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Abstract
Maintenance of healthy cognitive ageing is vital for independence and wellbeing in the older general population. We
investigated the association between blood metabolites and cognitive function and decline. Participants from the
MRC National Survey of Health and Development (NSHD, the British 1946 birth cohort) were studied; 233 nuclear
magnetic resonance circulating metabolite measures were quantified in 909 men and women at ages 60–64. Short-
term and delayed verbal memory and processing speed were concurrently assessed and these tests were repeated at
age 69. Linear regression analyses tested associations between metabolites and cognitive function at ages 60–64, and
changes in these measures by age 69, adjusting for childhood cognition, education, socio-economic status and
lifestyle factors. In cross-sectional analyses, metabolite levels, particularly fatty acid composition and different lipid sub-
classes, were associated with short-term verbal memory (4 measures in females and 11 measures in the whole sample),
delayed verbal memory (2 measures in females) and processing speed (8 measures in males and 2 measures in the
whole sample) (p < 0.002). One metabolite was associated with change in cognition in females. Most of the observed
associations were attenuated after adjustment for childhood cognition and education. A life course perspective can
improve the understanding of how peripheral metabolic processes underlie cognitive ageing.

Introduction
Global increases in life expectancy have been accom-

panied by changes in labour market and social structures
that place growing importance on the maintenance of
healthy cognitive ageing for independence and wellbeing
in the older general population1. It is therefore important
to identify ways to maintain healthy cognitive ageing and
to prevent or delay functionally significant cognitive
decline, especially in the absence of effective disease-
modifying treatments for dementia.
Blood metabolites closely represent the physiological

status of an organism, reflecting what has been encoded
by the genome and modified by systemic and environ-
mental exposures2. Markers of lipid metabolism, such as

essential fatty acids (FAs) and in particular omega-3
polyunsaturated FAs (n3-PUFAs), play a vital structural
and functional role in the central nervous system, and are
associated with cognitive performance and brain function
during general ageing3,4. However, most studies linking
lipids to cognitive ageing are limited by inability to control
for potential reverse causality, since associations between
lipids and cognition reflect lifetime interplay.
The MRC National Survey of Health and Development

(NSHD, the British 1946 birth cohort) offers unique
opportunities using an age-homogenous sample. Study
members are now at an age where pathophysiological
changes are likely to be accumulating, but frank dementia
is still rare. A wide range of blood metabolites was assayed
in late midlife (between ages 60 and 64) using nuclear
magnetic resonance (NMR), and memory and processing
speed were concurrently assessed. These cognitive tests
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were repeated at age 69. In addition, the NSHD has a wide
range of potential confounders and mediators, including
childhood cognitive ability5, education, lifetime socio-
economic position, and health and health-related beha-
viours. We investigated blood metabolite levels in relation
to cognitive function and decline.

Materials and methods
Participants
The Medical Research Council (MRC) National Survey

of Health and Development (NSHD) is based on a
nationally representative cohort of 5362 singleton births
within marriage occurring during 1 week in March 1946
in England, Scotland and Wales. The cohort has been
followed 24 times, most recently when participants were
68–69 years old6. Extensive information on socio-
demographics, health and cognitive function has been
obtained in childhood, adolescence and regularly
thereafter6.
For the 60–64 years wave, 2229 of 2856 eligible parti-

cipants (78.0%) underwent assessment. Contact was not
attempted with those who were known to have died (n=
778), were living abroad (n= 570), had previously with-
drawn from the study (n= 594) or were permanently
untraced (n= 564)7. Of those assessed, 98% were willing
to have a blood sample taken, and at least one blood
sample was successfully obtained from 96%.
The participating sample remains broadly representa-

tive of native-born British men and women of the same
age7. The current study protocol received ethical approval
from the Greater Manchester Local Research Ethics
Committee for the four English sites and from the Scot-
land A Research Ethics Committee. Written informed
consent was obtained at each data collection.

