HbH, haemoglobin H; NTDT, non-
transfusion-dependent thalassaemia; TDT, transfusion-de-
pendent thalassaemia.
Figure adapted from Musallam et al. [28]. Published with
permission; obtained from the Haematologica Journal
website http://www.haematologica.org.
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Fig. 2. Pathogenesis of beta-thalassaemia and targets for current and novel therapeutic strategies. Primary mechanism of action is shown: black arrow, current therapeutic strategy; grey
arrow, novel agent.
TMPRSS6, transmembrane protein serine 6.
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treatment is now in the region of GBP 483,454 (USD 720,201) over
50 years [45].

The costs of medical care for patients with beta-thalassaemia are
prohibitive for many individuals without reimbursement and for public
healthcare systems around the world [47–49]. It is estimated that only
12% of children born with TDT receive adequate transfusion therapy,
and<40% of those transfused receive adequate iron chelation therapy
[5]. The costs of specific therapies are discussed below.

The indirect costs of beta-thalassaemia are less well studied. Data
from a large international study indicate that adults with beta-tha-
lassaemia who are in paid employment lose a mean of 2.1 working days
per month; similarly, children are reported to miss 2.8 days of school
per month [36].

8. Current management of beta-thalassaemia

8.1. Current treatment options

Patients with severe beta-thalassaemia require lifelong therapy to
prevent and manage the clinical consequences of disease [50]; long-
term adherence to treatment is essential. Comprehensive management
guidelines for both TDT and NTDT have been developed by the Tha-
lassaemia International Federation and are widely available [1,2].
Current management strategies for TDT comprise blood transfusion,
iron chelation, splenectomy (less common than in the past), and, for a
subset of patients, HSCT. The benefits and limitations of current
therapies for beta-thalassaemia are discussed below and summarized in
Table 1.

8.1.1. Blood transfusion
Transfusion therapy for severe beta-thalassaemia provides normal

red blood cells and suppresses ineffective erythropoiesis, thus limiting
downstream pathophysiological complications [2]. Patients with TDT
require lifelong, regular blood transfusions administered every
2–5weeks to maintain pre-transfusion haemoglobin levels of at least
9–10.5 g/dL [1]. This transfusion schedule is usually started before the

age of 2 years and enables normal growth and physical activities, ade-
quately suppresses bone marrow expansion in most patients, and may
prevent iron absorption [1,51].

The indications for blood transfusion among patients with NTDT are
less well established. Occasional transfusions should be considered for
defined periods during times of anticipated acute stress or low hae-
moglobin levels, such as infection, surgery, or pregnancy [2]. More
frequent transfusions may be beneficial for some patients, for example
children with growth failure, reduced exercise tolerance, or poor QoL
[2]. Controlled clinical trials to evaluate the role of sustained, regular
transfusions for patients with NTDT are lacking. However, observa-
tional data on patients with NTDT suggest a potential role for transfu-
sion in the prevention and management of thrombotic events, silent
brain infarcts, pulmonary hypertension, leg ulcers, and extramedullary
haematopoietic pseudotumours [2]; these findings have been attributed
to suppression of ineffective erythropoiesis and subsequent pathophy-
siological mechanisms [18]. Therefore, it has been suggested that ear-
lier introduction of transfusion therapy to prevent the clinical con-
sequences of disease could benefit patients with NTDT [2,52,53];
however, others argue that increasing blood intake in NTDT may lead
to more iron accumulation and, thus, complications from iron-related
overload [52].

Approximately 100,000 patients currently receive regular transfu-
sions for beta-thalassaemia worldwide [6]. The requirement for blood
transfusion therapy for patients with beta-thalassaemia can be a huge
burden in some countries [49,54]. It is estimated to cost EUR 131 to
produce one unit of blood in Greece and at least USD 25 in Iran [49,55].
An estimated 33–47% of the cost of treatment for patients with severe
beta-thalassaemia is attributed to blood transfusion [37,45].

Blood transfusion exposes patients to a number of risks: blood-borne
infection, alloimmunization, and iron overload are among the key
concerns for patients with beta-thalassaemia [2,7]. Although processes
for screening, preparation, and administration of blood products have
generally improved over time, challenges persist in some countries [7].
Alloimmunization occurs in 10–20% of patients with thalassaemia [1];
it is more common in patients who begin transfusion therapy later in

Table 1
Current therapies for beta-thalassaemia.

