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Abstract

A bivariate system of equations is developed to model ordinal polychotomous dependent
variables within an additive regression framework. The functional form of covariate effects
is assumed fairly flexible with appropriate smoothers included in the model representation
to account for non-linearities and spatial variability in the data. Non-Gaussian error depen-
dence structures are dealt with using Archimedean copulae, whose association parameter
is also specified in terms of an additive predictor. The framework is employed to study
the effects of several risk factors on the levels of injury sustained by individuals in two-
vehicle accidents in France. The use of a bivariate model is motivated by the presence of
common unobservables that may affect the inter-relationships between the various parties
involved in the same crash. In this way, more reliable and precise estimates are obtained
and mis-specification reduced via an enhanced model specification.

Key-words: Archimedean Copulae; Bivariate System of Equations; Ordinal Polychotomous
Responses; Penalized Regression Splines; Road Safety.

1 Introduction

Vehicle-related injuries are a source of major concern for national governments and international
organizations as they impact the life of millions of individuals around the world. In a recent
report, the World Health Organization estimated that around 1.24 million of people die in road
accidents every year, whereas approximately 20/50 million are involved in non-fatal injuries
(?). This makes car crashes the eighth leading cause of death and the prominent one for young
people aged 15-29 years. A global awareness campaign on this issue has been launched by
the United Nations General Assembly with resolution 64/255 which proclaimed the Decade of
Action for Road Safety for the period 2011-2020. Its goal is to stabilise, and possibly reduce,
the trend in road traffic fatalities and save around 5 million lives over the foreseen action time.

To tackle this preventable major source of injury, several developed countries have created
ad-hoc agencies funded from their national budgets. In France, for instance, a national task
force (Comité Interministériel à la Sécurité Routière) was established in 1972 with the aim
of defining governmental policies on the matters of road safety and ensuring their proper and
timely enforcement. Legislations and information are commonly recognised to play a significant
role in prevention and, at least in high-income countries, they showed a generalised reduction
in fatal injuries. Despite these encouraging results, the annual costs of crash injuries for society
are still high and have been estimated to exceed EUR 180 billion in the European Union
alone. Deaths too constitute a non-negligible figure in national statistics (?). The French
Observatoire National Interministériel de la Sécurité Routière (ONISR), for instance, counted
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in its “Baromètre du mois de juillet 2015” that as much as 3,384 people died within 30 days
from any road injury in the country during the past year. A deeper understanding of crash
causations and injury severity is therefore fundamental to improve roadway safety, and hence
contribute to a transport system that is sustainable in terms of its economic and social costs.

The study of injury severity in vehicle crashes may present several difficulties because of the
intrinsic complexity of the problem. Severity levels are often the result of many observed factors
(e.g., road geometry, vehicle standards, behaviour of road users) and some others that can be
hardly measured by data collectors. For example, speed before impact, presence of moving ob-
stacles on the pavement, or even sudden environmental-related factors are not typically recorded
properly by police officers at the time they arrive. Notwithstanding they constitute important
factors of accident dynamics. As pointed out by ?, ideally the injuries of all the parties involved
in the same car accident should be modelled simultaneously as they are affected by identical
crash conditions and occurrences. As such, it is likely that injuries sustained by these individu-
als are inter-related through their connection to the single crash event. Ignoring this issue, for
instance by pooling individuals together across all crashes and estimating individual-level in-
jury severity, may lead to inefficient model parameter estimates. A further limitation in applied
research is the modelling of the injury severity sustained by the most severely injured person
in a vehicle accident. The problem with this approach is that it does not offer a comprehensive
treatment of the nature and level of injuries observed in the crash under investigation (e.g. in ?
and ?). The use of multivariate statistical models is therefore advisable in these circumstances.

By acknowledging these concerns, the primary focus of the present paper is on the joint mod-
elling of injury severity sustained by drivers in two-vehicle collisions. Specifically, we develop
a class of models that accounts for the role that unobserved factors play in the determination
of injury severity in vehicle crashes. Given that injury severity is commonly recorded on an
ordinal scale by the police personnel, the proposed modelling strategy builds on a Cumulative
Link Model (CLM, ?). This structure is extended to a bivariate semi-parametric framework,
in which the effects of the continuous covariates on the responses of interest are estimated
using penalized regression splines. In this way, non-linearities are handled flexibly without in-
troducing, for instance, arbitrary categorisations of the relevant regressors into groups based
on intervals or frequencies. In line with some recent methodological advances (e.g. ?), we ex-
tend the bivariate ordered probit regression framework of ? to incorporate several dependence
structures of the responses induced by the class of Archimedean copulae. This development
constitutes an advantage in empirical studies. Copulae, in fact, allow us to specify models
beyond the classical Gaussian distribution and employ different marginals irrespectively of the
particular association linking them. Most importantly, researchers are provided with new tools
to assess the sensitivity of their results under different model specifications and assumptions.
To enhance flexibility, the proposed framework can also accommodate the copula association
(or dependence) parameter as specified in terms of an additive predictor. The model is then
effectively allowing the magnitude of the association parameter to be different for each obser-
vation in the sample: heterogeneity from individuals’ characteristics and accidents’ dynamics is
therefore mitigated.

Copulae have been previously considered in the general transportation literature by ?, ?,
and ?, the latter in the context of road safety. However, to the best of our knowledge, their
treatment in the setting of ordinal polychotomous responses with non-parametric covariate
effects has not been analysed yet. This paper aims therefore at filling the gap. Our estimation
approach takes advantage of a generic multivariate penalized Generalized Linear Model (GLM,
?) in which a number of penalisation terms are used to enforce certain desired characteristics of
the functional form of the covariate effects. Among them, non-linearities and spatial variation
within the data are shown to be all representable within the same generic framework through
the careful choice of smoothers appropriately defined. These features are made operative and
automatically estimable by the function CopulaCLM, which implements the ideas discussed in this
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paper for the R computational environment (?). In the Bayesian literature, an analogous model
for ordinal dependent variables has been introduced by ? for a neuroscience application. Their
paper, however, investigates only the effects of the Gaussian distribution on the classification
ability of seemingly unrelated regression (SUR) equations without assessing the impacts of
different dependence structures.

Semi-parametric models have received scarce attention in accident research, despite their
well-known superiority over traditional parametric regressions in terms of model specification
and efficiency. For example, it seems that the class of Generalized Additive Models (GAMs,
??) has been only applied twice in the relevant literature by ? and ?. We suspect that this
practice is due to the predominant empirical interest in ordinal response models, for which
extra considerations and carefulness are required to harmonise their structures with those of
univariate GAMs (e.g. ?). In this vein, our contribution is to introduce flexible tools that
researchers can use to better assess the effects of observed covariates on the responses of interest,
and to allow for a more cautious judgment of the results obtained. The importance of flexibility
is demonstrated in practice by the current article through the study of injury severity in various
contexts where the joint modelling of the responses is pivotal for the risk factors’ estimation
and the correctness of the policy actions that could be drawn for the analysis. In the words of
?, the “use of methodological approaches with known deficiencies [. . .] has the potential to lead
to erroneous and ineffective safety policies that may result in unnecessary injuries and loss of
life” (p. 16).

The remainder of the paper is structured as follows. In Section 2 we introduce the statistical
model and discuss its representation and main features. We then devote Section 3 to some
estimation issues concerning the optimisation of the penalized log-likelihood function and the
related automatic smoothness selection. Theoretical considerations about the consistency of
our estimator are also provided. The methods are finally illustrated by fitting a bivariate
system of SUR equations to the levels of injury sustained by various parties involved in vehicle
crashes (Section 4). Using data from the French ONISR, we compare two alternative scenarios
and show: (i) how risk factors can have a peculiar influence on the same types of responses if
different collision settings are considered; (ii) the various degrees of non-linearities characterising
the effects of the continuous regressors; and (iii) the differences in the effects that risk factors
have on the probability to sustain a certain injury severity level under several existing model
specifications. Conclusions and lines for future research are drawn in Section 5.

2 Statistical Methods

We consider a pair of random variables Y := (Y1, Y2)
> defined on the finite lattice K generated

by the Cartesian product K1×K2, where (Kj ,�) is a totally ordered set for every j ∈ {1, 2}, and
Kj := {1, . . . ,Kj} represents the levels of the categorical variable Yj . The totality assumption
implies that, under the binary relation �, every element kj ∈ Kj is comparable amongst all the
others in the set. In the real data situations considered in this work, this excludes the possibility
that a certain injury level cannot be appropriately recorded by the police officers. For example,
this may happen whenever a driver fails to be assigned to a pre-specified severity category after
a vehicle accident had occurred.

Let us denote by yj,i a realisation of the random variable Yj , for i = 1, . . . , n, where n
represents the sample size. Variable yj,i indicates the level of injury sustained by individual i in
vehicle j, with levels in the set Kj = {no injury, non hospitalised, hospitalised, fatal} for j = 1, 2.
In road safety studies, the interest often lies in quantifying the contribution that risk factors
have on the injury severity levels sustained by the parties involved in collisions. Mathematically,
this is achieved by investigating the effects that a given set of covariates, as encoded in the array
of realisations xi := vec(x1,i,x2,i), have on a meaningful function of the conditional joint mass
of the random vector Y . The probability of event {y1,i = k1, y2,i = k2} is denoted by πk1,k2,i.
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Name C(u, v) Dγ : support of γ γ∗

Gaussian Φ2(Φ
−1(u),Φ−1(v)) [−1, 1] tanh−1(γ)

Clayton (u−γ + v−γ − 1)−1/γ (0,∞) log(γ − ε)
Frank −γ−1 log[1 + (e−γu − 1)(e−γv − 1)/(e−γ − 1)] R \ {0} γ − ε

Gumbel exp
{
−[(− log u) + (− log v)]1/γ

}
[1,∞) log(γ − 1)

Joe 1− [(1− u)γ + (1− v)γ − (1− u)γ(1− v)γ ]1/γ (1,∞) log(γ − 1− ε)

Table 1: Families of some bivariate Archimedean copula functions with association parameter
γ. For optimisation and modelling purposes, an appropriate transformation γ∗ is used in the
estimation algorithm; this is given in the last column of the table. The quantity ε denotes the
machine smallest floating point multiplied by 106 and is introduced to force the transformed
association parameters to lie in their respective supports throughout estimation. Finally, we
have introduced u and v to denote the marginals Φ(ηj,kj ,i) for j = 1, 2, respectively.

We then consider the function r : [0, 1] −→ [0, 1] such that

r(πk1,k2,i) := P(y1,i � k1, y2,i � k2|xi) =
∑
k̃1�k1

∑
k̃2�k2

πk̃1,k̃2,i(xi), (1)

where the vector xj,i is assumed to collect the Mj explanatory variables of yj,i for each j. Define
now the map C : [0, 1]2 −→ [0, 1] to be a two-place copula function – a joint distribution with
uniformly distributed marginals – in which the dependence between the marginals is measured
by the association parameter γi. Upon extending the approach introduced by ? to a multivariate
setting, we define a copula regression for bivariate ordinal polychotomous responses as

r(πk1,k2,i) = g−1(ηk1,k2,i) := (C ◦ F)(ηk1,k2,i) ∈ [0, 1], (2)

where
(C ◦ F)(ηk1,k2,i) := C(F1,1(η1,k1,i), F1,2(η2,k2,i); γi)

is the vector of the evaluations of link function g−1 : R2 −→ [0, 1] at the linear predictors
ηk1,k2,i := (η1,k1,i, η2,,k2,i)

> ∈ R2. This array is made up of regression coefficients and covariates.
The map F1,j is a univariate cumulative distribution function (cdf) for which we abide the
convention of labelling the corresponding dimensionality with its first subscript. For notational
convenience we have indicated the dependence of the linear predictor on the observed levels of
injury severity by the subscript kj . In particular, by defining k := (k1, k2) ∈ K, the notation
ηk,i := ηk1,k2,i is used in lieu of the more precise ηi(k1, k2) and represent the bivariate vector
collecting the linear predictors of the two parties involved in the i-th accident. This convention
is applied analogously to all the other quantities in the model.

If the F1,j ’s are univariate distributions, the Sklar’s theorem ensures that the composition
map (C ◦ F) is a 2-dimensional cdf with margins F1,1 and F1,2 (?). Table 1 lists the various
copula functions in the Archimedean class with Standard Normal marginals implemented for
this work. For completeness, we also consider rotated versions of the Clayton, Gumbel and Joe,
which allow us to model negative dependences otherwise not implied by the respective canonical
definitions (see Figure 1). Rotations are computed analytically using the definitions of ?.

Since the strength of the association between the two equations may vary across observations
(specifically across categories of vehicles, age and regions in the current study), our framework
allows the copula dependence parameter to be specified as a function of an additive predictor
(e.g., ?, ?, ?). To this end, for a strictly increasing function hγ that maps the predictors into
the space of γ, we set

γi = hγ(ηγ,i(xγ,i)) ⇐⇒ γ∗i := h−1
γ (γi) = ηγ,i(xγ,i).

