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Abstract

We propose a new practical adaptive refinement strategy for hp-finite element

approximations of elliptic problems. Following recent theoretical developments

in polynomial-degree-robust a posteriori error analysis, we solve two types of

discrete local problems on vertex-based patches. The first type involves the so-

lution on each patch of a mixed finite element problem with homogeneous Neu-

mann boundary conditions, which leads to an H(div,Ω)-conforming equilibrated

flux. This, in turn, yields a guaranteed upper bound on the error and serves

to mark mesh vertices for refinement via Dörfler’s bulk-chasing criterion. The

second type of local problems involves the solution, on patches associated with

marked vertices only, of two separate primal finite element problems with homo-

geneous Dirichlet boundary conditions, which serve to decide between h-, p-, or

hp-refinement. Altogether, we show that these ingredients lead to a computable

guaranteed bound on the ratio of the errors between successive refinements (er-

ror reduction factor). In a series of numerical experiments featuring smooth

and singular solutions, we study the performance of the proposed hp-adaptive

strategy and observe exponential convergence rates. We also investigate the
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accuracy of our bound on the reduction factor by evaluating the ratio of the

predicted reduction factor relative to the true error reduction, and we find that

this ratio is in general quite close to the optimal value of one.

Keywords: a posteriori error estimate, hp-refinement, finite element method,

error reduction, equilibrated flux, residual lifting

2010 MSC: 65N30, 65N15, 65N50

1. Introduction

Adaptive discretization methods constitute an important tool in compu-

tational science and engineering. Since the pioneering works on the hp-finite

element method by Gui and Babuška [21, 22] and Babuška and Guo [1, 2] in

the 1980s, where it was shown that for one-dimensional problems hp-refinement5

leads to exponential convergence with respect to the number of degrees of free-

dom on a priori adapted meshes, there has been a great amount of work devoted

to developing adaptive hp-refinement strategies based on a posteriori error es-

timates. Convergence of hp-adaptive finite element approximations for ellip-

tic problems, has, though, been addressed only very recently in Dörfler and10

Heuveline [17], Bürg and Dörfler [7], and Bank, Parsania, and Sauter [3]. The

first optimality result we are aware of is by Canuto et al. [8], where an im-

portant ingredient is the hp-coarsening routine by Binev [4, 5]. These works

extend to the hp-context the previous h-convergence and optimality results by

Dörfler [16], Morin, Nochetto, and Siebert [27, 28], Stevenson [31], Cascón et15

al. [11], Carstensen et al. [10], see also Nochetto et al. [29] and the references

therein. It is worth mentioning that most of the available convergence results

are formulated for adaptive methods driven by residual-type a posteriori error

estimators; other estimators have in particular been addressed in Cascón and

Nochetto [12] and Kreuzer and Siebert [24].20

A key ingredient for adaptive hp-refinement is a local criterion in each mesh

cell marked for refinement that allows one to decide whether h-, p-, or hp-

refinement should be performed. There is a substantial amount of such criteria
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proposed in the literature; a computational overview can be found in Mitchell

and McClain [26, 25]. Some of the mathematically motivated hp-decision criteria25

include, among others, those proposed by Eibner and Melenk [18], Houston and

Süli [23] which both estimate the local regularity of the exact weak solution.

Our proposed strategy fits into the group of algorithms based on solving local

boundary value problems allowing us to forecast the benefits of performing h-

or p-refinement, as recently considered in, e.g., [7, 17]. Similarly to [17], we use30

the local finite element spaces associated with a specific type of refinement to

perform the above forecast and to take the local hp-refinement decision. We also

mention the work of Demkowicz et al. [13] for an earlier, yet more expensive,

version of the look-ahead idea, where it is proposed to solve an auxiliary problem

on a global finite element space corresponding to a mesh refined uniformly either35

in h or in p.

In the present work, we focus on the Poisson model problem with (homoge-

neous) Dirichlet boundary conditions. In weak form, the model problem reads

as follows: Find u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (1.1)

where Ω ⊂ Rd, d = 2, 3, is a polygonal/polyhedral domain (open, bounded,

and connected set) with a Lipschitz boundary, f ∈ L2(Ω), H1
0 (Ω) denotes

the Sobolev space of all functions in L2(Ω) which have all their first-order

weak derivatives in L2(Ω) and a zero trace on ∂Ω, and (·, ·) stands for the

L2(Ω) or [L2(Ω)]d inner product. Our first goal is to propose a reliable and

computationally-efficient hp-adaptive strategy to approximate the model prob-

lem (1.1) that hinges on the recent theoretical developments on polynomial-

degree-robust a posteriori error estimates due to Braess et al. [6] and Ern and

Vohraĺık [19, 20]. The present hp-adaptive algorithm follows the well-established

paradigm based on an iterative loop where each step consists of the following

four modules:

SOLVE→ ESTIMATE→ MARK→ REFINE. (1.2)
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Here, SOLVE stands for application of the conforming finite element method

on a matching (no hanging nodes) simplicial mesh to approximate the model

problem (1.1); spatially-varying polynomial degree is allowed. The module

ESTIMATE is based on an equilibrated flux a posteriori error estimate, ob-40

tained by solving, for each mesh vertex, a local mixed finite element problem

with a (homogeneous) Neumann boundary condition on the patch of cells shar-

ing the given vertex. The module MARK is based on a bulk-chasing criterion

inspired by the well-known Dörfler’s marking [16]; here we mark mesh vertices

and not simplices since we observe a smoother performance in practice and since45

we later work with some vertex-based auxiliary quantities.

The module REFINE, where we include our hp-decision criterion, is orga-

nized into three steps. First, we solve two local finite element problems on each

patch of simplices attached to a mesh vertex marked for refinement, with either

the mesh refined or the polynomial degree increased. This is inspired by the50

key observation from [19, Lemma 3.23] that guaranteed local efficiency can be

materialized by some local conforming finite element solves. These conforming

residual liftings allow us, in particular, to estimate the effect of applying h- or

p-refinement, and lead to a partition of the set of marked vertices into two dis-

joint subsets, one collecting the mesh vertices flagged for h-refinement and the55

other collecting the mesh vertices flagged for p-refinement. The second step of

the module REFINE uses these two subsets to flag the simplices for h-, p, or hp-

refinement. Finally, the third step of the module REFINE uses the above sets

of flagged simplices to build the next simplicial mesh and the next polynomial-

degree distribution. Let us mention that recently, Doleǰśı et al. [15] also devised60

an hp-adaptive algorithm driven by polynomial-degree-robust a posteriori error

estimates based on the equilibrated fluxes from [6, 19, 20]. The differences with

the present work are that the interior penalty discontinuous Galerkin method is

considered in [15], and more importantly, that the present hp-decision criterion

hinges on local primal solves on patches around marked vertices.65

The second goal of the present work is to show that the proposed hp-adaptive

strategy automatically leads to a computable guaranteed bound on the error
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reduction factor between two consecutive steps of the adaptive loop (1.2). More

precisely, we show how to compute explicitly a real number Cred ∈ [0, 1] so that

‖∇(u− u`+1)‖ ≤ Cred‖∇(u− u`)‖, (1.3)

where u` denotes the discrete solution on `-th iteration of the adaptive loop, see