Therapy Advantages Disadvantages

Blood transfusion • Suppresses ineffective erythropoiesis, thus limiting downstream
pathophysiological complications

• Regular transfusion plus iron chelation therapy is associated with
improved long-term survival in TDT

• Role in ameliorating certain morbidities in observational studies with
NTDT

• Lifelong transfusions required every 2–5 weeks in TDT

• Risks of blood-borne infection, alloimmunization, and iron overload

Iron chelation • Long-term use improves liver and myocardial iron levels and function,
and improves endocrine function in TDT

• Can reduce systemic and hepatic iron burden in NTDT

• Oral formulations now available

• Not effective for all patients

• Frequent side effects that require regular monitoring

• Demanding regimen of parenteral formulation

• Poor adherence among some patients

• High cost
Hydroxyurea • May improve haematological outcomes in specific NTDT populations

• Low cost
• Lack of robust evidence of benefit

Splenectomy • May improve growth, QoL, and haemoglobin concentration, thus
avoiding transfusions for some patients

• Risk of sepsis

• Increasing awareness of other risks from NTDT studies, including venous
thrombosis and other vascular manifestations

• May reduce ability to scavenge toxic free iron species, as evident from NTDT
studies

HSCT • Potentially curative for patients with TDT

• 90% survival rate in patients; disease-free survival rates> 80% in TDT

• Improves HRQoL of children with severe disease

• Long-term cost-effectiveness

• Appropriate only for a subset of patients
○ Young age
○ Compatible sibling donor

• 5–10% risk of mortality
○ Intensive myeloablative conditioning required, graft-versus-host disease,

and graft failure

• Potential impairment of fertility

• Requires access to technology at major treatment centre

• Substantial one-off cost of procedure

HRQoL, health-related quality of life; HSCT, haematopoietic stem cell transplantation; NTDT, non-transfusion-dependent thalassaemia; TDT, transfusion-dependent thalassaemia; QoL,
quality of life.
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life (aged>3 years), have NTDT [56–58], or have undergone sple-
nectomy [59]. The use of extended antigen-matched donor blood re-
duces alloimmunization rates [1].

Blood transfusions are responsible for iron accumulation, as iron
cannot be excreted physiologically; iron accumulation is already evi-
dent in children with TDT from 2 years of age. Adults with TDT receive
an average of 0.3–0.6 mg of iron per kg per day and, without effective
chelation, will accumulate approximately 6–12 g of iron each year [1].
Iron overload leads to complications that affect the heart, liver, and
endocrine tissues [1,2]. Although iron chelation therapy is available,
death due to iron overload remains an issue [2].

8.1.2. Iron chelation
As described, primary iron overload in NTDT due to increased iron

absorption, and secondary transfusional iron overload in TDT, act to
increase iron stores far beyond normal physiological levels unless ef-
fective chelation therapy is provided. Iron chelators interact mainly
with low molecular weight ‘labile’ iron so only a small fraction of body
iron is available for chelation at any time [1]. Hence treatment is most
successful when chelation activity is present throughout the day [1].
Magnetic resonance imaging is useful to monitor body iron con-
centration and tailor iron chelation therapy to individual patient needs
[1,60] but its availability varies by country.

Transfusion plus iron chelation therapy have been associated with
improved long-term survival among successive birth cohorts of patients
with TDT over the past 50 years [1]. Long-term use of iron chelators
from early childhood improves liver and myocardial iron concentra-
tions and can improve endocrine function [61–66]. Three iron chelators
are currently approved by regulatory authorities for the treatment of
iron overload among patients with beta-thalassaemia; indications and
approval status vary across countries [67–72]. Evidence suggests that
the short-term clinical effectiveness of all three iron chelators is similar
[73], although efficacy in different organs may vary [74,75].

Deferoxamine, the first commercially available iron chelator, is
administered by parenteral infusion for 8–12 hours, 5–7 nights per
week [67,71,76]. The benefits of deferoxamine are well documented
[63,64], but the demanding treatment regimen can lead to poor ad-
herence [1,77]. Therefore, the introduction of two orally active iron
chelators represented a great advance in the management of patients
with beta-thalassaemia. Deferiprone is administered orally three times
daily; deferasirox is administered orally once daily [69,70]. A combi-
nation of iron chelators is also sometimes used in clinical practice [78].

The success of currently available oral iron chelators has been
somewhat limited by availability, efficacy, and safety issues [1,79]. For
example, not all patients have the same access to chelators or are
equally responsive to iron chelation therapy, and many patients around
the world continue to live with high levels of iron in their liver and
heart [80]. In addition, both deferiprone and deferasirox have been
associated with some adverse events that require close and continuous
monitoring [15,73]. Moreover, successful management of iron overload
requires long-term adherence to treatment [81]. Satisfaction with, and
adherence to, oral iron chelation therapy is greater than that observed
for subcutaneous deferoxamine, but is still often suboptimal, particu-
larly among adolescents and young adults [36,37,73,81].

