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Abstract

Advances in the technologies and informatics used to generate and process large biological data sets (omics data) are promot-
ing a critical shift in the study of biomedical sciences. While genomics, transcriptomics and proteinomics, coupled with bio-
informatics and biostatistics, are gaining momentum, they are still, for the most part, assessed individually with distinct
approaches generating monothematic rather than integrated knowledge. As other areas of biomedical sciences, including
metabolomics, epigenomics and pharmacogenomics, are moving towards the omics scale, we are witnessing the rise of inter-
disciplinary data integration strategies to support a better understanding of biological systems and eventually the develop-
ment of successful precision medicine. This review cuts across the boundaries between genomics, transcriptomics and prote-
omics, summarizing how omics data are generated, analysed and shared, and provides an overview of the current strengths
and weaknesses of this global approach. This work intends to target students and researchers seeking knowledge outside of
their field of expertise and fosters a leap from the reductionist to the global-integrative analytical approach in research.
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Introduction

The exponential advances in the technologies and informatics
tools (Figure 1) for generating and processing large biological

data sets (omics data) is promoting a paradigm shift in the way
we approach biomedical problems [1–10]. The opportunities pro-
vided by investigating health and disease at the omics scale
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come with the need for implementing a novel modus operandi to
address data generation, analysis and sharing. It is critical to rec-
ognize that (multi)omics data, that is, omics data generated
within isolated and not yet integrated contexts, need to be ana-
lysed and interpreted as a whole through effective and integra-
tive pipelines [integrated (multi)omics, then referred to as
integromics or panomics [11]]. This clearly requires the cooper-
ation of multidisciplinary teams as well as the fundamental sup-
port of bioinformatics and biostatistics. Nevertheless, in the
midst of such change in study approach, we currently experience
the establishment of fragmented niche groups who each de-
veloped specific jargons and tools, a fact that inevitably impacts
the flow of information and the communication between differ-
ent teams of experts (e.g. physicians, researchers, bioinformati-
cians and biostatisticians), and, eventually, data interpretation.

In this scenario, our review intends to be a cross-disciplinary
survey of omics approaches with a particular emphasis on gen-
omics, transcriptomics and proteinomics. We provide an over-
view of the current technologies in place to generate, analyse,
use and share omics data, and highlight their associated
strengths and pitfalls using an accessible language along with il-
lustrative figures and tables. We have summarized critical con-
siderations in Tables 1 (general), 2 (genome), 3 (transcriptome), 4
(proteome) and 5 (functional annotations); nevertheless, the
readership shall keep in mind that these reflect authors’ views
and are not intended to be exhaustive. Useful web-based re-
sources are included in Supplementary Tables S1a–e, and a com-
prehensive Glossary is provided in the Supplementary Files. All
this allows reaching a broad audience, including researchers,
clinicians and students, who are seeking a comprehensive pic-
ture of research-associated resources beyond their background or
speciality. In summary, we here intend to stress a conscious way
of thinking in the view of the rise of data integration from multi-
disciplinary fields, a fact that is fostering a leap from the reduc-
tionist to the global-integrative approach in research.

The genome and genomics

Genomics is the study of organisms’ whole genomes (WGS). In
Homo sapiens, the haploid genome consists of 3 billion DNA base
pairs, encoding approximately 20 000 genes. These make up the
coding regions (1–2% of the entire genome), while the remaining
98–99% (non-coding regions) holds structural and functional
relevance [4, 13, 14].

Genome features and genetic variants

Many factors influence the state of health and disease, and
yet, it is clear that an individual’s genetic background is an im-
portant determinant. Examining this genetic background is,
therefore, of great importance for identifying individual muta-
tions and/or variants underpinning pathways that discrimin-
ate health and disease [4]. Since the elucidation of the
structure of DNA [10], genetic and, latterly, genomic data have
been generated with increasing speed and efficiency, allowing
the transition from studies focused on individual genes to
comparing genomes of whole populations (Figure 1) [15]. Many
variants exist in the genome, the majority of which are benign;
some are protective, conferring an advantage against certain
conditions [16]. However, others can be harmful, increasing
susceptibility for a condition (i.e. a cluster of variants with low
penetrance) or directly causing a disease (i.e. one or few vari-
ants with high penetrance) [17]. The variants can be broadly
categorized into two groups: simple nucleotide variations
(SNVs) and structural variations (SVs). The former comprises
single nucleotide variations and small insertion/deletions
(indels); the latter includes large indels, copy number variants
(CNVs) and inversions [18]. SNVs and SVs found in coding re-
gions may impact protein sequence, while those in non-
coding regions likely affect gene expression and splicing proc-
esses (Figure 2) [19]. These variants are often grouped into rare

Figure 1. Overview of the progressive advance in the methods to study genes, transcripts and proteins in the informatics sciences. The arrow represents the develop-

ment, over time, of the many disciplines now involved in biomedical science accompanied by the fundamental advances in informatics and community resources.

The broad roots of the omics revolution are represented by the wider start of the arrow before the year ‘1950’, when the foundations for a paradigm shift in science

(from single observations to systems dynamics) were laid.
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(frequency in the general population< 1%) and common (fre-
quency> 1%); common single nucleotide variations are often
referred to as single nucleotide polymorphisms (SNPs). Coding
and non-coding portions as well as types of variants present
within the genome have undergone an attentive nomenclature
standardization to allow harmonized scientific communica-
tion. Working groups such as the Human Genome
Organization gene nomenclature committee [20] or the
Vertebrate and Genome Annotation projects [21] provide cur-
ation and updates on the nomenclature and symbols of coding
and non-coding loci, whereas the standardized reference to
properly code genetic variations is curated by the Human
Genome Variation Society [22].

Technologies and methods for genetics analysis

Current techniques to capture genetic variants such as SNVs
and SVs include (i) Sanger sequencing [23], the base-by-base
sequencing of a locus of interest that captures up to 1 kb per
run; (ii) DNA-microarrays, based on hybridization of the DNA
sample with a set of pre-defined oligonucleotide probes distrib-
uted across the entire genome or enriched around regions of
interest [24]; and (iii) next-generation sequencing (NGS) meth-
ods based on the fragmentation of the genomic DNA into pieces
that are subsequently sequenced and aligned to a reference se-
quence [25]. Microarrays are less costly than NGS, yet both strat-
egies allow the identification of SNVs as well as some types of

Table 1. General critical considerations on applying bioinformatics to the biomedical sciences. Problems that can be addressed by individual
researchers or research groups or that should be addressed by a large community effort have been flagged with * or �, respectively.