The characterisation of the form of γ∗ for every copula implemented is given in the last column
of Table 1. For a complete account of copulae and their theoretical properties we refer the reader
to the monograph of ?, whereas an excellent practical guide to copula modelling is offered by ?.
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Figure 1: Random samples of 1,000 observations obtained from the two-place Joe copula
function with both Standard Normal marginals and different degrees of rotation. The association
parameter has been fixed such to corresponds to a Kendall’s τ of 0.5 (−0.5 in case of 90 and 270
degrees). Explicit correspondences between γ and Kendall’s τ in the context of Archimedean
copulae are standard and can be found in ?, for example.

Remark 1. Equations (1) and (2) are the equivalent counterparts of a bivariate CLM, whose
various specifications can be incorporated in (2) by characterising the distributions F1,j’s. For
instance, by fixing F1,j ≡ Φ, the Standard Normal cdf for each j, and letting C be the bivariate
Gaussian copula with correlation coefficient ρ, equation (2) defines a bivariate ordered probit
regression as

r(πk,i) = Φ2(Φ
−1(Φ(η1,k1,i)),Φ

−1(Φ(η2,k2,i)); ρi) = Φ2(η1,k1,i, η2,k2,i; ρi).

The proposed model specification, although less intuitive that other existing ones (e.g. those
invoking the concept of continuous latent response variables, e.g. ?), pays off in terms of easiness
and logic in the construction of score, Hessian and other quantities needed for inference.

2.1 Further Considerations

Any model for ordinal responses is complemented by two restrictions. Let k̄ and k be any two
elements of K such that k̄ � k under a lexicographic order, then we need: (i) r(πk̄,i) ≤ r(πk,i),
and (ii) ηk̄,i ≤ ηk,i element-wise. The definition of some further parameters, termed cut points
and labelled cj,kj ’s, allows us to account for requirement (ii) simply by imposing {cj,kj}kj to be
an increasing sequence in kj for every j. We also set cj,Kj = +∞ and cj,1−1 =: cj,0 = −∞ to
unbound the support of the linear predictors. In practice, for each individual i in vehicle j we
observe a certain level kj of injury severity sustained: the corresponding cut point is denoted
by cj,kj ,i from which the vector cj := (cj,kj ,i)i ∈ Rn is constructed.

These requirements are standard in ordinal response modelling and trace back at least to the
work of ? with an explicit reference also in ?. The probability of the event {y1,i = k1, y2,i = k2}
is finally recovered by inverting the right-hand side of (1) and using (2):

πk,i = r−1(r(πk,i)) =
∑

l,m∈{0,1}

(−1)l+m C(F1,1(η1,k1−l,i), F1,2(η2,k2−m,i); γi)︸ ︷︷ ︸
≡ C(Φ(η1,k1−l,i),Φ(η2,k2−m,i);γi)

. (3)

Upon defining the quantities

c := (c1, c2) ∈ Rn×2 cut points

X := (X1,X2) ∈ Rn×(M1+M2) covariates

β := diag(β1,β2) ∈ R(M1+M2)×2 regression coefficients

and denoting by Xγ ∈ Rn×Mγ and βγ ∈ RMγ the components of the linear predictor of the
copula association parameter γ∗ := (γ∗i )i = Xγβγ , we re-write model (2) as

r(πk,i) = (C ◦ F)(ηk,i) = (C ◦ F)(ci − β>xi), (4)
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where c>i and x>
i are the i-th rows of c and X, respectively.

2.2 Additive Predictors and Penalized Regression Splines

Different covariate types are included in the model specification in an additive fashion and
collected in the regression matrices Xj and Xγ ’s of dimensions n ×Mj . In particular, for any
continuous regressor vj,lj ∈ R, lj = 1, . . . , Lj , like drivers’ age or time of the accident, we
advocate a non-parametric approach to curve estimation using penalized regression splines. We
first assume that the functional form of vj,lj is representable via a smooth curve, sj,lj : R −→ R,
then we seek to represent this effect without imposing any pre-determined parametric structure.
This is achieved by choosing Hj +1 knot points in the interior of [vj,lj ,(1), vj,lj ,(n)], with Hj < n
and vj,lj ,(i) ≤ vj,lj ,(i+1) for any i = 1, . . . , n− 1, and approximating the generic sj,lj -th curve by
a linear combination of known basis spline functions, bj,lj , and corresponding coefficients, δj,lj .
In other words we set

sj,lj (vj,lj ,i) ≈ δ>j,ljbj,lj (vj,lj ,i), lj = 1, . . . , Lj ,

where the above vectors are Hj-dimensional. Since the estimates so obtained are identified only
up to an intercept term, a centering constraint of the form 1>n sj,lj = 0 has to be imposed, with
sj,lj := (sj,lj (vj,lj ,i))i (?).

Basis functions are usually chosen for their mathematical tractability and numerical stability.
Among the most widely used in applications, we mention the cubic, penalized B-splines (?) and
thin-plate regression splines (?), which are all supported by the computational routine attached
to this article. Notice that the bases can be included in the design matrix by specifying the
sub-matrix X[j,lj ] := (bj,lj (vj,lj ,1)| · · · |bj,lj (vj,lj ,n))> ∈ Rn×Hj and, accordingly, the sub-vector

β[j,lj ] := δj,lj ∈ RHj , for j ∈ {1, 2, γ}. Finally we write the linear predictors of the model as

ηj = cj −Xjβj := Zjθj ∈ Rn j = 1, 2

ηγ = Xγβγ ∈ Rn ,

with Zj := (Ij ,−Xp
j , . . . ,−Xs

j) and θj := vec(cj,kj ,β
p
j , . . . ,β

s
j), where Ij := diag(1yj,i=kj )i,kj ∈

{0, 1}n×Kj−1 and cj,kj := (cj,kj )kj ∈ RKj−1. The above representation is pivotal in applied
research as it includes at the same time both non- and purely parametric covariate effects. This
form is commonly termed semi-parametric in the statistical literature (e.g. ??) and, once it is
employed in equation (2), the additive extension of a CLM emerges. We consequently label it a
copula Cumulative Link Additive Model. For the purposes of our empirical study, we implement
the following structure for the i-th (pair of) individual(s)

r(πk,i) = (C ◦ F)(ci − β>xi) = C(Φ(η1,k1,i),Φ(η2,k2,i), γi(ηγ,i)) ∈ [0, 1],

where ηj,i is the i-th element of ηj . The dependence of γi on γ∗i has been omitted to keep the
notation more friendly.

3 Parameter Estimation

Under the usual i.i.d. conditions of the data generating process, the log-likelihood function
corresponding to any bivariate model for ordinal responses is given by

`(ϑ|y1,y2,X1,X2,Xγ) =

n∑
i=1

∑
k∈K

1y1,i=k11y2,i=k2 log πk,i(x1,i,x2,i,xγ,i) ∈ R,

where ϑ := vec(c1, c2,β1,β2,βγ) is the p-dimensional parameter vector and the expression of
the joint probability mass is given by (3).
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In order to make the model coherent in terms of its definition and parametrisation (cf.
Section 2.1), we transform some of the parameters in ϑ and perform estimation over a modified
vector ϑ̃ ∈ Rp. However, to avoid clutter in the notation, from now on we will use ϑ to
denote both the transformed and the original parameter vector as the distinction will be clearly
inferred from the context. In particular, the transformation γ∗i is copula-specific and ensures that
an unconstrained optimisation algorithm can be employed in the derivation of the Maximum
Likelihood Estimator. The cut points are instead normalised through a squared polynomial
transform: c̃j,1 = cj,1 and c̃j,kj :=

√
cj,kj − cj,kj−1 for any kj ∈ Kj \ {1} and all j, so that it is

ensured the inequality cj,kj = cj,kj−1 + c̃2j,kj ≥ cj,kj−1.

3.1 Penalized GLM Representation

Following the terminology of ?, model (4) gives the (r, F2,Z) representation of a GLM for
categorical responses, with the caveat that the foreseen bivariate distribution has to be replaced
here with the copula function, namely F2 ≡ C(F1,1, F1,2). Differently from a pure GLM, however,
the specification of the functional form of covariate effects in terms of non-parametric and spatial
components is likely to give raise to over-fitting unless a suitable regularisation is introduced.
To this end, a ridge-type penalisation acting on the elements of ϑ is defined. For each equation
j ∈ {1, 2, γ}, we construct the quadratic form Pj := β>

j λjQjβj , where Qj is a penalty matrix

whose role is to enforce specific properties of the (j, lj)-th function and λj ∈ [0,+∞)Mj×Mj

is a diagonal matrix of tuning parameters. They control for the trade-off between smoothness
and fit: for instance, as λj,lj → 0 the estimated effects become wiggler and the fit perfect; vice
versa wherever λj,lj → ∞. The selection of the “right” amount of smoothness is important in
applied penalized regression splines modelling and a suitable method to deal with it is discussed
in Section 3.3.

Upon setting Qλ := diag(λjQj)j∈{1,2,γ}, we define an overall penalty Sλ as Qλ padded

with zeros such that Pλ := ϑ>Sλϑ = β>Qλβ. In the following paragraphs, we illustrate the
two types of penalty matrices used to adapt our generic representation to the specific model
components employed in the analysis of injury severity in vehicle accidents. In general, no
penalisation is attached to the fully parametric model components.

Continuous Covariates Regression splines account for non-linear smooth effects with vary-
ing degrees of complexity. The corresponding elements in λj are associated to a conventional
measure of curvature typically defined through an integrated square second derivative spline
penalty. Namely, we set Qj,lj :=

∫
b′′j,lj (b

′′
j,lj

)>dvj,lj with the integration conducted over the
whole range of vj,lj (e.g. ?). Examples comprise drivers’ age and the time of the day (expressed
in hours and minutes) in which the accident occurred.

Spatial Effects A location variable can be included in the model to control for the influence
that geographical-specific factors may have on the phenomenon under investigation. A Markov
random field smoother is implemented to exploit the spatial information in the data, and is
suitable whenever a given area is made up of discrete contiguous units, as the 96 Departments
of continental France.

Let us assume that we have R regions indexed by r, so that the spatial covariate effect of
the i-th regressor is given by x>

j,iβj,rj , with βj,rj := (βrj ,1, . . . , βrj ,Rj )
>. The design matrix

is constructed such that its (i, rj)-th element equals 1 if observation i belongs to rj , and 0
otherwise. The corresponding penalty matrix is based on the idea that spatially adjacent regions
share similar effects. Hence, for any two regions rj and sj , the penalty matrix associated to the
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spatial covariate is given by the adjacent matrix with elements

(Qs
j)[rj ,sj ] :=


−1 rj 6= sj ∧ sj ∈ δrj
0 rj 6= sj ∧ sj 6∈ δrj

Nrj rj = sj

where δrj is the set of regions adjacent to rj , and Nrj := #(δrj ) its cardinality (?).

3.2 Penalized Log-likelihood Function

Models in the (r, F2,Z) form augmented by the regularisation term Pλ can be estimated within a
Penalized Likelihood framework. The corresponding Maximum Penalized Likelihood Estimator
(MPLE) is defined as the solution of the problem

ϑ̂ := argmax
ϑ∈Rp

{
`(ϑ|·)− 1

2
ϑ>Sλϑ

}
, (5)

which is optimised for any given value of the smoothing parameter vector λ. In practice, (5)
is maximised using a trust-region algorithm which is generally more stable and faster than its
line-search counterparts, especially for functions that exhibit non-linearities or regions that are
close to flat (?, Ch. 4). The approach we have employed follows the one presented in ?, to which
we refer the interested reader for practical details.

Analytic derivations of the score and Hessian employed in the computation of (5) are ob-
tained by exploiting the multivariate GLM-type structure of model (4) and implemented in
CopulaCLM. In particular, by letting `p,i(ϑ|·) be the penalized log-likelihood contribution of the
i-th observation, we obtain expressions

gp,i := ∇ϑ`p,i(ϑ) =
∂ηk,i

∂ϑ

(
1

πk,i

∂Fk,i

∂ηk,i

∂Ck,i
∂Fk,i

∂πk,i
∂rk,i

)
− Sλ,iϑ = D>

i ui − Sλ,iϑ,

with D>
i := (∂ηk,i/∂ϑ), and

Hp,i := ∇ϑϑ>`p,i(ϑ) =

D>
i

[
1

πk,i

{
∂Fk,i

∂ηk,i

∂2Ck,i
∂Fk,i∂F>

k,i

(
∂Fk,i

∂ηk,i

)>
+

∂2Fk,i

∂ηk,i∂η
>
k,i

∂Ck,i
∂Fk,i

}
∂πk,i
∂rk,i

− uiu
>
i

]
Di +Ki − Sλ,i.