Metabolomics
Serum metabolomics analyses were performed on blood

samples collected at ages 60–64. All blood samples were
collected after an overnight fast and were not subjected to
any free-thaw cycles prior to metabolomics. Serum
metabolites were assayed using a high-throughput NMR
metabolomics platform able to quantify up to 233 meta-
bolite measures and ratios representing a broad molecular
signature of systemic metabolism. Multiple metabolic
pathways were covered, including lipoprotein lipids and
lipid sub-classes, FAs and FA compositions, as well as
amino acids and glycolysis precursors (Supplementary
Table S1). Details are described elsewhere8–10. Following
strict quality control (QC) serum metabolite data were
available for 909 participants.

Cognitive function
Cognitive function was assessed by short-term and

delayed verbal memory, and speed of processing at age

60–64, and by change in these measures (except delayed
verbal memory) by age 69. Short-term verbal memory was
assessed by a three-trial 15-item word list learning task
(maximum score= 45) devised by the NSHD11. After a
processing speed task (see below), an uncued delayed free
recall trial was administered (delayed verbal memory;
60–64 years only). Speed of processing was assessed as the
number of letters P and W, randomly embedded within a
page of other letters, crossed out as quickly and accurately
as possible within 1 min (maximum 600)11.

Covariables
The following variables were treated as potential con-

founders or mediators: sex, age at blood collection and
blood collection centre, cognitive ability at 15 years,
educational attainment and childhood and midlife SEP,
BMI at 60–64 years12, lipid medication, lifetime smoking
and alcohol consumption by 60–64 years, and exercise
and nutrient intakes at 60–64 years13–16.
Cognitive ability at 15 years was represented as the sum

of four tests of verbal and nonverbal ability17. Educational
attainment by 26 years was grouped in three categories:
no educational qualifications, ordinary (‘O’ level) sec-
ondary qualifications and advanced (‘A’ level) secondary
or higher qualifications. Lifetime SEP was based on
father’s occupation when study members were aged 11 (or
if this was unknown at ages 4 or 15) and current or last
own occupation at age 53; both were coded in six cate-
gories according to the UK Registrar General’s classifi-
cation. Weight and standing height were measured at
60–64 years according to standard protocols, and BMI
was calculated. Lipid medication was recorded by a
research nurse as any lipid lowering drugs taken in the last
24 h before the blood sample was taken.
Lifetime smoking was represented by pack years per

person from 20 to 64 years. Physical activity was defined
as participating in any sports, exercises or vigorous leisure
activities in the month preceding the age 60–64 interview
(none, 1–4 times or more than 4 times). Participants
recorded all alcoholic drinks consumed using 3–5 day diet
diaries at 36, 43, 53 and 60–64 years18. An overall mea-
sure of adult alcohol consumption was calculated as the
average of daily intakes (in grams) at all ages (when data
were available for at least three of four waves); this was
recoded as no consumption, light to moderate and heavy
consumption across midlife.
Diet at 60–64 years was assessed using 5-day estimated

diet diaries19. Mean daily consumption of the following
nutrients were calculated when data was available for at
least three days: total carbohydrates, total fat and total
saturated FAs, total mono-unsaturated FAs, n3-PUFAs
and n6-PUFAs, including any supplements taken; and
nutrient densities per 1000 kcal were generated (grams/
total energy (kcal) × 1000).
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Statistical analyses
The outcomes of the study were the cognitive variables

and the predictors were the metabolic measures. All
cognitive variables were approximately normally dis-
tributed. Metabolite measures that showed any deviations
from normality were transformed using the natural
logarithm, or the natural logarithm plus 0.1 if they
included zero values (Supplementary Table S1) n3-PUFAs
and n6-PUFAs nutrient densities were skewed, so natural
log transformed. Upon transformation all variables were
approximately normally distributed. All outcomes and
predictors were standardised for direct comparisons.