Observation Problems Proposed action

*Online tools are used with lit-
tle to no criticism

Using inappropriate tools for a particular analysis
Using default settings that may not be tailored for

the research purpose
Accepting an output without much criticism, leading

to mis/over-interpretation of results

For informaticians: make the description of the tool
as simple as possible

For end user: understand the principles underlying a
tool before using it

*Analysis can be run with dif-
ferent, though equally valid,
algorithms and statistical
methods

The wealth of tools available feeds the temptation to
pick the one that either has the friendliest user
interface or gives the most interesting result

Results obtained using different tools are different

As with technical replicates in a wet laboratory, a
good bioinformatics analysis must give consistent
results even with different methods

Repetition of the analysis with different tools sup-
ports consistency and reproducibility of findings

*Analysis may require the sub-
jective selection of a priori
parameters [12]

Same tools used by implementing different param-
eters will likely generate different results

Perform sensitivity analysis using alternative
parameters

�Databases are on-going
projects

Databases are constantly updated
Analytical tools that rely on databases may become

out of date if their libraries are not updated
periodically

Published bioinformatics analyses become out of
date because of advances in the databases/refer-
ence sets

Use software and online tools with recent/frequent
updates

Bioinformatics analyses are complete only to the ex-
tent of the completeness of the reference database
used

Always document the software version and codes
used for a particular analysis

Code maintainers should keep archival copies of old
software and code versions (if replications are
necessary)

*Statistical methods were ori-
ginally designed for ‘small’
scale data

If statistical methods are tailored for small-scale
data, eventually the p-value will reach the pre-
defined significance level in large-scale data sets
risking spurious results

Be cautious in the statistical approaches used, and
ask guidance from experts

�Analytical tools Some of the resources are accessible only after a fee
is payed. This very much limits their use to exclu-
sively niche or research groups with funds for bio-
informatics analysis

Free omics data access and usage is fundamental for
reducing the fragmentation of research and stimu-
lating the improvement of data integration, ana-
lysis and interpretation

Foster open data policies with the support of govern-
ments and funding agencies

*Hypothesis-driven analyses Results might be biased based on initial hypothesis
Some outcomes might be inflated because of exces-

sive targeting through the research tools being
used (primers or probes, particular protein inter-
actions, tissue-specific data)

Consider whether the experiment or analysis needs
to be hypothesis driven or can be hypothesis free;
use the right techniques/tools and analysis to ad-
dress the research question (microarray versus
NGS, association versus rare variants analysis, tis-
sue-specific versus all tissues, eQTL versus epige-
nomics, etc)

*Experimental design Wrong experimental design (without considering
power calculation, adequate controls, tissue types,
single cells versus tissue homogenates, etc) may
lead to biased or underpowered results

Like any experiment, the analysis should be planned
within a properly developed pipeline that takes
into account data source, sample size, controls,
techniques to generate data, analyses to apply to
data
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CNVs (Figure 2); nevertheless, microarrays are more limited
comparatively to NGS strategies, as they are based on a priori
knowledge of sequence and SNVs, while NGS allows detection
of novel changes. Particularly, NGS allows the sequencing of
specifically targeted regions, whole exome (WES) and WGS of
individuals. WES allows the screening of all variants (including
rare) in the coding region with a direct relation to protein affect-
ing mutations; WGS allows the identification of all rare coding
and non-coding variants [19, 25].

The study of the genome relies on the availability of a refer-
ence sequence and the knowledge of the distribution of the com-
mon variants across the genome. This is important to (i) map
newly generated sequences to a reference sequence and (ii) refer
to population-specific genetic architecture for interpretation of
studies such as genome-wide association studies (GWAS) [26].
The human genome was sequenced through two independent
projects and released in the early 2000s by the public Human
Genome Project (HGP) and a private endeavour led by J. Craig
Venter; as a result, the human reference sequence was con-
structed and over 3 millions SNPs were identified [4, 14]. The
Genome Reference Consortium, a successor of the HGP, main-
tains and updates the reference genome, which is currently in
build GRCh38 [also referred to by its University of California
Santa Cruz (UCSC) Genome Browser version name hg38] [27, 28].
The reference genome is paired with a genome-wide map of
common variability, thanks to the International HapMap Project
(Figure 1) [3]. This project identified common variants [minor al-
lele frequency (MAF)� 5%] across the genome of different popu-
lations (African, Asian and European ancestry), leading to the
awareness that up to 99.5% of the genome across any two

individuals is identical and to the mapping of up to 10 millions
SNPs. Importantly, the HapMap project allowed to complement
the HGP with additional information such as that of haplotype
blocks, based on the concept of linkage disequilibrium (LD, see
glossary), the grounding foundation of GWAS [15]. To increase
the resolution achieved by HapMap, the 1000 Genomes Project
was concluded in 2015, with 2504 genomes sequenced from 26
populations [29] to produce an extensive public catalogue of
human genetic variation, including rarer SNPs (MAF� 1%) and
SVs. This data (reference genomeþHapMapþ 1000 Genomes
projects) are publicly available, greatly fostering high resolution
and population-specific GWAS and filtering of benign common
and rare variants for NGS data analysis. More recent projects
such as UK10K [30], 100 000 Genomes Project [31] and the
Precision Medicine Initiative [32] will further help to enhance our
understanding of human genetic variability by identifying and
annotating low-frequency and rare genetic changes.

A typical GWAS design involves using a microarray to geno-
type a cohort of interest and to identify variants associating with
a particular trait in a hypothesis-free discovery study. A GWAS re-
sults in a list of SNPs evaluated for their frequency in relation to
the trait under study; most reported associations in GWAS are in-
tronic or intergenic, affecting DNA structure and gene expression
rather than protein sequence [17]. GWAS identify risk loci, but not
necessarily the prime variants or genes responsible for a given as-
sociation (due to LD), nor their function. Replication and targeted
re-sequencing approaches are required to better understand the
association found in the discovery phase. Nevertheless, a GWAS
suggests potential biological processes (BPs) associated with a
trait to be further investigated in functional work [26].

Figure 2. Overview of the types of variants in the genome, their potential consequences and the methods/techniques to untangle them.
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The explosive growth in the number of GWAS in the past 10
years has led to the discovery of thousands of published associ-
ations for a range of traits (25 342 unique SNP-trait associations
from 2586 studies in GWAS catalogue as of October 2016). These
studies have both confirmed previous genetic knowledge (e.g.
for Parkinson’s disease a-synuclein and Leucine Rich Repeat
Kinase 2 were firstly identified to be segregating in affected
families, and then replicated in GWAS [33]) and suggested novel
loci. Although most of the associating SNPs have a small effect
size, they provide important clues on disease biology and even
may suggest new treatment approaches (e.g. in sickle-cell
disease, BCL11A was identified as a gene controlling foetal
haemoglobin levels [34, 35]; in Crohn’s disease, GWAS under-
lined the pathogenic role of specific processes such as autoph-
agy and the innate immunity [36]). Another opportunity
supported by GWAS is the possibility of comparing the genetic
architecture between traits (LD score regression [37]).
Conversely, a common criticism is that significant SNPs still do
not explain the entire genetic contribution to the trait (i.e. miss-
ing heritability [38]); however, models incorporating all SNPs re-
gardless of their statistical significance in GWAS, substantially
improve the genetic explanation of the trait [39] for which, ul-
timately, the remaining missing heritability is likely explained
by rare variants (therefore not captured in GWAS).

