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A B S T R A C T

Consolidation with high-dose chemotherapy and autologous stem cell transplantation (ASCT) is the stan-
dard of care for transplantation-eligible patients with multiple myeloma, based on randomized trials showing
improved progression-free survival with autologous transplantation after combination chemotherapy induc-
tion. These trials were performed before novel agents were introduced; subsequently, combinations of
immunomodulatory drugs and proteasome inhibitors as induction therapy have significantly improved rates
and depth of response. Ongoing randomized trials are testing whether conventional autologous transplan-
tation continues to improve responses after novel agent induction. Although these results are awaited, it is
important to review strategies for improving outcomes after ASCT. Conditioning before ASCT with higher doses
of melphalan and combinations of melphalan with other agents, including radiopharmaceuticals, has been
explored. Tandem ASCT, consolidation, and maintenance therapy after ASCT have been investigated in phase
III trials. Experimental cellular therapies using ex vivo–primed dendritic cells, ex vivo–expanded autologous
lymphocytes, Killer Immunoglobulin Receptor (KIR)-mismatched allogeneic natural killer cells, and geneti-
cally modified T cells to augment ASCT are also in phase I trials. This review summarizes these strategies and
highlights the importance of exploring strategies to augment ASCT, even in the era of novel agent induction.

© 2016 American Society for Blood and Marrow Transplantation.

INTRODUCTION
Myeloma represents just over 1% of all cancers and despite

a recent increase in available therapeutics, the disease remains
incurable with an estimated 5-year survival just over 50%
[1]. Randomized controlled trial (RCT) evidence from France
and the United Kingdom demonstrated improved disease
response and overall survival (OS) after autologous hemato-
poietic stem cell transplantation (ASCT) compared with after
conventional chemotherapy [2,3]. However, subsequent trials
from France, the United States, and Spain did not show an
OS benefit, although Fermand et al. [4] did show an improve-
ment in progression-free survival (PFS) [4-6]. The differences
in outcomes between groups may be accounted for by pro-
longed use of conventional chemotherapy in the study by

Fermand et al. and a high rate of ASCT salvage therapy at
relapse in the study by Barlogie et al. [6]. A Dutch trial
demonstrated that after treatment with intermediate-dose
melphalan, further treatment with ASCT did not improve
outcomes [7]. These trials support the use of high-dose
alkylating agents in myeloma treatment. For patients who
are fit for high-dose therapy (approximately one-third of
newly diagnosed patients), treatment with chemotherapy
conditioning followed by ASCT has been the standard of
care, and the standard conditioning regimen has been a
single dose of intravenous melphalan at 200mg/m2 [8]. There
has been much interest in augmenting conditioning but no
single regimen has been shown to improve outcomes in a
randomized trial. Adjunctive strategies have also been ex-
plored: second tandem ASCT; consolidation andmaintenance
chemotherapy; attempts to augment immune responses after
transplantation; and new drugs, particularly monoclonal
antibodies. This review will evaluate the strategies em-
ployed and make recommendations for further research in
this area.
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METHODS
We searched Pubmed using the terms myeloma, autograft, ASCT, au-

tologous, transplant, graft, transplantation, conditioning, preparative regimen,
treatment, RCT, randomized, trial, and induction in various permutations,
yielding 1393 results and abstracts from the American Society of Haematology
and American Society of Clinical Oncology annual meetings. Reference lists
from these search results were used to identify other relevant publica-
tions. In the tables, overall response rate (ORR) is the proportion of patients
achieving a partial response (>50% reduction in paraprotein) or better.

NOVEL AGENT INDUCTION
Induction for transplantation-eligible patients with

immunomodulatory drugs (IMiD) (thalidomide and
lenalidomide) and proteasome inhibitors (bortezomib) has
improved response rates before ASCT. The HOVON50 trial
demonstrated that substituting thalidomide for vincristine
in the vincristine, doxorubicin, and dexamethasone (VAD)
regimen could increase pre-ASCT ORR from 54% to 72% [9].
The benefit conferred by thalidomide combinations in in-
duction was confirmed by the Myeloma IX and Total Therapy
2 trials [10,11]. The Intergroupe Francophone Myélome (IFM)
2005-01 trial demonstrated that bortezomib and dexametha-
sone was also superior to VAD, increasing the pre-ASCT
response rate to 79% from 63% [12], and a similar improve-
ment with bortezomib-based induction was observed in the
HOVON65/GMMGHD4 trial [13]. Cavo et al. tested the addi-
tion of bortezomib to thalidomide plus dexamethasone (VTD),
and this combination of both IMiD and proteasome inhibi-
tor significantly improved both pre-ASCT ORR (93% versus
79%) and PFS [14]. This combination, VTD, is also superior to
bortezomib, cyclophosphamide, and dexamethasone, pro-
ducing pre-ASCT ORR of 92% versus 83% in a phase III trial
[15]. Combining lenalidomide with bortezomib plus dexa-
methasone (VRD) produced an ORR of 94% in a phase II IFM
study [16]. An ongoing phase II study of carfilzomib,
lenalidomide, and dexamethasone for both induction and
maintenance obtained an ORR pre-ASCT of 98% and demon-
strated no unexpected toxicity [17].

The improvement in responses seen with newer induc-
tion programs has prompted further trials after induction
comparing upfront ASCT with a nontransplantation option
of novel agent consolidation followed by maintenance. Re-
cently published phase III trials comparing ASCT with
lenalidomide-containing regimens found ASCT confers su-
perior PFS, although at a median follow up of 52 months, no
differences in OS were observed [18,19]. An ongoing French/
American RCT (the IFM/DFCI 2009 study) compares ASCT plus
2 cycles of VRD with 5 cycles of VRD alone, and results from
the French cohort show superior complete response (CR) rate
(58% versus 46%) and 3-year PFS (61% versus 48%) in the ASCT
arm [20]. EMN02/HO95 is a European 2 × 2 factorial RCT, cur-
rently recruiting patients to compare ASCT versus bortezomib,
melphalan and prednisolone (VMP) intensification and then
consolidation with VRD versus no consolidation [21]. The pos-
sible merits of a delayed transplantation strategy are being
evaluated in the PADIMAC phase II study for patients achiev-
ing very good partial response (VGPR) or CR after bortezomib,
doxorubicin, and dexamethasone: up to 20% of patients had
negative minimal residual disease (MRD) after induction, and
survival outcomes are awaited [22].