Main analyses
Linear regression was used to test associations between

metabolites and memory and search speed. There were
five stages of adjustments (Fig. 1): Model 1 adjusted for
sex, age at blood collection and blood collection centre;
Model 2 additionally adjusted for BMI and lipid medica-
tion at 60–64 years; Model 3 further adjusted for cognitive
ability, educational attainment and lifetime SEP; Model 4
further adjusted for lifetime smoking, alcohol consump-
tion and exercise at 60–64 years; Model 5 additionally
adjusted for nutrient intake at 60–64 years; Model 5 was
rerun 6 times including a different diet variable at each
model. To maintain statistical power and minimise bias
from missing data, we imputed missing values for the
covariables in the sample of 798 participants with com-
plete metabolite and cognition data at 60–64 years using
multiple imputation chained equations (mice) imple-
mented in R20. Sex interactions were tested in Model 1
and all models were sex-stratified when there was evi-
dence of significant sex interaction (p < 0.1).

In the sample with a cognitive measure at age 69, we
repeated this series of models for change (except delayed
verbal memory) between age 60–64 and 69, by taking the
difference between age 60–64 and 69 and adjusting for
baseline (age 60–64).
To correct for multiple testing and correlation between

metabolic measures, we set a metabolome-wide statistical
significance threshold to p < 0.002 (Supplementary Figure
S1); the p < 0.05 significance level was divided by the
number of principal components25 that explained over
95% of variation in the metabolomics data. All analyses
were conducted in R.3.1.1

Additional analyses
In preliminary analyses we investigated associations

between all covariables and the metabolites in the whole
sample (adjusted for sex, age at blood collection and blood
collection clinic) and in females and males separately
(adjusted for age at blood collection and blood collection
clinic) (Supplementary Table S2).
We performed sensitivity analyses by adjusting for one

covariable at a time in addition to the Model 1 covariables
(Supplementary Table S3 (a–c)). We also compared those
with complete data through Model 3, to those with
complete data on all covariates.

Results
Study sample characteristics
Of the 909 study participants with metabolite data, 798

had complete data at ages 60–64 for metabolite and
cognitive measures. Of these, 663 participants had repeat
cognitive measures at age 69. Characteristics of the sam-
ples are shown in Table 1.

Fig. 1 Stages of covariate adjustment. *Sex adjustment took place for whole-sample analyses. **Model 5 was run 6 times, using a different nutrient
intake variable in each model (Table 1)
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Table 1 Characteristics of participants with complete data for all metabolites and cognitive measures at 60–64 years
(N= 798) and both at 60–64 and 69 years (N= 663)

Complete metabolite and cognition

data for 60–64 y (Nmax= 798)

Complete metabolite and cognition

data for 60–64 and 69 y (Nmax= 663a)

All Women Men All Women Men

SEP (Father’s), n (%) N= 768 N= 400 N= 427 N= 639 N= 312 N= 327

Professional 26 (6.9) 27 (6.9) 23 (7.4) 25 (7.6)

Intermediate 78 (20.7) 96 (24.6) 64 (20.5) 84 (25.7)

Nonmanual skilled 62 (16.5) 58 (15.5) 52 (16.6) 50 (15.3)

Manual skilled 120 (31.8) 121 (31.4) 102 (32.7) 102 (31.2)

Partly skilled 72 (19.1) 65 (16.6) 59 (18.9) 47 (14.4)

Unskilled 19 (5.0) 24 (6.1) 12 (3.9) 19 (5.8)

Childhood cognition (15 y) (z-score), mean(SD) N= 705 N= 349 N= 356 N= 585 N= 288 N= 297

−0.06 (0.96) 0.06 (1.03) 0.00 (0.93) 0.12 (1.02)

Education (26 y), n (%) N= 760 N= 377 N= 383 N= 633 N= 314 N= 319

No qualification 112 (29.7) 118 (30.8) 91 (28.9) 88 (27.5)

Up to GCSE 126 (33.4) 74 (19.3) 103 (32.8) 62 (19.4)

A-level or higher 139 (36.9) 191 (48.9) 120 (38.2) 169 (53.0)

SEP (15–53 y), n (%) N= 796 N= 390 N= 406 N= 662 N= 324 N= 338

Professional 6 (1.54) 58 (14.3) 5 (1.54) 50 (14.8)