Iron chelation therapy accounts for approximately half (43–55%) of
the total current cost of treatment for patients with severe beta-tha-
lassaemia [37,45]. Reported estimates of the comparative lifetime
treatment costs of the three available iron chelators are variable
[82,83]. However, most cost-effectiveness analyses support the use of
oral iron chelators compared with deferoxamine [73,82–84]. The
higher acquisition costs of oral iron chelators are generally considered
to be offset by the avoidance of infusion-related equipment costs,
convenience, and QoL benefits [45,73,82–84]. Regardless of the com-
parative cost-effectiveness of different formulations, it should be re-
membered that many patients in resource-constrained countries have
no access to any iron chelation therapy [5,7].

8.1.3. Hydroxyurea
Hydroxyurea is a cytotoxic antimetabolic agent that increases fetal

haemoglobin levels [2,85]. It is approved for use in sickle cell disease to
reduce the frequency of painful crises and need for blood transfusions.
Data from initial case reports suggested that hydroxyurea may also be
beneficial for patients with beta-thalassaemia [85]. However, sub-
sequent small studies among heterogeneous beta-thalassaemia popula-
tions produced inconsistent findings, and some suggested a decline in
haematological response with long-term treatment [85]. No large,
randomized, placebo-controlled trials have been conducted to pro-
spectively evaluate the use of hydroxyurea among patients with beta-
thalassaemia [85]. Accordingly, a recent Cochrane review found no
robust evidence that hydroxyurea reduces transfusion requirement
among patients with NTDT [86]. Nonetheless, treatment with hydro-
xyurea is supported cautiously for specific patient populations in cur-
rent NTDT treatment guidelines [2]. Randomized, controlled trials with
long-term follow-up are needed to assess the safety and efficacy of
different doses of hydroxyurea in reducing transfusion requirement and
complications of chronic anaemia [85–87].

8.1.4. Splenectomy
Splenectomy has been performed conventionally as an adjunct or

alternative to transfusion therapy. Data from observational studies
suggest that splenectomy may improve growth, QoL, and haemoglobin
levels for some patients. However, data on serious adverse events after
splenectomy are continuing to accumulate [28]. In addition to the ac-
cepted risk of sepsis, observational data on patients with NTDT suggest
that splenectomy may be associated with a 4–7-fold increased risk of
overt venous thrombosis and other vascular manifestations, including
pulmonary hypertension [52,88]. It has also been suggested that sple-
nectomy may reduce the body's ability to scavenge toxic free iron
species [2]. Accordingly, indications for splenectomy among patients
with beta-thalassaemia are becoming increasingly restrictive [1,2,89].

8.1.5. Haematopoietic stem cell transplantation
HSCT offers a potentially curative therapeutic approach for patients

with beta-thalassaemia [1,90]. Almost 90% of patients with TDT who
undergo HSCT at experienced centres in Europe now survive, with 2-
year disease-free survival rates of over 80% [91]. HSCT improves the
HRQoL of children with severe disease compared with lifelong blood
transfusions, iron chelation, and management of complications
[92–94]. HSCT for thalassaemia still carries an overall mortality risk of
12% within 2 years of transplantation [91]. The risks of HSCT are re-
lated largely to the intensive myeloablative conditioning regimens re-
quired, graft-versus-host disease, and graft failure. Myeloablative con-
ditioning may also cause hypogonadism and infertility.

The best clinical outcomes of HSCT among patients with tha-
lassaemia are reported in those aged under 14 years at transplantation
[91]; this is likely to be because older patients have existing morbidity
related to iron overload and other complications [15]. Young patients
with TDT who have a human leukocyte antigen (HLA)-matched sibling
donor should be offered HSCT at an early age [1,95]. Adults with a
matched sibling donor may be offered HSCT within a clinical trial
context [95].

Other techniques are required for the 70–75% of patients worldwide
who do not have an existing suitably HLA-matched related donor [90].
Outcomes using matched unrelated donor HSCT are improving and may
be attempted providing that the donor is selected using high-resolution
molecular typing for both HLA class I and II loci, and according to
stringent compatibility criteria [1,90,96]. Matched sibling donor HSCT
following preimplantation genetic diagnosis and HLA typing may be
feasible after appropriate ethical and legal consideration [97]. The use
of HSCs from haploidentical related donors, HLA-mismatched family
members, and unrelated umbilical cord blood is still considered ex-
perimental [90,96].