CONDITIONING FOR ASCT
High-dose melphalan 200 mg/m2 (mel200) delivered as

a single dose for conditioning has been shown in a random-
ized trial to be less toxic and at least as effective as melphalan
140mg/m2 (mel140) plus 8 Gy total body irradiation (TBI) [8],

and mel200 has since remained the gold standard for single
ASCT in patients with normal renal function. Escalating the
dose of melphalan above 200 mg/m2 is prohibitively toxic to
the gastrointestinal tract. Minimizing oral mucositis with pro-
tective agents amifostine [23] and palifermin, a keratinocyte
growth factor, may facilitate dose increases to 280mg/m2 for
a proportion of patients [24]. However, wide variability in
melphalan exposure due to pharmacokinetic differences has
been reported. In a pharmacokinetic study of high-dose
melphalan in 100 patients, higher mucositis rates and im-
proved disease response were seen in patients with higher
exposure to melphalan, as measured by increased area under
the curve of both total and unbound melphalan [25].

Melphalan and Chemotherapeutic Agent Combinations
A number of chemotherapeutic agents and combina-

tions with mel200 have been tested in clinical studies, but
the majority of these studies enrolled fewer than 100 pa-
tients and were nonrandomized studies, so it is difficult to
draw significant conclusions (Table 1).

Regarding alkylating agents in combination with
melphalan, oral busulfan is demonstrably too toxic, as 8% of
patients in a Spanish study developed veno-occlusive disease,
with a case fatality rate of 25% [26]. The intravenous busul-
fan formulation introduced in 2003 reduces hepatic exposure
via the portal circulation, and a nonrandomized study
(n = 153) comparing mel140 plus busulfan 9.6mg/kg i.v. with
mel200 suggested a small benefit in terms of PFS but in-
creased treatment-related mortality, with neither difference
reaching statistical significance [27]. Adding cyclophospha-
mide 120 mg/kg to mel200 worsens outcomes [28], and
further addition of idarubicin progressively increases
treatment-related mortality to 20% [29]. An RCT of cyclo-
phosphamide, oral busulfan, and total marrow irradiation
versus 2 consecutive ASCT with mel200 found the
chemoradiotherapy regimen to be more toxic with no sig-
nificant improvement in efficacy [30]. Reports from MD
Anderson Cancer Centre using mel140 plus topotecan and cy-
clophosphamide in combination show outcomes comparable
to mel200 but a controlled comparison is required [31,32].
The addition of carmustine to mel200 was found to be safe
in single-arm studies, with comparable PFS and OS to pre-
viously published mel200 studies [33,34]. More recently,
bendamustine, which has shown single agent activity in re-
lapsed myeloma, was combined with mel200 at escalated
doses reaching 225 mg/m2 with only 1 dose-limiting toxic-
ity in the first 100 days after transplantation [35].

Melflufen is a dipeptide prodrug of melphalan, which by
virtue of increased intracellular hydrolysis is concentrated in
myeloma cells. Melflufen induces apoptosis in melphalan-
resistant cells and is highly effective in mouse models [36].
A phase I/II trial of melflufen and dexamethasone in relapsed-
refractory myeloma is ongoing, but initial results are
encouraging with an ORR of 60% [37]. Based on these en-
couraging results, melflufen as a conditioning regimen before
ASCT should be explored in future trials.

Topoisomerase inhibitors (doxorubicin, idarubicin,
mitoxantrone, topotecan) have been tested in combination
with melphalan as conditioning, although in vitro data on the
combination are limited. The addition of cyclophospha-
mide and idarubicin to mel200 was shown in an RCT to
markedly increase treatment-related mortality [29], but
adding cyclophosphamide and topotecan to mel140 pro-
duced promising outcomes in an uncontrolled series [32]. Two
small phase II studies of mitoxantrone combined with
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melphalan (combined n = 55) suggest outcomes compara-
ble to mel200 [38,39].

Arsenic trioxide with ascorbic acid has been explored in
a randomized trial recruiting 48 patients, combined with
mel200. There was no difference in response rate or surviv-
al, but no additional toxicity was noted [40].

Melphalan with Proteasome Inhibitors and IMiDs
Synergistic myeloma cell kill in vitro has been noted with

the combination of melphalan and bortezomib [41,42].
Bortezomib, by inhibiting the proteasome, interferes with
DNA repair pathways and inhibitors of apoptosis, thus sen-
sitizing cells to DNA-damaging agents such as melphalan.