The term Ck,i is the 4-dimensional that collects all the possible configurations of the joint dis-
tribution implied by (3), whereas Fk,i := (Φ(η1,k1−1,i),Φ(η2,k2−1,i),Φ(η1,k1,i),Φ(η2,k2,i), γi)

> ∈
[0, 1]4 × Dγ , with Dγ being the support of the dependence parameter. Expression in square
brackets [·] above is commonly labelled Wi ∈ R5×5 and is the multivariate analogous of the
weight matrix in classical iterative GLM estimation. Matrix Ki accounts instead for the trans-
formed parameters discussed at the beginning of Section 3. Explicit forms for the components
of these expressions are given in the Appendix (Lemma 1) for an equivalent representation.
Notice that, upon defining

rk,i := (r(πk1−1,k2−1,i), r(πk1−1,k2,i), r(πk1,k2−1,i), r(πk1,k2−1,i))
> ∈ [0, 1]4,

it holds that ∂πk,i/∂rk,i = (1,−1,−1, 1)> from equivalence (3), whilst Di is of dimension (5×p)
and includes the derivatives of the cut points and the covariate vector. Finally we set the
quantities D := (D>

1 | · · · |D>
n |Ip)>, u := vec(u1, . . . ,un,0p) and W := −diag(W1, . . . ,Wn,K),

with K :=
∑

iKi, to obtain the global expressions needed for the algorithm’s development.
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3.3 Estimating the Smoothing Parameters

Given the multidimensional nature of our framework, computations may become burdensome
if a direct grid search optimisation of, say, a prediction error criterion is used to smoothness
selection. It is therefore essential to be able to estimate λ in an automatic way. To this end,
we adopt a modified version of the Un-biased Risk Estimator recently applied by ? to the
context of bivariate dichotomous response modelling. The key idea is to base the derivation
of a penalized iterative re-weighted least squares estimator on the Hessian matrix and score
vector considered globally, rather than on their single components. Traditional methods, in
fact, involve the computation of the square root and inversion of W, which are typically more
likely to fail to be positive definite for a subset of observations.

To overcome this inconvenience, let us define I := −H, with H being the Hessian of the un-
penalized log-likelihood. By computing a first-order Taylor expansion of gp about the MPLE,
and appropriately re-arranging its terms, we get an iterative algorithm of the form

ϑ[α+1] = (I [α] + Sλ|λ=λ[α])−1
√
I [α]z[α],

where Rp 3 z[α] :=
√
I [α]ϑ[α]+

√
I [α]

−1
g[α] is the pseudo-data vector associated to the penalized

GLM model. It holds asymptotically that z ∼ N (µ, Ip), where µ :=
√
Iϑ0 is evaluated at the

true parameter vector. Define now µ̂ the plug-in estimator obtained from the Generalized
Least Squares estimate ϑ̂GLS of the regression of z onto the columns of I and ridge penalty Pλ.
Namely, µ̂ :=

√
Iϑ̂GLS = Pλz, with Pλ :=

√
I(I + Sλ)

−1
√
I being the corresponding model

influence matrix. Then we seek to estimate λ in such a way that the resulting non-parametric
covariate effects are as close as possible to the real ones, that is by suppressing any complex
structure which is not supported by the available data. We then compute

E‖µ− µ̂‖2 = E‖z−Pλz‖2 − ñ+ 2tr(Pλ), (6)

where ñ := 5n and tr(Pλ) defines the effective degrees of freedom (edf) of the penalized model.
Hence an estimator for the smoothing parameters is defined iteratively as

λ[α+1]|ϑ[α+1] := argmin
λ

V(λ)

:= argmin
λ

{
‖z[α+1] −Pλ|λ=λ[α]z[α+1]‖2 − ñ+ 2tr(Pλ)|λ=λ[α]

}
,

which is performed using the stable and efficient routine of ?. The two steps detailed in this
and previous sections are iterated until convergence.

It is worthwhile remarking that our scheme is implemented only from the knowledge of
score and Hessian. In principle, therefore, any likelihood model regularised by a ridge-type
penalisation term can be naturally extended to the various types of covariate effects described
in this article in a relatively straightforward way. Potentially, also beyond the GLM family.

In the Appendix we establish the asymptotic behaviour of the proposed Maximum Penalized
Likelihood Estimator for a model with non-parametric effects represented using penalized B-
splines. The dimension of the spline basis, Hn, is allowed to growth with the sample size at a
given rate. Theorem 1 shows the consistency of the MPLE at a rate of oP (

√
Hn/n): this is in

line with previous theoretical investigations and extends them to our bivariate setting.

3.4 Monte Carlo Evidence

A small set of Monte Carlo experiments has been conducted to investigate the finite-sample
properties of the MPLE. For the sake of space, the exact definitions of the data generating
processes (DGPs) employed are given in the Supplementary Material, so we just comment
here on the results obtained. Figure 2 shows the behaviour of the estimator of the copula
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Figure 2: Box plots corresponding to the estimates of the copula association parameter γ
for different sample sizes and copulae employed. γ has been reported under its corresponding
Kendall’s τ correlation coefficient, whose true simulated value (τ = 0.1) is depicted as the
red line in each panel. Results are obtained from 100 replications of the DGP detailed in the
Supplementary Material.

association parameter under different settings and sample sizes. Specifically, the association
parameter has been set to an intercept term for all the individuals, and is reported using the
equivalent Kendall’s τ metric to facilitate the comparison between the various copula scenarios.
Its magnitude matches the one found in the real-data application. In line with expectations,
we report that, as the sample size increases, the MPLE approaches the true value with a lower
standard deviation and the parameter of interest is recovered reasonably well also at “modest”
n of around 3, 000. This is a remarkable finding considering that a low magnitude of the
association between the two equations locates γ close to the lower bound of its support (or to
zero in the case of the Frank copula), which may result in numerical instabilities as well as make
it hard to detect a dependence (?).

Some evidence of the ability of our model to recover the non-parametric covariate effects
is provided in Figure 3, in which three smooth functions were included in the DGP. The first
two refer to the equation for Y1, and the last one to that for Y2. The curves recovered at
each replications illustrate graphically the degree on uncertainty attached to smooth function
estimation, a concept formalised in ? for the construction of point-wise Bayesian credible
intervals in GAMs. Of course, less precise results are expected when fewer observations are
used.

4 Data Analysis

Our empirical study uses data from the “Bulletins d’Analyse des Accidents Corporels” (BAAC)
2014. This dataset collects information about all vehicle accidents occurred in France that
required the intervention of the police personnel. Agents were responsible for recording crash
details, which were then centrally administrated by the ONIRS and subsequently published
in the BAAC. At present, it comprises 4 headings referring to different accident features, and
labelled accordingly “caractéristique”, “lieux”, “véhicules” and “usagers”. Every accident is
identified by a unique progressive serial number, which is identical for each vehicle and individual
involved in the same crash.

Since the original dataset contains details on every kind of accident with at least one vehicle
affected, we consider only those instances conforming with the features of primary interest for the
present study. Accordingly, we select single-car crashes of four-wheels motor vehicles with two
occupants (Scenario I), and two-vehicle collisions in which the injury severity of the two drivers
is modelled jointly (Scenario II). The resulting datasets include 1, 232 and 20, 079 observations,
respectively. Although some insights into the factors that influence injury outcomes can be
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Figure 3: Estimated smooth curves obtained from 100 replicates of a Monte Carlo experiment
comprising 10,000 simulated observations of a Joe copula model (true curves reported in red).
The smooth components were represented using penalized thin-plate regression splines with basis
dimensions equal to 10 and penalties based on second-order derivatives. Results are plotted on
the scale of the linear predictors.

drawn from univariate models for crash, vehicle or roadway types, the results obtained in this
way may not be directly applicable to all traffic crash scenarios (?). It may be the case, in fact,
that even identical risk factors can affect the same response variables peculiarly once different
crash dynamics are considered. For example, the presence of a roundabout may reduce the
injury severity in two-vehicle collisions because roundabouts force drivers to a reduced speed
and smooth the angle of the impact. However, they have a more complex geometry than, say,
a straight roadway and that may result in a higher level of injury in case of single-car accident.
Hence it is important to discern these issues in various settings. In what follows, we report all
the details obtained from Scenario II in the main body of the article, whereas those referring
to Scenario I are given in the Supplementary Material to the sake of space. The main findings
are nonetheless commented and compared to those of Scenario II.

The aim of this analysis is to quantify the influence that some risk factors of interest have on
the probability that vehicles’ occupants sustain a certain level of injury severity, while accounting
for the presence of unobserved variables affecting their inter-relationships. A bivariate copula
Cumulative Link Additive Model is estimated to this purpose, with response variables being the
injury severity sustained by two parties of the same crash. They are recorded by data collectors
into four ordered categories: “no injury” (level 1), “non hospitalised” and “hospitalised” injuries
(levels 2 and 3), and “fatal” (level 4) ones: a summary of the empirical distributions is reported
in Table 2.

4.1 Models and Results

The proposed model specification follows closely previous published works in order to facilitate
the comparison of our results with the relevant literature (e.g. ?, ? for Scenario I; or ? for
Scenario II). In line with the BAAC organisation, we group the explanatory variables into four
macro-areas referring to occupant, vehicle, motorway and accident characteristics: they are
all listed in the first column of Table 4. The continuous covariates included in the analysis,
age of the occupants and time of collision, are estimated non-parametrically and approximated
using row-rank penalized thin plate regression splines with basis dimension equal to 10 and
penalties as described in Section 3.1. Since both of these variables are usually categorised to
achieve a different fit for each ordinal level (e.g. in ? and ?), our methodology improves on
the road safety literature by providing the researcher with an automatic data-driven way to
model covariate effects flexibly. A better fit is therefore expected in this case. A regional
variable identifying the location of each crash has also been included in the model specification
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SCENARIO I

Injury Severity Driver Injury Severity Passenger Marginalsno injury non hospitalised hospitalised fatal

no injury 0 188 166 17 371
(0.00%) (15.26%) (13.47%) (1.38%) (30.11%)

non hospitalised 59 251 75 10 395
(4.79%) (20.37%) (6.09%) (0.81%) (32.07%)

hospitalised 69 68 213 42 392
(5.60%) (5.52%) (17.29%) (3.41%) (31.82%)

fatal 12 11 36 15 74
(0.97%) (0.89%) (2.92%) (1.22%) (6.00%)

Marginals 140 518 490 84 1, 232
(11.36%) (42.05%) (39.77%) (6.82%) (100.00%)

SCENARIO II

Injury Severity Driver A Injury Severity Driver B Marginalsno injury non hospitalised hospitalised fatal

no injury 1, 389 6, 190 2, 809 138 10, 526
(6.92%) (30.83%) (13.99%) (0.69%) (52.43%)

non hospitalised 3, 825 1, 348 473 49 5, 695
(19.05%) (6.71%) (2.36%) (0.24%) (28.36%)

hospitalised 2, 206 582 613 68 3, 469
(10.99%) (2.90%) (3.05%) (0.34%) (17.28%)

fatal 165 90 107 27 389
(0.82%) (0.45%) (0.53%) (0.13%) (1.93%)

Marginals 7, 585 8, 210 4, 002 282 20, 079
(37.78%) (40.89%) (19.93%) (1.40%) (100.00%)

Table 2: Distributions of injury severity sustained by driver and passenger (Scenario I) and
by the two drivers (Scenario II) in vehicle-related accidents in the BAAC 2014 dataset. The
categorisation follows the information recorded by the police personnels on the place of crash.
The identification of a party as Driver A or B is based on the attribute Num Veh in the heading
usagers: it is an alphanumeric code where the initial letter refers to the vehicle involved in the
accident and the subsequent number tot he location of the individual in the car. For example,
the two drivers carry codes A01 and B01. The letter A is conventionally assigned to the vehicle
deemed to be responsible for the accident.

to control for Department-specific factors at a lower geographical level than continental France
as a whole. This is illustrated, for example, by Figures 5 and 6.

As anticipated in the model description, in Scenario II the copula association parameter has
been expressed as a function of known covariates to account for the possible heterogeneity in
the distribution of risk factors among the categories of vehicle, individuals and Regions (e.g.,
?). This equation has been implemented in R by calling the line

eta3.dep <- ∼ catv1 + catv2 + s(ans1) + s(ans2) + s(reg, bs = "mrf"),

where catv{j} denotes the vehicle type for each driver j = {1, 2}, ans{j} their respective age,
and reg the Region in which the accident occurred. The syntax s() is used to define the non-
parametric estimation of the argument in brackets, whilst bs = "mrf" specifies that a Markov
random field smoother has to be employed.