Traditionally, GWAS has been performed through micro-
arrays, and, although NGS methods are becoming increasingly
popular due to a reduction in the cost of the technology, the eco-
nomical impact of WES and WGS is still around 1–2 orders of
magnitude more than that of a genome-wide microarray, making
the latter still preferable, particularly, for the genotyping of bigger
cohorts. However, a valuable option that is gaining momentum
is that of combining the two techniques: NGS is, in fact, ex-
tremely helpful together with genotyping data (within the same
population) to increase the resolution of population-specific
haplotypes and strength of imputation [40]. In summary, the
choice between a microarray or NGS approach should be based
on the scientific or medical question(s) under consideration, for
which pertinent concepts can be found in [26, 41, 42].

Tools for genomics analysis

Many tools are available for handling genome-wide variant data
(e.g. Plink [43], Snptest [44] and a variety of R packages, includ-
ing the Bioconductor project [45]) supporting the whole work-
flow from quality control (QC) of raw genotyping data to
analysis, such as association, heritability, genetic risk scoring

and burden analyses. In particular, Bioconductor is a valuable
resource for using and sharing packages and/or pipelines. NGS
data undergo different QC steps with dedicated programs such
as the Genome Analysis Toolkit to align the sequences with the
reference genome, and to call and filter rare variants [46].
Valuable resources are available to catalogue both GWAS and
NGS data. For example, the GWAS catalogue, curated by the
National Human Genome Research Institute, European
Molecular Biology Laboratory-European Bioinformatics Institute
(EMBL-EBI) and National Center for Biotechnology Information
(NCBI; based in the United States), is freely available on the EBI
website for exploring genetic associations within a variety of
traits. Of note, a comprehensive repository of all currently avail-
able genetic variations (including links to the original studies) is
curated by EBI within the European Variation Archive [47]. The
Exome Aggregation Consortium is an online tool for evaluating
WES results (i.e. exploring genes, variant types and frequencies
and predicted effects). Other useful repositories are the NCBI,
Ensembl and UCSC portals: each comprises resources to explore
genes, variants and their associated effects. For example, dbSNP
(within NCBI) provides comprehensive information about SNPs
including location, effect and population-specific prevalence.
ClinVar or Online Mendelian Inheritance in Man (also within
NCBI) helps in associating coding variants with traits and pro-
vides a comprehensive review on links between genetic vari-
ability and diseases, respectively. Biomart (within Ensembl)
allows for filtering and extracting information of interest for a
particular gene or SNP. Furthermore, these repositories provide
the opportunity to link and display genetic and transcript data
together, e.g. on Ensembl or UCSC. Other repositories include
dbGap (in the United States; NCBI) or the European Genome-
Phenome Archive (in Europe; EMBL-EBI) where data from indi-
vidual studies can be submitted. Policies to regulate data access
and usage might apply (see ‘Perspectives’ section for further de-
tails), and vary from institution to institution. In some cases,
data are only available by contacting groups or consortia gener-
ating data.

We have summarized critical considerations in Table 2, and
all web resources included in this section are shown in
Supplementary Table S1a.

The transcriptome and transcriptomics

The transcriptome is the total complement of ribonucleic acid
(RNA) transcripts in a cell and consists of coding (1–4%—mes-
senger) and non-coding (>95%—ribosomal, transfer, small

Table 2. General critical considerations on applying bioinformatics to genomics. Problems that can be addressed by individual researchers or
research groups or that should be addressed by a large community effort have been flagged with * or �, respectively.

Observation Problems Proposed action

*Genome build Analysing data using inconsistent genome builds
can lead to spurious results

Use the correct genome build when mapping

*Multiple databases [48] Difficult to select among the many databases that
exist

Investigate their limitations, including lack of cor-
rections or updates to annotations

�Large-scale databases [49] With large-scale data there may be a decrease of
phenotype data quality

Consider case ascertainment methods and length of
follow-up of controls

�Variant effect prediction Effect prediction tools are not infallible Verify segregation, absence from controls and
in vitro effect of coding variants

�Linear genome reference [50] A linear genome reference is not representative
across individuals and populations

GRCh38 addresses this issue by providing alternative
sequence representations for regions where a con-
sensus sequence is difficult to be determined
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nuclear, small interfering, micro and long-non-coding) RNAs
[51, 52]. Provided the tailoring of ad hoc techniques and the
growth of recent data on coding RNAs (mRNAs), these will be
the main focus of this section.

Technologies and methods for transcriptomics analysis

The analysis of mRNAs provides direct insight into cell- and
tissue-specific gene expression features such as (i) presence/ab-
sence and quantification of a transcript, (ii) evaluation of alter-
native/differential splicing to assess or predict protein isoforms
and (iii) quantitative assessment of genotype influence on gene
expression using expression quantitative trait loci analyses
(eQTL) or allele-specific expression (ASE). This information is
fundamental for a better understanding of the dynamics of cel-
lular and tissue metabolism, and to appreciate whether and
how changes in the transcriptome profiles affect health and
disease.

It is now possible to capture almost the totality of the tran-
scriptome through similar strategies used for screening the DNA,
i.e. microarray and sequencing techniques (Figure 3). As men-
tioned in the previous section, the RNA-microarray approach is
less costly than RNA-sequencing but has significant limitations,
as the former is based on previously ascertained knowledge of
the genome, while the latter allows broad discovery studies [53].
RNA-microarrays are robust and optimized for comprehensive
coverage through ever updated pre-designed probes; however,
transcripts not included in the probe set will not be detected. Of
note, although complementary accessories among the micro-
arrays options, such as the tiling array, allow to characterize re-
gions which are contiguous to known ones supporting the
discovery of de novo transcripts [54], RNA-sequencing is more
comprehensive, as it enables capturing basically any form of
RNA at a much higher coverage [55].

The workflow to generate raw transcriptome data, through
either method, involves the following: (i) purifying high-quality
RNA of interest; (ii) converting the RNA to complementary DNA
(cDNA); (iii) chemically labelling and hybridizing the cDNA to
probes on chip (RNA-microarray) or fragmenting the cDNA and
building a library to sequence by synthesis (RNA-sequencing);
(iv) running the microarray or sequence through the platform of
choice; and (v) performing ad hoc QC [55, 56].