There are currently no randomized data for the addition
of bortezomib to ASCT conditioning. A French nonrandomized
phase II study found that adding 1 mg/m2 bortezomib to
mel200 improved CR rates from 11% to 35% [43]; however,
in contrast, 2 other small studies (combined n = 27)
using nonrandomized control patients observed no difference
in response rate. Reassuringly, no increase in toxicity was ob-
served [44,45]. A phase I study suggests that bortezomib is
more effective when given after melphalan dosing, rather than
before, with an increase in CR rates from 11% to 30% [46]. In
an uncontrolled series, 36% of patients with primary refrac-
tory myeloma obtained a CR after tandem ASCT with
bortezomib given after melphalan [47]. Lenalidomide at

Table 1
Trials of ASCT Conditioning Regimens Since Mel200 Was Established as the Standard of Care

Study Treatment Regimen n TRM, % ORR, % Median
PFS, mo

Median
OS, mo

Alkylating agents

GEM2000
Lahuerta et al. (2010) [26]
2 sequential single arms

Oral busulfan 12 mg/kg plus mel140 225 8.4* 91 41* 79
Mel200 542 3.5 91 31 71

Blanes et al. (2013) [27]
Matched control study

Busulfan 9.6 mg/kg plus mel140 51 4 90 33 65.5
Mel200 102 2 91 24 63

Desikan et al. (2000) [28]
Three-way matched control study (conditioning
for the second of 2 tandem ASCTs)

Cyclophosphamide 120 mg/kg plus mel200 19 0 27 39
TBI 1125cGy plus mel140 24 8 15 25
Mel200 43 0 61* 76*

Fenk et al. (2005) [29]
RCT

Idarubicin 42 mg/m2, mel200, and
cyclophosphamide 120 mg/kg

26 20* 85 20 46

Mel200 30 0 83 16 66

Knop et al. (2007) [30]
RCT

Total marrow irradiation 9 Gy, oral busulfan
12 mg/kg, and cyclophosphamide 120 mg/kg

100 38

Mel200 (×2 ASCTs) 98 35

Donato et al. (2004) [31]
Uncontrolled phase I; mixed patient population

Cyclophosphamide 3 g/m2, mel140, and
topotecan 17.5 mg/m2

18 0 89

Kazmi et al. (2011) [32]
Uncontrolled phase II; mixed patient population

Cyclophosphamide 3 g/m2, mel140, and
topotecan 17.5 mg/m2

60 0 85 18.5 4 yr 66%

Comenzo et al. (2006) [33]
Uncontrolled phase I/II

Carmustine 300 mg/m2 plus mel200 49 2 88 28 56

Chen et al. (2012) [34] Carmustine 15 mg/kg plus mel200 118 0 96 34 61

Mark et al. (2013) [35] Mel200 plus bendamustine escalating up
to 225 mg/m2

25 0 100

Proteasome inhibitors

Roussel et al. (2010) [43]
Uncontrolled; matched comparison

Bortezomib 4 mg/m2 plus mel200 54 0 94
Mel200 115 97

Huang et al. (2012) [44]
2 arms stratified by tolerance of bortezomib

Bortezomib 4 mg/m2 plus mel200 10 0 100 20
Mel200 11 0 100 22

Miyamoto et al. (2013) [45]
Uncontrolled; matched comparison

Bortezomib 1.3 or 2.6 mg/m2 plus mel200 17 0 100
Mel200 17 0 100

Nishihori et al. (2012) [47]
Uncontrolled study in primary refractory population

Tandem ASCTs with mel200 plus bortezomib
.7-1.3 mg/m2

25 0 84 15 40

Topoisomerase inhibitors

Kazmi et al. (2011) [32]
Uncontrolled study (upfront and refractory)

Topotecan 17.5 mg/m2, mel140, and
cyclophosphamide 3 g/m2

60 0 85 18.5

Ballestrero et al. (2002) [38]
Uncontrolled study

Mitoxantrone 60 mg/m2 plus mel180 20 0 90 26 45

Beaven et al. (2011) [39]
Uncontrolled study (upfront and refractory)

Mitoxantrone 60 mg/m2 plus mel180 35 3 22 68

Other agents

Qazilbash et al. (2008) [40]
Phase II RCT

Mel200, ascorbic acid 1 g, plus arsenic trioxide
1.75 mg/kg

15 0 86 25 (combined)

Mel200, ascorbic acid 1 g plus arsenic trioxide
1.05 mg/kg

17 0 70

Mel200 plus ascorbic acid 1 g 16 0 87

TRM indicates treatment-related mortality; Mel180, melphalan 180 mg/m2.
* Denote a statistically significant difference between arms (P < .05).

1928 B. Maybury et al. / Biol Blood Marrow Transplant 22 (2016) 1926–1937



higher-than-licensed doses has been combined with mel200
in a phase I study of relapsed/refractory myeloma and no
lenalidomide-related dose-limiting toxicities were ob-
served, with 8 of 21 patients (38%) achieving ≥ CR [48].
Carfilzomib is a recently licensed irreversible proteasome in-
hibitor, which has been studied in phase III trials in relapsed/
refractory myeloma [49]; a phase I/II trial is currently
underway in combination with melphalan as a condition-
ing regimen (CARAMEL trial, NCT01842308).

Augmentation with Radiotherapy/Radiopharmaceuticals
TBI displays excessive toxicity in trials, but targeted ra-

diotherapy shows promising early results. Phase I/II trials of
radiophosphonates (containing 153Sm or 166Ho, respective-
ly) added to mel200 conditioning showed no change in
outcomes with little toxicity, though renal failure due to
thrombotic microangiopathy was seen with doses > 30 Gy of
the 166Holmium conjugate [50,51]. The combination of
bortezomib with the 153Samarium conjugate demonstrated
promising synergy in mice and merits further clinical inves-
tigation [52]. CD66 is expressed on myeloma cells as well as
the myeloid lineage: an anti-CD66 radioconjugate monoclo-
nal antibody is selective for bone marrow and appears to be
safe in a phase I trial [53], with results from the phase II trial
awaited. Radio-conjugated CD20 antibodies show addition-
al toxicity in phase I when added to mel200 for conditioning
(90Y-ibritumomab) [54] and limited efficacy when used as a
single agent (131I-tositumomab), whichmay relate to low CD20
expression on myeloma cells, with higher response rates cor-
relating with expression of CD20 [55]. Radio-conjugate
antibodies against CD38 and CD138 have been studied in
animal models, but clinical trials are awaited [56,57].
Tomotherapy (radiotherapy delivered from many emitters

arranged radially to focus treatment, analogous to com-
puted tomography [CT] scans) has hitherto only been studied
in leukemias and lymphomas [58], but studies in myeloma
are underway. This would require a head-to-head compari-
son with molecularly targeted radiotherapy in future.