Theorem 5.2 below. Thus the number Cred gives a guaranteed (constant-free)

bound on the ratio of the errors between successive refinements. This must not

be confused with saying that the error is guaranteed to be reduced, since the

case Cred = 1 cannot be ruled out in general without additional assumptions70

(e.g. an interior node property, see [27] for further details). The computation

of Cred crucially relies on a combined use of the equilibrated fluxes and of the

conforming residual liftings, which were already used for the error estimation

and hp-refinement decision criterion respectively. It is worth noting that we

consider a homogeneous Dirichlet boundary condition for the local residual lift-75

ings in order to obtain an estimate on the error reduction factor that is as sharp

as possible.

The rest of this manuscript is organized as follows. Section 2 describes

the discrete setting and introduces some useful notation. Section 3 presents

the modules SOLVE, ESTIMATE, and MARK, whereas Section 4 presents the80

module REFINE. Section 5 contains our main result on a guaranteed bound on

the error reduction factor. Finally, numerical experiments on two-dimensional

test cases featuring smooth and singular solutions are discussed in Section 6,

and conclusions are drawn in Section 7.

2. Discrete setting85

The main purpose of the adaptive loop (1.2) is to generate a sequence of

finite-dimensional H1
0 -conforming finite element spaces (V`)`≥0, where the inte-

ger ` ≥ 0 stands for the iteration counter in (1.2). H1
0 -conformity means that

V` ⊂ H1
0 (Ω) for all ` ≥ 0. In this work, we shall make the following nestedness

assumption:

V` ⊂ V`+1, ∀` ≥ 0. (2.1)
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The space V` is built from two ingredients: (i) a matching simplicial mesh

T` of the computational domain Ω, that is, a finite collection of (closed) non-

overlapping simplices K ∈ T` covering Ω exactly and such that the intersection

of two different simplices is either empty, a common vertex, a common edge,

or a common face; (ii) a polynomial-degree distribution described by the vector

p` := (p`,K)K∈T` that assigns a polynomial degree to each simplex K ∈ T`. The

conforming finite element space V` is then defined as

V` := Pp`(T`) ∩H1
0 (Ω), ∀` ≥ 0,

where Pp`(T`) denotes the space of piecewise polynomials of total degree p`,K ≥

1 on each simplex K ∈ T`. In other words, any function v` ∈ V` satisfies

v` ∈ H1
0 (Ω) and v`|K ∈ Pp`,K (K) for all K ∈ T`, where for an integer p ≥ 1,

Pp(K) stands for the space of polynomials of total degree at most p on the

simplex K.90

The initial mesh T0 and the initial polynomial-degree distribution p0 are

given, and the purpose of each step ` ≥ 0 of the adaptive loop (1.2) is to

produce the next mesh T`+1 and the next polynomial-degree distribution p`+1.

In order to ensure the nestedness property (2.1), the following two properties

are to be satisfied: (i) The sequence (T`)`≥0 is hierarchical, i.e., for all ` ≥ 0 and95

all K̃ ∈ T`+1, there is a unique simplex K ∈ T`, called the parent of K̃ so that

K̃ ⊆ K; (ii) The local polynomial degree is locally increasing, i.e., for all ` ≥ 0

and all K̃ ∈ T`+1, p`+1,K̃ ≥ p`,K where K ∈ T` is the parent of K̃. Moreover, we

assume the following shape-regularity property: There exists a constant κT > 0

such that maxK∈T` hK/ρK ≤ κT for all ` ≥ 0, where hK is the diameter of K100

and ρK is the diameter of the largest ball inscribed in K.

Before closing this section, we introduce some further useful notation. The

set of vertices V` of each mesh T` is decomposed into V int
` and Vext

` , the set of

inner and boundary vertices, respectively. For each vertex a ∈ V`, the so-called

hat function ψa
` is the continuous, piecewise affine function that takes the value105

1 at the vertex a and the value 0 at all the other vertices of V`; the function ψa
`

is in V` for all a ∈ V int
` . Moreover, we consider the simplex patch T a

` ⊂ T` which
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is the collection of the simplices in T` sharing the vertex a ∈ V`, and we denote

by ωa
` the corresponding open subdomain. Finally, for each simplex K ∈ T`, VK

denotes the set of vertices of K.110

3. The modules SOLVE, ESTIMATE, and MARK

In this section we present the modules SOLVE, ESTIMATE, and MARK

from the adaptive loop (1.2). Let ` ≥ 0 denote the current iteration number.

3.1. The module SOLVE

The module SOLVE takes as input the H1
0 -conforming finite element space

V` and outputs the discrete function u` ∈ V` which is the unique solution of

(∇u`,∇v`) = (f, v`) ∀v` ∈ V`. (3.1)

3.2. The module ESTIMATE115

Following [14, 6, 19, 15, 20], see also the references therein, the module

ESTIMATE relies on an equilibrated flux a posteriori error estimate on the

energy error ‖∇(u − u`)‖. The module ESTIMATE takes as input the finite

element solution u` and outputs a collection of local error indicators {ηK}K∈T` .

The equilibrated flux is constructed locally from mixed finite element solves on

the simplex patches T a
` attached to each vertex a ∈ V`. For this construction,

we consider as in [15] the local polynomial degree pest
a := maxK∈T a

`
p`,K (any

other choice so that pest
a ≥ maxK∈T a

`
p`,K can also be employed). We consider

the local Raviart–Thomas–Nédélec mixed finite element spaces (Va
` , Q

a
` ) which

are defined for all a ∈ V int
` by

Va
` := {v` ∈ H(div, ωa

` ); v`|K ∈ RTNpesta
(K), ∀K ∈ T a

` , v`·nωa
`

= 0 on ∂ωa
` },

Qa
` := {q` ∈ Ppesta

(T a
` ); (q`, 1)ωa

`
= 0},

and, for all a ∈ Vext
` ,

Va
` :={v`∈H(div, ωa

` ); v`|K ∈RTNpesta
(K), ∀K∈T a

` , v`·nωa
`

= 0 on ∂ωa
` \∂Ω},

Qa
` :=Ppesta

(T a
` ),
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where RTNpesta
(K) := [Ppesta

(K)]d+Ppesta
(K)x, and nωa

`
denotes the unit outward-

pointing normal to ωa
` .