Estimation has been performed for all the copula specifications described in Table 1, along-
side with their corresponding degrees of rotations. A total of 15 different models were therefore
fitted, including the one referring to the Independent copula obtained by pooling together all
the observations and estimating a univariate ordered probit regression. Based on the Akaike
Information Criterion (AIC, Table 3), the preferred models were those based on the Joe0 in both
Scenarios I and II. All the results reported in the proceeding discussion refer to this distribution.
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Copula Scenario I Scenario II
γ̂ 95% CI AIC γ̂ 95% CI AIC

Independent − − 6, 253.07 − − −
Gaussian 0.0118 [−0.0543, 0.0757] 6, 262.80 0.0476 [0.0259, 0.0698] 72, 468.21
Clayton180 0.2281 [ 0.1525, 0.3479] 6, 224.60 0.4303 [0.3920, 0.4838] 71, 991.01
Frank 0.1945 [−0.2152, 0.5975] 6, 261.00 0.2162 [0.0025, 0.4194] 72, 140.29
Gumbel0 1.0780 [ 1.0425, 1.1375] 6, 238.46 1.2220 [1.1979, 1.2565] 72, 109.84
Joe0 1.2130 [ 1.1412, 1.3176] 6, 219.17 1.3607 [1.3301, 1.4059] 71, 882.27

Table 3: Estimated association parameters for the converging copula models considered in the
article, with corresponding 95% confidence interval. Confidence intervals have been obtained
via simulation from the posterior distribution of the MPLE following the procedure described in
?. The last column of each scenario shows the associated AIC: the ones of the selected models
are in bold. Since the penalty matrix in the estimation algorithm can suppress some dimensions
of the parameter space, we have: AIC = −2`p(ϑ̂|·) + 2edf , where the edf are the estimated
degrees of freedom mentioned in Section 3.3. The AIC for the independent case in Scenario I has
one parameter less than the others (i.e. the association parameter), while the one of Scenario
II is not given because it is based on double the number of observations, and so is misleading
(remember that the independent case corresponds to a model in which all the observations are
pooled together). Similar results were obtained when the Bayesian Information Criterion was
used. Regarding Scenario II, the association parameter reported is the average of γ̂i for all the
data points; confidence intervals have been adjusted accordingly.

Estimated Association Between the Responses It is interesting to note that all the cop-
ulae supported by the data are all those defined for a positive, albeit low, association parameter
γ. In particular, we report that these models exhibit an upper tail dependence, which indicates
that high values of the propensity of injury severity for one individual tend to be associated
with high values recorded for the other person in the study.

Before illustrating the results obtained in more details, some comments on the estimated
association parameter in Scenario II are in order. Our analysis shows that the estimated γ̂’s
averaged by Department are fairly constant, with possibly some exemptions in the south of
the country (refer to the bottom-right map of Figure 4). However, a naive look at the average
dependence parameter hinders heterogeneity among accidents’ characteristics. In fact, if we
average instead the association parameter for collisions between two motorcycles (< 125cm3) or
between two cars, we obtain 3.35 and 1.09, respectively. This means that the role of underlying
factors in the propensity to sustain higher injury severity in an accident is stronger in case of
crashes between motorcycles than between cars. This result highlights the increasing need for
flexible methodologies in road safety studies. Previous research has generally reported that a
positive association exists between the two equations in the system. In other words, unobserved
factors tend, on average, to drive in the same direction the injury severity sustained by the
occupants of the same motor vehicle in single-car accidents, and by both drivers in two-car
crashes.

Estimated Covariate Effects In Table 4, the estimates corresponding to the coefficients of
the parametric covariate effects are reported alongside with those arising from the independent
model (refer to Table S1 in the Supplementary Material for those of Scenario I). Notice that,
by pooling all the individuals together, the number of observations doubled compared to the
employment of a bivariate system of equations. Scenario I uses instead a bivariate Gaussian
model with γ structurally constrained to zero as independence benchmark. In fact, we believe
that drivers and passengers are often subject to different effects for the same risk factor, and this
would in turn distort any analysis conducted on a single pooled model. Consider, for instance,
the different manners of collision. Qualitatively, the estimates obtained show that a sideswipe
collision to the left would result in a higher injury severity propensity for the driver; however,
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whenever it occurs to the right, the front passenger is likely to be the most affected party. This
distinction is not captured when a single-equation model is used. Table S2 in the Supplementary
Material reports the full set of estimates referring to the pooled independent model for Scenario
I.

Overall, the sign of many of the estimated coefficients confirms the results previously re-
ported in the accident literature and is consistent with expectations. In particular, for Scenario
II we find that females show a higher propensity to sustain severe injuries when compared to
males, regardless of the vehicle they are sit in. This gender difference might be related to weight,
body mass and other factors, and is in line with other authors’ findings (see, for instance, ?).
In addition, travelling in motor vehicles with four-wheels is generally associated with lower in-
juries than is travelling on motorcycles, with larger ones (> 125cm3) being unsafer compared to
smaller motorised two-wheelers (< 125cm3). These results are intuitive since a better protection
from severe injuries can be expected in cars, whereas small motorcycles may be constrained to
reduced speed limits and restricted circulation regimes on faster roadways. Among environ-
mental factors, lighting in force at night tends to lower the propensity of a severe injury. We
note a contrasting effect between driver and passenger in Scenario I when we compare adverse
weather conditions against normal ones in both scenarios. These estimates are quite surprising:
if on the one hand the presence of water or ice on street pavement may reduce vehicles’ friction,
hence fostering the likelihood of an accident, on the other hand cars may proceed at a reduced
speed and drivers be more cautious (?). Analogous arguments can be made in those instances
of reduced visibility, like foggy weather conditions. In any case, systematic differences between
driver and passenger, as well as among Scenarios I and II, strengthen the assertion that risk
factors act differently on sustained injury severity in various crash settings. Some implications
for roadway design can be drawn from this study. Specifically, our analysis shows that the pres-
ence of roundabouts is likely to be associated with a reduction in injury propensity whenever
two vehicles hit each other (Scenario II), whereas a corresponding increase emerges for both
driver and passenger if only one car is involved in the crash (Scenario I). This is presumably a
result of the implicit accident dynamics leading to the two scenarios, where the latter is likely
to be mostly caused by a loss of control of the vehicle at entry, on the circulatory roadway or its
exit. This suggests undertaking suitable actions in terms of design and safety countermeasures
of roundabouts to make them an even more effective tool for prevention.

The estimated non-parametric model components for Scenario II are depicted in Figure
4. In line with the literature, our analysis highlights an almost steady effect of age on injury
severity up to around 40-45 years and it increases rapidly for people older than 60 years. This
evidence deserves some attention: with an increasing number of elderly people in Europe,
the implementation of ad-hoc actions and/or legislations seem to us of growing importance to
foster road safety measures. The maps in Figure 4 depict the estimated contribution of each
Department to the propensity of injury severity for the two drivers. Value greater than zero
imply that two-vehicle accidents incurred in these Departments tend to result in higher levels
of injury.

Quantitative Interpretation of the Results Parametric and non-parametric estimates
have to be interpreted qualitatively since, by model construction, they only affect directly
the propensity of injury rather than the responses measured on the ordinal scale. This is in
line with the interpretation of a model for ordinal responses as a coarse version of a latent
continuous variable, i.e. the propensity of injury. This practical limitation is accounted here
by computing the model (pseudo-)elasticities, roughly interpretable as the percent change in
the probability that the average individual sustains a certain injury level for a 1% increase
in a measured continuous covariate (e.g. ?). Alternatively, for any categorical regressor and
under the maintained assumptions, the pseudo-elasticity of the (j,mj)-th covariate on the j-th
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SCENARIO II: ESTIMATES

Variables Driver A Driver B Independent model
estimates (se) estimates (se) estimates (se)

Occupant Characteristics
Gender (male)
female 0.2426 (0.0193) 0.3243 (0.0183) 0.3030 (0.0136)

Vehicle Characteristics
Type (motorcycle < 125cm3)
Motorcycle > 125cm3 0.0254 (0.0210) 0.0960 (0.0256) 0.1235 (0.0198)
Vehicle M1 −1.8511 (0.0216) −1.5011 (0.0210) −1.5058 (0.0151)
Vehicle N1 −2.1256 (0.0443) −1.8402 (0.0427) −1.7876 (0.0307)

Motorway Characteristics
Intersection (off intersection)
X −0.0100 (0.0221) −0.0475 (0.0214) −0.0418 (0.0158)
T −0.2312 (0.0262) −0.1654 (0.0252) −0.2053 (0.0188)
Y −0.2046 (0.0628) −0.2148 (0.0611) −0.2274 (0.0455)
> 4 branches −0.2191 (0.0767) −0.3022 (0.0731) −0.2753 (0.0550)
roundabout −0.4087 (0.0530) −0.3370 (0.0498) −0.3970 (0.0374)
circus/square −0.3129 (0.0859) −0.1856 (0.0738) −0.2299 (0.0579)
level crossing 0.5300 (0.4254) 0.2461 (0.4585) 0.3719 (0.3259)
other 0.0474 (0.0751) 0.0458 (0.0734) 0.0537 (0.0539)

Type (motorway)
Route Nationale 0.1173 (0.0443) 0.2620 (0.0442) 0.2096 (0.0321)
Route Départementale 0.1179 (0.0299) 0.3300 (0.0297) 0.2385 (0.0216)
Voie Communale −0.4107 (0.0296) −0.1225 (0.0289) −0.2626 (0.0213)
off public road network −0.2205 (0.3013) −0.8125 (0.3500) −0.5129 (0.2399)
parking −0.4365 (0.1595) −0.1506 (0.1502) −0.3182 (0.1128)
other −0.1280 (0.0950) −0.0730 (0.0948) −0.0993 (0.0702)

Circulation regime (missing)
one-way −0.1245 (0.0391) −0.2032 (0.0379) −0.1695 (0.0280)
two-way 0.0532 (0.0334) −0.0399 (0.0324) 0.0068 (0.0240)
presence of median −0.1443 (0.0418) −0.1672 (0.0407) −0.1764 (0.0299)
other −0.0781 (0.1095) −0.1848 (0.1084) −0.1293 (0.0796)

Horizontal alignment (straight)
left curve 0.2338 (0.0320) 0.1654 (0.0319) 0.2037 (0.0232)
right curve 0.3645 (0.0318) 0.1438 (0.0322) 0.2734 (0.0232)
S 0.4188 (0.0780) 0.2089 (0.0789) 0.3394 (0.0568)

Accident Characteristics
Lighting (daylight)
sunrise/sunset 0.0310 (0.0362) 0.0661 (0.0351) 0.0281 (0.0268)
night without street lights 0.4592 (0.0364) 0.4537 (0.0354) 0.4198 (0.0272)
night, street lights in force −0.1067 (0.0288) −0.0150 (0.0260) −0.1143 (0.0221)

Atmospheric conditions (normal)
light rain 0.0785 (0.0262) 0.0336 (0.0254) 0.0665 (0.0187)
heavy rain 0.2363 (0.0530) 0.0872 (0.0525) 0.1804 (0.0382)
snow 0.4928 (0.2016) 0.7005 (0.1975) 0.6305 (0.1417)
fog 0.2811 (0.1106) 0.2730 (0.1107) 0.2836 (0.0791)
heavy wind/storm 0.2155 (0.2223) −0.0090 (0.2219) 0.1117 (0.1613)
clear 0.0999 (0.0800) 0.2677 (0.0788) 0.1842 (0.0573)
clouds 0.2124 (0.0447) 0.1243 (0.0447) 0.1770 (0.0324)

Manner of collision (missing/other)
head-on 0.0732 (0.0323) 0.0576 (0.0316) 0.0861 (0.0236)
rear-end −0.0780 (0.0452) −0.0965 (0.0359) −0.0363 (0.0287)
sideswipe, right 0.0739 (0.0456) −0.0978 (0.0464) −0.0076 (0.0341)
sideswipe, left 0.1060 (0.0463) 0.0006 (0.0418) 0.0618 (0.0326)

Passenger (no)
yes 0.0517 (0.0237) −0.0098 (0.0207) 0.0702 (0.0159)

Security device (not put on)
put on −0.0451 (0.0225) −0.0715 (0.0235) −0.0294 (0.0168)
cj,1 −1.4236 (0.0641) −1.3804 (0.0627) −1.1815 (0.0462)
cj,2 −0.3453 (0.0056) 0.0345 (0.0051) 0.0746 (0.0038)
cj,3 1.0458 (0.0095) 1.6872 (0.0100) 1.6557 (0.0071)

No. observations 20, 079 20, 079 40, 158

Table 4: Estimates and associated standard errors (in brackets) obtained by applying
CopulaCLM to the BAAC 2014 data. Corresponding confidence intervals are available form
the authors upon request. Results are for the parametric model components of Scenario II when
the Joe0 copula function is used. The last columns report the results corresponding to the
independent model. The reference categories are given in round brackets next to the variable
names to which they refer.
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Figure 4: Smooth functions estimates and associated 95% point-wise confidence intervals cor-
responding to the three equations of the bivariate model applied to the BAAC 2014 data under
Scenario II, when the Joe0 copula function is used. The first two equations have as response
variable the injury severity sustained by Drivers A and B, respectively, whereas the third one
describes the copula dependence parameter in terms of a linear predictor. The curves relate
to the effects of age and time (expressed in hours and minutes, hrmn) on the propensity of
injury severity of drivers in two-car collisions. Confidence intervals are based on the results of
? for GAMs, which can be accommodated in bivariate penalized GLMs admitting a (r, F2,Z)
representation as explained by ?. The effective degrees of freedom are reported into brackets
in the y-axis caption, with a value of one corresponding to a straight line estimate. The co-
variate values are represented by a jittered rug plot at the bottom of each graph. The maps,
instead, quantify the estimates obtained for the regional variable in each of the 96 Depart-
ment of continental France. The third map shows the averaged association parameter in each
Department.

response for individual i is defined as

ÊP[yj,i=kj ]
xj,mj,i

:=∑
l∈{0,1}

(−1)l
[
Φ(ηj,kj ,i − βj,mj{1l=0 − xj,mj ,i})− Φ(ηj,kj−1,i − βj,mj{1l=0 − xj,mj ,i})

Φ(ηj,kj ,i)− Φ(ηj,kj−1,i)

]
ϑ=ϑ̂

,

which is averaged to obtain

ÊP[yj=kj ]
xj,mj

(ϑ̂) =

[
1

n

n∑
i=1

ÊP[yj,i=kj ]
xj,mj,i

(ϑ)|
ϑ=ϑ̂

]
· 100.