Intermediate 164 (42.1) 180 (44.3) 145 (44.8) 155 (45.9)

Nonmanual skilled 128 (32.8) 39 (9.6) 105 (32.4) 35 (10.4)

Manual skilled 34 (8.7) 97 (23.9) 25 (7.7) 72 (21.3)

Partly skilled 46 (11.8) 23 (5.7) 34 (10.5) 19 (5.5)

Unskilled 12 (3.08) 9 (2.2) 10 (3.09) 7 (2.1)

BMI (64 y) (weight (kg)/height (m)2), mean(SD) N= 797 N= 389 N= 498 N= 662 N= 323 N= 339

27.54 (4.7) 27.4 (3.9) 27.64 (4.8) 27.2 (3.8)

Lipid Medication (64 y), n (%) N= 798 N= 390 N= 408 N= 663 N= 324 N= 339

Yes 68 (17.4) 105 (25.7) 63 (19.4) 86 (25.4)

No 322 (82.6) 322 (74.3) 261 (89.6) 253 (74.6)

Physical activity (64 y), n (%) N= 769 N= 371 N= 398 N= 643 N= 312 N= 331

None 215 (58.0) 247 (62.1) 176 (56.4) 191 (57.7)

1–4 times a month 56 (15.0) 59 (14.8) 50 (16.0) 55 (16.6)

4+ times a month 100 (27.0) 92 (21.1) 86 (27.6) 85 (25.7)

Lifetime smoking (20–64 y), n (%) N= 645 N= 310 N= 335 N= 534 N= 256 N= 278

Pack years per person 10.83 (15.3) 13.25 (17.5) 10.12 (15.2) 12.08 (16.9)

Lifetime alcohol consumption (36–64 y), n (%) N= 668 N= 324 N= 344 N= 563 N= 270 N= 293

No consumption 27 (8.3) 13 (3.8) 22 (8.2) 9 (3.1)

Light-moderate consumption 277 (85.5) 252 (73.3) 229 (84.8) 220 (75.1)

Heavy consumption 20 (6.2) 79 (22.9) 19 (7.0) 64 (21.8)

N= 680 N= 336 N= 344 N= 586 N= 283 N= 303
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Cognition at 60–64 years
Short-term verbal memory
Of the eleven metabolite measures with significant sex

modification (p < 0.1) in Model 1, four were associated
with short-term verbal memory in females after correc-
tion for multiple testing (Fig. 2, Model 1): omega-3 Fas
(FAw3) and DHA and their ratios to total FAs (FAw3-FA
and DHA-FA respectively); the strongest association was
with DHA-FA (beta= 0.256, 95% CI 0.16–0.36, p=
4.94 × 10–7). Adjustment for BMI and lipid medication
slightly reduced some of these associations (Model 2) but
most were attenuated by childhood cognitive ability,
education and SEP, particularly by the first two (Model 3);
there was no further attenuation after further adjustments
for exercise, smoking and alcohol consumption (Model 4)
and diet (Model 5).
Of the 222 metabolites with no significant sex mod-

ification, 11 were associated with short-term verbal
memory (p < 0.002) in sex-adjusted analyses (Fig. 2, Model
1). The strongest association was with the diameter of
high-density lipoproteins (HDL-D) (beta= 0.156, 95% CI
0.08–0.23, p= 4.11 × 10–5). The rest of the associations
were mainly with lipids in large and X-large HDLs, with
the ratio of poly and mono-unsaturated FAs to total Fas
(PUFA-FA and MUFA-FA, respectively), as well as with
glycoprotein acetyl (GP). The effects of adjustments in the
whole-sample analyses were similar to those observed in
females, with most associations being attenuated in
Model 3.

Delayed verbal memory
Two metabolite measures showed sex modification (p <

0.1) in Model 1. These two measures, pyruvate and DHA-
FA, were associated with delayed verbal memory in

females (Fig. 2, Model 1), the strongest association being
with pyruvate (beta= 0.169, 95% CI 0.07–0.27, p= 1.00 ×
10–3). These associations remained statistically significant
in Model 2 but were attenuated in Model 3, and there was
no further attenuation in Models 4 and 5.
None of the rest of the 231 metabolite measures were

associated with delayed verbal memory in sex-adjusted
whole-sample analyses.