Definition 3.1 (Flux reconstruction σ`). Let u` solve (3.1). The global equili-

brated flux σ` is constructed as σ` :=
∑

a∈V` σ
a
` , where, for each vertex a ∈ V`,

(σa
` , γ

a
` ) ∈ Va

` ×Qa
` solves

(σa
` ,v`)ωa

`
− (γa` ,∇·v`)ωa

`
= −(ψa

`∇u`,v`)ωa
`

∀v` ∈ Va
` ,

(∇·σa
` , q`)ωa

`
= (fψa

` −∇u`·∇ψa
` , q`)ωa

`
∀q` ∈ Qa

` ;

or, equivalently,

σa
` := arg min

v`∈Va
` ,∇·v`=ΠQa

`
(fψa

`−∇u`·∇ψ
a
` )
‖ψa

`∇u` + v`‖ωa
`
,

and where σa
` is extended by zero outside ωa

` .

Note that the Neumann compatibility condition for the problem (3.2) is

satisfied for all a ∈ V int
` (take v` = ψa

` as a test function in (3.1)). Moreover,120

Definition 3.1 yields a globally H(div,Ω)-conforming flux reconstruction σ` such

that, for all K ∈ T`, (∇·σ`, v`)K = (f, v`)K for all v` ∈ Pmina∈VK pesta
(K), see [15,

Lemma 3.6]. Using the current notation, [15, Theorem 3.3] states the following

result.

Theorem 3.2 (Guaranteed upper bound on the error). Let u solve (1.1) and

u` solve (3.1). Let σ` be the equilibrated flux reconstruction of Definition 3.1.

Then

‖∇(u−u`)‖ ≤ η(T`) :=

{∑
K∈T`

η2
K

} 1
2

, ηK := ‖∇u`+σ`‖K+
hK
π
‖f−∇·σ`‖K .

(3.3)

As discussed in, e.g., [19, Remark 3.6], the term hK
π ‖f −∇·σ`‖K represents,125

for all K ∈ T`, a local oscillation in the source datum f that, under suitable

smoothness assumptions, converges to zero two orders faster than the error. To

cover the whole computational range in our numerical experiments, this term is

kept in the error indicator ηK .
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3.3. The module MARK130

The module MARK takes as input the local error estimators {ηK}K∈T` from

Theorem 3.2 and outputs a set of marked vertices Ṽθ` ⊂ V` using a bulk-chasing

criterion inspired by the well-known Dörfler’s marking criterion [16]. The reason

why we mark vertices and not simplices is that our hp-decision criterion in the

module REFINE (see Section 4 below) hinges on the solution of local primal135

solves posed on the patches T a
` associated with the marked vertices a ∈ Ṽθ` ;

we also observe in practice a smoother performance of the overall hp-adaptive

procedure when marking vertices than when marking elements. Vertex-marking

strategies are also considered, among others, in [27, 9].

For a subset S ⊂ T`, we use the notation η(S) := {
∑
K∈S η

2
K}1/2. In the

module MARK, the set of marked vertices Ṽθ` is selected in such a way that

η

( ⋃
a∈Ṽθ`

T a
`

)
≥ θ η(T`), (3.4)

where θ ∈ (0, 1] is a fixed threshold. Letting

Mθ
` :=

⋃
a∈Ṽθ`

T a
` ⊂ T` (3.5)

be the collection of all the simplices that belong to a patch associated with a140

marked vertex, we observe that (3.4) means that η(Mθ
` ) ≥ θ η(T`). To select a

set Ṽθ` of minimal cardinality, the mesh vertices in V` are sorted by comparing

the vertex-based error estimators η(T a
` ) for all a ∈ V`, and a greedy algorithm is

employed to build the set Ṽθ` . The module MARK is summarized in Algorithm 1.

A possibly slightly larger set Ṽθ` can be constructed with linear cost in terms of145

the number of mesh vertices by using the algorithm proposed in [16, Section 5.2].
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Algorithm 1 (module MARK)

1: procedure MARK({ηK}K∈T` , θ)

2: B Input: error indicators {ηK}K∈T` , marking parameter θ ∈ (0, 1]

3: B Output: set of marked vertices Ṽθ`
4: for all a ∈ V` do

5: Compute the vertex-based error estimator η(T a
` )

6: end for

7: Sort the vertices according to η(T a
` )

8: Set Ṽθ` := ∅

9: while η(
⋃

a∈Ṽθ`
T a
` ) < θ η(T`) do

10: Add to Ṽθ` the next sorted vertex a ∈ V` \ Ṽθ`
11: end while

12: end procedure

4. The module REFINE

The module REFINE takes as input the set of marked vertices Ṽθ` and out-

puts the mesh T`+1 and the polynomial-degree distribution p`+1 to be used at

the next step of the adaptive loop (1.2); the integer ` ≥ 0 is the current iteration150

number therein. This module is organized into three steps. First, an hp-decision

is made on all the marked vertices so that each marked vertex a ∈ Ṽθ` is flagged

either for h-refinement or for p-refinement. This means that the set Ṽθ` is split

into two disjoint subsets Ṽθ` = Ṽh` ∪ Ṽ
p
` with obvious notation (here we drop the

superscript θ to simplify the notation). Then, in the second step, the subsets Ṽh`155

and Ṽp` are used to define subsets Mh
` and Mp

` of the set of marked simplices

Mθ
` (see (3.5)). The subsets Mh

` and Mp
` are not necessarily disjoint which

means that some simplices can be flagged for hp-refinement. Finally, the two

subsets Mh
` and Mp

` are used to construct T`+1 and p`+1.

4.1. hp-decision on vertices160

Our hp-decision on marked vertices is made on the basis of two local pri-

mal solves on the patch T a
` attached to each marked vertex a ∈ Ṽθ` . The idea
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is to construct two distinct local patch-based spaces in order to emulate sepa-

rately the effects of h- and p-refinement. Let us denote the polynomial-degree

distribution in the patch T a
` by the vector pa

` := (p`,K)K∈T a
`

.165

Figure 1: An example of patch T a
` together with its polynomial-degree distribution pa

` (left)

and its h-refined (center) and p-refined versions (right) from Definitions 4.1 and 4.2 respec-

tively.

Definition 4.1 (h-refinement residual). Let a ∈ Ṽθ` be a marked vertex with

associated patch T a
` and polynomial-degree distribution pa

` . We set

V a,h
` := Ppa,h

`
(T a,h
` ) ∩H1

0 (ωa
` ), (4.1)

where T a,h
` is obtained as a matching simplicial refinement of T a

` by dividing

each simplex K ∈ T a
` into at least two children simplices, and the polynomial-

degree distribution pa,h
` is obtained from pa

` by assigning to each newly-created

simplex the same polynomial degree as its parent. Then, we let ra,h ∈ V a,h
` solve

(∇ra,h,∇va,h)ωa
`

= (f, va,h)ωa
`
− (∇u`,∇va,h)ωa

`
∀ va,h ∈ V a,h

` .