The economic costs of HSCT and lifetime follow-up vary globally.
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For example, the estimated total lifetime cost for a patient with TDT
who undergoes successful HSCT in Taiwan is USD 110,588 [44]. The
estimated costs of HSCT for thalassaemia are USD 12,915 in Mexico, in
the range of USD 10,000 in Islamabad and Jaipur, and up to THB
735,839 in Thailand in the first year [98–100]. In Austria, the median
cost of HSCT in children is EUR 136,382 (USD 175,815) [101]. The
estimated costs associated with HSCT are lower than those of lifelong
blood transfusion and iron chelation and, as such, HSCT is considered a
cost-effective treatment option for children with TDT [1,45,77,98].
Nonetheless, a considered clinical judgement is required to assess the
suitability of HSCT for individual patients with beta-thalassaemia [15].

9. Novel strategies for treatment of beta-thalassaemia

A better understanding of the pathogenesis and clinical effects of
beta-thalassaemia in recent years has stimulated research into a number
of promising therapeutic approaches (Fig. 2). Key data on novel stra-
tegies under investigation for the treatment of beta-thalassaemia are
summarized in Table 2.

9.1. Improving globin chain imbalance

Gene therapy technology has potential to correct the underlying

alpha‐/beta-globin chain imbalance in beta-thalassaemia.

9.1.1. Gene therapy
Gene therapy using autologous stem cells could offer an alternative

curative approach to HSCT, which is limited to patients with an ap-
propriately matched donor [102]. Haematopoietic stem and progenitor
cells (HSPCs) are isolated and exogenous beta- or gamma-globin genes,
which are integrated into the host cell genome using a lentiviral vector
[102]. After full or partial myeloablation, the genetically modified
autologous HSPCs are returned to the patient where the modified cells
repopulate the haematopoietic compartment [22,102].

Gene therapy technology has proved curative in several animal
models of beta-thalassaemia [103–106]. A successful outcome was also
reported after the use of additive globin techniques in one adult patient
with severe beta-thalassaemia [107]. Several clinical trials of the effi-
cacy and safety of gene therapy for patients with TDT are in progress,
including NCT03207009, NCT02906202, and NCT02633943. Interim
data from a Phase 1/2 study of autologous haematopoietic stem cells
transduced ex vivo with a lentiviral vector among patients with TDT
(NCT01745120) suggest increased levels of haemoglobin A and reduced
transfusion requirements; final study data are awaited [108].

The clinical benefit of gene therapy technologies must outweigh the
risks of myeloablative conditioning regimens. Efforts are ongoing to

Table 2
Selected therapeutic strategies under active investigation for treatment of beta-thalassaemia.

Therapeutic
strategy

Mechanism of action Key published efficacy and safety data Most advanced stage of
development

Improving globin chain imbalance
Gene therapy Exogenous beta- or gamma-globin genes are

integrated into the genome of autologous stem cells
using lentiviral vectors

Interim Phase1/2 study data suggest increased levels of
haemoglobin A and reduced transfusion requirements [108]

Phase 3 (NCT02906202) and long-
term follow-up study
(NCT02633943)

Gene editing Designer nucleases are used to genetically modify the
endogenous DNA of stem cells

In vitro and early in vivo data suggest that BCL11A knock-out
genome-editing and/or promoter-targeted gamma-globin gene-
induction technology could allow permanent production of
fetal haemoglobin in adults with thalassaemia [109–111]

Preclinical [109–111]

Improving ineffective erythropoiesis
Ruxolitinib Inhibits JAK2, the intracellular signal transductor of

erythropoietin
Data from a single-arm, multicentre Phase 2a study among
adults (n= 30) with TDT and splenomegaly (NCT02049450)
indicate that ruxolitinib, administered orally at a starting dose
of 10mg twice daily, reduced spleen volume but had little
effect on pre-transfusional haemoglobin levels or transfusion
requirement; the most commonly reported adverse events
associated with ruxolitinib were respiratory tract infection (8/
30), nausea (6/30), upper abdominal pain (5/30), anaemia (5/
30), diarrhoea (5/30), and weight increase (5/30) [122]

Phase 2a [122]

Sotatercept Activin type IIA receptor fusion protein that binds to
activin A and other TGF-beta superfamily ligands to
target late-stage erythropoiesis

Data from a multicentre, open-label Phase 2a study among
adults with TDT or NTDT indicate that sotatercept at 0.1, 0.3,
0.5, 0.75, or 1.0mg/kg administered once every 3weeks
(NCT01571635) increased haemoglobin levels and reduced
transfusion burden; sotatercept was shown to have a
reasonable safety profile [129]

Phase 2a [129]

Luspatercept Activin type IIB receptor fusion protein that binds to
select TGF-beta superfamily ligands, such as GDF11
and activin B to target late-stage erythropoiesis