Search speed
Of the 40 metabolite measures with significant sex

modification (p < 0.1) in Model 1, eight were associated
with search speed in men. The strongest association was
with total cholesterol in intermediate density lipoprotein
(IDL-C) (beta= 0.187, 95% CI 0.08–0.29, p= 4.21 × 10–4),
and the rest of the associations were with the ratios of
triglycerides (TG), cholesterol and cholesterol esters
(ChoE) to intermediate and low density lipoproteins (IDLs
and LDLs). These associations remained, albeit weakened,
after adjustments (p < 0.05, Model 5).
In whole-sample sex-adjusted analyses, MUFA-FA and

PUFA-FA were associated with search speed (Fig. 2;
Model 1). The strongest association was with MUFA-FA
(beta=−0.113, 95% CI −0.18 to −0.04, p= 0.1.5 × 10–3).
These associations were attenuated in Model 2 and fur-
ther weakened by additional adjustments.
Figure 3 shows the associations between all metabolites

and cognitive outcomes at p < 0.05; the cross-sectional
associations between all metabolites and the cognitive
outcomes are presented in Supplementary Table S4.

Cognitive change between 60–64 and 69 years
Forty-three metabolites showed sex modification and

one, the ratio of free cholesterol to total lipids in XL-HDL

Table 1 continued

Complete metabolite and cognition

data for 60–64 y (Nmax= 798)

Complete metabolite and cognition

data for 60–64 and 69 y (Nmax= 663a)

All Women Men All Women Men

Diet (64 y), mean daily nutrient densities/1000 kcal, mean

(SD)

Carbohydrates 118.53 (18.1) 114.99 (18.7) 118.77 (18.2) 114.72 (18.8)

Fat 37.98 (6.7) 37.55 (6.2) 38.01 (6.9) 37.57 (6.2)

Total saturated FAs (FA) 14.36 (3.8) 14.09 (3.41) 14.31 (3.7) 14.08 (3.5)

Total mono-unsaturated FAs (MUFA) 12.53 (2.7) 12.74 (2.6) 12.54 (2.7) 12.72 (2.6)

n3-polyunsaturated FAs (n3-PUFA) 1.09 (0.4) 1.04 (0.4) 1.10 (0.4) 1.05 (0.4)

n6-polyunsaturated FAs (n6-PUFA) 5.74 (1.8) 5.41 (1.8) 5.75 (1.8) 5.40 (1.8)

aOut of the 135 participants who were not included in the analyses at age 69, 45 were not approached as they had died (n= 38) or had been lost to follow-up (n= 7).
The remainder 90 were approached but temporarily refused to participate (n= 42), did not respond (n= 19), withdrew (n= 4) or did not have full assessment
completed (n= 25)
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(XL-HDL-FC-PC), was associated with greater decline in
short-term verbal memory in females (beta=−0.186, 95%
CI −0.30 to −0.07, p= 1.31 × 10–3), with slight attenua-
tion in Model 3. No associations were observed between

the rest of the 232 metabolites and change in short-term
verbal memory in whole-sample sex-adjusted analyses.
Of the remaining 190 metabolites, 4 showed evidence of

sex modification but none were associated with change in

Model 1 Model 2 Model 3 Model 4

Fatty acids & saturation Short-term verbal memory (60-64 y)

Inflammation Short-term verbal memory (60-64 y)

Lipoprotein particle sizes Short-term verbal memory (60-64 y)

Lipoprotein subclasses : Composition Short-term verbal memory (60-64 y)

Lipoprotein subclasses : Concentration Short-term verbal memory (60-64 y)

Fatty acids & saturation Delayed verbal memory (60-64 y)

Glycolysis related metabolites Delayed verbal memory (60-64 y)

Fatty acids & saturation Search speed (60-64 y)