TANDEM TRANSPLANTATION
Two consecutive cycles of high-dose chemotherapy,

with each cycle followed by hematopoietic stem cell
transplantation/rescue (tandem ASCT), has been exten-
sively investigated by both European and US cooperative
groups in an attempt to improve responses (Table 2). The Ar-
kansas group have undertaken a series of Total Therapy Trials
using intensive treatment including tandem ASCT, which have
achieved impressive results, with a 41% CR rate and median
OS of 68 months in Total Therapy 1 [59,60]. However, these
studies were uncontrolled and patient selection was wholly
at the discretion of the investigators. A fuller retrospective
dataset from the same center, which included patients treated
off study protocols, demonstrated inferior results, but onmul-
tivariate analysis, a second transplantation was still associated
with prolonged PFS and OS [61].

Most randomized trials comparing single with tandem
ASCT have shown no benefit in OS from tandem stem cell
transplantation [7,62-65] (reviewed by Kumar et al. [66]).
Many of these trials utilized nonstandard conditioning regi-
mens (eg, oral busulfan or TBI), which have since been shown
to be inferior to standard mel200 [7,62,63,65]. However the
GMMG-HD2 trial, which used tandem standardmel200 ASCT,
showed no difference in survival [64]. The only trial to show
a significant benefit for both PFS and OSwas the IFM-94 study,
but the outcomes (in both groups) were poor compared with
those from more recent trials using newer agents as part of

Table 2
Trials of Tandem ASCT after Induction

Study Treatment Regimen n TRM, % Response Median
PFS, mo

Median
OS, mo

TT1
Barlogie et al. (2006) [59]

3 × VAD, cyclophosphamide 6 g/m2, EDAP, 2 × ASCT with
mel200 (or mel140 + 8.5 Gy TBI), interferon maintenance

231 5 40% ≥ VGPR 31 68

TT3
Barlogie et al. (2007) [60]

2 × VTD-PACE, 2 × ASCT with mel200, 2 × VTD-PACE, VTD for
1 yr then TD for 2 yr

303 5 56% ≥ VGPR 65% 5 yr 74% 5 yr

IFM-94
Attal et al. (2003) [62]
RCT

3-4 × VAD, 1 × ASCT with mel140, 1 × ASCT with mel140 + 8 Gy
TBI, interferon maintenance

200 6 50% ≥ VGPR 36* 58*

3-4 × VAD, 1 × ASCT with mel140 + 8 Gy TBI, interferon
maintenance

199 4 42% ≥ VGPR 29 48

MAG95
Fermand et al. (2005) [65]
RCT

High-dose steroid and cyclophosphamide, 1 × ASCT with
mel140, 1 × ASCT with high-dose chemotherapy + TBI 12 Gy

114 7 38% ≥ VGPR 34 75

High-dose steroid and cyclophosphamide, 3-4× VAD, 1 × ASCT
with high-dose chemotherapy + TBI 12 Gy

113 12 37% ≥ VGPR 31 57

Bologna 96
Cavo et al. (2007) [63]
RCT

4× VAD, cyclophosphamide 7 g/m2, 1 × ASCT with mel200, 1 ×
ASCT mel120 + busulfan 12 mg/kg, interferon maintenance

158 6 47% ≥ nCR 42* 71

4× VAD, cyclophosphamide 7 g/m2, 1 × ASCT mel200,
interferon maintenance

163 6 33% ≥ nCR 24 65

GMMG-HD2
Mai et al. (2016) [64]
RCT

Up to 6× VAD or VID, cyclophosphamide 4 g/m2, 2 × ASCT with
mel200, interferon maintenance

181 5 19% CR* 29 75

Up to 6× VAD or VID, cyclophosphamide 4 g/m2, 1 × ASCT with
mel200, interferon maintenance

177 2 16% CR 25 73

HOVON 24
Sonneveld et al. (2007) [7]
RCT

3-4× VAD, cyclophosphamide 4 g/m2, 2 ×mel70 (without
ASCT), ASCT with cyclophosphamide 120 mg/kg + TBI 9 Gy,
interferon maintenance

155 10 32% CR* 27* 50

3-4× VAD, cyclophosphamide 4 g/m2, 2 ×mel70 (without
ASCT), interferon maintenance

148 4 13% CR 24 55

EDAP indicates etoposide/dexamethasone/cytarabine/cisplatin; VTD-PACE, bortezomib/thalidomide/dexamethasonewith cisplatin/doxorubicin/cyclophosphamide/
etoposide; TD, thalidomide/dexamethasone; VID, vincristine, idarubicin, dexamethasone; nCR, near-complete response (paraprotein only detectable with
immunofixation).
* Denotes a statistically significant difference between arms (P < .05).
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the treatment protocol [62]. In a nonrandomized compari-
son between the Dutch protocol (single transplantation) and
the German protocol (tandem ASCT), the latter was superi-
or for OS, but regional variations in demographics and
treatment could account for this difference [67]. Subgroup
analyses suggest there may be a survival advantage from a
second ASCT in those patients who fail to achieve a deep re-
sponse to the first ASCT [62,63]. In the majority of trials,
treatment-relatedmortality is higher in the tandemASCT arm,
and in addition to this acute risk, there may be an increased
risk of long-term complications, such as second malignan-
cies and myelodysplastic syndrome, although it is not clear
that ASCT increases that risk over high-dose conventional che-
motherapy [68]. The deep responses achieved with
proteasome inhibitors and IMiD-based conditioning regi-
mens, and wider use of consolidation and maintenance
therapies, have both limited the use of tandem stem cell
transplantation.