The QC steps differ between microarray and sequencing data
[56]: for the former, chips are scanned to quantify signals of
probes representing individual transcripts, and reads are subse-
quently normalized; for the latter, the raw sequences are pro-
cessed using applications such as FastQC that read raw sequence
data and perform a set of quality checks to assess the overall
quality of a run. This step is then followed by alignment with a
reference sequence (to evaluate coverage and distribution of
reads), transcript assembly and normalization of expression lev-
els [57]. Different types of post hoc analyses can be performed
with both microarray and sequencing data including differential
cell- and/or tissue-specific expression profiles that test whether
genes have different expression levels across tissues and condi-
tions [56] or analyses investigating gene expression regulations
such as eQTL analyses. eQTL mapping is a powerful approach to
investigate and integrate gene expression measures (RNA-level
data) with genetic variants (DNA-level data). Analysing eQTL
helps to identify genetic variants that influence mRNA expres-
sion levels. As discussed in the previous section, GWAS hits (i.e.
associated SNPs) are mainly located in non-coding regions and
are thus likely to exert their function through the regulation of
gene expression. The knowledge of eQTLs for GWAS loci can help

in prioritizing causal variants, which are generally hard to fine
map due to LD issues. It follows that eQTLs provide an important
link between genetic variants and gene expression, and can thus
be used to explore and better define the underlying molecular
networks associated with a particular trait [58]. Most eQTLs iden-
tified to date regulate expression of a transcript or a gene in an al-
lele-specific manner (cis-eQTLs): this regulation is local and often
investigated within a 61 mb upstream and downstream flanking
regions of genes, limiting the number of statistical tests that
need to be performed. In comparison, trans-eQTLs affect genes
located anywhere in the genome and have weaker effect sizes:
both features make trans-eQTL analyses currently difficult.
During the past decade, the number of studies focusing on eQTL
has exponentially grown and eQTL maps in human tissues have
been and are being generated through large-scale projects [59–
62]. Studying eQTLs in the right context is particularly important
as eQTLs are often only detected under specific physiological
conditions and in selected cell types. In this view, the develop-
ment of induced pluripotent stem cells models is likely to ad-
vance our detection of physiologically and cell type-specific
relevant eQTLs that are difficult to obtain form living individuals.
In addition, it is important to note that a limitation of eQTL ana-
lysis, i.e. the need for a large number of samples to gain sufficient
statistical power, can be overcome by ASE studies in which differ-
ent expression levels between the maternal and paternal allele
can be used for the investigation of effects of rare variants (e.g.
protein affecting mutations) [63]. Of note, RNA-sequencing alone
provides a framework for unique analyses investigating novel
transcript isoforms (isoform discovery), ASE and gene fusions
analyses [56]. Another way to study the regulation of gene

Figure 3. Summary of various features associated with either RNA-microarrays

or RNA-sequencing data generation and analysis.
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expression is achieved through the combined analysis of mRNA
and microRNA levels. MicroRNAs are short, non-coding RNA mol-
ecules that regulate the actual transcription of mRNA whose
profiling is also captured both through array and sequencing
techniques. The specific binding of microRNA to a target mRNA
(by means of sequence homology) either inhibits mRNA binding
to the ribosome or targets the mRNA for degradation. It is there-
fore clear that not only mRNA levels, but also their regulation by
microRNAs are important for a more comprehensive overview on
gene expression dynamics [64]. It is relevant to note that the spe-
cific microRNA content of a specimen might, per se, be predictive
of a certain condition or trait and can therefore be immediately
used in clinical diagnostics. However, microRNA profiling can be
integrated with mRNA expression data to study changes in the
transcriptome profile, specifically identifying the mRNA tran-
scripts that undergo regulation, therefore highlighting the poten-
tial molecular pathways underpinning a certain trait or
condition. One problem here, however, is the need to identify the
mRNA molecules regulated by each given microRNA sequence
for accurate visualization of gene regulatory networks [65]. There
are tools, such as MiRNA And Genes Integrated Analysis web tool
(MAGIA) [66], GenMiRþþ [67] and mirConnX [68], that are specif-
ically developed to aid in this context. The mRNA/microRNA
profiling approach has been, for example, successfully applied to
study gene expression in specific subtypes of gastrointestinal
tumours [69] or evaluate alteration of gene expression in wound-
healing impaired fibroblasts from diabetic patients [70].

A more system-wide approach to assess gene expression is
gained through gene co-expression analyses, including
weighted gene co-expression network analysis (WGCNA) [71].
WGCNA assesses similarities in expression patterns, usually
through Pearson’s or Spearman’s correlation, with the assump-
tion that genes with similar expression profiles undergo similar
regulation and are likely to share common biochemical path-
ways/cellular functions.

Tools for transcriptomics analysis

There is a plethora of solutions for data storage, sharing and ana-
lysis. Groups that generate data store it either on private servers
or public repositories. Examples of widely used portals to access

and download data are, for example, the Gene Expression
Omnibus, ArrayExpress or the Expression Atlas in EBI or the
Eukaryotic Genome database in Ensembl. Such repositories, how-
ever, mainly allow for data storage and download (ethic require-
ments and policies might apply; see ‘Perspectives’ section for
further details). Thus, the end user who downloads data needs to
possess, or develop, a pipeline for analysis: Bioconductor is
(again) a valuable resource for this. Other sites provide a frame-
work for analysing data in an interactive and multi-layered fash-
ion, such as NCBI, Ensembl and UCSC, or the Human Brain Atlas
that allows verifying brain-specific expression patterns of genes
of interest at different stages of life. The Genotype-Tissue
Expression portal is a catalogue of human gene expression,
eQTL, sQTL (splicing quantitative trait loci) and ASE data that can
be used interactively to verify gene expression and gene expres-
sion regulation patterns in a variety of different tissues [59],
while Braineac is a similar resource tailored for similar studies in
human brain [61]. Other online tools are being developed and
listed in ad hoc online portals, such as OMICtools, promoting the
study of gene co-expression, translation initiation, interaction
between RNA and RNA binding proteins (RBP), RNA editing,
eQTL, cis- and trans-expression regulatory elements and alterna-
tive splicing to name a few.

We have summarized critical considerations in Table 3, and
all web resources included in this section are shown in
Supplementary Table S1b.

The proteome and proteinomics

The proteome is the entire set of proteins in a given cell, tissue
or biological sample, at a precise developmental or cellular
phase. Proteinomics is the study of the proteome through a
combination of approaches such as proteomics, structural pro-
teomics and protein-protein interactions analysis. One import-
ant consideration, when moving from studying the genome and
the transcriptome to the proteome, is the huge increase in po-
tential complexity. The 4-nucleotide codes of DNA and mRNA
are translated into a much more complex code of 20 amino
acids, with primary sequence polypeptides of varying lengths
folded into one of a startlingly large number of possible con-
formations and chemical modifications (e.g. phosphorylation,

Table 3. General critical considerations on applying bioinformatics to transcriptomics. Problems that can be addressed by individual re-
searchers or research groups or that should be addressed by a large community effort have been flagged with * or �, respectively.

Observation Problems Proposed action

�The transcriptome is
cell-specific [72]

Use of RNA data from cells/tissues not specific for
the aims of a study may lead to misleading results

Many RNA data sets are based on tissue
homogenates

Use RNA data obtained from source material rele-
vant to the planned study

Be aware of the possibility of contamination from
different cell types in data originating from
homogenates

Establish a worldwide project for a bank of well-
defined human cell lines representing all tissues
and define their transcriptome at different times of
the cell cycle to generate a ‘reference-
transcriptome’

�The transcriptome is dynamic
[73, 74]

The generalization of RNA data can lead to mislead-
ing interpretations

Be aware that data might reflect a particular cellular
phase, or metabolism influenced by micro-envir-
onmental stimuli

�e/sQTLs depend on
temporospatial
variables [73, 74]

The generalization of e/sQTL results can lead to mis-
leading interpretations

e/sQTLs depend on temporal (cell cycle/age) and
spatial (cells/tissue/micro-environment) variables:
consider these as covariates during data analysis
and/or interpretation
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glycosylation and lipidation) to produce a final functional pro-
tein. Also, multiple isoforms of the same protein can be derived
from alternative splicing (Figure 4).