Lipoprotein subclasses : Composition Search speed (60-64 y)

Lipoprotein subclasses : Composition Change in short-term verbal memory
(60-64 to 69 y)

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

DHA-FA*
DHA*

FAw3-FA*
FAw3*

MUFA-FA
PUFA-FA

Gp

HDL-D

L-HDL-C-PC
L-HDL-CE-PC
L-HDL-FC-PC
L-HDL-PL-PC

L-HDL-C
L-HDL-CE
L-HDL-FC

L-HDL-L
L-HDL-P

S-HDL-TG
XL-HDL-C

XL-HDL-CE
XL-HDL-FC

XL-HDL-L
XL-HDL-P

XL-HDL-PL

DHA-FA*

Pyr*

MUFA-FA
PUFA-FA

IDL-C-PC*
IDL-CE-PC*
IDL-TG-PC*

L-LDL-TG-PC*
M-LDL-TG-PC*
S-LDL-TG-PC*

XL-HDL-FC-PC*

beta(95% CI)

Sample
All: p>=0.002

All: p<0.002

Females: p>=0.002

Females: p<0.002

Males: p>=0.002

Males: p<0.002

Fig. 2 Linear regression results for the associations between metabolite measures and cognitive outcomes (short-term and delayed verbal
memory and search speed at 60–64 years, and change in short-term verbal memory between 60–64 and 69 years) for Models 1–4. Only
metabolite measures showing an association with the cognitive measure at metabolome significance threshold p < 0.002 in the whole sample or in
sex-stratified analyses (when metabolite sex interaction p < 0.1) are presented. Association magnitudes are indicated in units of 1 SD metabolite
concentration per 1 SD of each cognitive outcome. Coloured shapes indicate β-regression coefficients and the 95% confidence intervals. Each colour
and shape represents the whole sample, or males and females. Filled shapes indicate associations passing metabolome significance threshold. The
full names of the metabolite measures can be found in Supplementary Table S1. * indicates an interaction between metabolite and sex at p < 0.1
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search speed between 60–64 and 69 years in sex-stratified
analyses. There were no associations between the rest of
the metabolites and change in search speed between
60–64 and 69 in whole-sample sex-adjusted analyses.

Figure 3 shows the associations between metabolites
and change in cognition at p < 0.05; the associations
between all metabolites and change in cognition are
presented in Supplementary Table S4.

a b c d e a b c d e

Fig. 3 Linear regression analyses results for the associations between all metabolite measures and cognitive outcomes. a Short-term verbal
memory, b delayed verbal memory and c search speed at 60–64 years; d change in short-term verbal memory and e change in search speed
between 60–64 and 69 years for Model 1. Small circles represent associations at 0.002<=p < 0.05 and large circles at p < 0.002. Colours represent the
association magnitudes are indicated in units of 1 SD metabolite concentration per 1 SD of each cognitive outcome. (a–e) An interaction between
metabolite and sex at p < 0.1 for each outcome in which case sex-stratified analyses are performed for the respective outcome. Full circles represent
sex-adjusted analyses performed in the whole sample and hollow and crossed circles represent analyses performed in females and males respectively
in the case of an interaction with sex. The full names of the metabolite measures can be found in Supplementary Table S1
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Discussion
Using a large British population-based birth cohort we

investigated associations between 233 blood metabolites
at 60–64 years, and memory and speed of processing at
the same age, and change in these cognitive functions
from 60–64 to 69 years. We observed associations
between different metabolite classes, especially FA and
lipoprotein sub-classes, and cognition, some of which
were sex specific. These associations were independent of
health and health-related behaviours but were largely
explained by childhood cognition and education (Sup-
plementary Table S2), particularly for PUFAs and HDLs.
This is to our knowledge the largest single study to