Definition 4.2 (p-refinement residual). Let a ∈ Ṽθ` be a marked vertex with

associated patch T a
` and polynomial-degree distribution pa

` . We set

V a,p
` := Ppa,p

`
(T a,p
` ) ∩H1

0 (ωa
` ), (4.2)

where T a,p
` := T a

` , and the polynomial-degree distribution pa,p
` is obtained from

pa
` by assigning to each simplex K ∈ T a,p

` = T a
` the polynomial degree p`,K +δaK
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where

δaK :=

 1 if p`,K = minK′∈T a
`
p`,K′ ,

0 otherwise.
(4.3)

Then, we let ra,p ∈ V a,p
` solve

(∇ra,p,∇va,p)ωa
`

= (f, va,p)ωa
`
− (∇u`,∇va,p)ωa

`
∀ va,p ∈ V a,p

` .

The local residual liftings ra,h and ra,p from Definitions 4.1 and 4.2, respec-

tively, are used to define the following two disjoint subsets of the set of marked

vertices Ṽθ` :

Ṽh` := {a ∈ Ṽθ` | ‖∇ra,h‖ωa
`
≥ ‖∇ra,p‖ωa

`
}, (4.4a)

Ṽp` := {a ∈ Ṽθ` | ‖∇ra,h‖ωa
`
< ‖∇ra,p‖ωa

`
}, (4.4b)

in such a way that

Ṽθ` = Ṽh` ∪ Ṽ
p
` , Ṽh` ∩ Ṽ

p
` = ∅.

The above hp-decision criterion on vertices means that a marked vertex is flagged

for h-refinement if the local residual norm ‖∇ra,h‖ωa
`

is larger than ‖∇ra,p‖ωa
`
;

otherwise, this vertex is flagged for p-refinement. Further motivation for this

choice is discussed in Remark 5.3 below.

Remark 4.3 (p-refinement). Other choices are possible for the polynomial-170

degree increment defined in (4.3). One possibility is to set δaK = 1 for all

K ∈ T a
` . However, in our numerical experiments, we observe that this choice

leads to rather scattered polynomial-degree distributions over the whole compu-

tational domain. The choice (4.3) is more conservative and leads to a smoother

overall polynomial-degree distribution. We believe that this choice is preferable,175

at least as long as a polynomial-degree coarsening procedure is not included in

the adaptive loop. Another possibility is to use dαp`,Ke with α > 1 instead of

p`,K + δaK , which corresponds to the theoretical developments in [9].

4.2. hp-decision on simplices

The second step in the module REFINE is to use the subsets Ṽh` and Ṽp` to

decide whether h-, p- , or hp-refinement should be performed on each simplex
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having at least one flagged vertex. To this purpose, we define the following

subsets:

Mh
` := {K ∈ T` | VK ∩ Ṽh` 6= ∅} ⊂ Mθ

` , (4.5a)

Mp
` := {K ∈ T` | VK ∩ Ṽp` 6= ∅} ⊂ M

θ
` . (4.5b)

In other words, a simplex K ∈ T` is flagged for h-refinement (resp., p-refinement)180

if it has at least one vertex flagged for h-refinement (resp., p-refinement). Note

that the subsets Mh
` and Mp

` are not necessarily disjoint since a simplex can

have some vertices flagged for h-refinement and others flagged for p-refinement;

such simplices are then flagged for hp-refinement. Note also that Mh
` ∪M

p
` =

∪a∈Ṽθ` T
a
` =Mθ

` is indeed the set of marked simplices considered in the module185

MARK.

4.3. hp-refinement

In this last and final step, the subsetsMh
` andMp

` are used to produce first

the next mesh T`+1 and then the next polynomial-degree distribution p`+1 on

the mesh T`+1.190

The next mesh T`+1 is a matching simplicial refinement of T` obtained by

dividing each flagged simplex K ∈ Mh
` into at least two simplices in a way

that is consistent with the matching simplicial refinement of T a
` considered in

Definition 4.1 to build T a,h
` , i.e., such that T a,h

` ⊂ T`+1 for all a ∈ Ṽh` . Note

that to preserve the conformity of the mesh, additional refinements beyond the195

set of flagged simplices Mh
` may be carried out when building T`+1. Several

algorithms can be considered to refine the mesh. In our numerical experiments,

we used the newest vertex bisection algorithm [30].

After having constructed the next mesh T`+1, we assign the next polynomial-

degree distribution p`+1 as follows. For all K̃ ∈ T`+1, let K denote its parent

simplex in T`. We then set

p`+1,K̃ := p`,K if K 6∈ Mp
` , (4.6)
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that is, we assign the same polynomial degree to the children of a simplex that

is not flagged for p-refinement, whereas we set

p`+1,K̃ := max
a∈VK∩Ṽp`

(
p`,K + δaK

)
if K ∈Mp

` , (4.7)

that is, we assign to the children of a simplex K ∈Mp
` flagged for p-refinement

the largest of the polynomial degrees considered in Definition 4.2 to build the200

local residual liftings associated with the vertices of K flagged for p-refinement.

4.4. Summary of the module REFINE

The module REFINE is summarized in Algorithm 2.

Algorithm 2 (module REFINE)

1: module REFINE(Ṽθ` )

2: B Input: set of marked vertices Ṽθ`
3: B Output: next level mesh T`+1, polynomial-degree distribution p`+1

4: for all a ∈ Ṽθ` do

5: Compute the h-refinement residual lifting ra,h from Definition 4.1

6: Compute the p-refinement residual lifting ra,p from Definition 4.2

7: end for

8: hp-decision on vertices: build the subsets Ṽh` and Ṽp` from (4.4)

9: hp-decision on simplices: build the subsets Mh
` and Mp

` from (4.5)

10: Build T`+1 from T` and Mh
`

11: Build p`+1 on T`+1 from p`, {δaK}a∈Ṽp` ,K∈T a
`

, and Mp
` using (4.6)

and (4.7)

12: end module

To illustrate Algorithm 2, we examine in detail a particular situation with

three marked vertices as encountered on the 6th iteration (` = 6) of the adaptive205

loop applied to the L-shape problem described in Section 6.2 below. In Figure 2

(left panel), we display the mesh T6 and the polynomial-degree distribution

p6. There are three marked vertices in Ṽθ6 . In Figure 3, for the three marked

vertices, we visualize the norms ‖∇ra,h‖ωa
6

and ‖∇ra,p‖ωa
6

which are the key

14



ingredients for the hp-decision on vertices. The resulting simplices flagged for210

h- and p-refinement are shown in the central panel of Figure 2, whereas the

right panel of Figure 2 displays the next mesh T7 and the next polynomial-

degree distribution p7.