These degrees of freedom in characterizing proteins contrib-
ute to the heterogeneity of the proteome in time and space,
making the omics approach extremely challenging. In addition,
techniques for protein studies are less scalable than those to
study nucleic acids. In fact, in contrast with NGS and RNA-
sequencing, the assessment of protein sequences cannot be
currently performed at the omics scale for a number of reasons,
including the following: (i) current nucleotide or protein se-
quence databases, used as a reference when annotating novel
proteomics results, are incomplete, and sometimes inaccurate,
thus irreversibly affecting the interpretation and use of newly
generated data [76]; (ii) technical issues such as mass-
spectrometry (MS) bias towards identification of peptides with
higher concentrations, or contamination from other experi-
ments and human keratins, and lack of uniformity across labo-
ratories/research groups that can lead to differences in protein
fragmentation and solubilization, or differences in algorithms
used to run analyses [77].

Proteomics and protein structure analysis

Proteomics is the qualitative and/or quantitative study of the
proteome and is principally based on MS [78]. Proteomics is rec-
ognized for its potential to describe cell/tissue differentiation and
discovery of diagnostic markers for disease; however, eventual
protein function depends on how a protein is folded. 3D protein
structures are generated by means of X-ray, nuclear magnetic
resonance (NMR) and cryo-electron microscopy to (i) visualize
protein domains, (ii) infer molecular mechanisms and protein
function, (iii) study structural changes following disease-
associated mutations and (iv) discover or develop drugs [79].
Researchers are encouraged to deposit data of proteomic experi-
ments such as raw data, protein lists and associated metadata
into public databases, e.g. the PRoteomics IDEntifications data-
base [80]. A boost in the collection of proteomic data was sup-
ported by the Human Proteome Organization Proteomics

Standards Initiative (HUPO-PSI, 2008) that established a commu-
nal format (mzML [81]) and a unique vocabulary for handling
proteomic data [82]. As previously noted, the proteome is ex-
tremely dynamic and depends on the type of sample as well as
conditions at sampling. Even when omics techniques, such as
cell-wide mass spectrometry (MS), are applied, elevated sample
heterogeneity complicates the comparison of different studies
(e.g. overlap between transcriptome and proteome) and chal-
lenges the development of a universal and comprehensive
human proteome reference. The Proteome Xchange was estab-
lished as a consortium of proteomic databases to maximize the
collection of proteomic experiments [83, 84]. The building of a
structural proteome reference is also challenging, since methods
to generate and retrieve structural data are time-consuming and
low-throughput. The Protein Data Bank (PDB), with its collection
of >30 000 structures for human proteins, is currently the main
structural proteome repository. Of note, protein structures are
dynamic, while a single conformation is a static 3D reconstruc-
tion, resulting in a partial representation of physiological and/or
disease dynamics.

Protein protein interactions

A valuable omics application is the study of protein–protein
interactions (PPIs) [85, 86]. A PPI occurs when two proteins inter-
act physically in a complex or co-localize. The growing interest
in the functional prediction power of PPIs is based on the as-
sumption that interacting proteins are likely to share common
tasks or functions. PPIs are experimentally characterized, then
published and catalogued in ad hoc repositories (e.g. PPIs data-
bases in Pathguide). PPI databases (e.g. IntAct [87] and Biogrid
[88]) are libraries where PPIs are manually annotated from peer-
reviewed literature [89]. In some cases, these integrate manual
curation with algorithms to predict de novo PPIs and text mining
to automatically extract PPIs (together with functional inter-
actions) from the literature (e.g. Search Tool for the Retrieval of
Interacting Genes/Proteins [90]). HUPO-PSI (2004) started a har-
monization process [91] where common formats (PSI-MI XML
and MITAB) and a unique vocabulary were established to handle

Figure 4. Summary of protein structural features and methods to generate and analyse proteomics data. The crystal structure of the haeme cavity of the haemoglobin

of Pseudoalteromonas haloplanktis (4UUR [75]) was downloaded from PDB and visualized by RasMol (http://www.openrasmol.org/Copyright.html#Copying).
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PPIs [92]. The International Molecular Exchange consortium
(IMEx) [93] produced a unique platform (Proteomics Standard
Initiative Common QUery InterfaCe) through which PPI data-
bases within the consortium can be queried simultaneously [89,
94]. PPIs are used to build networks: within a network, each pro-
tein is defined as a node, and the connection between nodes is
defined by an experimentally observed physical interaction. PPI
networks provide information on the function of important pro-
tein(s) based on the guilt-by-association principle, i.e. highly
interconnected proteins potentially share functional property
and might be part of the same biochemical pathway(s) [95]. PPI
networks can be built manually [96], allowing the merging of PPI
data obtained from different sources: this approach is time-con-
suming, but allows the handling of the raw PPIs through custom
filters and to create multi-layered networks. Some web resources
(e.g. Human Integrated Protein–Protein Interaction rEference [97])
allow the generation of automated PPI networks starting from a
protein or a list of proteins (i.e. seeds) selected by the user. These
various platforms differ by their source of PPIs, rules for govern-
ing the merging and scoring pipelines. Finally, certain servers in-
tegrate PPIs with additional types of data including predicted
interactions and co-expression data, generating hybrid networks
(e.g. GeneMania [98]). Taken all together, if on one hand these
multiple resources are user friendly, on the other they are not
harmonized and poorly customizable leading to inconsistent re-
sults among each other. Therefore, users should thoroughly fa-
miliarize themselves with the parameters of the software, to
properly extract and interpret data.

Protein nomenclature and annotation

The comprehensive list of protein sequences, as inferred from
the translation of coding regions (from nucleotide sequence
repositories such as NCBI-GenBank, DNA Data Bank of Japan

and EMBL-EBI) into amino acid sequences, is stored in sequence
databases: some are automatically compiled [e.g. Translated
EMBL Nucleotide Sequence Data Library (TrEMBL), GenBank],
others are manually curated and revised (e.g. SwissProt or
RefSeq). To avoid redundancy, reduce the range of different
identifiers (protein IDs) and harmonize the annotation efforts,
multiple databases were merged. For example, Universal
Protein (UniProt [99]) acquired TrEMBL, Protein Information
Resource Protein Sequence Database (PIR-PSD) and SwissProt;
conversely, NCBI-nr merges annotations from GenPept,
SwissProt, PIR-PSD and RefSeq.

We have summarized critical considerations in Table 4, and
all web resources included in this section are shown in
Supplementary Table S1c.