systematically investigate how the midlife blood metabo-
lome is associated with midlife cognition and cognitive
decline, and how life course factors explain these asso-
ciations. We used a representative British birth cohort
study with metabolite data representing a broad mole-
cular signature of systemic metabolism, and concurrent
measures of memory and processing speed. Cognition was
re-assessed at age 69, at a stage of the life course when
pathophysiological changes relevant to CNS function are
likely to be accumulating, but dementia is still rare. The
main strength of our study is the range of potential
confounders and mediators. These include rarely-
available childhood cognitive ability, education, socio-
economic status, BMI, lipid medication, diet information,
exercise and lifetime smoking and alcohol consumption
information. Building sequential models we were able to
interrogate the influence of all these covariables on the
associations of metabolites with cognition. Our study also
has some limitations. These include lack of metabolite
data at age 69, which precludes investigation of covariate
changes in metabolite levels and cognition; and lack of
childhood metabolite data, which disallows detailed
investigation of life course bi-directionality between the
metabolome and cognition. Further studies may investi-
gate the latter using appropriate instrumental approaches
such as Mendelian randomisation (MR).
With these strengths and limitations in mind, how

should these findings be interpreted?
The adult human brain comprises about 20% of the

whole body’s cholesterol8 and contains the largest diver-
sity of lipid classes. n3-PUFAs may optimise the efficiency
and plasticity of synaptic transmission in the brain; may
dampen glial-activated pro-inflammatory events caused
by stress; and may promote the renewal of neuronal cells
in the hippocampus21, a key structure for normal and
abnormal cognitive ageing. Studies have shown associa-
tions between cognitive ageing and AD and DHA con-
taining phosphatidylcholines (PCs) in blood3,22,23 and
brain tissue24,25, as well as between DHA and general
cognitive ability and dementia4, with Mfsd2a identified as
the transporter of DHA through the blood–brain

barrier26. A number of studies have investigated the
association of long chain PUFA (LC-PUFA) supple-
mentation with AD and although results are overall
inconsistent a recent meta-analysis of randomised control
trials indicated that n3-PUFAs supplementation seems to
have beneficial effects on systemic endothelial vasodilator
function and cognitive function27. However, the con-
centration of essential FAs decreases in the ageing brain28.
Mechanisms for this are uncertain, but likely include
dietary changes, impaired desaturase activity, increased
lipid peroxidation through impaired antioxidant systems,
and impaired vascular health28. Here, we found positive
associations with PUFAs and negative associations with
MUFAs and cognition, with the associations of n3-PUFAs
and DHA with cognition being observed only in women.
This is consistent with previous work that has shown that
the cognitive benefits of DHA were more profound in
women27. Although it has been reported that such sex-
specific associations could be attributed to bmi differences
between the two genders29, the association of DHA and
cognition in women here was independent to bmi. Future
studies will interrogate the complex interplay between n3-
PUFA, cognition and gender.
Our study also points to associations between cognition

and different lipid subfractions. These included associa-
tions between short-term verbal memory and subfractions
of Large and XL HDLs, including ChoEs, PCs, TGs and
free cholesterol, and associations between search speed
and LDLs/IDLs subfractions, mainly TGs, in men. In
addition to lipid transport, HDL regulates vascular health
via mediating vasorelaxation, inflammation and oxidative
stress, and promotes endothelial cell survival and integ-
rity30. Although studies are not always consistent, HDLs
have been implicated in age related cognitive decline and
AD (reviewed in ref. 31) and were recently associated with
general cognitive ability and dementia and AD4. Addi-
tionally, complex sex-specific associations between LDLs
and IDLs and cognitive decline in older adults and AD
have been previously reported32,33. However, Mendelian
randomisation studies have shown no evidence of a causal
association between HDL-C or LDL-C and AD34,35.
Nevertheless, the association of these compositionally and
functionally diverse lipoprotein particles in relation to
cognition and potentially AD is not well understood and
warrants further investigation. Interestingly, it has been
suggested that PUFAs can alter serum lipid profile;36–39