The statistic above estimates the percent change corresponding to the observation of a cer-
tain level of the (j,mj)-th categorical covariate. For instance, it measures by how much the
probability of an individual being hospitalised changes (on average) when the crash occurs
at roundabouts, with respect to all the other intersection types. Table 5 reports all pseudo-
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Figure 5: Pseudo-elasticities of the presence of roundabouts on the probability of the average
occupant to sustain a hospitalised injury in each of the 96 French Departments. The comparison
between copula and independent models is presented for Scenario I, top row, and Scenario II,
bottom row. Notice: (i) the qualitative analysis of the coefficients’ signs is enhanced by the
formal computation of the (pseudo-)elasticities; and (ii) the difference in the estimates obtained
when a pooled univariate model is employed rather than a bivariate one (Scenario II). In this
case, only results for Driver A have been reported for no good reasons.

elasticities for a number of competing models: they all confirm the previous considerations
based on the models’ estimates.

Figure 5 illustrates the effect of the presence of roundabouts computed at the geographical
location of each collision, and we compare them against the pseudo-elasticities obtained from
the corresponding independent models. Not accounting for unobservables in the study may
lead to underestimated elasticity effects, which may in turn distort the information transmitted
to policymakers throughout the decision process in place. This is seen in the bottom row for
Scenario II, where a univariate model is compared against the preferred copula specification. In
the corresponding choropleth map we observe higher (i.e. less negative) elasticities for a number
of Departments, including Orne, Morbihan, Loire Atlantique, Maine et Loire, Indre et Loire,
Deux Sèvres, Creuse, Charente Martime, Landes, Lot and Aveyron, roughly corresponding to
the Regions of Pays de la Loire and Poitou-Charentes. The same figure referring to Scenario
I shows instead that this difference is qualitatively almost indistinguishable. This may be
explained by the fact that, in the latter, a bivariate independent model is employed. In fact,
since this case assumes the product of two Normals as reference joint distribution, as γ tends
to the infimum of its support the copula model converges to this independence benchmark.

The gains of applying a bivariate copula Cumulative Link Additive Model are perhaps better
summarised in Figure 6, where we compare the pseudo-elasticities of S curves on hospitalised
injuries obtained under alternative model specifications. The Gaussian copula reported for
Scenario I (top-right map) corresponds to a semi-parametric bivariate probit regression model,
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SCENARIO II: PSEUDO-ELASTICITIES

Variables Joe0: Semi-parametric Independent Joe0: Parametric
Driver A Driver B Drivers Driver A Driver B

Occupant Characteristics
Gender (male)
female 44.3759 58.4245 57.2809 42.6745 59.6290

Vehicle Characteristics
Type (motorcycle < 125cm3)
Motorcycle > 125cm3 4.0750 15.1656 22.4733 −1.6936 13.9652
Vehicle M1 −96.0412 −93.3907 −93.9468 −96.3122 −93.9779
Vehicle N1 −97.7507 −96.9027 −96.7766 −98.0451 −97.2620

Motorway Characteristics
Intersection (off intersection)
X −1.5411 −6.8827 −6.3512 0.3398 −5.5226
T −30.6038 −22.3151 −28.6553 −28.6553 −21.0711
Y −27.5807 −28.1332 −30.6469 −21.5933 −23.9078
> 4 branches −37.5156 −37.9463 −35.9644 −17.1633 −27.2364
roundabout −48.9606 −39.0754 −47.9295 −49.3973 −43.4329
circus/square −24.7456 −24.4390 −30.9286 −28.8199 −9.8975
level crossing 42.4098 58.0468 73.3202 88.0083 32.8606
other 7.5959 7.0168 8.6798 3.0991 2.3340

Type (motorway)
Route Nationale 19.7095 45.5678 37.3954 13.1281 44.5684
Route Départementale 19.8178 59.6455 43.3151 14.2249 55.9591
Voie Communale −48.1706 −16.9727 −34.5895 −48.6248 −15.6858
off public road network −29.4003 −74.0948 −57.4700 −25.5407 −72.5099
parking −50.3304 −20.5108 −40.4252 −54.8696 −25.0024
other −18.1880 −10.4255 −14.5495 −24.8368 −14.6871

Circulation regime (missing)
one-way −17.7225 −26.7986 −23.7186 −8.0744 −18.8303
two-way 8.5552 −5.8169 1.0663 9.7344 −4.9204
presence of median −22.5343 −22.2966 −24.5684 −11.9607 −16.4462
other −11.4739 −24.6431 −18.5694 −9.8600 −24.3300

Horizontal alignment (straight)
left curve 42.5274 27.2082 36.1979 37.5154 22.2455
right curve 72.3288 23.3504 50.7559 66.8536 18.2799
S 117.6723 40.3920 83.0723 103.3627 31.1941

Accident Characteristics
Lighting (daylight)
sunrise/sunset 4.9171 10.2574 4.4718 7.8686 10.7904
night without street lights 96.9460 87.7765 85.1674 104.2143 84.8416
night, street lights in force −14.5202 −2.1912 −15.6351 −4.1686 2.8148

Atmospheric conditions (normal)
light rain 12.8390 5.1190 10.8377 12.9079 6.9491
heavy rain 43.0424 13.7026 31.5915 39.5674 10.8913
snow 106.3239 153.8087 144.4313 72.0278 120.7264
fog 52.7815 47.7781 52.9707 36.1097 38.0877
heavy wind/storm 38.7047 −1.3342 18.7279 24.7814 −5.1406
clear 16.5813 46.7119 32.3513 11.1678 38.7617
clouds 38.0796 19.9676 30.9299 37.1391 21.8370

Manner of collision (missing/other)
heads-on 9.0503 3.4770 14.9423 7.3696 13.5057
rear-end −15.2807 −12.4695 −5.4242 −16.4820 −9.6178
sideswipe, right 10.3250 −11.2449 −1.1826 6.9893 −10.1128
sideswipe, left 15.7586 2.1764 10.3965 13.2137 3.5122

Passenger (no)
yes 12.7516 0.7857 11.4579 11.6577 −2.6750

Security device (not put on)
put on −7.6349 −9.3241 −4.4262 −10.0084 −9.5552

No. observations 20, 079 40, 158 20, 079

Table 5: Pseudo-elasticities for Scenario II obtained by applying the preferred Joe0 copula,
independent and the fully parametric models. Quantities are computed with respect to the
hospitalised injuries.
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Figure 6: Some potential risks of model mis-specification: comparison between pseudo-
elasticities of S curves on hospitalised injuries. The Gaussian copula (not preferred based on
the AIC) corresponds to the use of a semi-parametric bivariate ordered probit regression. The
parametric model, instead, neglects both non-linearities and smoothed variation in the regional
variable. This result highlights the need of using flexible models to reduce the risk of mis-
specification. Notice that less vivid conclusions may be drawn when the effects of different
covariates are computed: the full set of results are listed in Table 5.

analogous to that described in ?. This assumption is precisely what we aimed at extending with
the introduction of Archimedean copulae (top-left map). The Gaussian model overestimates the
effects at departmental level by an average of −3.26 (with minimal and maximal difference of
−5.10 and −1.47, respectively). That is, under a bivariate Gaussian assumption, the presence
of an S curve reduces the probability of facing a hospitalised injury (resulting from a single-car
collision in the average Department) of 3.26% more than what is estimated under a Joe0. Also, in
the fully parametric model specification, drivers’ age and time of collision are assumed to affect
the responses linearly, as it is typically done in the applied road safety literature (bottom-right
map, to be compared with bottom-left map). In this instance, we find that a fully parametric
model estimates that S curves increase the probability of hospitalisations by 14.21 percentage
points less than a semi-parametric model does. In both cases, these traditional models tend to
distort the effects computed by the copula model. Although these considerations may be less
vivid for different covariates, we think that the proposed methodology can constitute a valid
way for researchers to test their results against different assumptions and scenarios.

5 Discussion

This paper introduced a flexible bivariate regression model for ordinal responses. The proposed
framework can account for the presence of common unobserved variables influencing the inter-
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relationships between the responses, non-linear covariate effects and non-Gaussian dependences.
The model has been described in terms of a copula-based additive extension of the classical
Cumulative Link Model, whose representation has taken advantage of a handy penalized GLM
form. The estimation algorithm was discussed and all the necessary computational procedures
incorporated in the freely-available routine CopulaCLM for the R environment.

The proposed methodology was motivated by the study of two different scenarios within the
road safety literature, in which a bivariate specification has been used to model jointly the injury
severity sustained by individuals in vehicle accidents. This methodology is useful in instances
were the presence of unobserved factors is likely to affect the injury severity in the parties
involved in the accident. Specifically, we dealt with single-car crashes of four-wheel vehicles with
one passenger, and collisions of two motorised vehicles. Using information criteria, we selected
the Joe0 copula to represent the dependence structure between the two equations in the model:
a positive association between them has been documented. Insights on the role of specific risk
factors in the determination of this association have been exploited through the specification of a
third equation in the system explaining the behaviour of γ. Some heterogeneity stemming from
the people driving specific vehicle types have been documented. The effects that the induced
dependence has on the model interpretation have been summarised in Table 5 and Figure 5.
In the bottom row of the figure, in particular, we reported the differences a researcher would
have incurred if all the individuals involved in the same crash were not modelled separately, but
polled together and analysed in the same univariate model. The pseudo-elasticities estimated
from the selected Joe0 were also mapped and compared against those from the Gaussian copula
and a fully parametric model specification (Figure 6).

In summary, the proposed application study argued on the importance in accident research
to be able to discriminate between different dynamics and occurrences in order to investigate
the role of several risk factors in the injury severity sustained by people in vehicle collisions.
The need of enhancing model flexibility has been discussed throughout the paper, and the
detrimental effects of using standard models in lieu of more comprehensive ones have been
illustrated (namely, bivariate Gaussian, univariate pooled and purely parametric models).

A possible shortcoming of the copulae employed in this article is that they are exchangeable
(?; ?). In the context of two-car accidents, for example, exchangeability implies that the
probability of the two drivers to sustain a certain level of injury severity is invariant to whether
{y1,i = k1, y2,i = k2} or {y2,i = k2, y1,i = k1}, conditioned to the regressors, because they both
give rise to the same bivariate distribution. Although this seems not to be an issue here, because
we expect a symmetric behaviour in the injury severity of the two drivers, it is important to
further assess the extent to which this constitutes a limitation in applied research. In addition,
since dichotomous responses can be thought as a special case of discrete variables with only
two levels, the possibility to allow one dependent variable to be binary will be investigated.
This will not change substantially the essence of our theoretical and computational framework.
Moreover, the practical limitation of having just one association parameter linking the responses
can be relaxed by considering a different class of copulae within our estimation setting. This
would in turn allow the study of the dependence structure between the outcomes in a more
complete manner.

Supplementary Material The Supplementary Material is made up of four sections contain-
ing more detailed information on the proposed copula setting (Section S.1), the DGP used in
simulations (Section S.2), all the results of the analysis of Scenario I (Section S.3) and further
details on the asymptotic properties of the proposed estimator described in the Appendix (Sec-
tion S.4). Datasets employed, codes for replication and a folder with all CopulaCLM files are
attached to this paper.
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A Some Asymptotic Results

This appendix provides some considerations regarding the behaviour of the proposed Maximum
Penalized Likelihood Estimator as the sample size increases. As such, we extend to a bivari-
ate setting of ordinal responses previous works of ? and, more recently, ?. The theoretical
framework is developed using penalized B-splines to curve approximation (?). Their precise
formulation is given in the Supplementary Material for the sake of completeness. It worth re-
minding that each linear predictor is made up of Lj smooth functions of degree qj = q for all
j, no other parametric nor spatial components are included. In this scenario, the j-th linear
predictor becomes

ηj = cj − sj,1(vj,1)− · · · − sj,Lj (vj,Lj ) = Zjβj ∈ Rn.