Functional annotation

Functional annotation is an analytical technique commonly
applied to different types of big data (e.g. sets of genes, tran-
scripts or proteins) to infer associated biological functions. This
type of analysis, which is currently gaining notable interest and
relevance, relies on the existence of manually curated libraries
that annotate and classify genes and proteins on the basis of
their function, as reported in the literature [102]. The most re-
nowned and comprehensive is the Gene Ontology (GO) library
that provides terms (i.e. GO terms) classified under three cate-
gories: BPs, molecular functions (MFs) and cellular components
(CCs) [103]. Other libraries provide alternative types of annota-
tion, including pathway annotation such as the Kyoto
Encyclopedia of Genes and Genomes [104], Reactome [105] and
Pathway Commons [106]. Conversely, regulatory annotation can
be found, for example, in TRANScription FACtor [107], a library
where genes are catalogued based on the transcription factors

Table 4. General critical considerations on applying bioinformatics to proteomics. Problems that can be addressed by individual researchers or
research groups or that should be addressed by a large community effort have been flagged with * or �, respectively.

Observation Problems Proposed action

*Protein sequences undergo
revision

Changes in the gene sequence and experimental
protein sequencing confirmation will result in up-
dates to the protein sequence in protein databases

Different bioinformatics tools are updated to differ-
ent versions of the protein sequence databases

Always refer to the most recent protein sequence
and, if old data are used, disclose the version of
the protein structure of reference

�The same protein is classified
through different protein IDs

Different databases classify the same protein under
different IDs. This may result in mismatches be-
tween protein IDs across repositories as well as
between protein and corresponding gene IDs. This
causes misrepresentations or loss of relevant
information

Revise the bioinformatics tools in use to allow for a
comprehensive and straightforward conversion of
protein IDs

�Proteins are annotated to dif-
ferent extents [100]

The information collected in PPI databases is derived
from small-scale hypothesis-driven experiments.
Therefore, there is an intrinsic bias in that less
studied proteins are less reported or missing in
databases (ascertainment bias)

Consider that if data for a specific protein is unavail-
able, this may be because such target has not been
studied or annotated yet

*The proteome is dynamic [101] Proteomic studies based on MS are normally hypoth-
esis free but difficult to interpret, as the proteome
is highly dynamic

Be aware that data might reflect a particular cellular
phase, or metabolism influenced by micro-envir-
onmental stimuli

*Atlases reporting protein
expression across tissues
should be used carefully

Antibodies are used in immunohistochemistry to
detect protein expression across different tissues.
For some proteins, antibodies are not available or
reliable

Consider the atlas as an indication, rely on the data
only when antibodies and protocols with longer
track records or those with multiple literature cit-
ations are used
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they are regulated by (the 2005 version is freely available; any
subsequent version is accessible upon fee).

Functional annotation is based on a statistical assessment
called enrichment. Two groups of ‘objects’ (sample versus refer-
ence set) are compared for the distribution of certain properties
(e.g. functions catalogued through GO terms) [108]. If the ‘ob-
jects’ are genes, the entire genome could be used as the refer-
ence set. The latter will show a certain distribution of GO terms,
reflecting the frequency of association between the catalogued
BPs, MFs and CCs, and the genes in the entire genome.
Conversely, the sample set is a list of genes of interest grouped
together based on experimental data. The enrichment analysis
compares the distribution of GO terms in the sample set (list of
genes of interest) versus that observed in the reference set (gen-
ome): if a certain GO term is more frequent in the sample set
than in the reference set, it is enriched, indicating functional
specificity. Of note, the reference set should be tailored to the
specific analysis (e.g. if assessing enrichment in the brain, the
reference set should be the totality of genes known to be ex-
pressed in the brain) (Figure 5).

There is a wide variety of online portals that aid performing
functional enrichment [109] (e.g. g:Profiler [110], FunRich [111],

Ingenuity (accessible upon subscription fee), WebGestalt [112]
and Panther [113]); each uses specific algorithms and statistical
methods (e.g. Fisher’s exact or hypergeometric test corrected
through Bonferroni or false discovery rate) for assessing and
correcting the enrichment analysis. Each of these portals down-
loads groups of GO terms in its virtual space from GO and it is
critical for the end user to verify the frequency at which portals
perform updates. It is also important to note that any portal
might be used for initial analysis; however, one should keep in
mind that using the most updated portal as well as replicating
analyses with a minimum of three different analytical tools is
probably best practice in assessments of this kind.

We have summarized critical considerations in Table 5, and
all web resources included in this section are shown in
Supplementary Table S1d.

Omics beyond the central dogma and
bioinformatics tools

In addition to genomics, transcriptomics and proteinomics,
other areas of biomedical science are moving towards the omics

Figure 5. Scheme of a typical functional enrichment analysis. A sample and reference set are compared to highlight the most frequent (i.e. enriched) features within

the sample set.

Table 5. General critical considerations on applying bioinformatics to functional annotation analyses. Problems that can be addressed by indi-
vidual researchers or research groups or that should be addressed by a large community effort have been flagged with * or �, respectively.

Observation Problems Proposed action

*Enrichment portals run with
different algorithms and
statistical methods [109]

The software package chosen for the analysis (li-
brary, algorithm and statistics) will influence the
final result

At the moment, there is no gold standard method
for enrichment

Use a minimum of three different portals to replicate
and validate functional annotations

*Enrichment for GO terms may
give generic results [114]

GO terms are related through family trees: general
terms are umbrella terms located at the top of the
tree. More specific terms are found gradually mov-
ing down towards the roots

General terms are overrepresented among the re-
sults of functional enrichment

The many very general (top of the tree) GO terms
might be ignored comparatively to the more spe-
cific terms (roots), as they are less likely to provide
useful biological meaning(s)
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scale, albeit not yet achieving the same level of complexity,
depth and resolution.

Epigenomics

There are macromolecules that bind and functionally affect the
metabolism of the DNA (e.g. induction or silencing of gene ex-
pression). The Encyclopedia of DNA Elements (ENCODE) is an
international endeavour with the goals of screening the entire
genome and mapping every detectable functional unit [115].
This applies to coding regions, which are screened by GENCODE
(a subproject of ENCODE) as well as the non-coding units.
ENCODE collects results of experiments conducted to identify
signature patterns, such as DNA methylation, histone modifica-
tion and binding to transcription factors, suppressors and poly-
merases. It also collects annotation of RNA sequences that bind
RBP. The final product is an atlas of DNA-based functional units,
including promoters, enhancers, silencers, structural RNAs,
regulatory RNAs and binding protein motives. Since signature
patterns differ between cells and tissues, data are generated
and collected based on cell type [116]. This valuable data set can
be accessed and used directly through ENCODE or interactively
through Ensembl or UCSC. Not only does ENCODE play a major
role in increasing our general knowledge of the physiology and
metabolism of DNA, but it also promises to provide insight into
health and disease, by aiding the integration and interpretation
of genomics and transcriptomics data. For example, since 88%
of trait associated variants detected with GWAS fall in
non-coding regions, ENCODE will tremendously impact their as-
sessment and phenotype-related interpretation [115].