Data from a multicentre, open-label Phase 2 study among
adults with beta-thalassaemia indicate that luspatercept
administered subcutaneously every 3 weeks at doses of
0.2–1.25mg/kg (NCT01749540 and NCT02268409) reduced
transfusion requirements and liver iron concentration among
patients with TDT [135], and increased haemoglobin levels,
reduced liver iron concentration, and improved the QoL of
those with NTDT; luspatercept was generally well tolerated
[136]

Phase 3 (NCT02604433)

Improving iron dysregulation
Mini-hepcidins Short peptides that mimic the activity of endogenous

hepcidin
Mouse model data suggest significant improvements in
ineffective erythropoiesis, anaemia, and iron overload [140]

Preclinical

TMPRSS6
inhibitors

Gene-editing or small-interfering RNA techniques
inhibit TMPRSS6, and thereby stimulate endogenous
hepcidin production

Data from mice and other preclinical models of beta-
thalassaemia suggest improvements in anaemia, reduction of
ineffective erythropoiesis, splenomegaly, and iron overload
[141–144].

Preclinical

GDF11, growth differentiation factor 11; JAK2, Janus kinase 2; NTDT, non-transfusion-dependent thalassaemia; QoL, quality of life; RNA, ribonucleic acid; TDT, transfusion-dependent
thalassaemia; TGF, transforming growth factor; TMPRSS6, transmembrane protein serine 6.
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improve the ability of viral vectors to express curative haemoglobin
levels with fewer gene integrations per cell [22]. Such improvements
are expected to reduce the required intensity of myeloablation and limit
the risk of potential oncogenic integration [22]. Ongoing Phase 3 stu-
dies (NCT03207009 and NCT02906202) are investigating the potential
role of gene therapy for patients aged 12–50 years; further studies will
be required to assess its efficacy and safety in younger children.

9.1.2. Gene editing
Gene-editing technology can be used to genetically modify the en-

dogenous DNA of haematopoietic stem cells [22]. Precise corrections to
the genome can be made using designer nucleases. The cause of beta-
thalassaemia in many patients is a single point mutation, which lends
itself to correction using gene-editing strategies [102]. A key challenge
of gene editing is to identify molecular targets that would benefit a wide
population, among the numerous mutations associated with beta-tha-
lassaemia.

One potential target for gene editing is the transcription factor
BCL11A, which suppresses expression of gamma-globin [102]. Deletion
of a specific erythroid enhancer in a mouse model impaired expression
of BCL11A in erythroid precursors without affecting other haemato-
poietic lineages [109]. These data, and those from other in vitro studies
[110–112], suggest that knock-out gene-editing technology could allow
permanent production of fetal haemoglobin in adults with tha-
lassaemia. Clinical trial data are awaited.

Gene therapies hold great promise for improving the lives of pa-
tients with beta-thalassaemia [102]. However, these techniques cur-
rently require sophisticated and expensive resources [102]. These
limitations put gene therapies beyond the reach of many patients with
beta-thalassaemia who live in remote and resource-constrained parts of
the world [102].

9.2. Improving ineffective erythropoiesis

Ineffective erythropoiesis is the key pathophysiological mechanism
underlying the chronic anaemia and complex multi-morbidity profile of
patients with beta-thalassaemia. A number of agents that target in-
effective erythropoiesis are currently under investigation for the treat-
ment of anaemia due to beta-thalassaemia. Of these, the Janus kinase 2
(JAK2) inhibitor, ruxolitinib, and the activin receptor-II ligand traps,
sotatercept (ACE-011) and luspatercept (ACE-536), are at the most
advanced stages of development (Fig. 3).

9.2.1. JAK2 inhibitors
Erythropoiesis is regulated by a complex network of extracellular

and intracellular factors [113]. Recent work has elucidated the roles of
JAK2 and the transforming growth factor (TGF)-beta superfamily in the
control of erythropoiesis. Binding of erythropoietin to its cell mem-
brane receptor activates the cytoplasmic JAK2, which in turn activates
multiple signal transduction pathways to increase proliferation, differ-
entiation, and survival of erythroid progenitors [114]. JAK2 is the only
intracellular signal transductor of erythropoietin and is, therefore, a
potential target to treat conditions caused by disordered and ineffective
erythropoiesis [114]. A JAK2 inhibitor, ruxolitinib, is approved for the
treatment of patients with polycythaemia vera and myelofibrosis
[115,116]. Experience in myeloproliferative disorders suggests that
JAK2 inhibitors are clinically effective at reducing splenomegaly but
are associated with side effects, including thrombocytopenia and
anaemia [22], as well as acute relapse of disease symptoms [117]; these
potential side effects could limit the clinical application of JAK2 in-
hibitors in NTDT. The perceived cost-effectiveness of treatment for
myeloproliferative disorders has also been an issue in some countries
[118,119].