Assumptions:

(A.1) Every vj,lj ,i is a realisation of the random variable vj,lj , for i = 1, . . . , n and, without loss of

generality, the vector vj := (vj,lj )lj=1,...,Lj
is assumed to be distributed on [0, 1]Lj , j ∈ {1, 2, γ}.

(A.2) The knots for the B-spline basis are equidistantly located so that κh − κh−1 = H−1
n for

h = 1, . . . , Hn; moreover, the dimension of the spline basis satisfies Hn = O(n1/(2q+3)).

(A.3) The number of knots are chosen so that [(L1 + L2 + L3)(Hn + q) +K1 +K2 − 2] < n.

(A.4) The smoothing parameters are taken to grow with the sample size with order

max
j∈{1,2,γ};lj=1,...,Lj

λ[j,lj ] = O(nζ) and ζ ≤ 2

2q + 3
.

It should also be noted that Archimedean copulae are differentiable by construction, thus we
only need their partial derivatives to be bounded too. At the outset, we show that expressions
in Section 3.2 can be re-stated as:

Lemma 1. The unpenalized Hessian matrix for a bivariate copula Cumulative Link Additive
Model in the form of (4) is equivalent to

∇ϑϑ>`(ϑ) = D̃>W̃D̃,

where D̃ := diag(D̃k1 , D̃k2 ,X1,X2,Xγ) ∈ R5n×p, D̃kj := 1⊗ d>
kj
, j = 1, 2, and

W̃ :=


W̃k1 W̃k1,k2 W̃k1,1 W̃k1,2 W̃k1,γ

• W̃k2 W̃k2,1 W̃k2,2 W̃k2,γ

• • W̃1 W̃1,2 W̃1,γ

• • • W̃2 W̃2,γ

• • • • W̃γ

 ∈ R5n×5n

is the symmetric matrix whose generic element is given by W̃h̄ := diag(wh̄,i)i ∈ Rn×n, for

h̄ encompassing all the subscripts in W̃. Namely, h̄ := {k1, (k1, k2), . . . , γ}. The remaining
quantities are computed as follows:

dkj := ((2c̃2kj )
1kj 6=1)kj=1,...,Kj\{Kj},

• h̄ ∈ {kj}, j ∈ {1, 2}:

wh̄,i =
1

πk,i[(
∂Φ(ηj,kj ,i)

∂ηj,kj ,i

)2(
C
(k2j )

0,0,i − C
(k2j )

1j=1−1,1j=2−1,i

)
+

∂2Φ(ηj,kj ,i)

∂η2j,kj ,i

(
C
(k2j )

0,0,i − C
(k2j )

1j=1−1,1j=2−1,i

)]
−

d>
kj
(dkjd

>
kj
)−1dkj ,kj (dkjd

>
kj
)−>dkjukj ,i;

21



• h̄ ∈ {(k̃, k̄)}, ̃, ̄ ∈ {1, 2}, ̃ 6= ̄:

wh̄,i =
1

πk,i
C(k̃,k̄)
0,0,i

∂Φ(η̃,k̃,i)

∂η̃,k̃,i

∂Φ(η̄,k̄,i)

∂η̄,k̄,i
;

• h̄ ∈ {(kj , j)}, j ∈ {1, 2}:

wh̄,i =
1

πk,i[(
∂Φ(ηj,kj ,i)

∂ηj,kj ,i

)2(
C
(k2j )

0,0,i − C
(k2j )

1j=1−1,1j=2−1,i

)
+

∂2Φ(ηj,kj ,i)

∂η2j,kj ,i

(
C
(k2j )

0,0,i − C
(k2j )

1j=1−1,1j=2−1,i

)]
;

• h̄ ∈ {(k̃, ̄)}, ̃, ̄ ∈ {1, 2}, ̃ 6= ̄:

wh̄,i =
1

πk,i

∂Φ(η̃,k̃,i)

∂η̃,k̃,i

(
C(k̃,k̄)
0,0,i

∂Φ(η̄,k̄,i)

∂η̄,k̄,i
− C(k̃−1̃=2,k̄−1̃=1)

1̃=1−1,1̃=2−1,i

∂Φ(η̄,k̄−1,i)

∂η̄,k̄−1,i

)
;

• h̄ ∈ {(kj , γ)}, j ∈ {1, 2} :

wh̄,i =
1

πk,i

∂γi
∂γ∗i

∂Φ(ηj,kj ,i)

∂ηj,kj ,i

(
C(kj),γ
0,0,i − C(kj ,γ)

1j=1−1,1j=2−1,i

)
• h̄ ∈ {1, 2}:

wh̄,i =
1

πk,i

∑
l,m∈{0,1}

(−1)l+m

C((kh̄−l)2)
−l,−m,i

(
∂Φ(ηh̄,kh̄−l,i)

∂ηh̄,kh̄−l,i

)2

+ C(kh̄−l)
−l,−m,i

∂2Φ(ηh̄,kh̄−l,i)

∂η2
h̄,kh̄−l,i

−u2h̄,i;

• h̄ ∈ {̃, ̄}, ̃, ̄ ∈ {1, 2}, ̃ 6= ̄:

wh̄,i =
1

πk,i

[
∂Φ(η̃,k̃−1,i)

∂η̃,k̃−1,i

(
C(k̃−1,k̄−1)
−1,−1,i

∂Φ(η̄,k̄−1,i)

∂η̄,k̄−1,i
− C(k̃−1,k̄)

−1,0,i

∂Φ(η̄,k̄,i)

∂η̄,k̄,i

)
+

∂Φ(η̃,k̃,i)

∂η̃,k̃,i

(
C(k̃,k̄)
0,0,i

∂Φ(η̄,k̄,i)

∂η̄,k̄,i
− C(k̃,k̄−1)

0,−1,i

∂Φ(η̄,k̄−1,i)

∂η̄,k̄−1,i

)]
− u̃,iu̄,i;

• h̄ ∈ {(j, γ)}, j ∈ {1, 2}:

wh̄,i =
1

πk,i

∂γi
∂γ∗i[

∂Φ(ηj,kj−1,i)

∂ηj,kj−1,i

(
C(kj−1,γ)
−1−1,i − C(kj−1,γ)

−1,0,i

)
+

∂Φ(ηj,kj ,i)

∂ηj,kj ,i

(
C(kj ,γ)
0,0,i − C(kj ,γ)

0,−1,i

)]
− uj,iuγ,i;

• h̄ ∈ {γ}:

wh̄,i =
1

πk,i

∑
l,m∈{0,1}

(−1)l+m

[
C((h̄−l)2)
−l,−m,i

(
∂γi
∂γ∗i

)2

+ C(h̄−l)
−l,−m,i

∂2γi
∂γ∗2i

]
− u2h̄,i.

Moreover, the next quantities have been used:

dkj ,kj :=
∂dkj

∂c̃kj
, C(c,d)

a,b,i :=
∂2C(u− a, v − b; γi)

∂ηc,i∂ηd,i
,
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for u and v being the inputs of the copula function and a, b ∈ {0, 1}; also, for j ∈ {1, 2},

ukj ,i :=
1

πk,i

∂Φ(ηj,kj ,i)

∂ηj,kj ,i

(
C(kj)
0,0,i − C(kj)

1j=1−1,1j=2−1,i

)
uj,i :=

1

πk,i

∑
l,m∈{0,1}

(−1)l+mC(kj)
−l,−m,i

∂Φ(ηj,kj ,i)

∂ηj,kj ,i

uγ,i :=
1

πk,i

∂γi
∂γ∗i

∑
l,m∈{0,1}

(−1)l+mC(kj)
−l,−m,i.

Proof. The proof is given in the Supplementary Material.

Let us define now Fn(ϑ0) be the expected Fisher Information evaluated at ϑ0. This denotes the
parameter vector that gives the best approximation of the unknown smooth functions sj,lj ’s in

terms of the Kullback-Leibler measure. Specifically, we have that Fn(ϑ0) = D̃>Eϑ0 [W̃]D̃ and
the following result applies:

Lemma 2 (Lemma 2, ?). For a model expressible in the form of (4) and under Assumptions
(A.1)-(A.4), the elements of Fn(ϑ0) are of asymptotic order O(n/Hn). Moreover, denoting by
Fp,n(ϑ0) the penalized Fisher Information, it follows that

Fp,n(ϑ0) = O

(
n

Hn
+ max

j∈{1,2,γ};lj=1,...,Lj

λ[j,lj ]H
2q
n

)
.

Proof. The proof is given in the Supplementary Material.

These preliminary results allow us to characterise the order of consistency of the MPLE with
respect to ϑ0.

Theorem 1. Consider a bivariate copula Cumulative Link Additive Model with non-parametric
components approximated by penalized B-splines. Let ϑ̂ be the Maximum Penalized Likelihood
Estimator and ϑ0 such that E[∇ϑ`(ϑ)]|ϑ=ϑ0 = 0. Then, under Assumptions (A.1)-(A.4), it
holds that √

n/Hn(ϑ̂− ϑ0) = oP (1).

Proof. In the proceeding arguments we adopt the Einstein summation convention, and we de-
note accordingly by ϑj the j-th component of the parameter vector ϑ := (ϑ1, . . . , ϑp)>. To
prove the statement, we first expand ̂̀p,r about `p,r to get

̂̀
p,r = `p,r + `p,rs(ϑ̂− ϑ0)

s +
1

2
`p,rst(ϑ̂− ϑ0)

st + · · · = 0,

where ̂̀p,r := ∂`p/∂ϑ
r|ϑr=ϑr

0
and, similarly, `p,rs := ∂2`p/∂ϑ

r∂ϑs. In the expression above we

have defined (ϑ̂− ϑ0)
s := ϑ̂s − ϑs

0 and (ϑ̂− ϑ0)
st := (ϑ̂− ϑ0)

s(ϑ̂− ϑ0)
t. Series inversion yields

(ϑ̂− ϑ0)
r = −`rsp `p,s −

1

2
`rtvp `p,u`p,w + · · · = −`rsp `p,s −

1

2
(`rsp `tup `vwp `p,stv)`p,u`p,w + · · · ,

with `rsp denoting the (r, s)-th element of the inverse of the Hessian matrix given in Lemma 1.
Let us define now

frs,0 := −E[∂2`/∂ϑr∂ϑs]|ϑr=ϑr
0;ϑ

s=ϑs
0
,

fp,rs = frs,0 + qrs

be the (r, s)-th element of the (unpenalized) Fisher Information and the corresponding penalized
version, respectively. Notice that the latter carries the asymptotic order derived in Lemma 2.
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Upon denoting rrs := `rs − frs,0, the difference between the given elements of the Hessian and
the Fisher Information matrices, we have

`rsp = f rs
p − f rt

p f su
p rtu. (7)

In particular, applying a similar argument as ?, and making use of the results of ? for the
inverse of band matrices, it is possible to bound

f rs
p = ρ|r−s|O

((
n

Hn
+ max

j∈{1,2,γ};lj=1,...,Lj

λ[j,lj ]H
2q
n

)−1
)

= ρ|r−s|O

(
Hn

n

)
for ρ ∈ (0, 1). The last equality is established under Assumptions (A.2) and (A.4). Furthermore,
the direct application of Lemma 4 in ? results in the matrix with element rrs being block
diagonal, with each rrs = OP (

√
n/Kn). Hence expression (7) becomes

`rsp = f rs
p

[
1 +O

(
Hn

n

)
OP

(√
n

Hn

)]
= f rs

p

[
1 +OP

(√
Hn

n

)]
.

Analogously, `p,stv is of diagonal structure, meaning that is it equals 0 if max{|s− t|, |s−v|, |t−
v|} > q + 1 and is of order OP (n/Hn) otherwise. Hence

`rsp `tup `vwp `p,stv = f rs
p f tu

p fvw
p OP

(
H−1

n

n−1

)
(1 + oP (1)) = OP

(
H2

n

n2

)
(1 + oP (1))

and `rtvp `p,u`p,w = oP (Hn/n). We can finally write

(ϑ̂− ϑ0)
r = −f rs

p `p,s(1 + oP (1)) + oP

(
Hn

n

)
= oP

(√
Hn

n

)
+ oP

(
Hn

n

)
,

and the assertion follows.