(T6;p6)

P1

P2

P3

P4

P5

no ref.

Mh
6

Mp
6

(T7;p7)

P1

P2

P3

P4

P5

Figure 2: [L-shape problem from Section 6.2] The mesh and the polynomial degree distribution

on the 6th iteration of the adaptive procedure (left). Result of the hp-decision: simplices in

Mh
6 are shown in blue and simplices in Mp

6 are shown in red, the two subsets Mh
6 and

Mp
6 being here disjoint (center). The resulting mesh T7 and polynomial-degree distribution

p7 (right).
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Figure 3: [L-shape problem from Section 6.2] For the three marked vertices in Ṽθ6 , we display

the piecewise P1 functions which take the value ‖∇ra,h‖ωa
6

in the vertex a and 0 elsewhere

(left) and the value ‖∇ra,p‖ωa
6

in the vertex a and 0 elsewhere (right).

5. Guaranteed bound on the error reduction factor

In this section we show that it is possible to compute, at marginal additional215

costs, a guaranteed bound on the energy error reduction factor Cred from (1.3)
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on each iteration ` of the adaptive loop (1.2). This bound can be computed right

after the end of module REFINE at the modest price of one additional primal

solve in each patch T a
` associated with each marked vertex a ∈ Ṽθ` . Recall the

set of marked simplices Mθ
` = ∪a∈Ṽθ` T

a
` . Let us denote by ω` := ∪a∈Ṽθ` ω

a
` the220

corresponding open subdomain; notice that a point x is in ω` if and only if there

is K ∈ Mθ
` so that x ∈ K. We start with the following discrete lower bound

result:

Lemma 5.1 (Guaranteed lower bound on the incremental error on marked

simplices). Let the mesh T`+1 and the polynomial-degree distribution p`+1 result

from Algorithm 2, and recall that V`+1 = Pp`+1
(T`+1) ∩ H1

0 (Ω) is the finite

element space to be used on iteration (`+ 1) of the adaptive loop (1.2). For all

the marked vertices a ∈ Ṽθ` , let us set, in extension of (4.1), (4.2),

V a,hp
` := V`+1|ωa

`
∩H1

0 (ωa
` ),

and construct the residual lifting ra,hp ∈ V a,hp
` by solving

(∇ra,hp,∇va,hp)ωa
`

= (f, va,hp)ωa
`
− (∇u`,∇va,hp)ωa

`
∀ va,hp ∈ V a,hp

` . (5.1)

Then, extending ra,hp by zero outside ωa
` , the following holds true:

‖∇(u`+1−u`)‖ω` ≥ ηMθ
`

, ηMθ
`

:=


∑

a∈Ṽθ
`

∥∥∇ra,hp∥∥2

ωa
`∥∥∥∇(∑a∈Ṽθ

`
ra,hp

)∥∥∥
ω`

if
∑

a∈Ṽθ`
ra,hp 6= 0,

0 otherwise.

(5.2)

Proof. Let V`+1(ω`) stand for the restriction of the space V`+1 to the subdomain

ω` and let V 0
`+1(ω`) := V`+1(ω`) ∩H1

0 (ω`) stand for the corresponding homoge-

neous Dirichlet subspace. Note that (u`+1 − u`) is a member of V`+1(ω`), but

16



not necessarily of V 0
`+1(ω`). Then, the following holds true:

‖∇(u`+1 − u`)‖ω` = sup
v`+1∈V`+1(ω`)

(∇(u`+1 − u`),∇v`+1)ω`
‖∇v`+1‖ω`

≥ sup
v`+1∈V 0

`+1(ω`)

(∇(u`+1 − u`),∇v`+1)ω`
‖∇v`+1‖ω`

= sup
v`+1∈V 0

`+1(ω`)

(f, v`+1)ω` − (∇u`,∇v`+1)ω`
‖∇v`+1‖ω`

,

where we have used the definition (3.1) of u`+1 on the mesh T`+1, since v`+1

extended by zero outside of ω` belongs to the space V`+1 whenever v`+1 ∈

V 0
`+1(ω`). Now, choosing v`+1 =

∑
a∈Ṽθ`

ra,hp (note that this function indeed

belongs to V 0
`+1(ω`)), we infer that(

f,
∑
a∈Ṽθ`

ra,hp

)
ω`

−

(
∇u`,∇

( ∑
a∈Ṽθ`

ra,hp

))
ω`

=
∑
a∈Ṽθ`

{(
f, ra,hp

)
ωa
`

−
(
∇u`,∇ra,hp

)
ωa
`

}
=
∑
a∈Ṽθ`

∥∥∇ra,hp∥∥2

ωa
`

,

where we have employed ra,hp as a test function in (5.1). This finishes the

proof.225

Our main result is summarized in the following contraction property in the

spirit of [12, Theorem 5.1], [9, Proposition 4.1], and the references therein. The

specificity of the present work is that we obtain a guaranteed and computable

bound on the error reduction factor. In contrast to these references, however,

we do not prove here that Cred is strictly smaller than one, although we observe230

it numerically in Section 6 below. We believe that one could show Cred < 1

under additional assumptions on the refinements, such as the interior node prop-

erty [27], but we will not pursue this consideration further here.

Theorem 5.2 (Guaranteed bound on the energy error reduction factor). Let the

mesh T`+1 and the polynomial-degree distribution p`+1 result from Algorithm 2,

and let V`+1 = Pp`+1
(T`+1) ∩ H1

0 (Ω) be the finite element space to be used on

iteration (`+ 1) of the adaptive loop (1.2). Let ηMθ
`

be defined by (5.2). Then,
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unless η(Mθ
` ) = 0 in which case u` = u and the adaptive loop terminates, the

new numerical solution u`+1 ∈ V`+1 satisfies

‖∇(u− u`+1)‖ ≤ Cred‖∇(u− u`)‖ with 0 ≤ Cred :=

√√√√1− θ2
η2
Mθ

`

η2(Mθ
` )
≤ 1.

(5.3)

Proof. We first observe that η(Mθ
` ) = 0 implies using (3.4) and (3.3) that

the error is zero on iteration `, i.e., u = u`, so that the adaptive loop (1.2)

terminates. Let us now assume that η(Mθ
` ) 6= 0. Since the spaces {V`}`≥0

are nested, cf. (2.1), Galerkin’s orthogonality implies the following Pythagorean

identity:

‖∇(u− u`+1)‖2 = ‖∇(u− u`)‖2 − ‖∇(u`+1 − u`)‖2.

Moreover, owing to Lemma 5.1, we infer that

‖∇(u`+1 − u`)‖ ≥ ‖∇(u`+1 − u`)‖ω` ≥ ηMθ
`

=
ηMθ

`

η(Mθ
` )
η(Mθ

` ).