CONSOLIDATION
Relapse remains inevitable after ASCT and consolidation

therapy after transplantation has been investigated as a way
of prolonging PFS by deepening post-transplantation re-
sponse. Several phase II and phase III studies of post-ASCT
consolidation have been performed over the last 5 years
(Table 3), but there is a lack of randomized data to support
its efficacy. Only 1 phase III trial is placebo controlled [69]
and uncontrolled studies are not instructive because re-
sponses improve over months after ASCT regardless of further
treatment. In a phase II comparison with historical con-
trols, patients receiving cyclophosphamide, thalidomide, and
dexamethasone consolidation achieved better responses at
12 months (72% ≥ VGPR versus 51%) [70]. In a phase III RCT,
bortezomib as a single agent improved response and PFS but
with no improvement in OS [69]. In a phase III trial of adding

bortezomib to thalidomide and dexamethasone (ie, VTD
versus thalidomide and dexamethasone for both induction
and consolidation, there was no OS benefit, but 3-year PFS
increased from 56% to 68%, commensurate with deepening
response [14]. The consistent finding of deeper responses with
delayed progression but no effect on OS likely reflects more
effective salvage treatment at relapse for the control group.

There are no randomized data on lenalidomide-based con-
solidation, but in an RCT of lenalidomide maintenance,
all patients from both arms first received 2 months of
lenalidomide consolidation and over this period, the rate of
≥ VGPR increased from 58% to 69% [71]. A phase II study of
lenalidomide, bortezomib, and dexamethasone in both in-
duction and consolidation demonstrated good responses and
impressive survival data, with an estimated 77% 3-year PFS
[16]. Results from a phase II study of carfilzomib, lenalidomide,
and dexamethasone for induction, consolidation and main-
tenance (with lower doses of carfilzomib) showed that 88%
of patients were MRD-negative after 4 cycles of consolida-
tion, which will hopefully be reflected in future improved
survival data [17]. Survival benefits from consolidation strat-
egies after ASCT have yet to be confirmed in randomized
studies.

MAINTENANCE
Relapse after ASCT is primarily due to residual myeloma

cells that continue to survive and proliferate, andmaintenance
therapy aims to control this process, by giving continuous low-
dose therapy until relapse (Table 4). However, a concern is
that although progression is delayed on maintenance, at
relapse the disease could be refractory to further treatment
and so benefits in OS would be limited. Such benefits must
be balanced against toxicity, quality of life, and cost effec-
tiveness, given the long duration of maintenance approaches.
Earlier maintenance studies did not include any consolidation,

Table 3
Consolidation Trials after ASCT in Myeloma

Study Treatment Regimen n Proportion with
Adverse Events
of Grade 3/4, %

Proportion
Attaining
≥ VGPR (%)

Median PFS, mo Median OS,
mo

Rabin et al. (2012) [70]
Phase II after ASCT

3-6 cycles of CTD consolidation 45 40 72* 26 (from
consolidation)

NR

No consolidation 40 51 21 71 mo

Mellqvist et al. (2013) [69]
RCT after ASCT

Bortezomib 1.3 mg/m2 (20 doses) 187 11* 71* 27 (from
consolidation)*

79% 3 yr

No consolidation 183 2 57 20 82% 3 yr

Cavo et al. (2010) [14]
RCT

3 × VTD induction, tandem ASCT then 2
× VTD consolidation

236 56* 89* 68% 3 yr (from
induction)*

86% 3 yr

3 × TD induction, tandem ASCT then 2
× TD consolidation

238 33 74 56% 3 yr 84% 3 yr

Ladetto et al. (2010) [123]
Phase II
Recruiting ≥ VGPR after ASCT

4 × VTD consolidation 39 54 100% (at
recruitment)

60 (from
induction)

89% 3 yr

Leleu et al. (2013) [124]
Retrospective cohort study

3 × VTD, ASCT, then 2 × VTD
consolidation

121 83 62% 4 yr* 91% 4 yr
(estimated)

3 × VTD, ASCT, no consolidation 96 64 29% 4 yr 84% 4 yr
(estimated)

Attal et al. (2012) [71]
(Premaintenance analysis)

After ASCT, 2 × lenalidomide
consolidation (thereafter randomized
to maintenance or nil)

577 69% (after
consolidation)

32% 4 yr (from
consolidation)

74% 4 yr

Roussel et al. (2014) [16]
Phase II

3 × RVD induction, ASCT with mel200,
then 2 × RVD consolidation, then 1 yr
lenalidomide maintenance

31 74 84 77% 3 yr (from
induction)

100% 3 yr

CTD indicates cyclophosphamide/thalidomide/dexamethasone; RVD, lenalidomide/bortezomib/dexamethasone.
* Denotes a statistically significant difference between arms (P < .05).
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and the survival plots often diverge early, which suggests that
most benefit is gained early after transplantation. It is unclear
if there are advantages to commencing maintenance after an
effective course of consolidation treatment.

Interferon alpha had been used as a maintenance agent
for many years, but it is uniformly poorly tolerated. Used as
maintenance therapy after conventional chemotherapy,
interferon alpha modestly prolonged PFS with no effect on
OS [72] but the US Intergroup S9321 trial found that it
made no difference on progression or survival after ASCT [6].
A therapeutic dose of prednisolone conferred a survival
benefit when used after VAD-based conventional chemo-
therapy [73], but glucocorticoids as monotherapy in the post-
ASCT
population are redundant now, given the improved clinical
activity and tolerability observed with IMiDs and proteasome
inhibitors. In a phase III comparison between dexametha-
sone and interferon maintenance, the dexamethasone group
responded very badly tomelphalan/dexamethasone at relapse,
presumably because of selection of resistant clones [74].