With the stated result in hand, we can quantify the error a researcher would commit in esti-
mating the linear predictor ηj using the B-splines approximation:

Corollary 1 (Theorem 1, ?). Under Assumptions (A.1)-(A.4) it holds that, for each j,

MSE{η̂j} := E‖η̂j − η‖2 = O(n−(2q+2)/(2q+3)),

where η̂j is evaluated at the MPLE ϑ̂.
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Supplementary Material to:
“Simultaneous Equation Penalized Likelihood

Estimation of Vehicle Accident Severity Injuries”
Francesco Donat and Giampiero Marra

S.1 Copulae

Rotated copulae can be obtained by applying the following transformations:

C90(u, v) = u− Cγ(1− u, v)

C180(u, v) = u+ v − 1 + Cγ(1− u, 1− v)

C270(u, v) = u− Cγ(u, 1− v),

where we have followed the convention of labelling the marginals corresponding to j = 1, 2 with
u and v, respectively. Contour plots of the copuae implemented in CopulaCLM are given in
Figure S1.

C
o
n
t
o
u
r
C
o
p
u
l
a
e
-
e
p
s
-
c
o
n
v
e
r
t
e
d
-
t
o
.
p
d
f

Figure S1: Contour plots of some of the copula functions with Standard Normal margins for
data simulated using association parameters γ of 2, 5.74, 2 and 2.86, respectively (these values
are consistent with a medium positive correlation). The Frank copula allows for equal degrees
of positive and negative dependence, whereas Clayton is asymmetric with a strong lower tail
dependence but a weaker upper tail dependence. Vice versa for the Gumbel and Joe copulae.

S.2 Data Generating Processes Employed in Simulations

DGP for Figure 2

y∗1,i = x1,i + 2x2,i + x3,i + s1,1(v1,i) + s1,2(v2,i) + ε1
y∗2,i = 2x1,i − 2x2,i + s2,1(v1,i) + ε2

εj ∼ N (0, 1).
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The test functions are given by

s1,1(v1,i) = −0.7{4v1,i + 2.5v21,i + 0.7 sin(5v1,i) + cos(7.5v1,i)}
s1,2(v2,i) = −0.4{−0.3− 1.6v2,i + sin(5v2,i)}
s2,1(v1,i) = 0.6{exp{v1,i}+ sin(2, 9v1,i)},

and the ordered values of yj,i have been computed following the observation rule

yj,i =
∑

kj∈Kj

kj1cj,kj−1<y∗j,i≤cj,kj

for every j ∈ {1, 2}, and obtained by setting the threshold parameters at c1,k := (−2,−1, 0, 2)>

and c2,k := (−1.4,−0.7,−0.2, 0.7, 3)>. Furthermore, we have set the copula association param-
eters at γclayton = 0.2222, γfrank = 0.9074 and γjoe = 1.1944, all corresponding to a Kendall’s
Tau of 0.1.

DGP for Figure 3 The same as of the previous paragraph but with smooth curves

s1,1(v1,i) = 1− v1,i + 1.6v41,i − sin(5v1,i)

s1,2(v2,i) = 4v2,i

s2,1(v1,i) = 0.08{v111,i[10(1− v1,i)]
6}+ 10(10v1,i)(1− v1,i)

10,

and cut points c1,k := (−0.8,−0.3, 0.6, 4)> and c2,k := (−1.4,−0.7,−0.2, 0.7, 3)>.
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S.3 Data Analysis: Further Details

SCENARIO I: ESTIMATES

Variables
Joe0 model Independent model

Driver Other occupant Driver Other occupant
estimates (se) estimates (se) estimates (se) estimates (se)

Occupant Characteristics
Gender (male)
female 0.1697 (0.0694) 0.0625 (0.0630) 0.1293 (0.0714) 0.0556 (0.0645)

Seat (other/missing)
front, passenger − − 0.2048 (0.1664) − − 0.0665 (0.1687)
rear, driver’s side − − 0.0364 (0.2344) − − −0.0802 (0.2402)
rear, opposite driver − − −0.0036 (0.2171) − − 0.0187 (0.2214)

Motorway Characteristics
Intersection (off intersection)
X 0.0395 (0.2358) −0.2162 (0.2428) −0.0219 (0.2435) −0.2347 (0.2467)
T −0.0924 (0.2535) −0.3344 (0.2590) −0.1526 (0.2636) −0.3319 (0.2611)
Y −0.2814 (0.3907) −0.3344 (0.3682) −0.3370 (0.4052) −0.3527 (0.3764)
> 4 branches −0.8819 (0.4609) −0.4818 (0.4177) −0.9907 (0.4903) −0.4882 (0.4221)
roundabout 0.3647 (0.2109) 0.3174 (0.2188) 0.3367 (0.2166) 0.3223 (0.2196)
circus/square 0.1333 (1.0256) −0.4455 (1.0725) 0.1483 (1.0507) −0.4455 (1.1038)
other 0.3505 (0.2982) 0.2448 (0.3088) 0.3213 (0.3094) 0.2516 (0.3082)

Type (motorway)
Route Nationale −0.1418 (0.1333) −0.0205 (0.1336) −0.1639 (0.1363) −0.0415 (0.1359)
Route Départementale 0.0070 (0.0981) 0.1478 (0.0993) 0.0066 (0.1001) 0.1435 (0.1009)
Voie Communale −0.3588 (0.1056) −0.0741 (0.1051) −0.3595 (0.1076) −0.0712 (0.1073)
other −0.4516 (0.3301) −0.3340 (0.3357) −0.4898 (0.3437) −0.3417 (0.3387)

Circulation regime (missing)
one-way 0.0751 (0.1530) −0.3744 (0.1574) 0.0943 (0.1570) −0.4131 (0.1584)
two-way 0.3640 (0.1291) 0.1020 (0.1338) 0.3908 (0.1323) 0.0813 (0.1344)
presence of median 0.1197 (0.1430) −0.1610 (0.1485) 0.1503 (0.1469) −0.1744 (0.1494)
other 1.0587 (0.5738) 0.1987 (0.5722) 1.0814 (0.5777) 0.0835 (0.5878)

Horizontal alignment (straight)
left curve −0.1137 (0.0800) 0.2048 (0.0812) −0.1311 (0.0816) 0.2102 (0.0820)
right curve 0.0004 (0.0892) 0.0364 (0.0890) −0.0163 (0.0905) 0.0190 (0.0907)
S −0.1379 (0.1665) −0.0036 (0.1657) −0.0956 (0.1664) 0.0154 (0.1681)

Location (other/missing)
roadway −0.4146 (0.1080) −0.4878 (0.1103) −0.4539 (0.1095) −0.5009 (0.1119)
emergency lane −0.3953 (0.2359) 0.0222 (0.2395) 0.4926 (0.2420) 0.0128 (0.2407)
shoulder −0.0446 (0.1203) −0.0932 (0.1221) −0.0833 (0.1215) −0.1110 (0.1239)
sidewalk −0.2552 (0.1864) −0.6954 (0.1892) −0.3016 (0.1895) −0.7241 (0.1924)

Obstacle (other/missing)
fixed object 0.1938 (0.0887) 0.0984 (0.0904) 0.2044 (0.0907) 0.1057 (0.0915)

pedestrian −7.2444 (5.9 105) −0.9181 (1.1237) −7.8729 (3.8175) −0.8593 (1.1256)
vehicle −0.1082 (0.1832) −0.0178 (0.1818) −0.1191 (0.1883) −0.0177 (0.1847)
animal 0.1777 (0.3076) 0.0467 (0.3031) 0.2189 (0.3092) 0.0365 (0.3114)

Accident Characteristics
Lighting (daylight)
sunrise/sunset 0.0164 (0.1188) 0.1235 (0.1210) −0.0280 (0.1219) 0.1255 (0.1218)
night without street lights 0.1814 (0.0801) −0.0430 (0.0788) 0.1591 (0.0824) −0.0575 (0.0801)
night, street lights in force −0.0173 (0.0910) 0.1334 (0.0905) −0.0444 (0.0941) 0.1340 (0.0920)

Atmospheric conditions (normal)
light rain −0.2105 (0.0889) −0.1271 (0.0880) −0.2097 (0.0904) −0.1453 (0.0897)
heavy rain 0.4468 (0.1658) −0.1548 (0.1678) 0.4517 (0.1681) −0.1743 (0.1714)
snow 0.6575 (0.4330) −0.6317 (0.4231) 0.8153 (0.4157) −0.5592 (0.4271)
fog −0.2960 (0.2864) 0.1544 (0.2890) −0.2323 (0.2874) 0.1490 (0.2935)
heavy wind/storm 0.0588 (0.4496) 1.1834 (0.4899) 0.0722 (0.4512) 1.1485 (0.4979)
clear 1.0461 (0.4596) 0.6979 (0.4539) 1.0211 (0.4686) 0.6613 (0.4646)
clouds 0.1347 (0.1432) −0.1661 (0.1458) 0.1352 (0.1461) −0.1528 (0.1468)

Manner of collision (missing/other)
heads-on −0.1864 (0.0761) 0.0176 (0.0773) −0.1728 (0.0773) 0.0388 (0.0781)
rear-end −0.3630 (0.1981) −0.1348 (0.1971) −0.3834 (0.2054) −0.1048 (0.1997)
sideswipe, right −0.1723 (0.1739) 0.7225 (0.1774) −0.1673 (0.1758) 0.7382 (0.1796)
sideswipe, left 0.6712 (0.1677) −0.0826 (0.1648) 0.6937 (0.1684) −0.0902 (0.1682)

Security device (not put on)
put on −0.4585 (0.0785) −0.2646 (0.0771) −0.4282 (0.0805) −0.2304 (0.0789)
cj,1 −0.9966 (0.2097) −1.6341 (0.2814) −0.9943 (0.2142) −1.6197 (0.2852)
cj,2 −0.0786 (0.0196) −0.2296 (0.0198) −0.0788 (0.0198) −0.2111 (0.0199)
cj,3 1.3514 (0.0271) 1.3742 (0.0243) 1.3500 (0.0281) 1.3936 (0.0248)

No. observations 1, 232 1, 232 1, 232 1, 232

Table S1: Estimates and associated standard errors (in brackets) obtained by applying
CopulaCLM to the BAAC 2014 data. Results are for the parametric model components of
Scenario I, when using the Joe0 copula function is used. The last columns report the results
corresponding to the independent model. The reference categories are given in round brackets
next to the variable names to which they refer.
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Figure S2: Smooth functions estimates and associated 95% point-wise confidence intervals
corresponding to the two equations (first and second row, respectively) of the bivariate model
applied to the BAAC 2014 data under Scenario I, when the Joe0 copula function is used. The
maps quantify the estimates obtained for the regional variable in each of the 96 Departments
of continental France. We refer to the caption of Figure 4 for further details.

S.4 Asymptotic Considerations

Definition of B-splines of order q On the closed interval [0, 1] we define the sequence of
knot points 0 = κ0 < κ1 < · · · < κH and further 2q knots: κH = κH+1 = · · · = κH+q and
κ−p+1 = κ−p+2 = · · · = κ−1 = κ0. The basis functions are then derived recursively as:

Bh,q(vj,lj ,i) =
vj,lj ,i − κh−1

κh+q−1 − κh−1
Bh,q−1(vj,lj ,i) +

κh+q − vj,lj ,i

κh+q − κh
Bh+1,q−1(vj,lj ,i),

for h = −q + 1, . . . , H, with

Bh,0(vj,lj ,i) =

{
1 κh−1 ≤ vj,lj ,i < κh
0 o/w

.

The above construction defines precisely H+q basis functions: B−q+1,q(vj,lj ,i), . . . , BH,q(vj,lj ,i).
Each evaluation sj,lj (vj,lj ,i) is then approximated by

sj,lj (vj,lj ,i) ≈
H∑

h=−q+1

βj,ljBh,q(vj,lj ,i),

and we write the penalized log-likelihood as

`p(ϑ|·) := `(ϑ|·)− 1

2
ϑ>Sλϑ,

where Sλ := diag(0K1+K2−1,Q1,m,Q2,m,Qγ,m), Qj,m := diag(λj,1∆
>
m∆m, . . . , λj,Lj∆

>
m∆m) and

∆m is the (H + q −m)× (H + q) m-th difference matrix.
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Lemma 1

Proof. The results follow from tedious computation after having noticed that the elements of
the gradient vector can be written as

∂`i
∂c̃kj

= dkjukj ,i,
∂`i
∂βj

= −xj,iuj,i,
∂`i
∂βγ

= xγ,iuγ,i

for j ∈ {1, 2}.

Lemma 2

Proof. Since we work under the same maintained assumptions, Lemma 1 in ? applies. Therefore
we have

X>
j,lj

Xj,lj = O(n/Hn) for j ∈ {1, 2, γ}
X>

j,lj
Xj,l̄j

= O(n/H2
n) for j ∈ {1, 2, γ} and lj 6= l̄j

,

and X>
j X̄ is globally of asymptotic order O(n/Hn) for all j, ̄ ∈ {1, 2, γ}. Moreover, we note

that the matrices D̃k1 and D̃k2 are made up of finite constant terms only, so each is of order
O(1). As a consequence, D̃>

k D̃k̄ and D̃>
k Xj are also bounded for k, k̄ ∈ {k1, k2} and every j.