JAK2 inhibition has been shown to improve ineffective ery-
thropoiesis and reverse splenomegaly in a mouse model of NTDT [120].
Recent data from mouse models of NTDT and TDT also support the

ability of JAK2 inhibitors to reduce splenomegaly [121]. However, this
positive effect on spleen size was associated with suppression of en-
dogenous erythropoiesis that was not improved by blood transfusion
[121].

Similar findings were recently reported from a single-arm, multi-
centre, 30-week Phase 2a study to evaluate the efficacy and safety of
ruxolitinib among adults (n=30) with TDT and splenomegaly
(NCT02049450) [122]. Ruxolitinib, administered orally at a starting
dose of 10mg twice daily, was associated with a noticeable reduction in
mean spleen volume (26.4% reduction from baseline at week 30;
n=25) [122]. A slight reduction in transfused volume of red blood
cells (5.9%; 95% CI: −14.7%, 2.8%) during the study was reported but
no clinically relevant improvement in pre-transfusional haemoglobin
levels was shown [122]. The most commonly reported adverse events
were upper respiratory tract infection (8/30), nausea (6/30), upper
abdominal pain (5/30), anaemia (5/30), diarrhoea (5/30), and weight
increase (5/30) [122]. Given the limited benefit of ruxolitinib on pre-
transfusional haemoglobin levels and transfusion requirements, no
further studies in TDT are planned.

9.2.2. Activin receptor-II ligand traps
Activin receptor-II ligand traps bind to ligands, and act to prevent

signalling at intended receptors [123]. The molecules were originally
developed to inhibit activin-associated bone resorption among post-
menopausal women [124,125]. Phase 1 data on sotatercept among
healthy volunteers showed increased bone mineral density and an un-
expected, clinically significant increase in haemoglobin level
[124,125]. Two receptor fusion proteins, sotatercept and luspatercept,
have been developed for the treatment of conditions caused by in-
effective erythropoiesis, including beta-thalassaemia [126]. These re-
combinant proteins bind to select TGF-beta superfamily ligands that
regulate late-stage erythropoiesis [126–128]. Thus, the mechanisms of
action of sotatercept and luspatercept are distinct from erythropoiesis-
stimulating agents and erythropoietin, which act on earlier stages of
erythropoiesis.

9.2.2.1. Sotatercept. Sotatercept is a first-in-class recombinant activin
type IIA receptor fusion protein [129] comprising the extracellular
domain of the human activin type IIA receptor fused to the Fc domain
of human immunoglobulin G1 (IgG1) [130]. Sotatercept binds with
high affinity to activin A and other proteins in the TGF-beta superfamily
[130,131]. Preclinical data indicate that sotatercept blocks the
interaction of growth differentiation factor 11 (GDF11) with activin
receptors and interferes with downstream signalling cascades
[130,131]. Thus, sotatercept acts on late-stage erythropoiesis to
increase mature red blood cells [130,131].

In a Phase 1b study of healthy volunteers, sotatercept led to dose-
dependent increases in haemoglobin, haematocrit, and red blood cell
counts that persisted for up to 4months after treatment [125]. A mul-
ticentre, open-label, dose-finding Phase 2a study of sotatercept among
adults with TDT or NTDT (NCT01571635) is now complete. Patients
received sotatercept at doses of 0.1, 0.3, 0.5, 0.75, or 1.0mg/kg ad-
ministered subcutaneously once every 3weeks [129]. Preliminary data
indicate that sotatercept is associated with increased haemoglobin le-
vels, a reduced transfusion burden, and a favourable safety profile
[129]. Full final study data are awaited.

9.2.2.2. Luspatercept. Luspatercept is a novel recombinant protein
comprising the modified extracellular domain of the human activin
type IIB receptor linked to the Fc region of human IgG1 [126,128].
Luspatercept binds with high affinity to select TGF-beta superfamily
ligands, such as GDF11 and GDF8; unlike sotatercept, luspatercept
binds only minimally to activin A [128,130,132]. Preclinical studies
indicate that luspatercept inhibits aberrant Smad2/3 signalling to
improve late-stage erythropoiesis [128,133]. The murine analogue of
luspatercept (RAP-536) corrected the complications of ineffective
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erythropoiesis, including iron overload, splenomegaly, and bone
pathology in a mouse model of beta-thalassaemia [134].