Thalidomidemaintenance has been subjected to a number
of phase III trials, conferring a 10% increase in the 4-year sur-
vival rate compared with no maintenance [75], and in an RCT
comparing thalidomide plus prednisolone versus predniso-
lone alone, OS was increased by 10% at 3 years [76]. A smaller
RCT of similar design found a nonsignificant trend towards
increased survival in the thalidomide arm [77]. However, an
RCT of thalidomide plus prednisolone versus no mainte-
nance found no OS difference and highlighted worse quality-
of-life scores in the maintenance group [78]. In all of these
trials, adverse events of grade 3 or 4 were much more
common in the thalidomide arm; this is reflected in a tha-
lidomide discontinuation rate of 30% within 1 year in the
study by Spencer et al. [76].

In a joint German/Dutch trial comparing induction and
maintenance with bortezomib versus vincristine-based in-
duction and thalidomide maintenance, there were improved
response rates and PFS, but the OS difference barely reached
statistical significance (P = .049) on amultivariate analysis [13].
There was no difference in response during the maintenance

Table 4
Maintenance Therapy Trials after ASCT

Study Treatment Regimen No. of
Patients

Adverse Events
of Grade 3/4
(% of Patients, or
Absolute Number)

Proportion
Attaining
≥ VGPR, %

Median
PFS, mo

Median OS,
mo

S9321
Barlogie et al. (2006) [6]
RCT

After ASCT or conventional therapy, interferon
maintenance

121 23 69

After ASCT or conventional therapy, no maintenance 121 18 62

Attal et al. (2006) [75]
RCT

After ASCT, pamidronate 90 mg plus thalidomide
400 mg maintenance

201 177 events 67 51% 3 yr* 87% 4 yr*

After ASCT, pamidronate maintenance 196 65 events 57 39% 3 yr 74% 4 yr
After ASCT, no maintenance 200 40 events 55 38% 3 yr 77% 4 yr

Stewart et al. (2013) [78]
RCT

After ASCT, thalidomide 200 mg and prednisolone
maintenance

165 140 events* 28* 68% 4 yr

After ASCT, no maintenance 163 39 events 17 60% 4 yr

Spencer et al. (2009) [76]
RCT after ASCT

Thalidomide 100-200 mg for 1 yr and indefinite
prednisolone maintenance

114 51 events 65* 31 (from
maintenance)*

86% 3 yr (from
maintenance)*

Indefinite prednisolone maintenance 129 32 events 44 18 75% 3 yr

Maiolino et al. (2012) [77]
RCT

After ASCT, dexamethasone plus thalidomide
200 mg maintenance for 1 yr

56 20 events 50 36* 85% 2 yr

After ASCT, dexamethasone maintenance for 1 yr 52 4 events 48 19 70% 2 yr

Sonneveld et al. (2012) [13]
RCT

PAD induction, ASCT, bortezomib 1.3 mg/m2

maintenance for 2 yr
413 48% 76* 35* 61% 5 yr

VAD induction, ASCT, thalidomide 50 mg
maintenance for 2 yr

414 46% 56 28 55% 5 yr

Attal et al. (2012) [71]
RCT

After ASCT, 2 cycles lenalidomide consolidation
(25 mg), then lenalidomide 10-15 mg until relapse

307 74%* 84* 41* 73% 4 yr

After ASCT, 2 cycles lenalidomide consolidation
(25 mg), then no maintenance

307 43% 76 23 75% 4 yr

McCarthy et al. (2012) [80]
RCT

After ASCT, lenalidomide 10-15 mg maintenance 231 60%* 46* 88% 3 yr*

After ASCT, placebo 229 30% 27 80% 3 yr

Palumbo et al. (2014) [18]
2 × 2 RCT

After ASCT or MPR, lenalidomide 10 mg
maintenance

126 53 events* 42* 88% 3 yr

After ASCT or MPR, no maintenance 125 7 events 22 80% 3 yr

Gay et al. (2015) [19]
2 × 2 RCT

After ASCT or CRD, lenalidomide 10 mg plus
prednisolone maintenance

194 20% 38 (from
maintenance)

83% 3 yr

After ASCT or CRD, lenalidomide 10mgmaintenance 198 20% 29 88% 3 yr

Nair et al. (2010) [82]
Comparison between
TT3 and TT6 cohorts

After 2 × ASCT, 3 yr of VRD 177 61% CR 80% 2 yr 85% 2 yr
After 2 × ASCT, 1 yr of bortezomib and 3 yr of
thalidomide plus dexamethasone

303 59% CR 83% 2 yr 87% 2 yr

Nooka et al. (2014) [81]
Phase II study in high
risk disease

After ASCT, 3 yr of RVD 45 96 32 93% 3 yr

PAD, bortezomib, doxorubicin and dexamethasone; MPR, melphalan, prednisolone, and lenalidomide; CRD, cyclophosphamide/lenalidomide/dexamethasone.
* Denotes a statistically significant difference between arms (P < .05).
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phase, between the 2 arms. In a post-hoc analysis, patients
with renal impairment gained a significant benefit from the
bortezomib arm [79].

Two large RCTs of lenalidomide maintenance against
placebo showed an early benefit in PFS, which in the Cancer
and Leukemia Group B (CALGB) study prompted early ter-
mination [80]. The CALGB trial (n = 460) subsequently showed
a small OS benefit, but no OS difference was seen in the IFM
study (n = 614). This study gave both arms 2 cycles of
lenalidomide consolidation at a higher dose before random-
ization [71] and the Kaplan-Meier OS plot of the CALBG study
diverges early and is parallel thereafter, which suggested that
any benefit in OS is derived from the first few months
on lenalidomide. Both studies agreed that there are consid-
erable toxicities from lenalidomide, with increased
hematological adverse events and secondary cancers seen in
the lenalidomide groups.