Using the marking criterion (3.4) and the definition of Mθ
` , we next see that

‖∇(u− u`+1)‖2 ≤ ‖∇(u− u`)‖2 −
η2
Mθ

`

η2(Mθ
` )
η2(Mθ

` )

≤ ‖∇(u− u`)‖2 − θ2
η2
Mθ

`

η2(Mθ
` )
η2(T`).

The assertion (5.3) follows from the error estimate (3.3) and taking the square

root.235

Remark 5.3 (Local residual optimization). The use of the local residual lift-

ings ra,h and ra,p from Definitions 4.1 and 4.2 respectively in the hp-decision

criterion (4.4) on marked vertices is motivated by the result of Theorem 5.2. In-

deed, suppose that ra,h is larger than ra,p in norm, and that only h-refinement is

performed in the subdomain ωa
` at the end of Algorithm 2. Then, the local resid-240

ual ra,hp from Lemma 5.1 coincides with ra,h which means that by flagging the

marked vertex a for h-refinement, one maximizes the contribution ‖∇ra,hp‖2ωa
`

in the numerator of (5.2) defining ηMθ
`

. It is also possible to design a more
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complex hp-refinement strategy exploiting directly (5.3). Here we simply stick

to Algorithm 2 which in our numerical experiments reported in Section 6 below245

leads to exponential convergence rates.

Remark 5.4 (A sharper bound). Theorem 5.2 obviously also holds true with the

slightly sharper constant Cred =

√
1−

η2
Mθ
`

η2(T`) . This is equivalent to considering

in (5.3) θ` such that η(Mθ
` ) = θ` η(T`) in place of θ, a strategy adopted in

the numerical experiments in Section 6 below. We note that θ` ≥ θ, however250

employing θ` in Algorithm 1 would lead to the same set of marked simplices

Mθ`
` = Mθ

` .

6. Numerical experiments

We consider two test cases for the model problem (1.1), both in two space

dimensions, one with a (relatively) smooth weak solution and one with a singu-

lar weak solution. Our main goal with the numerical experiments is to verify

that the hp-refinement strategy of Algorithm 2 leads to an exponential rate of

convergence with respect to the number of degrees of freedom DoF` of the finite

element spaces V` in the form

‖∇(u− u`)‖ ≤ C1 exp
(
−C2DoF

1
3

`

)
, (6.1)

with positive constants C1, C2 independent of DoF`. In addition, we assess

the sharpness of the guaranteed bound on the reduction factor Cred from The-

orem 5.2 by means of the effectivity index defined as

Ieff
red =

Cred

‖∇(u−u`+1)‖
‖∇(u−u`)‖

. (6.2)

We always consider the (well-established) choice θ = 0.5 for the marking pa-

rameter, fine-tuning it on each step to θ` as described in Remark 5.4. As men-255

tioned above, we apply the newest vertex bisection algorithm [30] to perform

h-refinement and we use the polynomial-degree increment (4.3) to perform p-

refinement.
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We compare the performance of our hp-refinement algorithm to two other

algorithms based on a different hp-decision criteria, namely the PARAM and260

PRIOR criteria from the survey paper [26] which are both based on a local

smoothness estimation. These criteria hinge on the local L2-orthogonal projec-

tion up−1
` of the numerical solution u` onto the local lower-polynomial-degree

space Pp`,K−1(K) for all the marked simplices K ∈Mθ
` . This leads to the local

quantity ηp−1
K := ‖∇(u`−up−1

` )‖K ; in case of p`,K = 1, when the quantity ηp−1
K265

is not available, for both criteria, the marked simplex K is p-refined. The crite-

rion PARAM [22] relies on the local smoothness indicator gK := ηK/η
p−1
K and a

user-defined parameter γ > 0; the marked simplex K is h-refined if gK > γ, and

otherwise it is p-refined. The presence of the parameter γ is a drawback of this

criterion; in our experiments we use the values γ = 0.3 and γ = 0.6, as suggested270

in [26]. The criterion PRIOR, which is a simplified version of the one proposed

in [32], relies on the quantity sK := 1 − log(ηK/η
p−1
K )/ log(p`,K/(p`,K − 1));

the marked simplex K is h-refined if p`,K > sK − 1, and otherwise it is p-

refined. To make the comparison with our approach more objective, we apply

for both criteria the suggested p-refinement only to those simplices such that275

p`,K = minK′∈Ta p`,K′ .

6.1. Smooth solution (sharp Gaussian)

We consider a square domain Ω = (−1, 1)× (−1, 1) and a weak solution that

is smooth but has a rather sharp peak

u(x, y) = (x2 − 1)(y2 − 1) exp (−100(x2 + y2)).

We start from a criss-cross initial mesh T0 with maxK∈T0 hK = 0.25 and a

uniform polynomial-degree distribution equal to 1 on all triangles.

Figure 4 presents the final mesh and polynomial-degree distribution obtained280

after 30 steps of the hp-adaptive procedure (1.2) (left panel) along with the ob-

tained numerical solution (right panel). Figure 5 displays the relative error

‖∇(u − u`)‖/‖∇u‖ as a function of DoF
1
3

` in logarithmic-linear scale to illus-

trate that the present hp-adaptive procedure leads to an asymptotic exponential
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rate of convergence. The values of the constants C1 and C2 from (6.1) given285

by the 2-parameter least squares fit are 3.97 and 0.70, respectively. The value

of C2 indicates the slope steepness of the fitted line in logarithmic-linear scale,

in particular, the higher value of C2, the steeper slope. For comparison, we

also plot the relative error obtained when using the hp-decision criteria PRIOR

and PARAM described above and also for the pure h-version of the adaptive290

loop. The quality of the a posteriori error estimators of Theorem 3.2 through-

out the whole hp-adaptive process can be appreciated in Figure 6 where the

effectivity indices, defined as the ratio of the error estimator η(T`) and the ac-

tual error ‖∇(u−u`)‖, are presented. Then, in Figure 7 we compare the actual

and estimated error distributions on iteration ` = 20 of the adaptive loop, show-295

ing excellent agreement. Figure 8 (left panel) presents the effectivity index for

the reduction factor Cred, see (6.2), throughout the adaptive process. Overall,

values quite close to one are obtained, except at some of the first iterations

where the values are larger but do not exceed 2.5. Moreover, all the values

are larger than one, confirming that the bound on the reduction factor Cred is300

indeed guaranteed. Figure 8 (right panel) examines the quality of the lower

bound ηMθ
`

from Lemma 5.1 by plotting the ratio of the left-hand side to the

right-hand side of the lower bound in (5.2). Except for one iteration where this

ratio takes a larger value close to 4.5, we observe that this ratio takes always

values quite close to, and larger than, one, indicating that ηMθ
`

delivers a sharp305

and guaranteed lower bound on the energy error decrease. To give some further

insight into the proposed hp-adaptive process, we present in Tables 1 and 2

some details on the hp-refinement decisions throughout the first 10 and the last

10 iterations of the adaptive loop. Finally, Table 5 (top) compares the different

strategies namely in terms of the number of iterations of the adaptive loop (1.2);310

here our strategy is a clear winner.
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Figure 4: [Sharp-Gaussian of Section 6.1] The final mesh and polynomial-degree distribution

obtained after 30 iterations of the hp-adaptive procedure (left) and the obtained numerical

solution u30 (right).
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Figure 5: [Sharp-Gaussian of Section 6.1] Relative energy error ‖∇(u−u`)‖/‖∇u‖ as a function

of DoF
1
3
` , obtained using the present hp-decision criterion, the criteria PRIOR and PARAM