Drugomics

Omics collections are also curated for drugs. There are data-
bases and meta-databases (e.g. the drug–gene interaction data-
base [117], Drug2Gene [118] and Drug Bank [119]) that collect
drug–protein–gene interactions. These are useful to find exist-
ing drugs for a specific target (e.g. evaluating points of interven-
tion within a pathway or gene/protein list), or to instantly
identify all known targets of a selected drug. An additional data-
base, part of the so-called ConnectivityMap project, provides an
interface to browse a collection of genome-wide transcriptional
profiles from cell cultures treated with small bioactive mol-
ecules (i.e. drugs) [120]. This resource is used as a high-through-
put approach to evaluate modulation of gene expression
influenced by certain drugs. This knowledge allows to identify
(i) genes that are concomitantly influenced by the same drug,
thus presenting with an overlapping ‘gene expression signature’
and therefore likely to share similar functions, and (ii) drugs
able to influence complex biological traits of interest [121], par-
ticularly, allowing for drug repositioning [122].

Metabolomics

Another emerging omics effort is metabolomics, the study of me-
tabolites produced during biochemical reactions. Metabolomic
databases such as the human metabolome database [123],
METLIN [124] and MetaboLights [125] collect information on me-
tabolites identified in biological samples through chromatog-
raphy, NMR and MS paired with associated metadata. Of note,
efforts such as the Metabolomics Standard Initiative [126] and
the COordination of Standards in MetabolOmicS within the
Framework Programme 7 EU Initiative [127] are currently ad-
dressing the problem of standardization of metabolomics data.
Changes in the production of metabolites reflect a particular

combination an individual’s genetics and environmental expos-
ures. Therefore, they are measured in cases and controls to de-
velop accurate diagnostics and understand relevant molecular
pathways underpinning specific conditions or traits [128]. Some
critical limitations apply to this field currently, including (i) the
need for improvement of analytical techniques to both detect
metabolites and processing results, (ii) the ongoing production of
reference (and population-specific) metabolomes and (iii) the
fact that we still do not completely understand the biological role
of all detectable metabolites [129, 130]. Nevertheless, some prom-
ising studies have emerged: for example, profiling of lipids in
plasma samples of Mexican Americans identified specific lipidic
species correlated with the risk of hypertension [131]; or
else, serum profiling of ovarian cancer was used to implement a
support diagnostics to accurately detect early stages of the dis-

ease [132].

Bioinformatics tools

The rise of a high number of bioinformatics tools has fostered
initiatives aimed at generating portals to list them and support
their effective use. For example, EBI has a bioinformatics service

portal listing a variety of databases and tools tailored for spe-
cific quests or topics [133]; Bioconductor provides analysis tools
and ad hoc scripts developed by statisticians for a variety of ana-
lyses and bioinformatics solutions; GitHUB is a free repository,
easing collaboration and sharing of tools and informatics func-
tions; OMICtools is a library of software, databases and plat-
forms for big-data processing and analysis; Expert Protein
Analysis System is a library particularly renowned for proteo-
mics tools.

This flourishing of analytic tools and software is remarkable,
and increases the speed at which data can be processed and
analysed. However, with this abundance of possibilities, caution
is warranted, as no single tool is comprehensive and none is in-
fallible. It is imperative to understand the principles behind bio-
informatics tools and to sensibly choose the most suitable
one(s) for the purposes of the end user’s project(s).

All web resources included in this section are shown in
Supplementary Table S1e.

Perspectives

Advances in biomedical sciences over the past century have
lent phenomenal contributions to our understanding of the
human condition, providing an explanation of the causes, or
even curing, a number of diseases—especially when monogenic
(e.g. see Table 5 in [134]). Nevertheless, two major challenges re-
main unresolved in complex disorders, i.e. that of understand-
ing their biological basis and that of developing effective
treatments. Regardless of the improvements in the efficiency of
data generation, the research community still struggles when
stepping into the translational processes. Genomics, transcrip-
tomics and proteinomics are still mainly separate fields that
generate a monothematic type of knowledge. Nevertheless, we
are witnessing the rise of inter-disciplinary data integration
strategies to be applied to the study of multifactorial disorders
[135]: the genome, transcriptome and proteome are, in fact, not
isolated biological entities, and (multi)omics data should be
concomitantly used and integrated to map risk pathways to dis-
ease (Figure 6).
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The data integration era

Integration is defined as the process through which different
kinds of omics data—(multi)omics, including mutations defined
through genomics, mRNA levels through transcriptomics, pro-
tein abundance and type through proteomics, and also methy-
lation profiles through epigenomics, metabolite levels through
metabolomics, metadata such as clinical outcomes, histological
profiles and series of digital imaging assays and many others—
are combined to create a global picture with higher informative
power comparatively to the single isolated omics [136]. One of
the fields at the forefront for omics data integration is cancer
biology where the integrative approach is already translated to
the bedside: here, implementation of data integration allowed,
for example, tumour classification and subsequently prediction
of aggressiveness and outcome, thus supporting the selection of
personalized therapies [137]. The ColoRectal Cancer Subtyping
Consortium applied data integration to a large scale, interna-
tionally collected sets of (multi)omics data (transcriptomics,
genomics, methylation, microRNA and proteomics)—to classify
the subtypes of colorectal cancer in biologically relevant
groups—that were applied to support therapeutic decisions and
predict patient outcomes [138].

Another example of integrative analysis is the production of
hybrid networks combining DNA with RNA, and RNA with PPI
data. In the former case, integration of DNA and RNA data has
led to an improvement in matching genetic variations with
their immediate effect, e.g. gene fusion or spliced isoforms
[139]; in the latter, the use of transcriptome data in proteomics

has increased the analytical power when transcriptome data
was used to determine the mRNA content in a sample that had
subsequently undergone proteome profiling and helped in ac-
curately mapping new proteins and isoforms not reported in
reference databases [140].

Individual and collective efforts for data integration

Sometimes individual research groups set up custom pipelines
to achieve data integration. For example, early attempts to
couple microRNA and metabolome profiles in a tumour cell
line led to the isolation of specific microRNA(s) acting as modi-
fier(s) of cancer-associated genes [141]. Such endeavours rely
on the availability of multidisciplinary experts within individ-
ual research groups and sufficient computational infrastruc-
ture supporting data storage and analysis. Having such teams
allows the development of customized pipelines tailored to the
specific needs; however, their efforts are not necessarily avail-
able to the wider scientific community unless shared through
ad hoc repositories (e.g. Bioconductor and GitHUB) or in general
unstructured repositories like figshare and Dryad (see
Supplementary Table S1e). Emergence of scalable cloud com-
puting platforms (Google Cloud, Amazon Web Services,
Microsoft Azure) makes data storage and processing more af-
fordable to teams that do not have sufficient in-house comput-
ing infrastructure, although such platforms require special
investment.