We turn now to the elements of the sub-matrices Eϑ0 [W̃h̄]. Since the derivatives of the
copula functions are assumed to be bounded, it only remains to consider the terms ∂Φ(y∗j )/∂ηj .
Notice that the subscript i has been omitted for no good reason. In order to bound these
quantities, we use the fact that the Normal distribution is a member of the exponential family;
thus we write

f1,j(y
∗
j ) = exp

{
y∗jηj − b(ηj)

a(φ)
+ c(y∗j , φ)

}
= exp

{
y∗jηj − η2j /2 +

(
−1

2
log(2φ)−

(y∗j )
2

2

)}
.

In particular, notice that the scale parameter reduces to a(φ) = 1 in our context, and the
moments of the random variable Y ∗

j correspond to E[Y ∗
j ] = b′(ηj) = ηj < ∞ and V[Y ∗

j ] = b′′(ηj).
A sufficient condition for E[Y ∗

j ] < ∞ is that Y ∗
j has not zero counts on its last level Kj . In

this case, in fact, the inequality cj,Kj−1 < cj,Kj = ∞ holds strictly. Under usual smoothness
assumption, we find that∣∣∣∣∂Φ(y∗j )∂ηj

∣∣∣∣ =
∣∣∣∣∣
∫ y∗j

−∞

∂

∂ηj
f1,j(tj)dtj

∣∣∣∣∣ ≤
∣∣∣∣∫
R

f1,j(tj)
(
tj − b′(ηj)

)
dtj

∣∣∣∣ ≤ 2Eϑ0 |Y ∗
j |

and, with similar arguments, ∣∣∣∣∣∂Φ(y∗j )2∂2ηj

∣∣∣∣∣ ≤ 2Vϑ0 |Y ∗
j |.

Hence we have Eϑ0 [wh̄,i] = O(1) for all i = 1, . . . , n and h̄ ∈ {k1, (k1, k2), . . . , γ} and Fn(ϑ0) :=

D̃>Eϑ0 [W̃j ]D̃ = O(n/Hn).
To prove the second part of the statement, we stress that, by the properties of the B-spline

basis, the (i, lj)-th component of the matrices X>
j,lj

Xj,l̄j
, lj , l̄j = 1, . . . , Lj and all j, is 0 if

|i− lj | > q. Hence X>
j Eϑ0 [W̃j ]Xj has a band structure and the assertion follows by exploiting

the order of the penalty terms (e.g. ?).
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SCENARIO I: ESTIMATES

Variables Driver Other occupant Independent model
estimates (se) estimates (se) estimates (se)

Occupant Characteristics
Gender (male)
female 0.1697 (0.0694) 0.0625 (0.0630) 0.1094 (0.0466)

Seat (driver)
other/missing − − ref. − 0.2970 (0.2347)
front, passenger − − 0.2048 (0.1664) 0.3754 (0.0453)
rear, driver’s side − − 0.0364 (0.2344) 0.1932 (0.1565)
rear, opposite driver − − −0.0036 (0.2171) 0.3175 (0.1333)

Motorway Characteristics
Intersection (off intersection)
X 0.0395 (0.2358) −0.2162 (0.2428) −0.0927 (0.1714)
T −0.0924 (0.2535) −0.3344 (0.2590) −0.2378 (0.1832)
Y −0.2814 (0.3907) −0.3344 (0.3682) −0.3054 (0.2694)
> 4 branches −0.8819 (0.4609) −0.4818 (0.4177) −0.7115 (0.3076)
roundabout 0.3647 (0.2109) 0.3174 (0.2188) 0.3176 (0.1532)
circus/square 0.1333 (1.0256) −0.4455 (1.0725) −0.1332 (0.7553)
other 0.3505 (0.2982) 0.2448 (0.3088) 0.2856 (0.2173)

Type (motorway)
Route Nationale −0.1418 (0.1333) −0.0205 (0.1336) −0.1005 (0.0952)
Route Départementale 0.0070 (0.0981) 0.1478 (0.0993) 0.0718 (0.0703)
Voie Communale −0.3588 (0.1056) −0.0741 (0.1051) −0.2200 (0.0751)
other −0.4516 (0.3301) −0.3340 (0.3357) −0.4088 (0.2383)

Circulation regime (missing)
one-way 0.0751 (0.1530) −0.3744 (0.1574) −0.1300 (0.1102)
two-way 0.3640 (0.1291) 0.1020 (0.1338) 0.2490 (0.0931)
presence of median 0.1197 (0.1430) −0.1610 (0.1485) 0.0113 (0.1033)
other 1.0587 (0.5738) 0.1987 (0.5722) 0.6379 (0.4112)

Horizontal alignment (straight)
left curve −0.1137 (0.0800) 0.2048 (0.0812) 0.0246 (0.0572)
right curve 0.0004 (0.0892) 0.0364 (0.0890) −0.0027 (0.0636)
S −0.1379 (0.1665) −0.0036 (0.1657) −0.0397 (0.1175)

Location (other/missing)
roadway −0.4146 (0.1080) −0.4878 (0.1103) −0.4533 (0.0775)
emergency lane −0.3953 (0.2359) 0.0222 (0.2395) −0.2426 (0.1688)
shoulder −0.0446 (0.1203) −0.0932 (0.1221) −0.0861 (0.0860)
sidewalk −0.2552 (0.1864) −0.6954 (0.1892) −0.4705 (0.1336)

Obstacle (other/missing)
fixed object 0.1938 (0.0887) 0.0984 (0.0904) 0.1594 (0.0636)
pedestrian −7.2444 (5.9 105) −0.9181 (1.1237) −1.0730 (0.8588)
vehicle −0.1082 (0.1832) −0.0178 (0.1818) −0.0639 (0.1301)
animal 0.1777 (0.3076) 0.0467 (0.3031) 0.1418 (0.2180)

Accident Characteristics
Lighting (daylight)
sunrise/sunset 0.0164 (0.1188) 0.1235 (0.1210) 0.0424 (0.0853)
night without street lights 0.1814 (0.0801) −0.0430 (0.0788) 0.0709 (0.0567)
night, street lights in force −0.0173 (0.0910) 0.1334 (0.0905) 0.0420 (0.0648)

Atmospheric conditions (normal)
light rain −0.2105 (0.0889) −0.1271 (0.0880) −0.1761 (0.0630)
heavy rain 0.4468 (0.1658) −0.1548 (0.1678) 0.1702 (0.1189)
snow 0.6575 (0.4330) −0.6317 (0.4231) 0.1938 (0.2940)
fog −0.2960 (0.2864) 0.1544 (0.2890) −0.0662 (0.2038)
heavy wind/storm 0.0588 (0.4496) 1.1834 (0.4899) 0.4839 (0.3227)
clear 1.0461 (0.4596) 0.6979 (0.4539) 0.8283 (0.3260)
clouds 0.1347 (0.1432) −0.1661 (0.1458) −0.0031 (0.1027)

Manner of collision (missing/other)
head-on −0.1864 (0.0761) 0.0176 (0.0773) −0.0831 (0.0544)
rear-end −0.3630 (0.1981) −0.1348 (0.1971) −0.2355 (0.1411)
sideswipe, right −0.1723 (0.1739) 0.7225 (0.1774) 0.2286 (0.1237)
sideswipe, left 0.6712 (0.1677) −0.0826 (0.1648) 0.3176 (0.1178)

Security device (not put on)
put on −0.4585 (0.0785) −0.2646 (0.0771) −0.3452 (0.0554)
cj,1 −0.9966 (0.2097) −1.6341 (0.2814) −1.0693 (0.1515)
cj,2 −0.0786 (0.0196) −0.2296 (0.0198) 0.0378 (0.0138)
cj,3 1.3514 (0.0271) 1.3742 (0.0243) 1.5235 (0.0180)
No. observations 1, 232 1, 232 2, 464

Table S2: Estimates for Scenario I: the independent model is obtained under a univariate model
where all the observations are pooled together.
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SCENARIO I: PSEUDO-ELASTICITIES

Variables Joe0: Semi-parametric Independent Joe0: Parametric
Driver Other occupant Driver Other occupant Driver Other occupant

Occupant Characteristics
Gender (male)
female 15.1771 4.4118 11.4417 3.9410 20.0326 6.3791

Seat (other/missing)
front, passenger − 3.3171 − 5.0900 − 11.2427
rear, driver’s side − −0.6495 − −5.2680 − −2.2810
rear, opposite driver − 2.5478 − 1.3643 − 10.9453

Motorway Characteristics
Intersection (off intersection)
X 3.5046 −15.5834 −1.9336 −16.9575 20.8335 −8.8219
T −8.1106 −24.0573 −13.2887 −23.9279 0.2473 −24.1377
Y −24.0709 −24.0592 −28.5440 −25.4054 −6.8963 −11.5996
> 4 branches −64.7161 −34.3071 −70.0681 −34.7874 −56.1683 −38.8870
roundabout 32.9388 21.1949 29.4565 21.5968 40.6659 11.2428
circus/square 11.9005 −31.8270 13.1213 −31.8771 21.0943 16.2180
other 31.6143 16.6715 28.16066 17.1848 34.1223 23.2436

Type (motorway)
Route Nationale −12.3814 −1.4598 −14.2561 −2.9740 −7.4069 −0.0587
Route Départementale 0.6239 10.2816 0.5852 10.0325 3.5596 12.7703
Voie Communale −30.2670 −5.3074 −30.3170 −5.1137 −20.9363 −2.6323
other −37.3652 −24.0312 −40.1773 −24.6226 −31.9717 −30.2226

Circulation regime (missing)
one-way 6.6856 −26.8814 8.3478 −29.6338 15.9702 −25.6134
two-way 32.8730 7.1588 33.9659 5.7432 36.7234 11.4425
presence of median 10.6766 −11.5934 13.2971 −12.5896 20.2130 −10.2389
other 285.5734 13.6792 73.6875 5.8991 69.6891 13.6003

Horizontal alignment (straight)
left curve −8.9555 18.0840 −10.1281 18.7363 −7.1916 15.3640
right curve 0.0402 2.5769 −1.4410 1.3507 −3.3128 −0.5520
S −10.5973 −0.2560 −7.6513 1.1204 −9.4537 6.7268

Location (other/missing)
roadway −34.5838 −34.7099 −37.5420 −35.6480 −33.3844 −35.0592
emergency lane −33.1021 1.5788 −40.3814 0.9101 −38.7264 −1.8851
shoulder −3.9319 −6.6893 −7.3046 −7.9924 −9.8526 −9.4138
sidewalk −21.9244 −48.0965 −25.7039 −49.8746 −23.9135 −51.1506

Obstacle (other/missing)
fixed object 21.1914 7.7640 22.3652 8.4292 22.3471 8.8375
pedestrian − −21.5275 − −22.3293 − −22.2966
vehicle −8.5727 −1.2459 −9.3135 −1.2383 −7.4586 9.0969
animal 19.0619 3.4888 24.3422 2.7093 6.4797 10.0389

Accident Characteristics
Lighting (daylight)
sunrise/sunset 1.4600 8.6284 −2.4667 8.7987 −0.4411 6.5159
night without street lights 16.2326 −3.0728 14.0798 −4.1294 20.2537 −5.9967
night, street lights in force −1.5261 9.3080 3.9102 9.3804 −2.7762 10.9983

Atmospheric conditions (normal)
light rain −18.2084 −9.1396 −18.1288 −10.4779 −15.9728 −5.1552
heavy rain 40.7718 −11.1393 38.8988 −12.5850 55.3536 −12.7853
snow 65.8266 −44.1370 63.4047 −39.5186 58.4414 −59.4227
fog −19.4357 12.9200 −16.3039 12.4447 −17.2725 10.5198
heavy wind/storm 5.2257 45.3357 6.38444 46.4522 −6.1463 53.2024
clear 267.3856 39.6371 72.0389 38.6520 121.7924 52.1828
clouds 12.0293 −11.9607 11.9639 −11.0216 20.5940 −11.6020

Manner of collision (missing/other)
heads-on −16.1804 1.2487 −15.0135 2.7577 −22.0029 2.4676
rear-end −22.3114 −8.3346 −23.1520 −6.7087 −26.7919 −9.9022
sideswipe, right −12.7931 116.2993 −12.4661 121.8290 −20.3684 129.3245
sideswipe, left 68.0130 −5.9216 56.3359 −6.4898 60.6336 −9.6748

Security device (not put on)
put on −25.6391 −14.2845 −24.7310 −12.9336 −27.2415 −14.1851

No. observations 1, 232 1, 232 1, 232

Table S3: Pseudo-elasticities for Scenario I obtained by applying the preferred Joe0 copula,
independent and the fully parametric models. Quantities are computed with respect to the
hospitalised injuries.
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