(γ = 0.3, γ = 0.6), and using only h-refinement.
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Figure 6: [Sharp-Gaussian of Section 6.1] Effectivity indices of the error estimators η(T`) from

Theorem 3.2, defined as the ratio η(T`)/‖∇(u− u`)‖, throughout the hp-adaptive procedure.
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Figure 7: [Sharp-Gaussian of Section 6.1] The distribution of the energy error ‖∇(u −

u`)‖K (left) and of the error estimators ηK from Theorem 3.2 (right), ` = 20. The effec-

tivity index of the estimate defined as η(T20)/‖∇(u− u20)‖ is 1.1108.
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Figure 8: [Sharp-Gaussian of Section 6.1] Effectivity indices (6.2) for the error reduction factor

Cred from Theorem 5.2 (left) and effectivity indices for the lower bound ηMθ
`

from Lemma 5.1

defined as the ratio ‖∇(u`+1 − u`)‖ω`/ηMθ
`

(right).

Iteration 1 2 3 4 5 6 7 8 9 10

Triangles 256 256 256 256 264 264 264 264 264 264

Maximal polynomial degree 1 2 3 4 4 4 4 4 4 4

Marked vertices 1 1 1 1 2 2 2 1 1 1

Triangles flagged for h-refinement 0 0 0 8 0 0 0 0 0 8

Triangles flagged for p-refinement 8 8 8 0 12 12 4 2 2 0

Triangles flagged for hp-refinement 0 0 0 0 0 0 0 0 0 0

Table 1: [Sharp-Gaussian of Section 6.1] Refinement decisions in Algorithm 2 during the first

10 iterations of the adaptive loop (1.2).
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Iteration 20 21 22 23 24 25 26 27 28 29

Triangles 392 406 430 450 478 514 552 580 612 612

Maximal polynomial degree 5 5 5 5 5 5 5 5 5 5

Marked vertices 2 3 3 3 4 3 2 3 4 4

Triangles flagged for h-refinement 12 24 16 24 30 23 14 21 0 28

Triangles flagged for p-refinement 0 0 4 0 0 0 0 0 16 0

Triangles flagged for hp-refinement 0 0 0 0 0 0 0 0 0 0

Table 2: [Sharp-Gaussian of Section 6.1] Refinement decisions in Algorithm 2 during the last

10 iterations of the adaptive loop (1.2).
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6.2. Singular solution (L-shape domain)

In our second test case, we consider the L-shape domain Ω = (−1, 1) ×

(−1, 1) \ [0, 1]× [−1, 0] with f = 0 and the exact solution (in polar coordinates)

u(r, ϕ) = r
2
3 sin

(
2ϕ

3

)
.

For this test case, following [15, Theorem 3.3] and the references therein, the315

error estimator η(T`) employed within the adaptive procedure takes into account

also the error from the approximation of the inhomogeneous Dirichlet boundary

condition prescribed by the exact solution on ∂Ω. We start the computation on

a criss-cross grid T0 with maxK∈T0 hK = 0.25 and all the polynomial degrees

set uniformly to 1.320

Figure 9 presents the final mesh and polynomial-degree distribution after 65

steps of the hp-adaptive procedure (1.2) (left panel) along with a zoom in the

window [−10−6, 10−6]× [−10−6, 10−6] near the re-entrant corner (right panel).

Figure 10 (left panel) displays the relative error ‖∇(u − u`)‖/‖∇u‖ as a func-

tion of DoF
1/3
` in logarithmic-linear scale to illustrate that, as in the previous

test case, the present hp-adaptive procedure leads to an asymptotic exponen-

tial rate of convergence. The corresponding values of constants C1 and C2 in

expression (6.1) obtained by the 2-parameter least squares fit are 4.73 and 0.69,

respectively. For the direct comparison with other methods, we refer to the

long version [25, Table 15] of the survey paper [26]. However, note that data

sets of greater sizes than in our case have been used for the least squares fit-

ting therein. A detailed view when the error takes lower values is provided in

the right panel of Figure 10. We also plot the relative errors obtained when

using the hp-decision criteria PRIOR and PARAM, as well as those obtained

using APRIORI criterion exploiting the a priori knowledge of the exact solu-

tion (marked simplices are h-refined only if they touch the corner singularity,

otherwise they are p-refined). In addition, we provide also the relative errors

obtained by employing the (non-adaptive) strategy which we refer to as LIN-

EAR, inspired by the theoretical results for the one-dimensional problem with

singular solution [21, 22, 33]. When employing this strategy, we start from a
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coarse grid T0 with maxK∈T0 hK = 0.5. At each iteration, only the patch con-

taining the re-entrant corner is h-refined. Thus, the elements of each mesh T`,

` ≥ 1, decrease in size in geometric progression (in our case with factor 0.5)

toward the re-entrant corner. For each T`, ` ≥ 1, we group the elements in

layers L1,L2, . . . ,Lm(`) depending on their distance from the origin (L1 con-

taining the singularity), such that T` =
⋃m(`)
i=1 Li. The total number of layers

m(`) depends on how many times the current mesh T` has been refined. Each

element K ∈ T` is then assigned polynomial degree p`,K layer-wise, increasing

linearly away from the singularity, in the way

p`,K :=

⌈
1 +

(i− 1)

3

⌉
,

where i is the index of the layer Li containing the element K. For the strat-

egy APRIORI (Figure 11) and the strategy LINEAR (Figure 12), we illustrate

also the resulting polynomial-degree distribution at the step when the relative

error reaches 10−5. As for the previous test case, in Figure 13 we illustrate

the quality of the error estimator from Theorem 3.2 in terms of the effectivity325

index η(T`)/‖∇(u−u`)‖ throughout all the iterations of the present hp-adaptive

process. Figure 14 then compares the actual and estimated error distributions

on iteration ` = 45 of the adaptive loop, showing excellent agreement. Fig-

ure 15 (left panel) presents the effectivity index for the reduction factor Cred,

see (6.2), throughout the adaptive process, whereas the right panel of Figure 15330

examines the quality of the lower bound ηMθ
`

from Lemma 5.1 by plotting the

ratio of the left-hand side to the right-hand side of the lower bound in (5.2).