There are also public efforts leading to the inception of a
number of promising initiatives: BioSample (BioSD) is a

Figure 6. Overview on a global approach for the study of health and disease. Ideally, for individual samples, comprehensive metadata (0) should be recorded. To date,

(1), (2) and (3) are being studied mainly as compartmentalized fields. A strategy to start integrating these fields currently relies on functional annotation analyses (4)

that provide a valuable platform to start shedding light on disease or risk pathways (5). The influence of other elements such as epigenomics, pharmacogenomics,

metabolomics and environmental factors on traits is important to have a better and more comprehensive understanding of their pathobiology. The assessment and in-

tegration of all such data will allow for the true development of successful personalized medicine (6). Color codes: green¼addressed and in progress; orange¼ in pro-

gress; red¼not yet addressed; yellow¼ ideal but not yet fully implemented. The gradually darker shades of green and increased font sizes indicate the expected

gradual increase in the translational power of global data integration.
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promising tool for performing weighted harmonization among
(multi)omics. Here, experiments and data sets stored within EBI
databases can be queried to simultaneously access multiple
types of data from the same sample, clearly representing a valu-
able means of simplifying data integration [142]. GeneAnalytics
is a platform for querying genes against a number of curated
repositories to gather knowledge about their associations with
tissues, cells, diseases, pathways, GO, phenotypes, drugs and
compounds [143]. This is, however, only available upon a sub-
scription fee.

The picture is still incomplete without additional integration
of other omics such as epigenomics and metabolomics: al-
though platforms to allow integration of epigenetic with tran-
scriptomic data (e.g. BioWardrobe [144]) are being developed,
endeavours to support data optimization and sharing are wel-
comed. For example, the European Open Science Cloud (pro-
moted and supported by the European Commission) represents
a data repository where, through the support of expert stew-
ards, data are standardized and stored to foster collaborative
data-sharing across disciplines [145].

Overall limitations

There are still significant biological and technical challenges im-
pacting data integration leading to difficulties in overlapping or
merging data sets and the chance to overlook potential interest-
ing results. These limitations include the following: (i) inefficient
and inconsistent nomenclatures across different databases or
sources (e.g. gene or protein IDs); (ii) different data source and
processing (e.g. different array or NGS platforms, differences in
processing pipelines, sample preparation or study design [138]);
(iii) computational power and capacity; (iv) lack of theoretical
knowledge and reliable prediction models (e.g. the scarcity of
models predicting metabolite changes following pathway per-
turbations); and (v) shortage of effective and robust pipelines to
integrate and incorporate additional types of data to correct, for
example, for biological differences among cell types, cell-cycle
phases, tissues and developmental stages.

Also, currently, sampling material for an experiment limits
the study of the biochemical life of the cell to a single snapshot
exclusively accounting for the moment and condition at sam-
pling. To start addressing issues like this, it would be ideal, in the
near future, to develop tools to visualize the dynamics of CCs in
3D and include temporospatial variables that influence the be-
haviour of intracellular phenomena. Moreover, techniques are
still in development to analyse the phenotype of cells in a high-
throughput fashion, correlating changes in the genome, gene ex-
pression and the proteome to cellular phenotypes, i.e. cell-omics
[146]. Another unsolved problem is that of merging data gener-
ated through different omics as it is not straightforward and re-
quires refining steps to elaborate the data sets before integration.
For example, it has been demonstrated that the transcriptome
does not completely mirror the proteome of a cell [147].
Therefore, to integrate the information coming from the tran-
scriptome and the proteome specific to a cellular phase or BP (e.g.
immune response and neurotoxic response), an additional
required step would be the study of the translatome, the only
portion of the mRNA that is actually engaged in the translational
process (i.e. interacting with the ribosomes and polysomes) iso-
lated, for example, by ribosome profiling [148].

Finally, a major challenge to fully complete the picture is
represented by environmental factors that, although recognized
for critically influencing all levels of omics, still cannot be

investigated through robust and reliable methods [149]. In an at-
tempt to overcome this important issue, statisticians and epi-
demiologists are developing new approaches, such as
Mendelian randomization through which genetic markers are
used as decoys for environmental factors to be studied in asso-
ciation with traits or diseases [150].

Ethics and policies in data sharing

There are still a number of issues associated with data gener-
ation and sharing, and three main levels of scrutiny apply here.
First, there is a need for the donor to consent to the generation
and the use of personal-level data within a study or project;
also, such study/project needs to be approved by local institu-
tional review board (IRB) Committees. After the original study is
completed, sharing of data with the scientific/research commu-
nity requires the initial individual consent and IRB to cover both
the open data sharing and the fact that additional studies (other
than the original) can be performed.

Second, raw data represent a private type of data, making it
an absolute requirement to anonymize the samples through de-
identification codes along with associated metadata (e.g. gender
and age). Particularly, genomics (genome-wide level data), tran-
scriptomics (in the case of raw data form which variants can be
extracted) and to some extent epigenomics represent highly
sensitive data since de-identification does not completely pro-
tect individual identity [151], while, in contrast, proteinomics
data represents more cellular process/pathways oriented infor-
mation, and if the sample is correctly anonymized there is, nor-
mally, no danger of breaching anonymity. To take genetics as
an example, methods to share data might be differently regu-
lated based on the type of data being shared: it is widely ac-
cepted to share summary statistics of a data set for further
meta-analyses (where, for example, allele frequency data are
not released to prevent identification of individuals); more diffi-
cult is the sharing of data sets containing individual-level raw
data, as consent and approval to do so should be covered by the
original IRB.

Then there is a third layer of complexity in data manage-
ment that merits discussion. This regards broader ethical
themes that relate to genetic counselling, including how much
of the data is/can be disclosed back to the patient, and how that
information is dealt within the private and professional envir-
onment. However, since the latter topic goes beyond the goals
of the current review and discussion, we suggest the following
reference for more details [152].

Conclusion

In summary, there is clearly enormous potential in the integra-
tion and use of (multi)omics data for a better understanding of
the molecular mechanisms, processes and pathways discrimi-
nating health and disease.

The success of this new model of science will depend on
the gradual shift from a reductionist to a global approach, sus-
tained by a lively and proactive flow of data across and be-
tween different fields of expertise, and funding programmes
promoting and supporting this endeavour [153]. It is reassuring
that governments are starting to acknowledge the importance
of translating this comprehensive biomedical knowledge to
the bedside and thus fostering the implementation of plans
supporting the logistics and regulatory actions for such trans-
formation to take place.
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Together, this will eventually aid the development of meas-
ures for disease prevention, early diagnosis, disease monitoring
and treatment, thus making precision medicine a forthcoming
possibility.

Key Points

• We present an overview on the basics and exponential
growth of genomics, transcriptomics and
proteinomics.

• We summarize the principal bioinformatics and bio-
statistics tools for omics analysis.

• Genetics, functional biology, bioinformatics and bio-
statistics established specific jargons, impacting com-
munication and data interpretation. We particularly
aim at targeting a broad range of scientific profes-
sionals (including students) seeking knowledge outside
their field of expertise.

• We provide a critical view of strengths and weak-
nesses of these omic approaches.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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