In a Phase 1 study of healthy volunteers, a dose-dependent increase
in haemoglobin level was observed 1 week after initiation of luspa-
tercept, and maintained for several weeks after cessation of therapy;
treatment was well tolerated [126]. A multicentre, open-label, dose-
ranging Phase 2 study of luspatercept in adults with beta-thalassaemia
is now complete (NCT01749540) and a 2-year extension is in progress
(NCT02268409) [135]. Patients received luspatercept at doses of
0.2–1.25mg/kg administered subcutaneously every 3 weeks [135].
Available data indicate that luspatercept was generally well tolerated
and had a favourable safety profile [136]. Luspatercept reduced
transfusion requirements and liver iron concentration among patients
with TDT, and increased haemoglobin levels, reduced liver iron con-
centration, and improved the QoL among those with NTDT [136].

Following these positive outcomes, a double-blind, randomized,
placebo-controlled, multicentre Phase 3 study (BELIEVE) has begun to
evaluate the efficacy and safety of luspatercept among adults who re-
quire regular transfusions for beta-thalassaemia (NCT02604433).
Luspatercept at a starting dose of 1.0 mg/kg [137] or placebo will be
administered subcutaneously every 3 weeks. Demonstration of efficacy
will require at least a 33% improvement in the number of transfused
red blood cell units from baseline.

9.3. Improving iron dysregulation

9.3.1. Manipulation of hepcidin levels
Ineffective erythropoiesis and chronic tissue hypoxia inhibit the

hepatic synthesis and secretion of hepcidin. Low circulating levels of
hepcidin promote duodenal iron uptake, release of recycled iron from
the reticuloendothelial system, and hepatic iron storage resulting in
iron overload [18,29,30].

Moderate overexpression of hepcidin in a mouse model of beta-
thalassaemia improved ineffective erythropoiesis, increased hae-
moglobin levels, reversed splenomegaly, and limited iron overload
[138]. It may, therefore, be possible to prevent primary iron overload in
beta-thalassaemia, and perhaps reduce the existing iron burden, by
manipulating circulating levels of hepcidin.

Encouraging preclinical data on mini-hepcidins and transmembrane
protein serine 6 (TMPRSS6) inhibitors have also been reported recently.
Mini-hepcidins are short peptides that mimic the activity of endogenous
hepcidin [139]. Administration of mini-hepcidin significantly improved
ineffective erythropoiesis, anaemia, and iron overload in a mouse
model [140]. TMPRSS6 is a transmembrane serine protease that re-
duces production of hepcidin [22]. Thus, endogenous hepcidin pro-
duction can be stimulated by reducing expression of TMPRSS6. Data
from mouse models suggest that deletion of the TMPRSS6 gene im-
proves anaemia and reduces ineffective erythropoiesis, splenomegaly,
and iron loading [141]. Use of antisense oligonucleotides or small in-
terfering RNAs that target TMPRSS6 has been shown to improve
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anaemia and iron overload in mice and other preclinical models of beta-
thalassaemia [142–144].

Cellular delivery of iron for erythropoiesis depends on binding of
transferrin-bound iron to transferrin receptor 1 (TfR1) [145]. Induction
of TfR1 haploinsufficiency or administration of exogenous apo-
transferrin increases hepcidin expression and reverses ineffective ery-
thropoiesis in mouse models of beta-thalassaemia [145–147].

Patients with NTDT are more likely to benefit from agents that
manipulate hepcidin expression than are those with TDT, because
transfusional iron overload is not mediated by low hepcidin levels.
However, mini-hepcidins and TMPRSS6 inhibitors still merit evaluation
for use in patients with TDT because improvement in erythropoiesis
could potentially reduce transfusion requirements. The magnitude of
their treatment effect in clinical trials will help to determine their po-
tential use as an alternate, sequential, or concomitant therapy to ex-
isting iron chelators in different patient subsets.

9.3.2. Manipulation of ferroportin and HIF2alpha
Ferroportin exports iron from enterocytes to the circulation and

plays an important role in iron homeostasis [148]. Intestinal hypoxia-
inducible factor-2alpha (HIF2alpha) is the key regulator of ferroportin
expression in response to changes in systemic iron requirements [148].
In mouse models, HIF2alpha is activated early in the pathogenesis of
beta-thalassemia and contributes to the accumulation of iron [149].
Furthermore, disruption of HIF2alpha signalling corrects iron overload
in mouse models of beta-thalassaemia [149].

9.4. Reflections on novel therapies

Novel therapeutic modalities are being evaluated for patients with
TDT or NTDT. The ultimate aim for those with TDT is to transform the
natural disease course and ultimately offer independence from trans-
fusion and iron chelation therapy. Potential therapies must enable pa-
tients to maintain adequate haemoglobin levels, otherwise patients
with TDT could simply transition to a state of uncontrolled NTDT with
its substantial associated morbidity. To achieve this, therapies to reduce
the transfusion burden in TDT must keep ineffective erythropoiesis and
haemolytic activity within acceptable levels. If novel therapies cannot
offer transfusion-independence, then the value of reduced transfusion
requirements must be carefully evaluated; patient satisfaction, QoL,
iron balance and chelation requirement, and cost-effectiveness should
all be considered. If transfusion-independence is achieved, pre-existing
iron overload or other complications must still be actively managed,
especially among adult patients. Consideration of early introduction of
novel therapies is warranted, provided that adequate growth and de-
velopment are maintained.