serum omega-3 and omega-6 PUFAs have been associated
with higher serum levels of large HDLs and HDL diameter
and serum MUFA concentration has been inversely
associated with Large HDL particles and positively asso-
ciated with LDL particles. Indeed, here, we observed the
same patterns of associations between serum lipid profiles
and FAs (Supplementary Figure S1), although direction-
ality was not established.
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Finally, we found negative associations between glyco-
protein acetyls (mainly a1-acid glycoprotein) and short-
term verbal memory in the whole sample, and positive
associations between pyruvate and delayed verbal mem-
ory in females. With regard to glycoprotein acetyls,
changes in the level of several glycoproteins have been
observed in the hippocampus and inferior parietal lobe in
human AD;40 some of these glycoproteins interact with
neurofibrillary tangles, leading to speculation that changes
in their glycosylation may be associated with the patho-
genesis of this disease40. Additionally, A1-acid
glycoprotein was previously found to be a strong pre-
dictor of 10-year mortality41 and was also recently nega-
tively associated with general cognitive ability4. Little is
known about human cognition in relation to to pyruvate
levels, but the present findings are consistent with rele-
vant animal studies. For example, rodent models of AD
suggest apparent neuroprotective effects of pyruvate
administration; mechanisms include protection against
beta amyloid oligomer-induced neuronal cell death42, and
(consistent with essential FAs) reduction of lipid perox-
idation and oxidative stress43.
An important and consistent finding from this study is

that associations between metabolites, in particular FAs,
and cognitive function, in particular verbal memory, were
largely explained by childhood cognition and educational
attainment. Indeed, we found one example of a stronger
association for childhood cognition than adult cognition
(n3-PUFAs in men (Supplementary Table 2)). With
regard to childhood cognition, this is positively associated
with healthy dietary choice in NSHD, even after taking
account of education and lifetime SEP44. However, health
behaviours were not important explanatory variables in
this study (Supplementary Tables S3a–c) even though
they were associated with FAs (Supplementary Table S2).
Alternatively, this association may also reflect lifetime bi-
directionality between FAs and cognition, beginning with
maternal FA intake, which prolongs the duration of
pregnancy45 (leading to heavier birthweight, itself posi-
tively associated with cognitive development46). FAs then
cross the placenta, and separately enter breast milk.
Breastfeeding, in turn, is positively associated with cog-
nitive development, even when confounding from
maternal cognitive ability is controlled47. From this per-
spective, adjusting for childhood cognition could be
regarded as over-adjustment rather than removing a
source of confounding; however, incorporating the
interplay between early growth, nutrition and cognitive
development, and how these influence later metabolite
status and cognitive function, is beyond the scope of this
study.
A third possibility is that the link between childhood

cognition and metabolites is underpinned by a common
genetic cause or by a combination of genetic and dietary

or sex influences. Variation in FA desaturase (FADS) 1/2
genes, which influence rate of n3-PUFAs and n6-PUFA
synthesis, contributes to blood concentrations of FAs48,49,
with heritability estimates accounting for 32–70% of FA
variation48,50,51. Complex interactions between FADS
genotypes and maternal and infant dietary intakes and
LC-PUFAs concentrations have been described, with
maternal genetic variation in FADS frequently associated
with lower concentrations of LC-PUFAs in maternal and
infant blood and in breast milk52–54. Additionally, the
breastfeeding effects on childhood cognition have been
reported to be modified by FADs genes55–58, although
studies are not always consistent59,60. Finally, a recent MR
study has reported the effects of FADS genotypes on
cognition in 8–11 years old schoolchildren to be sex
specific61.

Conclusion
Findings from this study improve our understanding of

the peripheral metabolic processes underlying cognitive
ageing. Our study suggests that the levels of circulating
metabolites in midlife, in particular FAs and different lipid
sub-classes, are associated with midlife cognition, and that
some of these associations are sex specific. The attenua-
tion of these associations, after taking into consideration
childhood cognition and education, suggests that the
metabolic profile may be altered earlier in the life course,
conferring lifetime vulnerability to poor cognition. This
highlights how adding life course information helps our
understanding of these associations, which could have
been otherwise overestimated in midlife. As metabolites
are potentially modifiable markers through diet and life-
style, these findings could hold special value in cognitive
ageing research, and may contribute to risk-reduction
strategies for cognitive impairment and dementia.
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