Combining bortezomib with lenalidomide in mainte-
nance confers a high side effect burden, but in a phase II study
demonstrated good results in patients with high riskmyeloma
or plasma cell leukemia, with 93% OS at 3 years, and no
patients stopped maintenance due to toxicity [81]. A
nonrandomized comparison between sequential cohorts re-
ceiving bortezomib and dexamethasone with either
lenalidomide or thalidomide, as maintenance for low-risk
myeloma found no difference in survival or relapse rates [82].
Maintenance with VRD is yet to be studied in a phase III ran-
domized trial.

NEW AGENTS
Histone deacetylase inhibitors (vorinostat and

panobinostat) have been explored in phase III trials of
relapsed/refractorymyeloma in combinationwith bortezomib.
Vorinostat demonstrated limited activity [83] but panobinostat
in combination with bortezomib and dexamethasone in-
creased PFS with OS data yet to show a significant difference
[84]. Vorinostat has been combined with lenalidomide for
maintenance after ASCT in a phase I study, with 14 of the 16
subjects having grade 3 or 4 adverse events during mainte-
nance [85], which compares unfavorably with lenalidomide-
monotherapy maintenance trials [71,80].

Several new monoclonal antibodies, antibody-drug con-
jugates, and small molecules are in phase II and III trials for
both newly diagnosed and relapsed/refractory myeloma.
Adding elotuzumab (targeting SLAMF7, Signaling Lympho-
cyte Activation Molecule Family member 7) to lenalidomide
and dexamethasone increased the response rate from 66% to
79% in relapsed or refractory patients and PFS from 14.9
months to 19.4 months in a phase III trial [86]. A phase I trial
of elotuzumab in combination with bortezomib induced re-
sponses in 48% of patients with relapsed/refractory myeloma
[87]. The anti-CD38 daratumumab looks promising in phase
I/II trials [88-90], and 3 phase III trials of daratumumab
plus various chemotherapy regimens are currently recruit-
ing in newly diagnosed and relapsed populations. The
antibody-drug conjugates lorvotuzumab mertansine (with
lenalidomide/dexamethasone, ORR 59%) [91] and indatuximab
ravanstine (with lenalidomide/dexamethasone, ORR 78%)
[92] and the AKT inhibitor afuresertib (with bortezomib/
dexamethasone, ORR 49%) [93] demonstrate activity in phase
I trials in relapsed/refractory patients. Phase I trials of anti-
PD1 monoclonal antibodies in combination with IMiDs
[94,95], the anti-CD74 conjugate milatuzumab-doxorubicin,
and an anti-CD200 antibody are currently ongoing in re-
lapsed myeloma.

None of these new agents are currently being investi-
gated as part of an ASCT treatment protocol. Monoclonal
antibodies are not particularly myelosuppressive: elotuzumab
has lower neutropenia rates than the control group [86] and
although a minority of patients receiving daratumumab de-
veloped low cell counts, this was not dose dependent [90].
Given this low toxicity, they are attractive targeted thera-
pies for use in consolidation and maintenance phases to
suppress residual myeloma clones.

IMMUNOTHERAPY AND CELLULAR THERAPY
The reconstitution of the immune system after ASCT is an

opportunity to augment the immune response against
myeloma. Natural killer (NK) cells, components of the innate
immune system with the potential to kill cancer cells, re-
constitute quickly after ASCT, and the number of NK cells at
day 30 correlates with PFS after ASCT [96]. Lymphocyte popu-
lations recover gradually over 1 year or more, and the early
populations are abnormal, with an excess of CD8+ T cells and
few CD4+ T cells, which have a narrow T cell–receptor rep-
ertoire. The lymphodepletion brought on by high-dose therapy
causes levels of cytokines IL-5 and IL-17 to rise, which in turn
drive extrathymic proliferation of CD4+ T cells. This expan-
sion of T cells in the absence of regulatory T cell expansion
may facilitate an effective antimyeloma adaptive immune
response.

Maintenance therapy with interferon alpha was the ear-
liest IMiD therapy, augmenting the cellular antimyeloma
response and, although modestly effective as maintenance
after ASCT, it was not adopted because of poor tolerability
[6]. Another approach used cyclosporin in a small popula-
tion of mixed hematological malignancies for 1 month after
ASCT, leading to a reaction akin to acute graft-versus-host
disease, whichwas associatedwith improved disease-free sur-
vival but no OS difference [97].

Vaccine strategies include myeloma dendritic cell (DC)
fusion, autologous serum-loaded DCs, myeloma-peptide–
stimulated T cells, and idiotypic DNA vaccination (Figure 1).
A phase I trial of autologous DC-myeloma cell fusion cells
injected into myeloma patients found these induced
expansion of myeloma-specific T cells in vivo and stabilized
disease progression in 11 of 16 patients [98]. A small trial
from the Mayo clinic of ex vivo–stimulated DCs accompa-
nying ASCT found improved survival compared with matched
historical controls [99], and a small Czech study looking at
ex vivo stimulated DCs as monotherapy in pretreated pa-
tients found a modest improvement in outcomes [100].
Two small trials of myeloma peptide vaccines followed by
ex vivo T cell expansion and reinfusion showed these to be
safe and effective at inducing lymphocyte responses [101,102],
but no effect on clinical outcomes could be discerned from
these small groups, with only the former including a control
arm. DNA vaccines (variable regions of paraprotein heavy
and light chains, fused to tetanus toxin, in an expression
vector) appear to be safe in phase I trials, though they only
elicited an anti-idiotype immune response in 4 of 14 sub-
jects [103]. These vaccine strategiesmerit further investigation
in clinical trials.