For both quantities, we can draw similar conclusions to the previous test case,

thereby confirming that sharp estimates on the error reduction factor are avail-

able. Additional numerical experiments (not shown here) indicate that the335

lower bound estimate can be made even sharper by performing h-refinement so

as to satisfy the interior node property. Finally, to give some further insight

into the hp-adaptive process, we present in Tables 3 and 4 some details on the

hp-refinement decisions made by the proposed hp-refinement criterion during

the first 10 and the last 10 iterations of the adaptive loop. We observe that340
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in the initial iterations, where the underlying mesh is still rather coarse, the

polynomial degree is increased also on those simplices touching the re-entrant

corner. Nevertheless, this decision does not occur anymore later when the mesh

around the singularity is already more strongly refined than in the rest of the

domain. Therefore, an improvement of our approach is expected, as suggested345

in [8], in conjunction with an appropriate coarsening strategy correcting the

excessive p-refinement in the early stages. Table 5 (bottom) again brings some

additional comparisons with other strategies in terms of number of iterations

and number of degrees of freedom necessary to reach relative error 10−5. We

observe that the results achieved using the present strategy are comparable with350

those achieved by other (established) strategies.
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P5

Figure 9: [L-shape domain of Section 6.2] The final mesh and polynomial-degree distribution

obtained after 65 iterations of the hp-adaptive procedure (left) and a zoom in [−10−6, 10−6]×

[−10−6, 10−6] near the re-entrant corner (right).
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Figure 10: [L-shape domain of Section 6.2] Relative energy error ‖∇(u − u`)‖/‖∇u‖ as a

function of DoF
1
3
` , obtained using the present hp-decision criterion, the criteria PRIOR and

PARAM (γ = 0.3 and γ = 0.6), the APRIORI, and LINEAR strategy (left) and a detailed view

(right).
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Figure 11: [L-shape domain of Section 6.2] Mesh and polynomial-degree distribution obtained

after 70 iterations (when the relative error reaches 10−5) of the adaptive procedure employing

the APRIORI hp-strategy (left) and a zoom in [−10−7, 10−7] × [−10−7, 10−7] near the re-

entrant corner (right).
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Figure 12: [L-shape domain of Section 6.2] Mesh and polynomial-degree distribution obtained

after 45 iterations (when the relative error reaches 10−5) of the procedure employing the

refinement strategy LINEAR (left) and a zoom in [−10−6, 10−6] × [−10−6, 10−6] near the

re-entrant corner (right).
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Figure 13: [L-shape domain of Section 6.2] The effectivity indices of the error estimate η(T`),

defined as η(T`)/‖∇(u− u`)‖, throughout the 65 iterations of the present hp-adaptive proce-

dure.
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Figure 14: [L-shape domain of Section 6.2] Distribution of the energy error ‖∇(u − u`)‖K
(left) and of the local error estimators ηK from Theorem 3.2 (right), ` = 45. The effectivity

index of the estimate defined as η(T45)/‖∇(u− u45)‖ is 1.0468.
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Figure 15: [L-shape domain of Section 6.2] Effectivity indices (6.2) for the error reduction

factor Cred from Theorem 5.2 (left) and effectivity indices for the lower bound ηMθ
`

from

Lemma 5.1 defined as the ratio ‖∇(u`+1 − u`)‖ω` / ηMθ
`

(right).
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Iteration 1 2 3 4 5 6 7 8 9 10

Triangles 192 192 192 192 192 198 204 210 216 222

Maximal polynomial degree 1 2 3 4 5 5 5 5 5 5

Marked vertices 1 1 1 2 2 3 4 4 6 6

Triangles flagged for h-refinement 0 0 0 0 6 6 6 6 6 6

Triangles flagged for p-refinement 6 6 6 12 6 12 16 18 16 18

Triangles flagged for hp-refinement 0 0 0 0 2 0 0 0 0 0

Table 3: [L-shape domain of Section 6.2] Refinement decisions in Algorithm 2 during the first

10 iterations of the adaptive loop (1.2).

Iteration 56 57 58 59 60 61 62 63 64 65

Triangles 492 512 518 524 538 568 574 580 614 660

Maximal polynomial degree 5 5 5 5 5 5 5 5 5 5

Marked vertices 4 4 5 4 3 3 3 4 5 5

Triangles flagged for h-refinement 16 6 6 6 18 6 6 28 30 32

Triangles flagged for p-refinement 8 16 13 22 0 6 6 0 0 8

Triangles flagged for hp-refinement 0 0 0 0 0 0 0 0 0 4

Table 4: [L-shape domain of Section 6.2] Refinement decisions in Algorithm 2 during the last

10 iterations of the adaptive loop (1.2).
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our APRIORI PRIOR PARAM 0.3 PARAM 0.6

Sharp Gaussian iter 27 – 37 36 40

(relative error 10−3) DoF1/3 12.56 – 14.29 14.06 12.49

L-shape domain iter 65 70 68 67 68

(relative error 10−5) DoF1/3 19.24 17.35 20.82 20.07 18.18

Table 5: Comparison of the different adaptive hp-strategies in terms of the number of iterations

of the loop (1.2) and of the number of degrees of freedom necessary to reach the given relative

error for model problems of Sections 6.1 and 6.2.
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7. Conclusions

In this work, we have devised an hp-adaptive strategy to approximate model

elliptic problems using conforming finite elements. Mesh vertices are marked us-

ing polynomial-degree-robust a posteriori error estimates based on equilibrated355

fluxes. Then marked vertices are flagged either for h- or for p-refinement based

on the solution of two local finite element problems where local residual liftings

are computed. Moreover, by solving a third local finite element problem once the

hp-decision has been taken and the next mesh and polynomial-degree distribu-

tion have been determined, it is possible to compute a guaranteed bound on the360

error reduction factor. Our numerical experiments featuring two-dimensional

smooth and singular weak solutions indicate that the present hp-adaptive strat-

egy leads to asymptotic exponential convergence rates with respect to the total

number of degrees of freedom employed to compute the discrete solution. More-

over, our bound on the error reduction factor appears to be, in most cases, quite365

sharp. Several extensions of the present work can be considered. On the theo-

retical side, it is important to prove that our bound on the reduction factor Cred

is smaller than one and to study how it depends on the mesh-size and especially

on the polynomial degree. On the numerical side, three-dimensional test cases

and taking into account an inexact algebraic solver are on the agenda.370
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