Amelioration of ineffective erythropoiesis and iron dysregulation
are the key targets for patients with NTDT. Novel agents that target
either ineffective erythropoiesis (luspatercept) or iron dysregulation
(mini-hepcidins and TMPRSS6 inhibitors) have clinical or proof-of-
concept evidence, respectively, of amelioration of both disease me-
chanisms. However, demonstration of clinical benefit in drug devel-
opment programmes is a challenge because morbidities resulting from
ineffective erythropoiesis and/or iron dysregulation develop over many
years. Thus, initial proof of benefit may be limited to simply showing
short- to mid-term improvement in anaemia, iron overload, symptoms,
and/or general wellbeing. Once the efficacy and safety of novel thera-
pies are established, long-term, head-to-head, and comparison or
combination trials would inform decisions on the optimum manage-
ment of patients with TDT or NTDT. In particular, because mono-
therapy may not be enough to achieve the target of a transfusion-free
life for patients with TDT, future clinical trials are needed to evaluate
combination therapy. This approach is valid, as these novel therapies
have different mechanisms of action, and may act synergistically when
used in combination.

10. Conclusions

The lifelong management of patients with beta-thalassaemia re-
presents a huge global burden, particularly in resource-constrained
countries. Despite marked advances in the management of beta-tha-
lassaemia in past decades, more work is needed to achieve effective
disease control for all patients. Early initiation of effective, tolerable,
and convenient therapy is needed to maximize long-term adherence to
treatment, and thus limit the development of complications in adult-
hood. An increasing knowledge of the pathogenesis of beta-tha-
lassaemia in recent years has facilitated the development of a number of
promising therapeutic strategies. Efforts to optimize HSCT techniques
will continue in the future, as will the search for a cure for beta-tha-
lassaemia through genetic modification approaches. Various novel
drugs to ameliorate ineffective erythropoiesis and improve iron reg-
ulation are also in clinical development. It is hoped that these new
approaches will reduce the symptom burden and multi-morbidity pro-
file of patients with beta-thalassaemia and so improve their long-term
clinical outcomes and QoL.

Practice points

• Beta-thalassaemia is a genetic disorder of haemoglobin synthesis
characterized by deficient or absent synthesis of the beta-globin
subunit of adult haemoglobin. The disorder has a complex patho-
physiology and affects multiple organ systems.

• Beta-thalassaemia is a global disease, but is most prevalent in South
Asia, the Far East, the Middle East, and Mediterranean countries; the
disorder is becoming increasingly common in Europe and North
America as a result of migration.

• Patients with severe beta-thalassaemia or transfusion-dependent
thalassaemia (TDT) require regular red blood cell transfusions. Iron
overload damages major organs, including the heart and liver;
lifelong daily iron chelation therapy is effective, but often in-
adequate, in preventing iron toxicity due to either varying degrees
of efficacy among patients or poor adherence.

• Allogeneic haematopoietic stem cell transplantation (HSCT) is the
only available potentially curative therapy for thalassaemia, but is
limited by difficulty in finding suitably matched donors and safety
concerns.

• A number of new therapeutic strategies are in clinical development,
including genetic modification approaches and novel agents de-
signed to ameliorate ineffective erythropoiesis and improve iron
regulation.

Research agenda

• What is the true incidence and prevalence of beta-thalassaemia
worldwide?

• What is the clinical and economic burden of beta-thalassaemia
worldwide?

• What are appropriate therapeutic goals for patients with beta-tha-
lassaemia? How can goals be prioritized? Are goals different for
newly diagnosed patients versus those with chronic disease?

• How should patients switching between TDT and non-transfusion-
dependent thalassaemia (NTDT) be best managed and maintained?

• What is the optimal allogenic HSCT regimen?

• Would novel therapies result in the emergence of new clinical forms
in terms of transfusion requirement and persisting active disease?

• How valuable is a reduction versus complete amelioration of
transfusion burden for patients with TDT?

• Will a combination of these novel therapies increase their clinical
impact and enhance efficacy?

• When new therapeutic options become available, will patients be
best managed with monotherapy or sequential or combined treat-
ments?
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• What will be the cost implications of such comprehensive manage-
ment approaches?
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