Engineered T cells with chimeric antigen receptors (CAR),
which combine the antigen-binding fragment of antibodies
with the signaling domains of the T cell receptor, have been
usedwith some success against advanced leukemias and lym-
phomas [104,105]. CAR T cells targeting CD19 have been used
as part of ASCT in 10myeloma patients whowere heavily pre-
treated; 4 have responded to date, with 1 patient achieving

1932 B. Maybury et al. / Biol Blood Marrow Transplant 22 (2016) 1926–1937



a stringent CR that has lasted over 12 months [106]. CAR T
cells against CD38 can effectively kill myeloma cells in vitro
[107], and phase I trials are ongoing for these (NCT01886976),
and chimeric anti-kappa light chain T cells (NCT00881920).
Toxicities from CAR T cell therapies include an infusional
cytokine release syndrome and potential off target effects. In
mouse studies, ex vivo–expanded NK cells can inhibit growth
of myeloma tumors [108]. This concept is explored in phase
I studies of autologous expanded NK cells (with chemother-
apy butwithout transplantation) in relapsedmyeloma patients
(NCT01313897 and NCT01884688). Haploidentical but KIR-
mismatched allogeneic NK cells are also being investigated
as an adjunct to ASCT [109].

TRIAL ENDPOINTS
Overall survival remains the gold standard endpoint for

trials in myeloma, but survival rates have improved, with over
one-third of newly diagnosed patients living longer than 10
years in the United Kingdom [110], so OS is a late endpoint
for trials to report. The CR rate has historically correlated
poorly with OS [111-113] and clearly does not take account
of quality of life aspects, which are affected by increasingly
prolonged myeloma therapy regimens. In early trials, time
to progression did correlate with OS, but with consolida-
tion treatment, this association is no longer seen
[13,71,74,77,78]. PFS2, the time from first treatment to second
relapse, takes account of tumor resistance induced by the first
line of treatment, and to date studies have shown it is pro-
longed in association with PFS [114,115], but it has not yet

been validated as a surrogate for OS, and still takes years of
follow-up to report mature data. In contrast, recent ASCT trials
have shown an association between the depth of response
and OS [116,117], and this is particularly the case for pro-
longed (> 3 years) CR [118]. However, the CR rate still remains
a relatively insensitive surrogate for OS, and as median sur-
vival continues to improve, particularly for transplantation-
eligible populations, we have to adopt earlier endpoints to
study the gamut of new agents entering the field. Measur-
ing MRD by multiparameter flow cytometry accurately
predicts OS in patients who have achieved a CR [119,120]
and represents an opportunity to vastly shorten the time
required for trials of aggressive treatment to report. 18F-
flurodeoxyglucose positron emission tomography (PET) CT
scanning is also a predictor of PFS and OS, both after induc-
tion [121] and after ASCT [122]. Its predictive power is
independent of CR status, but further studies are needed com-
bining MRDmeasurement and PET CT to determine whether
both independently provide prognostic information. These
trials will still need long-term follow-up to identify late
adverse events, the impact on quality of life, and hopefully
confirm the predictive power of these new endpoints.

OUTSTANDING QUESTIONS AND FUTURE TRIAL DESIGNS
We await with interest the final results of several studies

testing ASCT against a block of novel agent consolidation
therapy. Both PFS and OS remain crucial endpoints, as the
latter depends on the ability to salvage patients after relapse.
Future trials should be randomized and stratified by genetic

Figure 1. Experimental immunomodulatory and cellular therapies to augment immune system responses against myeloma ([98-103,106,107,109]).
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risk to provide clear guidance for treatment decisions. Trials
should consider using new endpoints, such as MRD negativ-
ity (by high-throughput flow cytometry or genetic sequencing)
and sustained CR rates in addition to PFS and OS. A number
of key questions should be addressed in the debate over ASCT
as standard practice after induction therapy:

1. Is there a more effective conditioning regimen than
mel200?

2. Does a block of consolidation therapy between ASCT and
maintenance therapy improve clinical outcomes versus
maintenance alone?

3. Does the addition of a proteasome inhibitor to IMiD-
based maintenance improve outcomes?

4. What role should newmonoclonal antibodies and kinase
inhibitors play to improve post-ASCT response?

5. Are MRD negativity, sustained CR, and PET CT–negativity
valid surrogate endpoints for OS?

CONCLUSION
ASCT remains the standard of care for eligible newly di-

agnosed myeloma patients, despite improvements in
induction chemotherapy with IMiDs and proteasome inhibi-
tors. Early trials of ASCT achieved complete remission lasting
>10 years in a small minority of patients [59], and with ad-
vances in induction protocols, it is likely that with ASCT
consolidation, this proportion will continue to increase. The
most promising strategies for improving conditioning therapy,
on the basis of phase II studies, are the addition of proteasome
inhibitors or topoisomerase inhibitors, but these require con-
firmation in randomized trials. Melflufen and radio-conjugate
drugs have yet to be assessed as part of conditioning, but they
hold theoretical promise. Tandem ASCT upfront may improve
responses in patients not achieving CR after their first trans-
plantation, but it does not offer an OS benefit over delayed
second ASCT at relapse for most patients. We await with in-
terest long-term OS data to see if there is a benefit from
lenalidomide maintenance. Treatment after ASCT, with both
an IMiD and a proteasome inhibitor in combination, has
achieved impressive results in phase II studies, but this has
not yet been systematically tested in a phase III study. Several
monoclonal antibodies and kinase inhibitors are promising
in early clinical trials and, although these targeted drugs are
unlikely to replace ASCT, they may find a role in post-ASCT
consolidation. Experimental therapies to augment cellular
immune responses to myeloma have demonstrated biolog-
ical activity in patients refractory to other lines of treatment,
and despite high potential for toxicity, they merit investiga-
tion in the post-ASCT period, when patients are lymphocyte
depleted and the burden of disease is low. These new ther-
apeutic strategies could substantially increase the proportion
of patients achieving long-term disease control after ASCT.
At the same time, clinical trials need to report more rapidly
and hopefully, if MRD negativity continues to robustly trans-
late into survival in reported studies, then the adoption in
clinical trials of MRD detection as a key endpoint will greatly
facilitate this.
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